101
|
Gutierrez R, Department of Cancer Biology, Beckman Research Institute/City of Hope, Duarte, CA 91010 USA, Thompson Y, R. O’Connor T. DNA direct repair pathways in cancer. AIMS MEDICAL SCIENCE 2018. [DOI: 10.3934/medsci.2018.3.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
102
|
Sandler JE, Huang H, Zhao N, Wu W, Liu F, Ma S, Udelsman R, Zhang Y. Germline Variants in DNA Repair Genes, Diagnostic Radiation, and Risk of Thyroid Cancer. Cancer Epidemiol Biomarkers Prev 2017; 27:285-294. [PMID: 29263185 DOI: 10.1158/1055-9965.epi-17-0319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 12/15/2017] [Indexed: 01/30/2023] Open
Abstract
Background: Radiation exposure is a well-documented risk factor for thyroid cancer; diagnostic imaging represents an increasing source of exposure. Germline variations in DNA repair genes could increase risk of developing thyroid cancer following diagnostic radiation exposure. No studies have directly tested for interaction between germline mutations and radiation exposure.Methods: Using data and DNA samples from a Connecticut population-based case-control study performed in 2010 to 2011, we genotyped 440 cases of incident thyroid cancer and 465 population-based controls for 296 SNPs in 52 DNA repair genes. We used multivariate unconditional logistic regression models to estimate associations between each SNP and thyroid cancer risk, as well as to directly estimate the genotype-environment interaction between each SNP and ionizing radiation.Results: Three SNPs were associated with increased risk of thyroid cancer and with thyroid microcarcinoma: HUS rs2708896, HUS rs10951937, and MGMT rs12769288. No SNPs were associated with increased risk of larger tumor (>10 mm) in the additive model. The gene-environment interaction analysis yielded 24 SNPs with Pinteraction < 0.05 for all thyroid cancer, 12 SNPs with Pinteraction < 0.05 for thyroid microcarcinoma, and 5 SNPs with Pinteraction < 0.05 for larger tumors.Conclusions: Germline variants in DNA repair genes are associated with thyroid cancer risk and are differentially associated with thyroid microcarcinoma and large tumor size. Our study provides the first evidence that germline genetic variations modify the association between diagnostic radiation and thyroid cancer risk.Impact: Thyroid microcarcinoma may represent a distinct subset of thyroid cancer. The effect of diagnostic radiation on thyroid cancer risk varies by germline polymorphism. Cancer Epidemiol Biomarkers Prev; 27(3); 285-94. ©2017 AACR.
Collapse
Affiliation(s)
| | - Huang Huang
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Nan Zhao
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| | - Weiwei Wu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut.,School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Fangfang Liu
- The 302 Military Hospital, Beijing, China.,Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut
| | - Robert Udelsman
- Endocrine Neoplasia Institute, Miami Cancer Center, Miami, Florida
| | - Yawei Zhang
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut. .,Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut
| |
Collapse
|
103
|
Jia B, Tang K, Chun BH, Jeon CO. Large-scale examination of functional and sequence diversity of 2-oxoglutarate/Fe(II)-dependent oxygenases in Metazoa. Biochim Biophys Acta Gen Subj 2017; 1861:2922-2933. [DOI: 10.1016/j.bbagen.2017.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/25/2022]
|
104
|
Sun Q, Liu X, Gong B, Wu D, Meng A, Jia S. Alkbh4 and Atrn Act Maternally to Regulate Zebrafish Epiboly. Int J Biol Sci 2017; 13:1051-1066. [PMID: 28924386 PMCID: PMC5599910 DOI: 10.7150/ijbs.19203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 07/11/2017] [Indexed: 01/04/2023] Open
Abstract
During embryonic gastrulation, coordinated cell movements occur to bring cells to their correct position. Among them, epiboly produces the first distinct morphological changes, which is essential for the early development of zebrafish. Despite its fundamental importance, little is known to understand the underlying molecular mechanisms. By generating maternal mutant lines with CRISPR/Cas9 technology and using morpholino knockdown strategy, we showed that maternal Alkbh4 depletion leads to severe epiboly defects in zebrafish. Immunofluorescence assays revealed that Alkbh4 promotes zebrafish embryonic epiboly through regulating actomyosin contractile ring formation, which is composed of Actin and non-muscular myosin II (NMII). To further investigate this process, yeast two hybridization assay was performed and Atrn was identified as a binding partner of Alkbh4. Combining with the functional results of Alkbh4, we found that maternal Atrn plays a similar role in zebrafish embryonic morphogenesis by regulating actomyosin formation. On the molecular level, our data revealed that Atrn prefers to interact with the active form of Alkbh4 and functions together with it to regulate the demethylation of Actin, the actomyosin formation, and subsequently the embryonic epiboly.
Collapse
Affiliation(s)
- Qingrui Sun
- State Key Laboratory of Membrane biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xingfeng Liu
- State Key Laboratory of Membrane biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- State Key Laboratory of Membrane biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Di Wu
- State Key Laboratory of Membrane biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Membrane biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- State Key Laboratory of Membrane biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
105
|
M Gagné L, Boulay K, Topisirovic I, Huot MÉ, Mallette FA. Oncogenic Activities of IDH1/2 Mutations: From Epigenetics to Cellular Signaling. Trends Cell Biol 2017; 27:738-752. [PMID: 28711227 DOI: 10.1016/j.tcb.2017.06.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/11/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023]
Abstract
Gliomas and leukemias remain highly refractory to treatment, thus highlighting the need for new and improved therapeutic strategies. Mutations in genes encoding enzymes involved in the tricarboxylic acid (TCA) cycle, such as the isocitrate dehydrogenases 1 and 2 (IDH1/2), are frequently encountered in astrocytomas and secondary glioblastomas, as well as in acute myeloid leukemias; however, the precise molecular mechanisms by which these mutations promote tumorigenesis remain to be fully characterized. Gain-of-function mutations in IDH1/2 have been shown to stimulate production of the oncogenic metabolite R-2-hydroxyglutarate (R-2HG), which inhibits α-ketoglutarate (αKG)-dependent enzymes. We review recent advances on the elucidation of oncogenic functions of IDH1/2 mutations, and of the associated oncometabolite R-2HG, which link altered metabolism of cancer cells to epigenetics, RNA methylation, cellular signaling, hypoxic response, and DNA repair.
Collapse
Affiliation(s)
- Laurence M Gagné
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval Québec, QC, G1V 0A6, Canada; Centre Hospitalier Universitaire (CHU) de Québec - Axe Oncologie (Hôtel-Dieu de Québec), Québec City, QC, G1R 3S3, Canada
| | - Karine Boulay
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, H1T 2M4, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, H3T 1E2, Canada; Gerald Bronfman Department of Oncology, and Departments of Experimental Medicine, and Biochemistry, McGill University, Montreal, QC, H4A 3T2, Canada
| | - Marc-Étienne Huot
- Centre de Recherche sur le Cancer de l'Université Laval, Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval Québec, QC, G1V 0A6, Canada; Centre Hospitalier Universitaire (CHU) de Québec - Axe Oncologie (Hôtel-Dieu de Québec), Québec City, QC, G1R 3S3, Canada.
| | - Frédérick A Mallette
- Département de Biochimie et Médecine Moléculaire, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada; Chromatin Structure and Cellular Senescence Research Unit, Maisonneuve-Rosemont Hospital Research Centre, Montréal, QC, H1T 2M4, Canada; Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
106
|
Kawarada L, Suzuki T, Ohira T, Hirata S, Miyauchi K, Suzuki T. ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications. Nucleic Acids Res 2017; 45:7401-7415. [PMID: 28472312 PMCID: PMC5499545 DOI: 10.1093/nar/gkx354] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/17/2017] [Accepted: 04/22/2017] [Indexed: 11/13/2022] Open
Abstract
ALKBH1 is a 2-oxoglutarate- and Fe2+-dependent dioxygenase responsible for multiple cellular functions. Here, we show that ALKBH1 is involved in biogenesis of 5-hydroxymethyl-2΄-O-methylcytidine (hm5Cm) and 5-formyl-2΄-O-methylcytidine (f5Cm) at the first position (position 34) of anticodon in cytoplasmic tRNALeu, as well as f5C at the same position in mitochondrial tRNAMet. Because f5C34 of mitochondrial tRNAMet is essential for translation of AUA, a non-universal codon in mammalian mitochondria, ALKBH1-knockout cells exhibited a strong reduction in mitochondrial translation and reduced respiratory complex activities, indicating that f5C34 formation mediated by ALKBH1 is required for efficient mitochondrial functions. We reconstituted formation of f5C34 on mitochondrial tRNAMetin vitro, and found that ALKBH1 first hydroxylated m5C34 to form hm5C34, and then oxidized hm5C34 to form f5C34. Moreover, we found that the frequency of 1-methyladenosine (m1A) in two mitochondrial tRNAs increased in ALKBH1-knockout cells, indicating that ALKBH1 also has demethylation activity toward m1A in mt-tRNAs. Based on these results, we conclude that nuclear and mitochondrial ALKBH1 play distinct roles in tRNA modification.
Collapse
Affiliation(s)
- Layla Kawarada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takayuki Ohira
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shoji Hirata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjyo Miyauchi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
107
|
Ignatov A, Bondarenko K, Makarova A. Non-bulky Lesions in Human DNA: the Ways of Formation, Repair, and Replication. Acta Naturae 2017; 9:12-26. [PMID: 29104772 PMCID: PMC5662270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Indexed: 11/06/2022] Open
Abstract
DNA damage is a major cause of replication interruption, mutations, and cell death. DNA damage is removed by several types of repair processes. The involvement of specialized DNA polymerases in replication provides an important mechanism that helps tolerate persistent DNA damage. Specialized DNA polymerases incorporate nucleotides opposite lesions with high efficiency but demonstrate low accuracy of DNA synthesis. In this review, we summarize the types and mechanisms of formation and repair of non-bulky DNA lesions, and we provide an overview of the role of specialized DNA polymerases in translesion DNA synthesis.
Collapse
Affiliation(s)
- A.V. Ignatov
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
- Department of Molecular Biology, Faculty of Biology, Moscow State University, Leninskie Gory 1, bldg. 12, Moscow, 119991, Russia
| | - K.A. Bondarenko
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| | - A.V. Makarova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurchatov sq. 2, Moscow, 123182 , Russia
| |
Collapse
|
108
|
Kogaki T, Ohshio I, Kawaguchi M, Kimoto M, Kitae K, Hase H, Ueda Y, Jingushi K, Tsujikawa K. TP53 gene status is a critical determinant of phenotypes induced by ALKBH3 knockdown in non-small cell lung cancers. Biochem Biophys Res Commun 2017; 488:285-290. [DOI: 10.1016/j.bbrc.2017.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/03/2017] [Indexed: 10/19/2022]
|
109
|
Tudek B, Zdżalik-Bielecka D, Tudek A, Kosicki K, Fabisiewicz A, Speina E. Lipid peroxidation in face of DNA damage, DNA repair and other cellular processes. Free Radic Biol Med 2017; 107:77-89. [PMID: 27908783 DOI: 10.1016/j.freeradbiomed.2016.11.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/20/2016] [Accepted: 11/27/2016] [Indexed: 01/09/2023]
Abstract
Exocyclic adducts to DNA bases are formed as a consequence of exposure to certain environmental carcinogens as well as inflammation and lipid peroxidation (LPO). Complex family of LPO products gives rise to a variety of DNA adducts, which can be grouped in two classes: (i) small etheno-type adducts of strong mutagenic potential, and (ii) bulky, propano-type adducts, which block replication and transcription, and are lethal lesions. Etheno-DNA adducts are removed from the DNA by base excision repair (BER), AlkB and nucleotide incision repair enzymes (NIR), while substituted propano-type lesions by nucleotide excision repair (NER) and homologous recombination (HR). Changes of the level and activity of several enzymes removing exocyclic adducts from the DNA was reported during carcinogenesis. Also several beyond repair functions of these enzymes, which participate in regulation of cell proliferation and growth, as well as RNA processing was recently described. In addition, adducts of LPO products to proteins was reported during aging and age-related diseases. The paper summarizes pathways for exocyclic adducts removal and describes how proteins involved in repair of these adducts can modify pathological states of the organism.
Collapse
Affiliation(s)
- Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | - Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Ksiecia Trojdena 4, 02-109 Warsaw, Poland
| | - Agnieszka Tudek
- Department of Molecular Biology and Genetics, Aarhus University, C. F. Mollers Alle 3, 8000 Aarhus, Denmark
| | - Konrad Kosicki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Fabisiewicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Roentgena 5, Warsaw 02-781, Poland
| | - Elżbieta Speina
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
110
|
Fedorovich SV, Waseem TV, Puchkova LV. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Rev Neurosci 2017; 28:363-373. [DOI: 10.1515/revneuro-2016-0077] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 12/29/2016] [Indexed: 12/26/2022]
Abstract
AbstractThe mitochondria of different cells are different in their morphological and biochemical properties. These organelles generate free radicals during activity, leading inevitably to mitochondrial DNA damage. It is not clear how this problem is addressed in long-lived cells, such as neurons. We propose the hypothesis that mitochondria within the same cell also differ in lifespan and ability to divide. According to our suggestion, cells have a pool of ‘stem’ mitochondria with low metabolic activity and a pool of ‘differentiated’ mitochondria with significantly shorter lifespans and high metabolic activity. We consider synaptic mitochondria as a possible example of ‘differentiated’ mitochondria. They are significantly smaller than mitochondria from the cell body, and they are different in key enzyme activity levels, proteome, and lipidome. Synaptic mitochondria are more sensitive to different damaging factors. It has been established that neurons have a sorting mechanism that sends mitochondria with high membrane potential to presynaptic endings. This review describes the properties of synaptic mitochondria and their role in the regulation of synaptic transmission.
Collapse
Affiliation(s)
- Sergei V. Fedorovich
- Institute of Biophysics and Cell Engineering, Akademicheskaya St., 27, Minsk 220072, Belarus
| | - Tatyana V. Waseem
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Ludmila V. Puchkova
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 195251, Russia
- ITMO University, Kronverksky av., 49, St.Petersburg 197101, Russia
- Institute of Experimental Medicine, Pavlova str., 12, St.Petersburg 197376, Russia
| |
Collapse
|
111
|
1,N 6-α-hydroxypropanoadenine, the acrolein adduct to adenine, is a substrate for AlkB dioxygenase. Biochem J 2017; 474:1837-1852. [PMID: 28408432 DOI: 10.1042/bcj20161008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 11/17/2022]
Abstract
1,N6-α-hydroxypropanoadenine (HPA) is an exocyclic DNA adduct of acrolein - an environmental pollutant and endocellular oxidative stress product. Escherichia coli AlkB dioxygenase belongs to the superfamily of α-ketoglutarate (αKG)- and iron-dependent dioxygenases which remove alkyl lesions from bases via an oxidative mechanism, thereby restoring native DNA structure. Here, we provide in vivo and in vitro evidence that HPA is mutagenic and is effectively repaired by AlkB dioxygenase. HPA generated in plasmid DNA caused A → C and A → T transversions and, less frequently, A → G transitions. The lesion was efficiently repaired by purified AlkB protein; the optimal pH, Fe(II), and αKG concentrations for this reaction were determined. In vitro kinetic data show that the protonated form of HPA is preferentially repaired by AlkB, albeit the reaction is stereoselective. Moreover, the number of reaction cycles carried out by an AlkB molecule remains limited. Molecular modeling of the T(HPA)T/AlkB complex demonstrated that the R stereoisomer in the equatorial conformation of the HPA hydroxyl group is strongly preferred, while the S stereoisomer seems to be susceptible to AlkB-directed oxidative hydroxylation only when HPA adopts the syn conformation around the glycosidic bond. In addition to the biochemical activity assays, substrate binding to the protein was monitored by differential scanning fluorimetry allowing identification of the active protein form, with cofactor and cosubstrate bound, and monitoring of substrate binding. In contrast FTO, a human AlkB homolog, failed to bind an ssDNA trimer carrying HPA.
Collapse
|
112
|
Müller TA, Tobar MA, Perian MN, Hausinger RP. Biochemical Characterization of AP Lyase and m 6A Demethylase Activities of Human AlkB Homologue 1 (ALKBH1). Biochemistry 2017; 56:1899-1910. [PMID: 28290676 DOI: 10.1021/acs.biochem.7b00060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alkbh1 is one of nine mammalian homologues of Escherichia coli AlkB, a 2-oxoglutarate-dependent dioxygenase that catalyzes direct DNA repair by removing alkyl lesions from DNA. Six distinct enzymatic activities have been reported for Alkbh1, including hydroxylation of variously methylated DNA, mRNA, tRNA, or histone substrates along with the cleavage of DNA at apurinic/apyrimidinic (AP) sites followed by covalent attachment to the 5'-product. The studies described here extend the biochemical characterization of two of these enzymatic activities using human ALKBH1: the AP lyase and 6-methyl adenine DNA demethylase activities. The steady-state and single-turnover kinetic parameters for ALKBH1 cleavage of AP sites in DNA were determined and shown to be comparable to those of other AP lyases. The α,β-unsaturated aldehyde of the 5'-product arising from DNA cleavage reacts predominantly with C129 of ALKBH1, but secondary sites also generate covalent adducts. The 6-methyl adenine demethylase activity was examined with a newly developed assay using a methylation-sensitive restriction endonuclease, and the enzymatic rate was found to be very low. Indeed, the demethylase activity was less than half that of the AP lyase activity when ALKBH1 samples were assayed using identical buffer conditions. The two enzymatic activities were examined using a series of site-directed variant proteins, revealing the presence of distinct but partially overlapping active sites for the two reactions. We postulate that the very low 6-methyl adenine oxygenase activity associated with ALKBH1 is unlikely to represent the major function of the enzyme in the cell, while the cellular role of the lyase activity (including its subsequent covalent attachment to DNA) remains uncertain.
Collapse
Affiliation(s)
- Tina A Müller
- Department of Microbiology and Molecular Genetics, Michigan State University , East Lansing, Michigan 48824, United States
| | - Michael A Tobar
- Department of Microbiology and Molecular Genetics, Michigan State University , East Lansing, Michigan 48824, United States
| | - Madison N Perian
- Biology Department, Kalamazoo College , Kalamazoo, Michigan 49006, United States
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
113
|
Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι. Sci Rep 2017; 7:43904. [PMID: 28272441 PMCID: PMC5341039 DOI: 10.1038/srep43904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022] Open
Abstract
N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the syn conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a "foothold" and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.
Collapse
|
114
|
Abstract
To date, about 90 post-transcriptional modifications have been reported in tRNA expanding their chemical and functional diversity. Methylation is the most frequent post-transcriptional tRNA modification that can occur on almost all nitrogen sites of the nucleobases, on the C5 atom of pyrimidines, on the C2 and C8 atoms of adenosine and, additionally, on the oxygen of the ribose 2′-OH. The methylation on the N1 atom of adenosine to form 1-methyladenosine (m1A) has been identified at nucleotide position 9, 14, 22, 57, and 58 in different tRNAs. In some cases, these modifications have been shown to increase tRNA structural stability and induce correct tRNA folding. This review provides an overview of the currently known m1A modifications, the different m1A modification sites, the biological role of each modification, and the enzyme responsible for each methylation in different species. The review further describes, in detail, two enzyme families responsible for formation of m1A at nucleotide position 9 and 58 in tRNA with a focus on the tRNA binding, m1A mechanism, protein domain organisation and overall structures.
Collapse
|
115
|
Ueda Y, Ooshio I, Fusamae Y, Kitae K, Kawaguchi M, Jingushi K, Hase H, Harada K, Hirata K, Tsujikawa K. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci Rep 2017; 7:42271. [PMID: 28205560 PMCID: PMC5304225 DOI: 10.1038/srep42271] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/08/2017] [Indexed: 12/29/2022] Open
Abstract
The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA by a methylating agent) to reverse the methylation damage and retain the integrity of the DNA/RNA. We previously reported the high expression of ALKBH3 in clinical tumor specimens and its involvement in tumor progression. In this study, we found that ALKBH3 effectively demethylated 1-meA and 3-meC within endogenously methylated RNA. Moreover, using highly purified recombinant ALKBH3, we identified N6-methyladenine (N6-meA) in mammalian transfer RNA (tRNA) as a novel ALKBH3 substrate. An in vitro translation assay showed that ALKBH3-demethylated tRNA significantly enhanced protein translation efficiency. In addition, ALKBH3 knockdown in human cancer cells impaired cellular proliferation and suppressed the nascent protein synthesis that is usually accompanied by accumulation of the methylated RNAs. Thus, our data highlight a novel role for ALKBH3 in tumor progression via RNA demethylation and subsequent protein synthesis promotion.
Collapse
Affiliation(s)
- Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Ikumi Ooshio
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yasuyuki Fusamae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Megumi Kawaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Hiroaki Hase
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
116
|
Integrative view of 2-oxoglutarate/Fe(II)-dependent oxygenase diversity and functions in bacteria. Biochim Biophys Acta Gen Subj 2017; 1861:323-334. [DOI: 10.1016/j.bbagen.2016.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/09/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
|
117
|
Zambelli B, Uversky VN, Ciurli S. Nickel impact on human health: An intrinsic disorder perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1714-1731. [DOI: 10.1016/j.bbapap.2016.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 01/26/2023]
|
118
|
Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities. Trends Biochem Sci 2016; 42:206-218. [PMID: 27816326 DOI: 10.1016/j.tibs.2016.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022]
Abstract
Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so-called 'epigenetic' adducts. Here, we discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy.
Collapse
|
119
|
Beyene GT, Balasingham SV, Frye SA, Namouchi A, Homberset H, Kalayou S, Riaz T, Tønjum T. Characterization of the Neisseria meningitidis Helicase RecG. PLoS One 2016; 11:e0164588. [PMID: 27736945 PMCID: PMC5063381 DOI: 10.1371/journal.pone.0164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/27/2016] [Indexed: 11/19/2022] Open
Abstract
Neisseria meningitidis (Nm) is a Gram-negative oral commensal that opportunistically can cause septicaemia and/or meningitis. Here, we overexpressed, purified and characterized the Nm DNA repair/recombination helicase RecG (RecGNm) and examined its role during genotoxic stress. RecGNm possessed ATP-dependent DNA binding and unwinding activities in vitro on a variety of DNA model substrates including a Holliday junction (HJ). Database searching of the Nm genomes identified 49 single nucleotide polymorphisms (SNPs) in the recGNm including 37 non-synonymous SNPs (nsSNPs), and 7 of the nsSNPs were located in the codons for conserved active site residues of RecGNm. A transient reduction in transformation of DNA was observed in the Nm ΔrecG strain as compared to the wildtype. The gene encoding recGNm also contained an unusually high number of the DNA uptake sequence (DUS) that facilitate transformation in neisserial species. The differentially abundant protein profiles of the Nm wildtype and ΔrecG strains suggest that expression of RecGNm might be linked to expression of other proteins involved in DNA repair, recombination and replication, pilus biogenesis, glycan biosynthesis and ribosomal activity. This might explain the growth defect that was observed in the Nm ΔrecG null mutant.
Collapse
Affiliation(s)
| | | | - Stephan A. Frye
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | - Amine Namouchi
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
| | | | - Shewit Kalayou
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tahira Riaz
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, Oslo, Norway
- Department of Microbiology, Oslo University Hospital (Rikshospitalet), Oslo, Norway
- * E-mail:
| |
Collapse
|
120
|
Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, Ma H, Han D, Evans M, Klungland A, Pan T, He C. ALKBH1-Mediated tRNA Demethylation Regulates Translation. Cell 2016; 167:816-828.e16. [PMID: 27745969 DOI: 10.1016/j.cell.2016.09.038] [Citation(s) in RCA: 346] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/14/2016] [Accepted: 09/22/2016] [Indexed: 12/27/2022]
Abstract
tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.
Collapse
Affiliation(s)
- Fange Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Wesley Clark
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Guanzheng Luo
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiaoyun Wang
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Ye Fu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Xiao Wang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Qing Dai
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Guanqun Zheng
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Honghui Ma
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Dali Han
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Molly Evans
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Tao Pan
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
121
|
Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:19-35. [PMID: 27543314 DOI: 10.1016/j.mrrev.2016.05.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy.
Collapse
Affiliation(s)
- Hélène Erasimus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Matthieu Gobin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Simone Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
122
|
Abstract
The AlkB gene that protects E.coli against methylation damage to DNA was identified more than 3 decades ago. 20 years later, the AlkB protein was shown to catalyze repair of methylated DNA base lesions by oxidative demethylation. Two human AlkB homologs were characterized with similar DNA repair activities and seven additional human AlkB homologs were identified based on sequence homology. All these dioxygenases, ALKBH1-8 and FTO, contain a conserved α-ketoglutarate/iron-dependent domain for methyl modifications and de-modifications. Well-designed research over the last 10 years has identified unforeseen substrate heterogeneity for the AlkB homologs, including novel reversible methyl modifications in RNA. The discoveries of RNA demethylation catalyzed by AlkB family enzymes initiated a new realm of gene expression regulation, although the understanding of precise endogenous activities and roles of these RNA demethylases are still undeveloped. It is worth mentioning that the AlkB mechanism and use of α-ketoglutarate have also emerged to be essential for many enzymes in epigenetic reprogramming that modify and de-modify methylated bases in DNA and methylated amino acids in histones.
Collapse
Affiliation(s)
- Endalkachew A Alemu
- Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Oslo NO-0027, Norway; Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo NO-0027, Norway
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Arne Klungland
- Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Oslo NO-0027, Norway; Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo NO-0027, Norway.
| |
Collapse
|
123
|
Alemu E, He C, Klungland A. WITHDRAWN: ALKBHs-facilitated RNA modifications and de-modifications. DNA Repair (Amst) 2016. [DOI: 10.1016/j.dnarep.2016.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
124
|
Ueda Y, Kitae K, Ooshio I, Fusamae Y, Kawaguchi M, Jingushi K, Harada K, Hirata K, Tsujikawa K. A real-time PCR-based quantitative assay for 3-methylcytosine demethylase activity of ALKBH3. Biochem Biophys Rep 2016; 5:476-481. [PMID: 28955855 PMCID: PMC5600452 DOI: 10.1016/j.bbrep.2016.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/27/2022] Open
Abstract
Human AlkB homolog 3 (ALKBH3), a homolog of the Escherichia coli protein AlkB, demethylates 1-methyladenine and 3-methylcytosine (3-meC) in single-stranded DNA and RNA by oxidative demethylation. Immunohistochemical analyses on clinical cancer specimens and knockdown experiments using RNA interference in vitro and in vivo indicate that ALKBH3 is a promising molecular target for the treatment of prostate, pancreatic, and non-small cell lung cancer. Therefore, an inhibitor for ALKBH3 demethylase is expected to be a first-in-class molecular-targeted drug for cancer treatment. Here, we report the development of a novel, quantitative real-time PCR-based assay for ALKBH3 demethylase activity against 3-meC by highly active recombinant ALKBH3 protein using a silkworm expression system. This assay enables us to screen for inhibitors of ALKBH3 demethylase, which may result in the development of a novel molecular-targeted drug for cancer therapy.
Collapse
Key Words
- 1-meA, 1-methyladenine
- 2OG, 2-oxoglutarate
- 3-meC, 3-methylcytosine
- 3-methylcytosine
- ALKBH, AlkB homolog
- ALKBH3
- AlkB
- CRPC, castrate resistant prostate cancer
- Demethylation
- FTO, fat mass and obesity-associated
- LC-MS/MS, liquid chromatography-tandem mass spectrometry
- NACLC, non-small cell lung cancer
- RT-PCR
- ds, double-stranded
- ss, single-stranded
Collapse
Affiliation(s)
- Yuko Ueda
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kaori Kitae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ikumi Ooshio
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuyuki Fusamae
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Megumi Kawaguchi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kentaro Jingushi
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kazuo Harada
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazumasa Hirata
- Laboratory of Applied Environmental Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazutake Tsujikawa
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
125
|
Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat Chem Biol 2016; 12:311-6. [PMID: 26863410 DOI: 10.1038/nchembio.2040] [Citation(s) in RCA: 484] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
N(1)-Methyladenosine (m(1)A) is a prevalent post-transcriptional RNA modification, yet little is known about its abundance, topology and dynamics in mRNA. Here, we show that m(1)A is prevalent in Homo sapiens mRNA, which shows an m(1)A/A ratio of ∼0.02%. We develop the m(1)A-ID-seq technique, based on m(1)A immunoprecipitation and the inherent ability of m(1)A to stall reverse transcription, as a means for transcriptome-wide m(1)A profiling. m(1)A-ID-seq identifies 901 m(1)A peaks (from 600 genes) in mRNA and noncoding RNA and reveals a prominent feature, enrichment in the 5' untranslated region of mRNA transcripts, that is distinct from the pattern for N(6)-methyladenosine, the most abundant internal mammalian mRNA modification. Moreover, m(1)A in mRNA is reversible by ALKBH3, a known DNA/RNA demethylase. Lastly, we show that m(1)A methylation responds dynamically to stimuli, and we identify hundreds of stress-induced m(1)A sites. Collectively, our approaches allow comprehensive analysis of m(1)A modification and provide tools for functional studies of potential epigenetic regulation via the reversible and dynamic m(1)A methylation.
Collapse
|
126
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
127
|
Mi S, Klungland A, Yang YG. Base-excision repair and beyond --A short summary attributed to scientific achievements of Tomas Lindahl, Nobel Prize Laureate in Chemistry 2015. SCIENCE CHINA-LIFE SCIENCES 2015; 59:89-92. [PMID: 26676642 DOI: 10.1007/s11427-015-4983-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 02/02/2023]
Affiliation(s)
- Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Arne Klungland
- Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Oslo, NO-0027, Norway. .,Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, CAS Center for Excellence in Molecular Cell Science, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
128
|
Klungland A, Yang YG. Endogenous DNA Damage and Repair Enzymes: -A short summary of the scientific achievements of Tomas Lindahl, Nobel Laureate in Chemistry 2015. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 14:122-125. [PMID: 26689322 PMCID: PMC4936663 DOI: 10.1016/j.gpb.2015.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022]
Abstract
Tomas Lindahl completed his medical studies at Karolinska Institute in 1970. Yet, his work has always been dedicated to unraveling fundamental mechanisms of DNA decay and DNA repair. His research is characterized with groundbreaking discoveries on the instability of our genome, the identification of novel DNA repair activities, the characterization of DNA repair pathways, and the association to diseases, throughout his 40 years of scientific career.
Collapse
Affiliation(s)
- Arne Klungland
- Department of Microbiology, Division of Diagnostics and Intervention, Institute of Clinical Medicine, Oslo University Hospital, Rikshospitalet, Oslo NO-0027, Norway; Department of Molecular Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo NO-0027, Norway.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
129
|
Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Rep 2015; 13:2353-2361. [PMID: 26686626 DOI: 10.1016/j.celrep.2015.11.029] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 08/26/2015] [Accepted: 11/06/2015] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients.
Collapse
|
130
|
Yauk CL, Lambert IB, Meek MEB, Douglas GR, Marchetti F. Development of the adverse outcome pathway "alkylation of DNA in male premeiotic germ cells leading to heritable mutations" using the OECD's users' handbook supplement. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:724-750. [PMID: 26010389 DOI: 10.1002/em.21954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 06/04/2023]
Abstract
The Organisation for Economic Cooperation and Development's (OECD) Adverse Outcome Pathway (AOP) programme aims to develop a knowledgebase of all known pathways of toxicity that lead to adverse effects in humans and ecosystems. A Users' Handbook was recently released to provide supplementary guidance on AOP development. This article describes one AOP-alkylation of DNA in male premeiotic germ cells leading to heritable mutations. This outcome is an important regulatory endpoint. The AOP describes the biological plausibility and empirical evidence supporting that compounds capable of alkylating DNA cause germ cell mutations and subsequent mutations in the offspring of exposed males. Alkyl adducts are subject to DNA repair; however, at high doses the repair machinery becomes saturated. Lack of repair leads to replication of alkylated DNA and ensuing mutations in male premeiotic germ cells. Mutations that do not impair spermatogenesis persist and eventually are present in mature sperm. Thus, the mutations are transmitted to the offspring. Although there are some gaps in empirical support and evidence for essentiality of the key events for certain aspects of this AOP, the overall AOP is generally accepted as dogma and applies broadly to any species that produces sperm. The AOP was developed and used in an iterative process to test and refine the Users' Handbook, and is one of the first publicly available AOPs. It is our hope that this AOP will be leveraged to develop other AOPs in this field to advance method development, computational models to predict germ cell effects, and integrated testing strategies.
Collapse
Affiliation(s)
- Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Iain B Lambert
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - M E Bette Meek
- R. Samuel McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
131
|
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43:10083-101. [PMID: 26519467 PMCID: PMC4666366 DOI: 10.1093/nar/gkv1136] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
132
|
Conde J, Yoon JH, Roy Choudhury J, Prakash L, Prakash S. Genetic Control of Replication through N1-methyladenine in Human Cells. J Biol Chem 2015; 290:29794-800. [PMID: 26491020 DOI: 10.1074/jbc.m115.693010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 11/06/2022] Open
Abstract
N1-methyl adenine (1-MeA) is formed in DNA by reaction with alkylating agents and naturally occurring methyl halides. The 1-MeA lesion impairs Watson-Crick base pairing and blocks normal DNA replication. Here we identify the translesion synthesis (TLS) DNA polymerases (Pols) required for replicating through 1-MeA in human cells and show that TLS through this lesion is mediated via three different pathways in which Pols ι and θ function in one pathway and Pols η and ζ, respectively, function in the other two pathways. Our biochemical studies indicate that in the Polι/Polθ pathway, Polι would carry out nucleotide insertion opposite 1-MeA from which Polθ would extend synthesis. In the Polη pathway, this Pol alone would function at both the nucleotide insertion and extension steps of TLS, and in the third pathway, Polζ would extend from the nucleotide inserted opposite 1-MeA by an as yet unidentified Pol. Whereas by pushing 1-MeA into the syn conformation and by forming Hoogsteen base pair with the T residue, Polι would carry out TLS opposite 1-MeA, the ability of Polη to replicate through 1-MeA suggests that despite its need for Watson-Crick hydrogen bonding, Polη can stabilize the adduct in its active site. Remarkably, even though Pols η and ι are quite error-prone at inserting nucleotides opposite 1-MeA, TLS opposite this lesion in human cells occurs in a highly error-free fashion. This suggests that the in vivo fidelity of TLS Pols is regulated by factors such as post-translational modifications, protein-protein interactions, and possibly others.
Collapse
Affiliation(s)
- Juan Conde
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1061
| | - Jung-Hoon Yoon
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1061
| | - Jayati Roy Choudhury
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1061
| | - Louise Prakash
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1061
| | - Satya Prakash
- From the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1061
| |
Collapse
|
133
|
Fu D, Samson LD, Hübscher U, van Loon B. The interaction between ALKBH2 DNA repair enzyme and PCNA is direct, mediated by the hydrophobic pocket of PCNA and perturbed in naturally-occurring ALKBH2 variants. DNA Repair (Amst) 2015; 35:13-8. [PMID: 26408825 DOI: 10.1016/j.dnarep.2015.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human AlkB homolog 2 (ALKBH2) is a DNA repair enzyme that catalyzes the direct reversal of DNA methylation damage through oxidative demethylation. While ALKBH2 colocalizes with proliferating cell nuclear antigen (PCNA) in DNA replication foci, it remains unknown whether these two proteins alone form a complex or require additional components for interaction. Here, we demonstrate that ALKBH2 can directly interact with PCNA independent from other cellular factors, and we identify the hydrophobic pocket of PCNA as the key domain mediating this interaction. Moreover, we find that PCNA association with ALKBH2 increases significantly during DNA replication, suggesting that ALKBH2 forms a cell-cycle dependent complex with PCNA. Intriguingly, we show that an ALKBH2 germline variant, as well as a variant found in cancer, display altered interaction with PCNA. Our studies reveal the ALKBH2 binding interface of PCNA and indicate that both germline and somatic ALKBH2 variants could have cellular effects on ALKBH2 function in DNA repair.
Collapse
Affiliation(s)
- Dragony Fu
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Leona D Samson
- Department of Biological Engineering and Biology, Center for Environmental Health Sciences, David H. Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ullrich Hübscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Barbara van Loon
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
134
|
Fedeles BI, Singh V, Delaney JC, Li D, Essigmann JM. The AlkB Family of Fe(II)/α-Ketoglutarate-dependent Dioxygenases: Repairing Nucleic Acid Alkylation Damage and Beyond. J Biol Chem 2015; 290:20734-20742. [PMID: 26152727 DOI: 10.1074/jbc.r115.656462] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The AlkB family of Fe(II)- and α-ketoglutarate-dependent dioxygenases is a class of ubiquitous direct reversal DNA repair enzymes that remove alkyl adducts from nucleobases by oxidative dealkylation. The prototypical and homonymous family member is an Escherichia coli "adaptive response" protein that protects the bacterial genome against alkylation damage. AlkB has a wide variety of substrates, including monoalkyl and exocyclic bridged adducts. Nine mammalian AlkB homologs exist (ALKBH1-8, FTO), but only a subset functions as DNA/RNA repair enzymes. This minireview presents an overview of the AlkB proteins including recent data on homologs, structural features, substrate specificities, and experimental strategies for studying DNA repair by AlkB family proteins.
Collapse
Affiliation(s)
- Bogdan I Fedeles
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Vipender Singh
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - James C Delaney
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Deyu Li
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| | - John M Essigmann
- Departments of Chemistry and Biological Engineering and the Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
135
|
Endres L, Begley U, Clark R, Gu C, Dziergowska A, Małkiewicz A, Melendez JA, Dedon PC, Begley TJ. Alkbh8 Regulates Selenocysteine-Protein Expression to Protect against Reactive Oxygen Species Damage. PLoS One 2015; 10:e0131335. [PMID: 26147969 PMCID: PMC4492958 DOI: 10.1371/journal.pone.0131335] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Environmental and metabolic sources of reactive oxygen species (ROS) can damage DNA, proteins and lipids to promote disease. Regulation of gene expression can prevent this damage and can include increased transcription, translation and post translational modification. Cellular responses to ROS play important roles in disease prevention, with deficiencies linked to cancer, neurodegeneration and ageing. Here we detail basal and damage-induced translational regulation of a group of oxidative-stress response enzymes by the tRNA methyltransferase Alkbh8. Using a new gene targeted knockout mouse cell system, we show that Alkbh8-/- embryonic fibroblasts (MEFs) display elevated ROS levels, increased DNA and lipid damage and hallmarks of cellular stress. We demonstrate that Alkbh8 is induced in response to ROS and is required for the efficient expression of selenocysteine-containing ROS detoxification enzymes belonging to the glutathione peroxidase (Gpx1, Gpx3, Gpx6 and likely Gpx4) and thioredoxin reductase (TrxR1) families. We also show that, in response to oxidative stress, the tRNA modification 5-methoxycarbonylmethyl-2′-O-methyluridine (mcm5Um) increases in normal MEFs to drive the expression of ROS detoxification enzymes, with this damage-induced reprogramming of tRNA and stop-codon recoding corrupted in Alkbh8-/- MEFS. These studies define Alkbh8 and tRNA modifications as central regulators of cellular oxidative stress responses in mammalian systems. In addition they highlight a new animal model for use in environmental and cancer studies and link translational regulation to the prevention of DNA and lipid damage.
Collapse
Affiliation(s)
- Lauren Endres
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, United States of America
- RNA Institute and Cancer Research Center, University at Albany, State University of New York, Albany, New York 12222, United States of America
| | - Ulrike Begley
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, United States of America
| | - Ryan Clark
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, United States of America
| | - Chen Gu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | | | - Andrzej Małkiewicz
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
| | - J. Andres Melendez
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, United States of America
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Thomas J. Begley
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, United States of America
- RNA Institute and Cancer Research Center, University at Albany, State University of New York, Albany, New York 12222, United States of America
- * E-mail:
| |
Collapse
|
136
|
Liefke R, Windhof-Jaidhauser IM, Gaedcke J, Salinas-Riester G, Wu F, Ghadimi M, Dango S. The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med 2015. [PMID: 26221185 PMCID: PMC4517488 DOI: 10.1186/s13073-015-0180-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform DNA alkylation damage repair. ALKBH3 becomes upregulated during tumorigenesis and is necessary for proliferation. However, the underlying molecular mechanism remains to be understood. Methods To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine the expression effects of ALKBH3 depletion. Results We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators, including transcription factors, the Mediator complex, cohesin, histone modifiers, and active histone marks. Gene expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its depletion induces an upregulation of ALKBH3 non-bound inflammatory genes. Conclusions The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type. Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0180-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert Liefke
- Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| | | | - Jochen Gaedcke
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany
| | | | - Feizhen Wu
- Epigenetics Laboratory, Institute of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Michael Ghadimi
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany
| | - Sebastian Dango
- University Medical Center, Department of General-, and Visceral Surgery, D-37075 Göttingen, Germany ; Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115 USA ; Department of Cell Biology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
137
|
Zdżalik D, Domańska A, Prorok P, Kosicki K, van den Born E, Falnes PØ, Rizzo CJ, Guengerich FP, Tudek B. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins. DNA Repair (Amst) 2015; 30:1-10. [PMID: 25797601 PMCID: PMC4451939 DOI: 10.1016/j.dnarep.2015.02.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 11/16/2022]
Abstract
AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins.
Collapse
Affiliation(s)
- Daria Zdżalik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Anna Domańska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Prorok
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad Kosicki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Pål Ø Falnes
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Carmelo J Rizzo
- Department of Chemistry, Center in Molecular Toxicology, and Vanderbilt Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - F Peter Guengerich
- Department of Biochemistry, Center in Molecular Toxicology, and Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Barbara Tudek
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
138
|
Heuser M, Araujo Cruz MM, Goparaju R, Chaturvedi A. Enigmas of IDH mutations in hematology/oncology. Exp Hematol 2015; 43:685-97. [PMID: 26032956 DOI: 10.1016/j.exphem.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/28/2022]
Abstract
The discovery of oncogenic mutations in isocitrate dehydrogenase (IDH) enzymes has highlighted the delicate interplay of metabolism, cellular signaling, and transcriptional regulation that was off-focus for some time in the genomic era. Although IDH inhibitors are being evaluated for clinical efficacy, an in-depth understanding of disease pathogenesis linked to IDH mutations is required to develop rational combination treatments and to be evaluated in the clinic. To gain such an understanding, several questions need to be addressed: Why do IDH mutations occur selectively in subsets of a disease entity although they are found to be present in a very heterogeneous set of unrelated tumors? Why are 2-hydroxyglutarate-producing tumors specifically selected for the R-enantiomer and not for the S-enantiomer? Are the changes in 2-hydroxyglutarate-induced DNA methylation primary or secondary alterations in tumorigenesis? What are the roles of hypoxia-inducible factor (HIF) and its prolyl 4-hydroxylases in IDH-mutant tumors? Here, we address these questions and discuss the consequences for basic and clinical research related to IDH-mutant tumors.
Collapse
Affiliation(s)
- Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
| | - Michelle Maria Araujo Cruz
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Ramya Goparaju
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Anuhar Chaturvedi
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
139
|
Ougland R, Rognes T, Klungland A, Larsen E. Non-homologous functions of the AlkB homologs. J Mol Cell Biol 2015; 7:494-504. [PMID: 26003568 DOI: 10.1093/jmcb/mjv029] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022] Open
Abstract
The DNA repair enzyme AlkB was identified in E. coli more than three decades ago. Since then, nine mammalian homologs, all members of the superfamily of alpha-ketoglutarate and Fe(II)-dependent dioxygenases, have been identified (designated ALKBH1-8 and FTO). While E. coli AlkB serves as a DNA repair enzyme, only two mammalian homologs have been confirmed to repair DNA in vivo. The other mammalian homologs have remarkably diverse substrate specificities and biological functions. Substrates recognized by the different AlkB homologs comprise erroneous methyl- and etheno adducts in DNA, unique wobble uridine modifications in certain tRNAs, methylated adenines in mRNA, and methylated lysines on proteins. The phenotypes of organisms lacking or overexpressing individual AlkB homologs include obesity, severe sensitivity to inflammation, infertility, growth retardation, and multiple malformations. Here we review the present knowledge of the mammalian AlkB homologs and their implications for human disease and development.
Collapse
Affiliation(s)
- Rune Ougland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway Department of Anesthesiology, Division of Emergencies and Critical Care, Oslo University Hospital, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | - Torbjørn Rognes
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway Department of Informatics, University of Oslo, 0316 Oslo, Norway
| | - Arne Klungland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Elisabeth Larsen
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
140
|
Müller TA, Hausinger RP. AlkB and Its Homologues – DNA Repair and Beyond. 2-OXOGLUTARATE-DEPENDENT OXYGENASES 2015. [DOI: 10.1039/9781782621959-00246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AlkB is an Fe(ii)/2-oxoglutarate-dependent dioxygenase that is part of the adaptive response to alkylating agents in Escherichia coli. AlkB hydroxylates a wide variety of alkylated DNA bases producing unstable intermediates which decompose to restore the non-alkylated bases. Homologues exist in other bacteria, metazoa (e.g. nine in humans), plants and viruses, but not in archaea, with many catalysing the same oxidative demethylation reactions as for AlkB. The mammalian enzymes Alkbh2 and Alkbh3 catalyse direct DNA repair, Alkbh5 and FTO (Alkbh9) are RNA demethylases, and Alkbh8 is used to synthesize a tRNA, while the remaining mammalian homologues have alternative functions. Alkbh1 is an apurinic/apyrimidinic lyase in addition to exhibiting demethylase activities, but no clear role for the Alkbh1 protein has emerged. Alkbh4 is involved in cell division and potentially demethylates actin, whereas the mitochondrial homologue Alkbh7 has a role in obesity; however, no enzymatic activity has been linked to Alkbh4 or Alkbh7. Here, we discuss AlkB as the ‘archetype’ of this class of hydroxylases, compare it to Alkbh2 and Alkbh3, and then briefly review the diverse (and largely unknown) functions of Alkbh1, Alkbh4, Alkbh6 and Alkbh7. Alkbh5, Alkbh8 and Alkbh9 (FTO) are described separately.
Collapse
Affiliation(s)
- Tina A. Müller
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA
| | - Robert P. Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University East Lansing MI 48824 USA
- Department of Biochemistry and Molecular Biology, Michigan State University East Lansing MI 48824 USA
| |
Collapse
|
141
|
Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S, Mosammaparast N. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J 2015; 34:1687-703. [PMID: 25944111 DOI: 10.15252/embj.201490497] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/20/2015] [Indexed: 11/09/2022] Open
Abstract
Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Mona C Majid
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Jennifer M Soll
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Joshua R Brickner
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, St. Louis, MO USA
| | - Sebastian Dango
- Division of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
142
|
Zhuang Q, Feng T, Coleman ML. Modifying the maker: Oxygenases target ribosome biology. ACTA ACUST UNITED AC 2015; 3:e1009331. [PMID: 26779412 PMCID: PMC4682802 DOI: 10.1080/21690731.2015.1009331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes.
Collapse
Affiliation(s)
- Qinqin Zhuang
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| | - Tianshu Feng
- Centre for Cellular and Molecular Physiology; University of Oxford ; Oxford, UK
| | - Mathew L Coleman
- Tumour Oxygenase Group; School of Cancer Sciences ; University of Birmingham ; Birmingham, UK
| |
Collapse
|
143
|
Shivange G, Kodipelli N, Monisha M, Anindya R. A role for Saccharomyces cerevisiae Tpa1 protein in direct alkylation repair. J Biol Chem 2014; 289:35939-52. [PMID: 25381260 DOI: 10.1074/jbc.m114.590216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alkylating agents induce cytotoxic DNA base adducts. In this work, we provide evidence to suggest, for the first time, that Saccharomyces cerevisiae Tpa1 protein is involved in DNA alkylation repair. Little is known about Tpa1 as a repair protein beyond the initial observation from a high-throughput analysis indicating that deletion of TPA1 causes methyl methane sulfonate sensitivity in S. cerevisiae. Using purified Tpa1, we demonstrate that Tpa1 repairs both single- and double-stranded methylated DNA. Tpa1 is a member of the Fe(II) and 2-oxoglutarate-dependent dioxygenase family, and we show that mutation of the amino acid residues involved in cofactor binding abolishes the Tpa1 DNA repair activity. Deletion of TPA1 along with the base excision repair pathway DNA glycosylase MAG1 renders the tpa1Δmag1Δ double mutant highly susceptible to methylation-induced toxicity. We further demonstrate that the trans-lesion synthesis DNA polymerase Polζ (REV3) plays a key role in tolerating DNA methyl-base lesions and that tpa1Δmag1revΔ3 triple mutant is extremely susceptible to methylation-induced toxicity. Our results indicate a synergism between the base excision repair pathway and direct alkylation repair by Tpa1 in S. cerevisiae. We conclude that Tpa1 is a hitherto unidentified DNA repair protein in yeast and that it plays a crucial role in reverting alkylated DNA base lesions and cytotoxicity.
Collapse
Affiliation(s)
- Gururaj Shivange
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Hyderabad, India
| | - Naveena Kodipelli
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Hyderabad, India
| | - Mohan Monisha
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Hyderabad, India
| | - Roy Anindya
- From the Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram 502205, Hyderabad, India
| |
Collapse
|
144
|
Silvestrov P, Müller TA, Clark KN, Hausinger RP, Cisneros GA. Homology modeling, molecular dynamics, and site-directed mutagenesis study of AlkB human homolog 1 (ALKBH1). J Mol Graph Model 2014; 54:123-30. [PMID: 25459764 DOI: 10.1016/j.jmgm.2014.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 02/03/2023]
Abstract
The ability to repair DNA is important for the conservation of genetic information of living organisms. Cells have a number of ways to restore damaged DNA, such as direct DNA repair, base excision repair, and nucleotide excision repair. One of the proteins that can perform direct repair of DNA bases is Escherichia coli AlkB. In humans, there are 9 identified AlkB homologs, including AlkB homolog 1 (ALKBH1). Many of these proteins catalyze the direct oxidative dealkylation of DNA and RNA bases and, as such, have an important role in repairing DNA from damage induced by alkylating agents. In addition to the dealkylase activity, ALKBH1 can also function as an apyrimidinic/apurinic lyase and was proposed to have a distinct lyase active site. To our knowledge, no crystal structure or complete homology model of ALKBH1 protein is available. In this study, we have used homology modeling to predict the structure of ALKBH1 based on AlkB and Duffy-binding-like domain crystal structures as templates. Molecular dynamics simulations were subsequently performed on the predicted structure of ALKBH1. The positions of two disulfide bonds or a zinc-finger motif and a disulfide bond were predicted and the importance of these features was tested by mutagenesis. Possible locations for the lyase active site are proposed based on the analysis of our predicted structures and previous experimental results.
Collapse
Affiliation(s)
- Pavel Silvestrov
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States
| | - Tina A Müller
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Kristen N Clark
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, United States
| | - G Andrés Cisneros
- Department of Chemistry, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
145
|
Wang G, He Q, Feng C, Liu Y, Deng Z, Qi X, Wu W, Mei P, Chen Z. The atomic resolution structure of human AlkB homolog 7 (ALKBH7), a key protein for programmed necrosis and fat metabolism. J Biol Chem 2014; 289:27924-36. [PMID: 25122757 PMCID: PMC4183825 DOI: 10.1074/jbc.m114.590505] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/31/2014] [Indexed: 11/06/2022] Open
Abstract
ALKBH7 is the mitochondrial AlkB family member that is required for alkylation- and oxidation-induced programmed necrosis. In contrast to the protective role of other AlkB family members after suffering alkylation-induced DNA damage, ALKBH7 triggers the collapse of mitochondrial membrane potential and promotes cell death. Moreover, genetic ablation of mouse Alkbh7 dramatically increases body weight and fat mass. Here, we present crystal structures of human ALKBH7 in complex with Mn(II) and α-ketoglutarate at 1.35 Å or N-oxalylglycine at 2.0 Å resolution. ALKBH7 possesses the conserved double-stranded β-helix fold that coordinates a catalytically active iron by a conserved HX(D/E) … Xn … H motif. Self-hydroxylation of Leu-110 was observed, indicating that ALKBH7 has the potential to catalyze hydroxylation of its substrate. Unlike other AlkB family members whose substrates are DNA or RNA, ALKBH7 is devoid of the "nucleotide recognition lid" which is essential for binding nucleobases, and thus exhibits a solvent-exposed active site; two loops between β-strands β6 and β7 and between β9 and β10 create a special outer wall of the minor β-sheet of the double-stranded β-helix and form a negatively charged groove. These distinct features suggest that ALKBH7 may act on protein substrate rather than nucleic acids. Taken together, our findings provide a structural basis for understanding the distinct function of ALKBH7 in the AlkB family and offer a foundation for drug design in treating cell death-related diseases and metabolic diseases.
Collapse
Affiliation(s)
- Guoqiang Wang
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| | - Qingzhong He
- the Department of Biochemistry and Molecular Biology, National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Chong Feng
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| | - Yang Liu
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| | - Zengqin Deng
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| | - Xiaoxuan Qi
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| | - Wei Wu
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| | - Pinchao Mei
- the Department of Biochemistry and Molecular Biology, National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhongzhou Chen
- From the State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193 and
| |
Collapse
|
146
|
Hangasky JA, Ivison GT, Knapp MJ. Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase. Biochemistry 2014; 53:5750-8. [PMID: 25119663 PMCID: PMC4165446 DOI: 10.1021/bi500703s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonheme Fe(II)/αKG-dependent
oxygenases catalyze diverse
reactions, typically inserting an O atom from O2 into a
C–H bond. Although the key to their catalytic cycle is the
fact that binding and positioning of primary substrate precede O2 activation, the means by which substrate binding stimulates
turnover is not well understood. Factor Inhibiting HIF (FIH) is a
Fe(II)/αKG-dependent oxygenase that acts as a cellular oxygen
sensor in humans by hydroxylating the target residue Asn803, found in the C-terminal transactivation domain (CTAD) of hypoxia
inducible factor-1. FIH-Gln239 makes two hydrogen bonds
with CTAD-Asn803, positioning this target residue over
the Fe(II). We hypothesized the positioning of the side chain of CTAD-Asn803 by FIH-Gln239 was critical for stimulating O2 activation and subsequent substrate hydroxylation. The steady-state
characterization of five FIH-Gln239 variants (Ala, Asn,
Glu, His, and Leu) tested the role of hydrogen bonding potential and
sterics near the target residue. Each variant exhibited a 20–1200-fold
decrease in kcat and kcat/KM(CTAD), but no change
in KM(CTAD), indicating that the step
after CTAD binding was affected by point mutation. Uncoupled O2 activation was prominent in these variants, as shown by large
coupling ratios (C = [succinate]/[CTAD-OH] = 3–5)
for each of the FIH-Gln239 → X variants. The coupling
ratios decreased in D2O, indicating an isotope-sensitive
inactivation for variants, not observed in the wild type. The data
presented indicate that the proper positioning of CTAD-Asn803 by FIH-Gln239 is necessary to suppress uncoupled turnover
and to support substrate hydroxylation, suggesting substrate positioning
may be crucial for directing O2 reactivity within the broader
class of αKG hydroxylases.
Collapse
Affiliation(s)
- John A Hangasky
- Department of Chemistry, University of Massachusetts at Amherst , Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
147
|
Ergel B, Gill ML, Brown L, Yu B, Palmer AG, Hunt JF. Protein dynamics control the progression and efficiency of the catalytic reaction cycle of the Escherichia coli DNA-repair enzyme AlkB. J Biol Chem 2014; 289:29584-601. [PMID: 25043760 DOI: 10.1074/jbc.m114.575647] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A central goal of enzymology is to understand the physicochemical mechanisms that enable proteins to catalyze complex chemical reactions with high efficiency. Recent methodological advances enable the contribution of protein dynamics to enzyme efficiency to be explored more deeply. Here, we utilize enzymological and biophysical studies, including NMR measurements of conformational dynamics, to develop a quantitative mechanistic scheme for the DNA repair enzyme AlkB. Like other iron/2-oxoglutarate-dependent dioxygenases, AlkB employs a two-step mechanism in which oxidation of 2-oxoglutarate generates a highly reactive enzyme-bound oxyferryl intermediate that, in the case of AlkB, slowly hydroxylates an alkylated nucleobase. Our results demonstrate that a microsecond-to-millisecond time scale conformational transition facilitates the proper sequential order of substrate binding to AlkB. Mutations altering the dynamics of this transition allow generation of the oxyferryl intermediate but promote its premature quenching by solvent, which uncouples 2-oxoglutarate turnover from nucleobase oxidation. Therefore, efficient catalysis by AlkB depends upon the dynamics of a specific conformational transition, establishing another paradigm for the control of enzyme function by protein dynamics.
Collapse
Affiliation(s)
- Burçe Ergel
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| | - Michelle L Gill
- the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032-3702
| | - Lewis Brown
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| | - Bomina Yu
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| | - Arthur G Palmer
- the Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032-3702
| | - John F Hunt
- From the Department of Biological Sciences, Columbia University, New York, New York 10027-6601 and
| |
Collapse
|
148
|
Zdżalik D, Vågbø CB, Kirpekar F, Davydova E, Puścian A, Maciejewska AM, Krokan HE, Klungland A, Tudek B, van den Born E, Falnes PØ. Protozoan ALKBH8 oxygenases display both DNA repair and tRNA modification activities. PLoS One 2014; 9:e98729. [PMID: 24914785 PMCID: PMC4051686 DOI: 10.1371/journal.pone.0098729] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/07/2014] [Indexed: 11/29/2022] Open
Abstract
The ALKBH family of Fe(II) and 2-oxoglutarate dependent oxygenases comprises enzymes that display sequence homology to AlkB from E. coli, a DNA repair enzyme that uses an oxidative mechanism to dealkylate methyl and etheno adducts on the nucleobases. Humans have nine different ALKBH proteins, ALKBH1–8 and FTO. Mammalian and plant ALKBH8 are tRNA hydroxylases targeting 5-methoxycarbonylmethyl-modified uridine (mcm5U) at the wobble position of tRNAGly(UCC). In contrast, the genomes of some bacteria encode a protein with strong sequence homology to ALKBH8, and robust DNA repair activity was previously demonstrated for one such protein. To further explore this apparent functional duality of the ALKBH8 proteins, we have here enzymatically characterized a panel of such proteins, originating from bacteria, protozoa and mimivirus. All the enzymes showed DNA repair activity in vitro, but, interestingly, two protozoan ALKBH8s also catalyzed wobble uridine modification of tRNA, thus displaying a dual in vitro activity. Also, we found the modification status of tRNAGly(UCC) to be unaltered in an ALKBH8 deficient mutant of Agrobacterium tumefaciens, indicating that bacterial ALKBH8s have a function different from that of their eukaryotic counterparts. The present study provides new insights on the function and evolution of the ALKBH8 family of proteins.
Collapse
Affiliation(s)
- Daria Zdżalik
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | - Cathrine B. Vågbø
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Erna Davydova
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alicja Puścian
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Department of Neurophysiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hans E. Krokan
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne Klungland
- Clinic for Diagnostics and Intervention and Institute of Medical Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Barbara Tudek
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Pål Ø. Falnes
- Department of Biosciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
149
|
Lu L, Zhu C, Xia B, Yi C. Oxidative Demethylation of DNA and RNA Mediated by Non-Heme Iron-Dependent Dioxygenases. Chem Asian J 2014; 9:2018-29. [DOI: 10.1002/asia.201402148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Indexed: 11/10/2022]
|
150
|
Xu C, Liu K, Tempel W, Demetriades M, Aik W, Schofield CJ, Min J. Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem 2014; 289:17299-311. [PMID: 24778178 DOI: 10.1074/jbc.m114.550350] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N(6)-Methyladenosine (m(6)A) is the most prevalent internal RNA modification in eukaryotes. ALKBH5 belongs to the AlkB family of dioxygenases and has been shown to specifically demethylate m(6)A in single-stranded RNA. Here we report crystal structures of ALKBH5 in the presence of either its cofactors or the ALKBH5 inhibitor citrate. Catalytic assays demonstrate that the ALKBH5 catalytic domain can demethylate both single-stranded RNA and single-stranded DNA. We identify the TCA cycle intermediate citrate as a modest inhibitor of ALKHB5 (IC50, ∼488 μm). The structural analysis reveals that a loop region of ALKBH5 is immobilized by a disulfide bond that apparently excludes the binding of dsDNA to ALKBH5. We identify the m(6)A binding pocket of ALKBH5 and the key residues involved in m(6)A recognition using mutagenesis and ITC binding experiments.
Collapse
Affiliation(s)
- Chao Xu
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ke Liu
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, From the Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China
| | - Wolfram Tempel
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Marina Demetriades
- the Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom, and
| | - WeiShen Aik
- the Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom, and
| | - Christopher J Schofield
- the Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, United Kingdom, and
| | - Jinrong Min
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada, From the Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079, China, the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|