101
|
Wahlberg JM, Bron R, Wilschut J, Garoff H. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J Virol 1992; 66:7309-18. [PMID: 1433520 PMCID: PMC240435 DOI: 10.1128/jvi.66.12.7309-7318.1992] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction.
Collapse
Affiliation(s)
- J M Wahlberg
- Department of Molecular Biology, Karolinska Institute, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
102
|
Abstract
Alphaviruses mature by budding at cell surfaces. According to a prevailing hypothesis, the viral membrane protein, which is a heterodimeric protein unit, is transported to the plasma membrane (PM), where it awaits binding to the viral nucleocapsid (NC). This hypothesis predicts that the viral membrane protein heterodimers accumulate at the cell surface when expressed in the absence of NCs. We have tested this prediction by analyzing the spike protein expression phenotype of a Semliki Forest virus (SFV) variant which contains a capsid gene deletion. We found that viral membrane protein heterodimers were formed and transported to the cell surface normally. However, instead of accumulating at the PM as expected, the membrane proteins were rapidly degraded. In the case of the E1 subunit, degradation resulted in the release of a soluble E1 fragment into the medium. The fact that this pathway of protein degradation is mostly inhibited during wild-type virus infection suggests that viral membrane proteins are very efficiently captured by NCs into budding complexes and that normally no sizeable pool of free membrane protein complexes exists at the PM.
Collapse
Affiliation(s)
- H Zhao
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
103
|
Sambamurti K, Shioi J, Anderson JP, Pappolla MA, Robakis NK. Evidence for intracellular cleavage of the Alzheimer's amyloid precursor in PC12 cells. J Neurosci Res 1992; 33:319-29. [PMID: 1453494 DOI: 10.1002/jnr.490330216] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Alzheimer's amyloid precursor (APP) is cleaved by an unidentified enzyme (APP secretase) to produce soluble APP. Fractionation of PC12 cell homogenates in a detergent-free buffer showed the presence of the Kunitz protease inhibitor (KPI)-containing soluble APP (nexin II) in the particulate fraction. Digitonin or sodium carbonate treatment of this fraction solubilized nexin II suggesting that it is contained in the lumen of vesicles. Nexin II production was not affected by lysosomotropic agents, suggesting that APP secretase is not a lysosomal enzyme. Labelling of cell surface proteins by iodination failed to detect full-length APP on the surface of PC12 cells, suggesting that most of this protein is located intracellularly. Furthermore, pulse-chase experiments showed that nexin II is detected in cell extracts before it appears in the culture medium. Cellular nexin II was detected at zero time of chase after only 5 min of pulse labelling with 35S-sulfate, indicated that APP secretase cleavage takes place immediately after APP is sulfated. Temperature block, pulse-chase, and 35S-sulfate-labelling experiments suggested that APP is cleaved by APP secretase intracellularly in the trans-Golgi network (TGN) or in a post-Golgi compartment.
Collapse
Affiliation(s)
- K Sambamurti
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York
| | | | | | | | | |
Collapse
|
104
|
Suomalainen M, Liljeström P, Garoff H. Spike protein-nucleocapsid interactions drive the budding of alphaviruses. J Virol 1992; 66:4737-47. [PMID: 1629953 PMCID: PMC241300 DOI: 10.1128/jvi.66.8.4737-4747.1992] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Semliki Forest virus (SFV) particles are released from infected cells by budding of nucleocapsids through plasma membrane regions that are modified by virus spike proteins. The budding process was studied with recombinant SFV genomes which lacked the nucleocapsid protein gene or, alternatively, the spike genes. No subviral particles were released from cells which expressed only the nucleocapsid protein or the spike proteins. Virus release was found to be strictly dependent on the coexpression of the nucleocapsid and the spike proteins. These results provide direct proof for the hypothesis that the alphavirus budding is driven by nucleocapsid-spike interactions. The importance of the viral 42S RNA for virus assembly and budding was investigated by using the heterologous vaccinia virus-T7 expression system for the synthesis of the SFV structural proteins. The results demonstrate that the viral genome is not absolutely required for formation of budding competent nucleocapsids, since small amounts of viruslike particles were assembled in the absence of 42S RNA.
Collapse
Affiliation(s)
- M Suomalainen
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | |
Collapse
|
105
|
Edwardson JM, Daniels-Holgate PU. Reconstitution in vitro of a membrane-fusion event involved in constitutive exocytosis. A role for cytosolic proteins and a GTP-binding protein, but not for Ca2+. Biochem J 1992; 285 ( Pt 2):383-5. [PMID: 1637330 PMCID: PMC1132798 DOI: 10.1042/bj2850383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The fusion of post-Golgi transport vesicles with the plasma membrane is perhaps the least well understood step in the network of intracellular membrane traffic. We have used an 'in vitro' system to study this membrane-fusion event. We show here that fusion requires the presence of cytosolic proteins, but not Ca2+, and is inhibited by the non-hydrolysable GTP analogue guanosine 5'-[gamma-thio]triphosphate, which indicates the involvement of a GTP-binding protein.
Collapse
Affiliation(s)
- J M Edwardson
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
106
|
Antebi A, Fink GR. The yeast Ca(2+)-ATPase homologue, PMR1, is required for normal Golgi function and localizes in a novel Golgi-like distribution. Mol Biol Cell 1992; 3:633-54. [PMID: 1379856 PMCID: PMC275619 DOI: 10.1091/mbc.3.6.633] [Citation(s) in RCA: 363] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PMR1, a Ca(2+)-adenosine triphosphatase (ATPase) homologue in the yeast Saccharomyces cerevisiae localizes to a novel Golgi-like organelle. Consistent with a Golgi localization, the bulk of PMR1 comigrates with Golgi markers in subcellular fractionation experiments, and staining of PMR1 by indirect immunofluorescence reveals a punctate pattern resembling Golgi staining in yeast. However, PMR1 shows only partial colocalization with known Golgi markers, KEX2 and SEC7, in double-label immunofluorescence experiments. The effect of PMR1 on Golgi function is indicated by pleiotropic defects in various Golgi processes in pmr1 mutants, including impaired proteolytic processing of pro-alpha factor and incomplete outer chain glycosylation of invertase. Consistent with the proposed role of PMR1 as a Ca2+ pump, these defects are reversed by the addition of millimolar levels of extracellular Ca2+, suggesting that Ca2+ disposition is essential to normal Golgi function. Absence of PMR1 function partially suppresses the temperature-sensitive growth defects of several sec mutants, and overexpression of PMR1 restricts the growth of others. Some of these interactions are modulated by changes in external Ca2+ concentrations. These results imply a global role for Ca2+ in the proper function of components governing transit and processing through the secretory pathway.
Collapse
Affiliation(s)
- A Antebi
- Whitehead Institute of Biomedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
107
|
Turner MD, Rennison ME, Handel SE, Wilde CJ, Burgoyne RD. Proteins are secreted by both constitutive and regulated secretory pathways in lactating mouse mammary epithelial cells. J Cell Biol 1992; 117:269-78. [PMID: 1313813 PMCID: PMC2289423 DOI: 10.1083/jcb.117.2.269] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Lactating mammary epithelial cells secrete high levels of caseins and other milk proteins. The extent to which protein secretion from these cells occurs in a regulated fashion was examined in experiments on secretory acini isolated from the mammary glands of lactating mice at 10 d postpartum. Protein synthesis and secretion were assayed by following the incorporation or release, respectively, of [35S]methionine-labeled TCA-precipitable protein. The isolated cells incorporated [35S]methionine into protein linearly for at least 5 h with no discernible lag period. In contrast, protein secretion was only detectable after a lag of approximately 1 h, consistent with exocytotic secretion of proteins immediately after passage through the secretory pathway and package into secretory vesicles. The extent of protein secretion was unaffected by the phorbol ester PMA, 8-bromo-cAMP, or 8-bromo-cGMP but was doubled by the Ca2+ ionophore ionomycin. In a pulse-label protocol in which proteins were prelabeled for 1 h before a chase period, constitutive secretion was unaffected by depletion of cytosolic Ca2+ but ionomycin was found to give a twofold stimulation of the secretion of presynthesized protein in a Ca(2+)-dependent manner. Ionomycin was still able to stimulate protein secretion after constitutive secretion had terminated. These results suggest that lactating mammary cells possess both a Ca(2+)-independent constitutive pathway and a Ca(2+)-activated regulatory pathway for protein secretion. The same proteins were secreted by both pathways. No ultrastructural evidence for apocrine secretion was seen in response to ionomycin and so it appears that regulated casein release involves exocytosis. Ionomycin was unlikely to be acting by disassembling the cortical actin network since cytochalasin D did not mimic its effects on secretion. The regulated pathway may be controlled by Ca2+ acting at a late step such as exocytotic membrane fusion.
Collapse
Affiliation(s)
- M D Turner
- Department of Physiology, University of Liverpool, United Kingdom
| | | | | | | | | |
Collapse
|
108
|
Tan A, Bolscher J, Feltkamp C, Ploegh H. Retrograde transport from the Golgi region to the endoplasmic reticulum is sensitive to GTP gamma S. J Biophys Biochem Cytol 1992; 116:1357-67. [PMID: 1541633 PMCID: PMC2289374 DOI: 10.1083/jcb.116.6.1357] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The involvement of GTP-binding proteins in the intracellular transport of the secretory glycoprotein alpha 1-antitrypsin was investigated in streptolysin O-permeabilized HepG2 cells. This permeabilization procedure allows ready access to the intracellular milieu of the membrane-impermeant, nonhydrolyzable GTP analog GTP gamma S. In streptolysin O-permeabilized HepG2 cells, the constitutive secretory pathway remains functional and is sensitive to GTP gamma S. Exposure of HepG2 cells to brefeldin A resulted in redistribution of Golgi-resident glycosyltransferases (including both alpha 2----3 and alpha 2----6 sialyltransferases) to the ER. This redistribution was sensitive to GTP gamma S. Our results suggest that GTP-binding proteins are involved in the regulation not only of the anterograde, but also of the retrograde, pathway.
Collapse
Affiliation(s)
- A Tan
- The Netherlands Cancer Institute, Division of Cellular Biochemistry, Amsterdam
| | | | | | | |
Collapse
|
109
|
Wahlberg JM, Garoff H. Membrane fusion process of Semliki Forest virus. I: Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J Cell Biol 1992; 116:339-48. [PMID: 1370493 PMCID: PMC2289294 DOI: 10.1083/jcb.116.2.339] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Semliki Forest virus (SFV) directs the synthesis of a heterodimeric membrane protein complex which is used for virus membrane assembly during budding at the surface of the infected cell, as well as for low pH-induced membrane fusion in the endosomes when particles enter new host cells. Existing evidence suggests that the E1 protein subunit carries the fusion potential of the heterodimer, whereas the E2 subunit, or its intracellular precursor p62, is required for binding to the nucleocapsid. We show here that during virus uptake into acidic endosomes the original E2E1 heterodimer is destabilized and the E1 proteins form new oligomers, presumably homooligomers, with altered E1 structure. This altered structure of E1 is specifically recognized by a monoclonal antibody which can also inhibit penetration of SFV into host cells as well as SFV-mediated cell-cell fusion, thus suggesting that the altered E1 structure is important for the membrane fusion. These results give further support for a membrane protein oligomerization- mediated control mechanism for the membrane fusion potential in alphaviruses.
Collapse
Affiliation(s)
- J M Wahlberg
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
110
|
Seglen PO, Bohley P. Autophagy and other vacuolar protein degradation mechanisms. EXPERIENTIA 1992; 48:158-72. [PMID: 1740188 DOI: 10.1007/bf01923509] [Citation(s) in RCA: 315] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autophagic degradation of cytoplasm (including protein, RNA etc.) is a non-selective bulk process, as indicated by ultrastructural evidence and by the similarity in autophagic sequestration rates of various cytosolic enzymes with different half-lives. The initial autophagic sequestration step, performed by a poorly-characterized organelle called a phagophore, is subject to feedback inhibition by purines and amino acids, the effect of the latter being potentiated by insulin and antagonized by glucagon. Epinephrine and other adrenergic agonists inhibit autophagic sequestration through a prazosin-sensitive alpha 1-adrenergic mechanism. The sequestration is also inhibited by cAMP and by protein phosphorylation as indicated by the effects of cyclic nucleotide analogues, phosphodiesterase inhibitors and okadaic acid. Asparagine specifically inhibits autophagic-lysosomal fusion without having any significant effects on autophagic sequestration, on intralysosomal degradation or on the endocytic pathway. Autophaged material that accumulates in prelysosomal vacuoles in the presence of asparagine is accessible to endocytosed enzymes, revealing the existence of an amphifunctional organelle, the amphisome. Evidence from several cell types suggests that endocytosis may be coupled to autophagy to a variable extent, and that the amphisome may play a central role as a collecting station for material destined for lysosomal degradation. Protein degradation can also take place in a 'salvage compartment' closely associated with the endoplasmic reticulum (ER). In this compartment unassembled protein chains are degraded by uncharacterized proteinases, while resident proteins return to the ER and assembled secretory and membrane proteins proceed through the Golgi apparatus. In the trans-Golgi network some proteins are proteolytically processed by Ca(2+)-dependent proteinases; furthermore, this compartment sorts proteins to lysosomes, various membrane domains, endosomes or secretory vesicles/granules. Processing of both endogenous and exogenous proteins can occur in endosomes, which may play a particularly important role in antigen processing and presentation. Proteins in endosomes or secretory compartments can either be exocytosed, or channeled to lysosomes for degradation. The switch mechanisms which decide between these options are subject to bioregulation by external agents (hormones and growth factors), and may play an important role in the control of protein uptake and secretion.
Collapse
Affiliation(s)
- P O Seglen
- Department of Tissue Culture, Norwegian Radium Hospital, Montebello, Oslo, Norway
| | | |
Collapse
|
111
|
Salminen A, Wahlberg JM, Lobigs M, Liljeström P, Garoff H. Membrane fusion process of Semliki Forest virus. II: Cleavage-dependent reorganization of the spike protein complex controls virus entry. J Biophys Biochem Cytol 1992; 116:349-57. [PMID: 1730759 PMCID: PMC2289290 DOI: 10.1083/jcb.116.2.349] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The envelope of the Semliki Forest virus (SFV) contains two transmembrane proteins, E2 and E1, in a heterodimeric complex. The E2 subunit is initially synthesized as a precursor protein p62, which is proteolytically processed to the mature E2 form before virus budding at the plasma membrane. The p62 (E2) protein mediates binding of the heterodimer to the nucleocapsid during virus budding, whereas E1 carries the entry functions of the virus, that is, cell binding and low pH-mediated membrane fusion activity. We have investigated the significance of the cleavage event for the maturation and entry of the virus. To express SFV with an uncleaved p62 phenotype, BHK-21 cells were transfected by electroporation with infectious viral RNA transcribed from a full-length SFV cDNA clone in which the p62 cleavage site had been changed. The uncleaved p62E1 heterodimer was found to be used for the formation of virus particles with an efficiency comparable to the wild type E2E1 form. However, in contrast to the wild type virus, the mutant virus was virtually noninfectious. Noninfectivity resulted from impaired uptake into cells, as well as from the inability of the virus to promote membrane fusion in the mildly acidic conditions of the endosome. This inability could be reversed by mild trypsin treatment, which converted the viral p62E1 form into the mature E2E1 form, or by treating the virus with a pH 4.5 wash, which in contrast to the more mild pH conditions of endosomes, effectively disrupted the p62E1 subunit association. We conclude that the p62 cleavage is not needed for virus budding, but regulates entry functions of the E1 subunit by controlling the heterodimer stability in acidic conditions.
Collapse
Affiliation(s)
- A Salminen
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
112
|
Schwaninger R, Plutner H, Davidson HW, Pind S, Balch WE. Transport of protein between endoplasmic reticulum and Golgi compartments in semiintact cells. Methods Enzymol 1992; 219:110-24. [PMID: 1336806 DOI: 10.1016/0076-6879(92)19014-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R Schwaninger
- Department of Cell and Molecular Biology, Scripps Research Institute, La Jolla, California 92037
| | | | | | | | | |
Collapse
|
113
|
Modulation of the carbohydrate moiety of thyroglobulin by thyrotropin and calcium in Fisher rat thyroid line-5 cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)46037-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
114
|
Miller SG, Moore HP. Biochemical analysis of constitutive secretion in a semiintact cell system. CELL BIOPHYSICS 1991; 19:35-43. [PMID: 1726886 DOI: 10.1007/bf02989877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S G Miller
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
115
|
Levy-Mintz P, Kielian M. Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. J Virol 1991; 65:4292-300. [PMID: 2072453 PMCID: PMC248867 DOI: 10.1128/jvi.65.8.4292-4300.1991] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Semliki Forest virus (SFV), an alphavirus, infects cells via a low pH-triggered membrane fusion reaction that takes place within the cellular endocytic pathway. Fusion is mediated by the heterotrimeric virus spike protein, which undergoes conformational changes upon exposure to low pH. The SFV E1 spike subunit contains a hydrophobic domain of 23 amino acids that is highly conserved among alphaviruses. This region is also homologous to a domain of the rotavirus outer capsid protein VP4. Mutagenesis of an SFV spike protein cDNA was used to evaluate the role of the E1 domain in membrane fusion. Mutant spike proteins were expressed in COS cells and assayed for cell-cell fusion activity. Four mutant phenotypes were identified: (i) substitution of Gln for Lys-79 or Leu for Met-88 had no effect on spike protein fusion activity; (ii) substitution of Ala for Asp-75, Ala for Gly-83, or Ala for Gly-91 shifted the pH threshold of fusion to a more acidic range; (iii) mutation of Pro-86 to Asp, Gly-91 to Pro, or deletion of amino acids 83 to 92 resulted in retention of the E1 subunit within the endoplasmic reticulum; and (iv) substitution of Asp for Gly-91 completely blocked cell-cell fusion activity without affecting spike protein assembly or transport. These results argue that the conserved hydrophobic domain of SFV E1 is closely involved in membrane fusion and suggest that the homologous region in rotavirus VP4 may be involved in the entry pathway of this nonenveloped virus.
Collapse
Affiliation(s)
- P Levy-Mintz
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
116
|
Liljeström P, Lusa S, Huylebroeck D, Garoff H. In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol 1991; 65:4107-13. [PMID: 2072446 PMCID: PMC248843 DOI: 10.1128/jvi.65.8.4107-4113.1991] [Citation(s) in RCA: 378] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We report on the construction of a full-length cDNA clone of Semliki Forest virus (SFV). By placing the cDNA under the SP6 promoter, infectious RNA can be produced in vitro and used to transfect cells to initiate virus infection. To achieve efficient transfections, a new protocol for electroporation of RNA was developed. This method gave up to 500-fold improvement over the traditional DEAE-dextran transfection procedure. Since virtually 100% of the cells can be transfected by electroporation, this method is a useful tool for detailed biochemical studies of null mutations of SFV that abolish production of infections virus particles. We used the cDNA clone of SFV to study what effects a deletion of the 6,000-molecular-weight membrane protein (6K membrane protein) had on virus replication. The small 6K protein is part of the structural precursor molecule (C-p62-6K-E1) of the virus. Our results conclusively show that the 6K protein is not needed for the heterodimerization of the p62 and E1 spike membrane proteins in the endoplasmic reticulum, nor is it needed for their transport out to the cell surface. The absence of the 6K protein did, however, result in a dramatic reduction in virus release, suggesting that the protein exerts its function late in the assembly pathway, possibly during virus budding.
Collapse
Affiliation(s)
- P Liljeström
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
117
|
Schwaninger R, Beckers C, Balch W. Sequential transport of protein between the endoplasmic reticulum and successive Golgi compartments in semi-intact cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98802-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
118
|
Presley JF, Polo JM, Johnston RE, Brown DT. Proteolytic processing of the Sindbis virus membrane protein precursor PE2 is nonessential for growth in vertebrate cells but is required for efficient growth in invertebrate cells. J Virol 1991; 65:1905-9. [PMID: 1848310 PMCID: PMC240008 DOI: 10.1128/jvi.65.4.1905-1909.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have shown previously that processing of the Sindbis virus envelope protein precursor PE2 to envelope protein E2 is not required for virus maturation in cultured vertebrate fibroblast cells and that unprocessed PE2 can be incorporated into infectious virus in place of E2 (J. F. Presley and D. T. Brown, J. Virol. 63:1975-1980, 1989; D. L. Russell, J. M. Dalrymple, and R. E. Johnston, J. Virol. 63:1619-1629, 1989). To better understand the role of this processing event in the invertebrate vector portion of the alphavirus life cycle, we have examined the maturation of Sindbis virus mutants defective in PE2 processing in cultured mosquito cells. We found that although substantial amounts of structural proteins PE2, E1, and C were produced in infected mosquito (aedine) cell lines, very little infectious virus was released. When the period of infection was extended, plaque size variants appeared, some of which exhibited a restored ability to grow in mosquito cells. The nucleotide sequences of two such variants were determined. These variants contained point mutations that restored PE2 cleavage, indicating a genetic linkage between failure to cleave PE2 and failure to grow in mosquito cells.
Collapse
Affiliation(s)
- J F Presley
- Cell Research Institute, University of Texas, Austin 78712-7640
| | | | | | | |
Collapse
|
119
|
Defective transport of Sindbis virus glycoproteins in End4 mutant Chinese hamster ovary cells. J Virol 1991; 65:1332-9. [PMID: 1995947 PMCID: PMC239909 DOI: 10.1128/jvi.65.3.1332-1339.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mutant V.24.1, a temperature-sensitive derivative of Chinese hamster ovary cells, defines the End4 complementation group of mutants selected for resistance to protein toxins and has defective lysosomes at the restrictive temperature (P. A. Colbaugh, M. Stookey, and R. K. Draper, J. Cell Biol. 108:2211-2219, 1989). We have investigated the biosynthesis of Sindbis virus envelope glycoproteins in V.24.1 cells. When the cells were infected at the restrictive temperature, the envelope glycoproteins E1 and E2 were undetectable on the cell surface and proteolytic processing of the precursor protein pE2 to envelope protein E2 did not occur. Protein retained intracellularly was sensitive to endoglycosidase H and, by immunofluorescence localization, appeared to accumulate in the endoplasmic reticulum. We conclude that the genetic defect in V.24.1 cells impairs the transport of Sindbis virus glycoproteins, apparently at the level of export from the endoplasmic reticulum.
Collapse
|
120
|
Jain SK, DeCandido S, Kielian M. Processing of the p62 envelope precursor protein of Semliki Forest virus. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67660-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
121
|
Miller SG, Moore HP. Reconstitution of constitutive secretion using semi-intact cells: regulation by GTP but not calcium. J Biophys Biochem Cytol 1991; 112:39-54. [PMID: 1986006 PMCID: PMC2288804 DOI: 10.1083/jcb.112.1.39] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359).
Collapse
Affiliation(s)
- S G Miller
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
122
|
Gravotta D, Adesnik M, Sabatini DD. Transport of influenza HA from the trans-Golgi network to the apical surface of MDCK cells permeabilized in their basolateral plasma membranes: energy dependence and involvement of GTP-binding proteins. J Cell Biol 1990; 111:2893-908. [PMID: 2125301 PMCID: PMC2116360 DOI: 10.1083/jcb.111.6.2893] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A procedure employing streptolysin O to effect the selective permeabilization of either the apical or basolateral plasma membrane domains of MDCK cell monolayers grown on a filter support was developed which permeabilizes the entire monolayer, leaves the opposite cell surface domain intact, and does not abolish the integrity of the tight junctions. This procedure renders the cell interior accessible to exogenous macromolecules and impermeant reagents, permitting the examination of their effects on membrane protein transport to the intact surface. The last stages of the transport of the influenza virus hemagglutinin (HA) to the apical surface were studied in pulse-labeled, virus-infected MDCK cells that were incubated at 19.5 degrees C for 90 min to accumulate newly synthesized HA in the trans-Golgi network (TGN), before raising the temperature to 35 degrees C to allow synchronized transport to the plasma membrane. In cells permeabilized immediately after the cold block, 50% of the intracellular HA molecules were subsequently delivered to the apical surface. This transport was dependent on the presence of an exogenous ATP supply and was markedly inhibited by the addition of GTP-gamma-S at the time of permeabilization. On the other hand, the GTP analogue had no effect when it was added to cells that, after the cold block, were incubated for 15 min at 35 degrees C before permeabilization, even though at this time most HA molecules were still intracellular and their appearance at the cell surface was largely dependent on exogenous ATP. These findings indicate that GTP-binding proteins are involved in the constitutive process that effects vesicular transport from the TGN to the plasma membrane and that they are charged early in this process. Transport of HA to the cell surface could be made dependent on the addition of exogenous cytosol when, after permeabilization, cells were washed to remove endogenous cytosolic components. This opens the way towards the identification of cell components that mediate the sorting of apical and basolateral membrane components in the TGN and their polarized delivery to the cell surface.
Collapse
Affiliation(s)
- D Gravotta
- Department of Cell Biology, New York University Medical Center 10016
| | | | | |
Collapse
|
123
|
Helms JB, Karrenbauer A, Wirtz KW, Rothman JE, Wieland FT. Reconstitution of steps in the constitutive secretory pathway in permeabilized cells. Secretion of glycosylated tripeptide and truncated sphingomyelin. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45477-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
124
|
Abstract
We have recently shown, using cleavage-deficient mutants of the p62-E1 membrane protein complex of Semliki Forest virus that p62 cleavage to E2 is necessary for the activation of the fusion function of the complex at pH 5.8 (a pH optimal for virus fusion) (M. Lobigs and H. Garoff, J. Virol. 64:1233-1240, 1990). In this study, we show that the mutant precursor complexes can be induced to activate membrane fusion when treated with more acidic buffers (pH 5.0 and 4.5), which also appear to dissociate most of the p62-E1 complexes and change the conformation of the E1 subunit (the supposed fusion protein of Semliki Forest virus into a form which is resistant to trypsin digestion. These data suggest that p62 cleavage is not essential for membrane fusion per se but that the crucial event activating this process seems to be the apparent dissociation of the heterodimer, which in turn is facilitated by the spike precursor cleavage.
Collapse
|
125
|
Sequential intermediates in the transport of protein between the endoplasmic reticulum and the Golgi. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)44752-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
126
|
Kielian M, Jungerwirth S, Sayad KU, DeCandido S. Biosynthesis, maturation, and acid activation of the Semliki Forest virus fusion protein. J Virol 1990; 64:4614-24. [PMID: 2118964 PMCID: PMC247945 DOI: 10.1128/jvi.64.10.4614-4624.1990] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Semliki Forest virus spike protein has a potent membrane fusion activity which is activated in vivo by the low pH of endocytic vacuoles. The spike protein is composed of two transmembrane subunits, E1 and E2, plus E3, a peripheral polypeptide. Acid-induced conformational changes in the E1 or E2 subunits were analyzed by using monoclonal antibodies specific for the acid-treated spike protein. E1 and E2 reacted with the antibodies after treatment of wild-type or mutant virus at the pH of fusion. The E1 conformational change resembled fusion in its requirement for both low pH and cholesterol. Pulse-chase analysis and intracellular pH treatment were then used to determine the ability of the newly synthesized spike to undergo acid-induced conformational changes. p62, the precursor to E2 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis. In contrast, a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form. E1 maturation occurred fairly late in the exocytic pathway, after the virus spike had passed the medial Golgi but before incorporation of the spike into a new virus particle.
Collapse
Affiliation(s)
- M Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | |
Collapse
|
127
|
Naim HY, Koblet H. The cleavage of p62, the precursor of E2 and E3, is an early and continuous event in Semliki Forest virus-infected Aedes albopictus cells. Arch Virol 1990; 110:221-37. [PMID: 2317152 DOI: 10.1007/bf01311290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The cleavage of p62 of Semliki Forest virus (SFV) in C6/36 (Aedes albopictus) cells was investigated by pulse-chase labeling experiments and analysis of the sugar side chain of E1 using endoglycosidases. Similar to vertebrates, E1, E2, and p62 are transported as complexes in C6/36 cells. This observation allows the use of E1 as a positional marker for the transport and processing of E2 and p62. The oligosaccharide on the viral spike E1 protein was modified first to an Endo-D-sensitive (35 min) and then to an Endo-H-resistant structure (55 min), whereas the oligosaccharides of p62 remained sensitive towards Endo-H the whole time. E2 could be detected already at 10-20 min post synthesis, suggesting that p62 cleavage starts early, probably before the protein has been transported to the Golgi apparatus. This is in contrast to the cleavage taking place later mainly near the plasma membrane of higher eukaryotes. The spike proteins finally appeared in extracellular virions after about 70-90 min post synthesis.
Collapse
Affiliation(s)
- H Y Naim
- Institute for Hygiene and Medical Microbiology, University of Berne, Switzerland
| | | |
Collapse
|
128
|
Garoff H, Huylebroeck D, Robinson A, Tillman U, Liljeström P. The signal sequence of the p62 protein of Semliki Forest virus is involved in initiation but not in completing chain translocation. J Cell Biol 1990; 111:867-76. [PMID: 2391367 PMCID: PMC2116283 DOI: 10.1083/jcb.111.3.867] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
So far it has been demonstrated that the signal sequence of proteins which are made at the ER functions both at the level of protein targeting to the ER and in initiation of chain translocation across the ER membrane. However, its possible role in completing the process of chain transfer (see Singer, S. J., P. A. Maher, and M. P. Yaffe. Proc. Natl. Acad. Sci. USA. 1987. 84:1015-1019) has remained elusive. In this work we show that the p62 protein of Semliki Forest virus contains an uncleaved signal sequence at its NH2-terminus and that this becomes glycosylated early during synthesis and translocation of the p62 polypeptide. As the glycosylation of the signal sequence most likely occurs after its release from the ER membrane our results suggest that this region has no role in completing the transfer process.
Collapse
Affiliation(s)
- H Garoff
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
129
|
Lobigs M, Zhao HX, Garoff H. Function of Semliki Forest virus E3 peptide in virus assembly: replacement of E3 with an artificial signal peptide abolishes spike heterodimerization and surface expression of E1. J Virol 1990; 64:4346-55. [PMID: 2200886 PMCID: PMC247902 DOI: 10.1128/jvi.64.9.4346-4355.1990] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Semliki Forest virus spike glycoproteins E1 and p62 form a heterodimeric complex in the endoplasmic reticulum (ER) and are transported as such to the cell surface. In the mature virus particle, the heterodimeric association of E1 and E2 (the cleavage product of p62) is maintained, but as a more labile and acid-sensitive oligomer than the E1-p62 complex. The E3 peptide forms the N-terminal part of the p62 precursor and carries the signal for the translocation of p62 into the lumen of the ER. The question of whether E3 is also important in the formation and stabilization of the E1-p62 heterodimer has been addressed here with the aid of an E3 deletion mutant cDNA. In this construct, the entire E3 was replaced with a cleavable, artificial signal sequence which preserved the membrane topology of an authentic E2. The E3 deletion, when expressed via a recombinant vaccinia virus, abolished heterodimerization of the spike proteins. It also resulted in the complete retention of E1 in the ER and almost total inhibition of E2 transport to the plasma membrane. The oligomerization and transport defect of E1 expressed from the E3 deletion mutant could be complemented with a wild-type p62 provided from a separate coding unit in double infections. These results point to a central role of E3 in complex formation and transport of the viral structural components to the site of budding. In conjunction with earlier work (M. Lobigs and H. Garoff, J. Virol. 64:1233-1240, 1990; J. Wahlberg, W. A. M. Boere, and H. Garoff, J. Virol. 63:4991-4997, 1989), the data support a model of spike protein oligomerization control of Semliki Forest virus assembly and disassembly which may be mediated by the presence of E3 in the uncleaved p62 precursor and release of E3 after cleavage.
Collapse
Affiliation(s)
- M Lobigs
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | | | |
Collapse
|
130
|
Lobigs M, Garoff H. Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. J Virol 1990; 64:1233-40. [PMID: 2304141 PMCID: PMC249238 DOI: 10.1128/jvi.64.3.1233-1240.1990] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The precursor protein p62 of the prototype alphavirus Semliki Forest virus (SFV) undergoes during transport to the cell surface a proteolytic cleavage to form the mature envelope glycoprotein E2. To investigate the biological significance of this cleavage event, single amino acid substitutions were introduced at the cleavages site through mutagenesis of cDNA corresponding to the structural region of the SFV genome. The phenotypes of the cleavage site mutants were studied in BHK cells by using recombinant vaccinia virus vectors. Nonconservative substitutions completely abolished p62 cleavage. Uncleaved p62 was transported with normal kinetics to the cell surface, where it became accessible to low concentrations of exogenous trypsin. The proteolytic cleavage of envelope glycoprotein precursors has been shown to activate the membrane fusion potential of viral spikes in several virus families. Here we demonstrate that the fusion function of the SFV spike is activated by the cleavage of p62. Cleavage-deficient p62 expressed at the cell surface did not function in low-pH-triggered (pH 5.5) cell-cell membrane fusion; however, cleavage of the mutated p62 with exogenous trypsin restored the fusion function. We discuss a model for SFV assembly and fusion where p62 cleavage plays a crucial role in the stability of the multimeric association of the viral envelope glycoproteins.
Collapse
Affiliation(s)
- M Lobigs
- Department of Molecular Biology, Karolinska Institute, Huddinge, Sweden
| | | |
Collapse
|
131
|
Koblet H. The "merry-go-round": alphaviruses between vertebrate and invertebrate cells. Adv Virus Res 1990; 38:343-402. [PMID: 1977293 DOI: 10.1016/s0065-3527(08)60866-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Koblet
- Institute for Medical Microbiology, University of Berne, Switzerland
| |
Collapse
|
132
|
Wahlberg JM, Boere WA, Garoff H. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation. J Virol 1989; 63:4991-7. [PMID: 2479769 PMCID: PMC251158 DOI: 10.1128/jvi.63.12.4991-4997.1989] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The budding and the fusion processes of the enveloped animal virus Semliki Forest virus serve the purpose of transporting its nucleocapsid, containing its genome, from the cytoplasm of an infected cell into that of an uninfected one. We show here that, in the infected cell, the viral membrane (spike) proteins p62 and E1 are organized as heterodimers which are very resistant to dissociation in acidic conditions. In contrast, the mature form of the heterodimer, E2E1, which is found in the virus particle and which is generated by proteolytic processing of p62, is very prone to dissociate upon treatment with mildly acidic buffers. We discuss the possibility that this difference in behavior of the intracellular precursor form and the mature form of the spike protein complex represents an important regulatory mechanism for the processes involving membrane binding around the nucleocapsid during budding and membrane release from the nucleocapsid at the stage of virus fusion.
Collapse
Affiliation(s)
- J M Wahlberg
- Department of Molecular Biology, Karolinska Insitute, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
133
|
|
134
|
Abstract
Polarized epithelial cells play fundamental roles in the ontogeny and function of a variety of tissues and organs in mammals. The morphogenesis of a sheet of polarized epithelial cells (the trophectoderm) is the first overt sign of cellular differentiation in early embryonic development. In the adult, polarized epithelial cells line all body cavities and occur in tissues that carry out specialized vectorial transport functions of absorption and secretion. The generation of this phenotype is a multistage process requiring extracellular cues and the reorganization of proteins in the cytoplasm and on the plasma membrane; once established, the phenotype is maintained by the segregation and retention of specific proteins and lipids in distinct apical and basal-lateral plasma membrane domains.
Collapse
Affiliation(s)
- E Rodriguez-Boulan
- Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
135
|
Bennett MK, Wandinger-Ness A, De Curtis I, Antony C, Simons K, Kartenbeck J. Perforated cells for studying intracellular membrane transport. Methods Cell Biol 1989; 31:103-26. [PMID: 2779446 DOI: 10.1016/s0091-679x(08)61604-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- M K Bennett
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|