101
|
Jia H, Fan Y, Feng X, Li C. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2014; 2:44. [PMID: 25368869 PMCID: PMC4202804 DOI: 10.3389/fbioe.2014.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022] Open
Abstract
Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution, and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.
Collapse
Affiliation(s)
- Haiyang Jia
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Yanshuang Fan
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Xudong Feng
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Chun Li
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| |
Collapse
|
102
|
Janeesh PA, Abraham A. Robinin modulates doxorubicin-induced cardiac apoptosis by TGF-β1 signaling pathway in Sprague Dawley rats. Biomed Pharmacother 2014; 68:989-98. [PMID: 25443416 DOI: 10.1016/j.biopha.2014.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 09/14/2014] [Indexed: 11/15/2022] Open
Abstract
The study focussed on the cardioprotective effect of robinin on doxorubicin-induced cardio-toxicity in Sprague Dawley rats. After the experimental period, animals were sacrificed and the various parameters such as cardiac markers, toxicity parameters, antioxidant status, ROS generation, lipid peroxidation status and inflammatory parameters were assessed. Gene expression study by RT-PCR analysis and proteins expression study by western blotting were done. Doxorubicin causes significant increase in the levels of cardiac marker enzymes, namely lactate dehydrogenase (LDH), creatine phospokinase (CPK), toxicity parameters like serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT). Antioxidant enzyme levels were decreased; lipid peroxidation products in heart tissue and inflammatory markers, namely cyclooxygenase (COX2) and lipooxygenase (LOX15) were significantly increased. Gene expression study by RT-PCR analysis of transforming growth factor-β1 (TGF-β1), Smad2, murine double minute (Mdm2), Smad3, cyclin-dependent kinase inhibitor 2A (CDKN2A), Smad4 and Smad7 were significantly altered. The western blotting study of p53, Bcl-2 and Bax also showed altered expression. The supplementation of the Robinin along with DOX caused normalised level of all the above parameters and cardio-toxicity. This study revealed the cardioprotective nature of Robinin on doxorubicin-induced cardiac toxicity by modulating TGF-β1 signaling pathway in Sprague Dawley rats.
Collapse
Affiliation(s)
- P A Janeesh
- Department of Biochemistry, School of Life sciences, University of Kerala, Thiruvananthapuram, Kariavattom Campus, 695 581, Kerala, India
| | - A Abraham
- Department of Biochemistry, School of Life sciences, University of Kerala, Thiruvananthapuram, Kariavattom Campus, 695 581, Kerala, India.
| |
Collapse
|
103
|
Singh A, Upadhyay R, Malakar D, Kumar S, Singh S. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J Therm Biol 2014; 43:46-53. [DOI: 10.1016/j.jtherbio.2014.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 02/02/2023]
|
104
|
Effect of Intracellular Glutathione on Heat-induced Cell Death in the Cyanobacterium,SynechocystisPCC 6803. Biosci Biotechnol Biochem 2014; 63:1112-5. [DOI: 10.1271/bbb.63.1112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
105
|
Mensonides FIC, Brul S, Hellingwerf KJ, Bakker BM, Teixeira de Mattos MJ. A kinetic model of catabolic adaptation and protein reprofiling in Saccharomyces cerevisiae during temperature shifts. FEBS J 2014; 281:825-41. [PMID: 24616920 DOI: 10.1111/febs.12649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this article, we aim to find an explanation for the surprisingly thin line, with regard to temperature, between cell growth, growth arrest and ultimately loss of cell viability. To this end, we used an integrative approach including both experimental and modelling work. We measured the short- and long-term effects of increases in growth temperature from 28 °C to 37, 39, 41, 42 or 43 °C on the central metabolism of Saccharomyces cerevisiae. Based on the experimental data, we developed a kinetic mathematical model that describes the metabolic and energetic changes in growing bakers' yeast when exposed to a specific temperature upshift. The model includes the temperature dependence of core energy-conserving pathways, trehalose synthesis, protein synthesis and proteolysis. Because our model focuses on protein synthesis and degradation, the net result of which is important in determining the cell's capacity to grow, the model includes growth, i.e. glucose is consumed and biomass and adenosine nucleotide cofactors are produced. The model reproduces both the observed initial metabolic response and the subsequent relaxation into a new steady-state, compatible with the new ambient temperature. In addition, it shows that the energy consumption for proteome reprofiling may be a major determinant of heat-induced growth arrest and subsequent recovery or cell death.
Collapse
|
106
|
Para-aminobenzoic acid (PABA) synthase enhances thermotolerance of mushroom Agaricus bisporus. PLoS One 2014; 9:e91298. [PMID: 24614118 PMCID: PMC3948851 DOI: 10.1371/journal.pone.0091298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 02/11/2014] [Indexed: 12/03/2022] Open
Abstract
Most mushrooms are thermo-sensitive to temperatures over 23°C, which greatly restricts their agricultural cultivation. Understanding mushroom’s innate heat-tolerance mechanisms may facilitate genetic improvements of their thermotolerance. Agaricus bisporus strain 02 is a relatively thermotolerant mushroom strain, while strain 8213 is quite thermo-sensitive. Here, we compared their responses at proteomic level to heat treatment at 33°C. We identified 73 proteins that are differentially expressed between 02 and 8213 or induced upon heat stress in strain 02 itself, 48 of which with a known identity. Among them, 4 proteins are constitutively more highly expressed in 02 than 8213; and they can be further upregulated in response to heat stress in 02, but not in 8213. One protein is encoded by the para-aminobenzoic acid (PABA) synthase gene Pabs, which has been shown to scavenge the reactive oxygen species in vitro. Pabs mRNA and its chemical product PABA show similar heat stress induction pattern as PABA synthase protein and are more abundant in 02, indicating transcriptional level upregulation of Pabs upon heat stress. A specific inhibitor of PABA synthesis impaired thermotolerance of 02, while exogenous PABA or transgenic overexpression of 02 derived PABA synthase enhanced thermotolerance of 8213. Furthermore, compared to 8213, 02 accumulated less H2O2 but more defense-related proteins (e.g., HSPs and Chitinase) under heat stress. Together, these results demonstrate a role of PABA in enhancing mushroom thermotolerance by removing H2O2 and elevating defense-related proteins.
Collapse
|
107
|
Jakab Á, Antal K, Kiss Á, Emri T, Pócsi I. Increased oxidative stress tolerance results in general stress tolerance in Candida albicans independently of stress-elicited morphological transitions. Folia Microbiol (Praha) 2014; 59:333-40. [PMID: 24477890 DOI: 10.1007/s12223-014-0305-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
A selection of tert-butylhydroperoxide (tBOOH)-tolerant Candida albicans mutants showed increased tolerances to 19 different stress conditions. These mutants are characterized by a constitutively upregulated antioxidative defense system and, therefore, adaptation to oxidative stress may play an important role in gaining general stress tolerance in C. albicans. Although C. albicans cells may undergo morphological transitions under various stress treatments, this ability shows considerable stress-specific and strain-specific variability and, hence, it is independent of mounting stress cross protections.
Collapse
Affiliation(s)
- Ágnes Jakab
- Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, University of Debrecen, P.O. Box 63, 4010, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
108
|
Roles of Hsp104 and trehalose in solubilisation of mutant huntingtin in heat shocked Saccharomyces cerevisiae cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:746-57. [PMID: 24412307 DOI: 10.1016/j.bbamcr.2014.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/21/2013] [Accepted: 01/02/2014] [Indexed: 11/24/2022]
Abstract
Inhibition of huntingtin aggregation, either in the nucleus and/or in the cytosol, has been identified as a major strategy to ameliorate the symptoms of Huntington's disease. Chaperones and other protein stabilisers would thus be key players in ensuring the correct folding of the amyloidogenic protein and its expression in the soluble form. By transient activation of the global heat stress response in Saccharomyces cerevisiaeBY4742, we show that heterologous expression of mutant huntingtin (103Q-htt) could be modulated so that the protein was partitioned off in the soluble fraction of the cytosol. This led to lower levels of reactive oxygen species and improved cell viability. Previous reports had speculated on the relationship between trehalose and the heat shock response in ensuring enhanced cell survival but no direct evidence of such an interaction was available. Using mutants of an isogenic strain which do not express the major trehalose synthetic or metabolising enzymes or the chaperone, heat shock protein 104 (Hsp104), we were able to identify the functions of Hsp104 and the osmoprotectant trehalose in solubilising mutant huntingtin. We propose that the beneficial effect of the protein refolding machinery in solubilising the aggregation-prone protein is exerted by maintaining a tight balance between the trehalose synthetic enzyme, trehalose-6-phosphate synthase 1 and Hsp104. This ensures that the level of the osmoprotectant, trehalose, does not exceed the limit beyond which it is reported to inhibit protein refolding.
Collapse
|
109
|
Abstract
The heat-shock response in cells, involving increased transcription of a specific set of genes in response to a sudden increase in temperature, is a highly conserved biological response occurring in all organisms. Despite considerable attention to the processes activated during heat shock, less is known about the role of genes in survival of a sudden temperature increase. Saccharomyces cerevisiae genes involved in the maintenance of heat-shock resistance in exponential and stationary phase were identified by screening the homozygous diploid deletants in nonessential genes and the heterozygous diploid mutants in essential genes for survival after a sudden shift in temperature from 30 to 50°. More than a thousand genes were identified that led to altered sensitivity to heat shock, with little overlap between them and those previously identified to affect thermotolerance. There was also little overlap with genes that are activated or repressed during heat-shock, with only 5% of them regulated by the heat-shock transcription factor. The target of rapamycin and protein kinase A pathways, lipid metabolism, vacuolar H+-ATPase, vacuolar protein sorting, and mitochondrial genome maintenance/translation were critical to maintenance of resistance. Mutants affected in l-tryptophan metabolism were heat-shock resistant in both growth phases; those affected in cytoplasmic ribosome biogenesis and DNA double-strand break repair were resistant in stationary phase, and in mRNA catabolic processes in exponential phase. Mutations affecting mitochondrial genome maintenance were highly represented in sensitive mutants. The cell division transcription factor Swi6p and Hac1p involved in the unfolded protein response also play roles in maintenance of heat-shock resistance.
Collapse
|
110
|
Janeesh PA, Sasikala V, Dhanya CR, Abraham A. Robinin modulates TLR/NF-κB signaling pathway in oxidized LDL induced human peripheral blood mononuclear cells. Int Immunopharmacol 2013; 18:191-7. [PMID: 24295649 DOI: 10.1016/j.intimp.2013.11.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 01/16/2023]
Abstract
This study was designed to investigate whether robinin administration modulates toll-like receptor (TLR) and nuclear factor-kappa B (NF-κB) signaling pathway in oxidized LDL induced human peripheral blood mononuclear cells (hPBMCs). The hPBMCs were isolated from healthy human volunteers and the cells were cultured in collagen coated plates at 37°C with 5% CO2 and RPMI as culture medium and were grouped as follows: Group I - control, group II - OxLDL treated and group III - OxLDL+robinin (6μg/ml). We measured mRNA expression of TLR2 and TLR4 by reverse-transcriptase polymerase chain reaction (RT-PCR) and NF-κB transcription factor assay (ELISA), and western blotting studies were done for knowing expression of monocyte chemotactic protein-1 (MCP 1), tumor necrosis factor-alpha (TNF-α) interleukin-6 (IL-6) and vascular cell adhesion molecule 1 (VCAM-1). The result indicates that OxLDL that induces hPBMCs showed an upregulated expression of TLR2, TLR4, NF-κB, pro-inflammatory cytokines and VCAM-1. Robinin inhibited the ox-LDL induced TLR2 and TLR4 expression at mRNA level and inhibited the translocation of NF-κB p65 by modulating the TLR-NF-κB signaling pathway thereby inhibiting cytokine production and down regulated inflammatory enzymes like cyclooxygenase (COX), lipoxygenase (LOX), nitric oxide synthase (NOS) and prostaglandin E2 (PGE2), thus having protective effect against the ox-LDL induced inflammation stress in hPBMCs by inhibiting TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- P A Janeesh
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kariavattom Campus, 695 581 Kerala, India
| | - V Sasikala
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kariavattom Campus, 695 581 Kerala, India
| | - C R Dhanya
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kariavattom Campus, 695 581 Kerala, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kariavattom Campus, 695 581 Kerala, India.
| |
Collapse
|
111
|
Fernandes PN, Mannarino SC, Silva CG, Pereira MD, Panek AD, Eleutherio EC. Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses inSaccharomyces cerevisiae. Redox Rep 2013; 12:236-44. [DOI: 10.1179/135100007x200344] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
112
|
Ayer A, Sanwald J, Pillay BA, Meyer AJ, Perrone GG, Dawes IW. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae. PLoS One 2013; 8:e65240. [PMID: 23762325 PMCID: PMC3676407 DOI: 10.1371/journal.pone.0065240] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (EGSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. EGSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (−340 to −350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H+/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.
Collapse
Affiliation(s)
- Anita Ayer
- University of New South Wales, Sydney, Australia
| | | | | | | | | | - Ian W. Dawes
- University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
113
|
Janeesh PA, Abraham A. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2013; 68:118-123. [PMID: 23475595 DOI: 10.1007/s11130-013-0345-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.
Collapse
Affiliation(s)
- P A Janeesh
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Trivandrum, India
| | | |
Collapse
|
114
|
Raimondi S, Zanni E, Amaretti A, Palleschi C, Uccelletti D, Rossi M. Thermal adaptability of Kluyveromyces marxianus in recombinant protein production. Microb Cell Fact 2013; 12:34. [PMID: 23587421 PMCID: PMC3655038 DOI: 10.1186/1475-2859-12-34] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/26/2013] [Indexed: 01/16/2023] Open
Abstract
Background Kluyveromyces marxianus combines the ease of genetic manipulation and fermentation with the ability to efficiently secrete high molecular weight proteins, performing eukaryotic post-translational modifications. It is able to grow efficiently in a wide range of temperatures. The secretion performances were analyzed in the host K. marxianus L3 in the range between 5°C and 40°C by means of 3 different reporter proteins, since temperature appears a key parameter for production and secretion of recombinant proteins. Results The recombinant strains were able to grow up to 40°C and, along the tested temperature interval (5-40°C), the specific growth rates (μ) were generally lower as compared to those of the untransformed strain. Biomass yields were slightly affected by temperature, with the highest values reached at 15°C and 30°C. The secretion of the endogenous β-fructofuranosidase, used as an internal control, was efficient in the range of the tested temperature, as evaluated by assaying the enzyme activity in the culture supernatants. The endogenous β-fructofuranosidase production was temperature dependent, with the highest yield at 30°C. The heterologous proteins HSA, GAA and Sod1p were all successfully produced and secreted between 5°C and 40°C, albeit each one presented a different optimal production temperature (15, 40, 5-30°C for HSA, GAA and Sod1p, respectively). Conclusions K. marxianus L3 has been identified as a promising and flexible cell factory. In a sole host, the optimization of growth temperatures for the efficient secretion of each individual protein can be carried out over a wide range of temperatures.
Collapse
Affiliation(s)
- Stefano Raimondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
115
|
Brasil AA, Belati A, Mannarino SC, Panek AD, Eleutherio ECA, Pereira MD. The involvement of GSH in the activation of human Sod1 linked to FALS in chronologically aged yeast cells. FEMS Yeast Res 2013; 13:433-40. [DOI: 10.1111/1567-1364.12045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/11/2013] [Accepted: 03/11/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Aline A. Brasil
- Departamento de Bioquímica; Instituto de Química; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Allan Belati
- Departamento de Bioquímica; Instituto de Química; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Sérgio C. Mannarino
- Departamento de Bioquímica; Instituto de Química; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Anita D. Panek
- Departamento de Bioquímica; Instituto de Química; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Elis C. A. Eleutherio
- Departamento de Bioquímica; Instituto de Química; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| | - Marcos D. Pereira
- Departamento de Bioquímica; Instituto de Química; Universidade Federal do Rio de Janeiro; Rio de Janeiro; Brazil
| |
Collapse
|
116
|
Hull JJ, Geib SM, Fabrick JA, Brent CS. Sequencing and de novo assembly of the western tarnished plant bug (Lygus hesperus) transcriptome. PLoS One 2013; 8:e55105. [PMID: 23357950 PMCID: PMC3554660 DOI: 10.1371/journal.pone.0055105] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/14/2012] [Indexed: 11/18/2022] Open
Abstract
Background Mirid plant bugs (Hemiptera: Miridae) are economically important insect pests of many crops worldwide. The western tarnished plant bug Lygus hesperus Knight is a pest of cotton, alfalfa, fruit and vegetable crops, and potentially of several emerging biofuel and natural product feedstocks in the western US. However, little is known about the underlying molecular genetics, biochemistry, or physiology of L. hesperus, including their ability to survive extreme environmental conditions. Methodology/Principal Findings We used 454 pyrosequencing of a normalized adult cDNA library and de novo assembly to obtain an adult L. hesperus transcriptome consisting of 1,429,818 transcriptomic reads representing 36,131 transcript isoforms (isotigs) that correspond to 19,742 genes. A search of the transcriptome against deposited L. hesperus protein sequences revealed that 86 out of 87 were represented. Comparison with the non-redundant database indicated that 54% of the transcriptome exhibited similarity (e-value ≤1−5) with known proteins. In addition, Gene Ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations, and potential Pfam domains were assigned to each transcript isoform. To gain insight into the molecular basis of the L. hesperus thermal stress response we used transcriptomic sequences to identify 52 potential heat shock protein (Hsp) homologs. A subset of these transcripts was sequence verified and their expression response to thermal stress monitored by semi-quantitative PCR. Potential homologs of Hsp70, Hsp40, and 2 small Hsps were found to be upregulated in the heat-challenged adults, suggesting a role in thermotolerance. Conclusions/Significance The L. hesperus transcriptome advances the underlying molecular understanding of this arthropod pest by significantly increasing the number of known genes, and provides the basis for further exploration and understanding of the fundamental mechanisms of abiotic stress responses.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, Agricultural Research Service, United States Department of Agriculture, Maricopa, Arizona, USA.
| | | | | | | |
Collapse
|
117
|
Nagira K, Tamura S, Kawano S, Ikeda S. Ascorbic Acid and Thiol Antioxidants Suppress Spontaneous Mutagenesis in a Cu,Zn-superoxide Dismutase-deficient Mutant of Saccharomyces cerevisiae. Genes Environ 2013. [DOI: 10.3123/jemsge.2013.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
118
|
Liu J, Qi Z, Huang Q, Wei X, Ke Z, Fang Y, Tian Y, Yu Z. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
119
|
Prokopiv TM, Fedorovych DV, Boretsky YR, Sibirny AA. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities. Curr Microbiol 2012; 66:79-87. [PMID: 23053489 DOI: 10.1007/s00284-012-0242-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 09/14/2012] [Indexed: 01/26/2023]
Abstract
Iron deficiency causes oversynthesis of riboflavin in several yeast species, known as flavinogenic yeasts. Under iron deprivation conditions, Pichia guilliermondii cells increase production of riboflavin and malondialdehyde and the formation of protein carbonyl groups, which reflect increased intracellular content of reactive oxygen species. In this study, we found that P. guilliermondii iron deprived cells showed dramatically decreased catalase and superoxide dismutase activities. Previously reported mutations rib80, rib81, and hit1, which affect repression of riboflavin synthesis and iron accumulation by iron ions, caused similar drops in activities of the mentioned enzymes. These findings could explain the previously described development of oxidative stress in iron deprived or mutated P. guilliermondii cells that overproduce riboflavin. Similar decrease in superoxide dismutase activities was observed in iron deprived cells in the non-flavinogenic yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Tetyana M Prokopiv
- Department of Analytical Biotechnology, Institute of Cell Biology NAS of Ukraine, Lviv, Ukraine
| | | | | | | |
Collapse
|
120
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
121
|
Adler C, Corbalán NS, Seyedsayamdost MR, Pomares MF, de Cristóbal RE, Clardy J, Kolter R, Vincent PA. Catecholate siderophores protect bacteria from pyochelin toxicity. PLoS One 2012; 7:e46754. [PMID: 23071628 PMCID: PMC3465284 DOI: 10.1371/journal.pone.0046754] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition. METHODS AND PRINCIPAL FINDINGS Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity. CONCLUSIONS We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.
Collapse
Affiliation(s)
- Conrado Adler
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Natalia S. Corbalán
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Mohammad R. Seyedsayamdost
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - María Fernanda Pomares
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Ricardo E. de Cristóbal
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roberto Kolter
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paula A. Vincent
- Departamento de Bioquímica de la Nutrición, INSIBIO (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán) San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
122
|
Radha A, Devi Rukhmini S, Sasikala V, Sakunthala PR, Sreedharan B, Velayudhan MP, Abraham A. Bioactive derivatives of curcumin attenuate cataract formation in vitro. Chem Biol Drug Des 2012; 80:887-92. [PMID: 22883304 DOI: 10.1111/cbdd.12021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, curcumin derivatives salicylidenecurcumin (CD1) and benzalidenecurcumin (CD2)] were prepared, and their biological activity was compared in in vitro selenite-induced cataract model. The antioxidant activity was studied using DPPH radical scavenging assay. Knoevenagel condensates of curcumin exhibited higher DPPH radical scavenging activity compared with curcumin. The anticataractogenic potential of curcumin derivatives was analyzed using lens organ culture method. The activity of antioxidant enzymes and calcium homeostasis was reversed to near normal levels following treatment in organ cultured rat lenses. These results indicated that curcumin and its derivatives--CD1 and CD2--are beneficial against selenite-induced cataract in vitro. Of these, CD1 is having higher bioactive potential compared with curcumin and CD2.
Collapse
Affiliation(s)
- Asha Radha
- Department of Biochemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
123
|
Bauermeister A, Hahn C, Rettberg P, Reitz G, Moeller R. Roles of DNA repair and membrane integrity in heat resistance of Deinococcus radiodurans. Arch Microbiol 2012; 194:959-66. [DOI: 10.1007/s00203-012-0834-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
124
|
Farrugia G, Balzan R. Oxidative stress and programmed cell death in yeast. Front Oncol 2012; 2:64. [PMID: 22737670 PMCID: PMC3380282 DOI: 10.3389/fonc.2012.00064] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/02/2012] [Indexed: 12/11/2022] Open
Abstract
Yeasts, such as Saccharomyces cerevisiae, have long served as useful models for the study of oxidative stress, an event associated with cell death and severe human pathologies. This review will discuss oxidative stress in yeast, in terms of sources of reactive oxygen species (ROS), their molecular targets, and the metabolic responses elicited by cellular ROS accumulation. Responses of yeast to accumulated ROS include upregulation of antioxidants mediated by complex transcriptional changes, activation of pro-survival pathways such as mitophagy, and programmed cell death (PCD) which, apart from apoptosis, includes pathways such as autophagy and necrosis, a form of cell death long considered accidental and uncoordinated. The role of ROS in yeast aging will also be discussed.
Collapse
Affiliation(s)
- Gianluca Farrugia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| | - Rena Balzan
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of MaltaMsida, Malta
| |
Collapse
|
125
|
Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks. PLoS One 2012; 7:e35977. [PMID: 22563474 PMCID: PMC3341384 DOI: 10.1371/journal.pone.0035977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/24/2012] [Indexed: 12/15/2022] Open
Abstract
Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots.
Collapse
|
126
|
Rooban B, Sasikala V, Gayathri Devi V, Sahasranamam V, Abraham A. Prevention of selenite induced oxidative stress and cataractogenesis by luteolin isolated from Vitex negundo. Chem Biol Interact 2012; 196:30-8. [DOI: 10.1016/j.cbi.2012.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/17/2012] [Accepted: 01/22/2012] [Indexed: 12/01/2022]
|
127
|
Proteomic analysis of Trypanosoma cruzi epimastigotes subjected to heat shock. J Biomed Biotechnol 2012; 2012:902803. [PMID: 22287837 PMCID: PMC3263753 DOI: 10.1155/2012/902803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/31/2011] [Accepted: 09/08/2011] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma cruzi is exposed to sudden temperature changes during its life cycle. Adaptation to these variations is crucial for parasite survival, reproduction, and transmission. Some of these conditions may change the pattern of genetic expression of proteins involved in homeostasis in the course of stress treatment. In the present study, the proteome of T. cruzi epimastigotes subjected to heat shock and epimastigotes grow normally was compared by two-dimensional gel electrophoresis followed by mass spectrometry for protein identification. Twenty-four spots differing in abundance were identified. Of the twenty-four changed spots, nineteen showed a greater intensity and five a lower intensity relative to the control. Several functional categories of the identified proteins were determined: metabolism, cell defense, hypothetical proteins, protein fate, protein synthesis, cellular transport, and cell cycle. Proteins involved in the interaction with the cellular environment were also identified, and the implications of these changes are discussed.
Collapse
|
128
|
Abstract
Oxidative damage to cellular constituents has frequently been associated with aging in a wide range of organisms. The power of yeast genetics and biochemistry has provided the opportunity to analyse in some detail how reactive oxygen and nitrogen species arise in cells, how cells respond to the damage that these reactive species cause, and to begin to dissect how these species may be involved in the ageing process. This chapter reviews the major sources of reactive oxygen species that occur in yeast cells, the damage they cause and how cells sense and respond to this damage.
Collapse
Affiliation(s)
- May T Aung-Htut
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia,
| | | | | | | |
Collapse
|
129
|
Membrane Fluidity in Yeast Adaptation: Insights from Fluorescence Spectroscopy and Microscopy. REVIEWS IN FLUORESCENCE 2010 2012. [DOI: 10.1007/978-1-4419-9828-6_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
130
|
Kommuguri UN, Bodiga S, Sankuru S, Bodiga VL. Copper deprivation modulates CTR1 and CUP1 expression and enhances cisplatin cytotoxicity in Saccharomyces cerevisiae. J Trace Elem Med Biol 2012; 26:13-9. [PMID: 22365074 DOI: 10.1016/j.jtemb.2011.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 10/19/2011] [Accepted: 12/04/2011] [Indexed: 01/19/2023]
Abstract
Saccharomyces cerevisiae has been established as a model system for cancer studies, due to the widely conserved family of genes involved in cell cycle progression, proliferation and apoptosis. In the current study, we sought to determine whether copper deprivation modulates sensitivity of yeast to cisplatin. Yeast cultures grown in low copper medium and exposed to bathocuproiene disulfate (BCS) resulted in significant reduction of intracellular copper. We report here that low copper medium rendered BY4741 hypersensitive to cisplatin (CDDP). Yeast grown in low copper medium exhibited ∼2.0 fold enhanced cytotoxicity in survival and colony-forming ability, compared to copper adequate control cells grown in YPD. The effect of copper restriction on CDDP sensitivity appeared to be associated with the up regulation of CTR1, facilitating enhanced uptake and accumulation of CDDP. Also, CDDP further lowered copper deprivation-induced changes in CUP1 metallothionein levels, SOD activity and GSH levels. These changes were associated with increased protein oxidation and lipid peroxidation induced by CDDP. These results thus suggest that cisplatin cytotoxicity is potentiated under low copper conditions due to enhanced uptake and accumulation of cisplatin and also in part due to lowered antioxidant defense and increased oxidative stress imposed by copper deprivation.
Collapse
|
131
|
Abstract
A common need for microbial cells is the ability to respond to potentially toxic environmental insults. Here we review the progress in understanding the response of the yeast Saccharomyces cerevisiae to two important environmental stresses: heat shock and oxidative stress. Both of these stresses are fundamental challenges that microbes of all types will experience. The study of these environmental stress responses in S. cerevisiae has illuminated many of the features now viewed as central to our understanding of eukaryotic cell biology. Transcriptional activation plays an important role in driving the multifaceted reaction to elevated temperature and levels of reactive oxygen species. Advances provided by the development of whole genome analyses have led to an appreciation of the global reorganization of gene expression and its integration between different stress regimens. While the precise nature of the signal eliciting the heat shock response remains elusive, recent progress in the understanding of induction of the oxidative stress response is summarized here. Although these stress conditions represent ancient challenges to S. cerevisiae and other microbes, much remains to be learned about the mechanisms dedicated to dealing with these environmental parameters.
Collapse
|
132
|
Trendeleva T, Sukhanova E, Ural’skaya L, Saris NE, Zvyagilskaya R. Effect of prooxidants on yeast mitochondria. J Bioenerg Biomembr 2011; 43:633-44. [DOI: 10.1007/s10863-011-9403-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/25/2011] [Indexed: 01/08/2023]
|
133
|
Stoica BA, Rusu M, Petreus T, Nechifor M. Manganese SOD mimics are effective against heat stress in a mutant fission yeast deficient in mitochondrial superoxide dismutase. Biol Trace Elem Res 2011; 144:1344-50. [PMID: 21484407 DOI: 10.1007/s12011-011-9035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/13/2011] [Indexed: 11/30/2022]
Abstract
UNLABELLED Previous studies revealed a close connection between heat shock and manganese-dependent superoxide dismutase (SOD2) in eukaryotes. This paper shows that SOD mimics based on manganese complexes caused an increase in thermotolerance for a mutant fission yeast deficient in mitochondrial superoxide dismutase. Manganese compounds used for tests are SOD mimics, from two different classes: salen manganese (EUK-8) and Mn porphyrin (Mn(III)TE-2-PyP(5+)). The tests were conducted using a Schizosaccharomyces pombe model, comparing the viability of two strains at chronic heat stress (37°C)--a wild type versus a strain with the mitochondrial superoxide dismutase gene deleted [SOD2(-)]. The presence of massive free radical species in S. pombe SOD2(-) was demonstrated using a luminol-enhanced chemiluminescence test derived from a menadione-mediated survival protocol. CONCLUSIONS Survival tests revealed that the SOD2-deleted S. pombe is about 100 times more sensitive to heat stress than the wild-type strain. This survival deficit can be corrected by EUK-8 and Mn(III)TE-2-PyP(5+) to almost the same degree but not by manganese chloride II (MnCl(2)). Using a simple spot assay for viability testing, this new model proved to be an easy alternative for the initial estimation of manganese SOD mimics efficiency.
Collapse
Affiliation(s)
- Bogdan Alexandru Stoica
- Department of Biochemistry, Gr. T. Popa University of Medicine and Pharmacy, Universitatii 16, Iasi, 700115, Romania.
| | | | | | | |
Collapse
|
134
|
The standard electrode potential (Eθ) predicts the prooxidant activity and the acute toxicity of metal ions. J Inorg Biochem 2011; 105:1438-45. [PMID: 21983258 DOI: 10.1016/j.jinorgbio.2011.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 11/20/2022]
Abstract
The standard electrode potential (E(θ)) has been known for many decades to predict the toxicity of metal ions. We have compiled acute toxicity data from fifteen studies and find that the toxicity of thirty metal ions correlates with E(θ) at r(2)=0.868 when toxicity is expressed as log concentration of comparably effective doses. We have discovered an even stronger relationship between the prooxidant activity (PA) of metal ions and E(θ) (and electronegativity, χ). Data compiled from thirty-four studies demonstrate that the PA of twenty-five metal ions correlates with E(θ) at r(2)=0.983 (and χ at r(2)=0.968). PA was commonly measured as metal-induced peroxidation of cell membranes or accumulation of reactive oxygen species. None of the redox metals (capable of Fenton-like reactions) in our studies (i.e., Mn, Fe, Co, Ni, and Cu) was prooxidative or toxic beyond what was expected from E(θ) or χ. We propose that the formation of superoxide-metal ion complexes is greater at greater E(θ) or χ values and that these complexes, whether free or enzyme-bound, function in PA without redox cycling of the complexed ion.
Collapse
|
135
|
Cáp M, Váchová L, Palková Z. How to survive within a yeast colony?: Change metabolism or cope with stress? Commun Integr Biol 2011; 3:198-200. [PMID: 20585522 DOI: 10.4161/cib.3.2.11026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 12/19/2022] Open
|
136
|
Sarkar P, Suraishkumar GK. pH and Temperature Stresses in Bioreactor Cultures: Intracellular Superoxide Levels. Ind Eng Chem Res 2011. [DOI: 10.1021/ie200081k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pritish Sarkar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 India
| | - G. K. Suraishkumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036 India
| |
Collapse
|
137
|
Abbà S, Vallino M, Daghino S, Di Vietro L, Borriello R, Perotto S. A PLAC8-containing protein from an endomycorrhizal fungus confers cadmium resistance to yeast cells by interacting with Mlh3p. Nucleic Acids Res 2011; 39:7548-63. [PMID: 21672957 PMCID: PMC3177179 DOI: 10.1093/nar/gkr336] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cadmium is a genotoxic pollutant known to target proteins that are involved in DNA repair and in antioxidant defence, altering their functions and ultimately causing mutagenic and carcinogenic effects. We have identified a PLAC8 domain-containing protein, named OmFCR, by a yeast functional screen aimed at identifying genes involved in cadmium resistance in the endomycorrhizal fungus Oidiodendron maius. OmFCR shows a remarkable specificity in mediating cadmium resistance. Both its function and its nuclear localization in yeast strictly depend on the interaction with Mlh3p, a subunit of the mismatch repair (MMR) system. Although proteins belonging to the PLAC8 family are widespread in eukaryotes, they are poorly characterized and their biological role still remains elusive. Our work represents the first report about the potential role of a PLAC8 protein in physically coupling DNA lesion recognition by the MMR system to appropriate effectors that affect cell cycle checkpoint pathways. On the basis of cell survival assays and yeast growth curves, we hypothesize that, upon cadmium exposure, OmFCR might promote a higher rate of cell division as compared to control cells.
Collapse
Affiliation(s)
- S Abbà
- Dipartimento di Biologia Vegetale dell'Università degli Studi di Torino, Viale Mattioli 25, Torino, Italy.
| | | | | | | | | | | |
Collapse
|
138
|
Molecular strategy for survival at a critical high temperature in Eschierichia coli. PLoS One 2011; 6:e20063. [PMID: 21695201 PMCID: PMC3112155 DOI: 10.1371/journal.pone.0020063] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 04/12/2011] [Indexed: 01/19/2023] Open
Abstract
The molecular mechanism supporting survival at a critical high temperature (CHT) in Escherichia coli was investigated. Genome-wide screening with a single-gene knockout library provided a list of genes indispensable for growth at 47°C, called thermotolerant genes. Genes for which expression was affected by exposure to CHT were identified by DNA chip analysis. Unexpectedly, the former contents did not overlap with the latter except for dnaJ and dnaK, indicating that a specific set of non-heat shock genes is required for the organism to survive under such a severe condition. More than half of the mutants of the thermotolerant genes were found to be sensitive to H2O2 at 30°C, suggesting that the mechanism of thermotolerance partially overlaps with that of oxidative stress resistance. Their encoded enzymes or proteins are related to outer membrane organization, DNA double-strand break repair, tRNA modification, protein quality control, translation control or cell division. DNA chip analyses of essential genes suggest that many of the genes encoding ribosomal proteins are down-regulated at CHT. Bioinformatics analysis and comparison with the genomic information of other microbes suggest that E. coli possesses several systems for survival at CHT. This analysis allows us to speculate that a lipopolysaccharide biosynthesis system for outer membrane organization and a sulfur-relay system for tRNA modification have been acquired by horizontal gene transfer.
Collapse
|
139
|
Lee Y, Chen PW, Voit EO. Analysis of operating principles with S-system models. Math Biosci 2011; 231:49-60. [PMID: 21377479 PMCID: PMC3102019 DOI: 10.1016/j.mbs.2011.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 02/04/2023]
Abstract
Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation principles in complete generality, but the work here discusses the important situation where a biological system must shift operation from its normal steady state to a new steady state. This situation is quite common and includes many stress responses. We present two distinct methods for determining different solutions to this task of achieving a new target steady state. Both methods utilize the property of S-system models within Biochemical Systems Theory (BST) that steady states can be explicitly represented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire admissible solution space. Operations on the basis of the solution space permit modest alterations of the transients toward the target steady state. The second method uses standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of functional effectiveness, which are specified beforehand. As an illustration, we use both methods to characterize alternative response patterns of yeast subjected to heat stress, and compare them with observations from the literature.
Collapse
Affiliation(s)
| | | | - Eberhard O. Voit
- The Wallace H. Coulter, Department of Biomedical Engineering at Georgia Tech and Emory University, 313 Ferst Drive, Suite 4103, Atlanta, Georgia 30332-0535
| |
Collapse
|
140
|
Chen T, Wang J, Yang R, Li J, Lin M, Lin Z. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS One 2011; 6:e16228. [PMID: 21267412 PMCID: PMC3022760 DOI: 10.1371/journal.pone.0016228] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 12/09/2010] [Indexed: 01/28/2023] Open
Abstract
Background The tolerance of cells toward different stresses is very important for industrial strains of microbes, but difficult to improve by the manipulation of single genes. Traditional methods for enhancing cellular tolerances are inefficient and time-consuming. Recently, approaches employing global transcriptional or translational engineering methods have been increasingly explored. We found that an exogenous global regulator, irrE from an extremely radiation-resistant bacterium, Deinococcus radiodurans, has the potential to act as a global regulator in Escherichia coli, and that laboratory-evolution might be applied to alter this regulator to elicit different phenotypes for E. coli. Methodology/Principal Findings To extend the methodology for strain improvement and to obtain higher tolerances toward different stresses, we here describe an approach of engineering irrE gene in E. coli. An irrE library was constructed by randomly mutating the gene, and this library was then selected for tolerance to ethanol, butanol and acetate stresses. Several mutants showing significant tolerances were obtained and characterized. The tolerances of E. coli cells containing these mutants were enhanced 2 to 50-fold, based on cell growth tests using different concentrations of alcohols or acetate, and enhanced 10 to 100-fold based on ethanol or butanol shock experiments. Intracellular reactive oxygen species (ROS) assays showed that intracellular ROS levels were sharply reduced for cells containing the irrE mutants. Sequence analysis of the mutants revealed that the mutations distribute cross all three domains of the protein. Conclusions To our knowledge, this is the first time that an exogenous global regulator has been artificially evolved to suit its new host. The successes suggest the possibility of improving tolerances of industrial strains by introducing and engineering exogenous global regulators, such as those from extremophiles. This new approach can be applied alone or in combination with other global methods, such as global transcriptional machinery engineering (gTME) for strain improvements.
Collapse
Affiliation(s)
- Tingjian Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jianqing Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Rong Yang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Jicong Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Min Lin
- Key Laboratory of Crop Biotechnology, Ministry of Agriculture, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (ZL); (ML)
| | - Zhanglin Lin
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- * E-mail: (ZL); (ML)
| |
Collapse
|
141
|
Amelioration of selenite toxicity and cataractogenesis in cultured rat lenses by Vitex negundo. Graefes Arch Clin Exp Ophthalmol 2011; 249:685-92. [DOI: 10.1007/s00417-010-1598-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/01/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022] Open
|
142
|
Respiration-deficient mutants of Zymomonas mobilis show improved growth and ethanol fermentation under aerobic and high temperature conditions. J Biosci Bioeng 2011; 111:414-9. [PMID: 21236727 DOI: 10.1016/j.jbiosc.2010.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/15/2010] [Accepted: 12/07/2010] [Indexed: 11/21/2022]
Abstract
Respiration-deficient mutant (RDM) strains of Zymomonas mobilis were isolated from antibiotic-resistant mutants. These RDM strains showed various degrees of respiratory deficiency. All RDM strains exhibited much higher ethanol fermentation capacity than the wild-type strain under aerobic conditions. The strains also gained thermotolerance and exhibited greater ethanol production at high temperature (39°C), under both non-aerobic and aerobic conditions, compared with the wild-type strain. Microarray and subsequent quantitative PCR analyses suggest that enhanced gene expression involved in the metabolism of glucose to ethanol resulted in the high ethanol production of RDM strains under aerobic growth conditions. Reduction of intracellular oxidative stress may also result in improved ethanol fermentation by RDM strains at high temperatures.
Collapse
|
143
|
Rooban BN, Sasikala V, Sahasranamam V, Abraham A. Vitex negundo modulates selenite-induced opacification and cataractogensis in rat pups. Biol Trace Elem Res 2010; 138:282-92. [PMID: 20174976 DOI: 10.1007/s12011-010-8633-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
Recently, much interest has been generated in the search for phytochemical therapeutics, as they are largely free from adverse side effects and economical. The goal of this study was to determine the efficacy of Vitex negundo in modulating the selenite-induced oxidative stress in vivo model. Sprague-Dawley rat pups of 8 days old were used for the study and divided into control (G I), selenite induced (G II), and selenite + V. negundo treated (G III). Cataract was induced by the single subcutaneous injection of sodium selenite (4 mg/kg body weight) on the tenth day and V. negundo (2.5 mg/Kg body weight) administered intraperitoneally from eighth to 15th day. Morphological examination of the rat lenses revealed no opacification in G I and mild opacification in G III whereas dense opacification in G II (stages 4-6). Levels of selenium in G II and G III showed no significant changes. The activities of superoxide dismutase, catalase, and Ca(2+)ATPase were significantly increased in G III compared to G II (p < 0.05), while lower level of reactive oxygen species, Ca(2+), and thiobarbituric acid reactive substances were observed in G III compared G II (p < 0.05). These results indicate the therapeutic potential of methanolic extract of V. negundo on modulating biochemical parameters against selenite-induced cataract, which have been reported in this paper for the first time.
Collapse
Affiliation(s)
- B N Rooban
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram, 695581 Kerala, India
| | | | | | | |
Collapse
|
144
|
Effects of Glutathione Modulation on Oxidative Stress and Enzymatic Antioxidant Defence in Yeast Pachysolen tannophilus. Curr Microbiol 2010; 62:944-9. [DOI: 10.1007/s00284-010-9808-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/22/2010] [Indexed: 01/23/2023]
|
145
|
Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0572-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
146
|
Sasikala V, Rooban B, Priya SS, Sahasranamam V, Abraham A. Moringa oleifera Prevents Selenite-Induced Cataractogenesis in Rat Pups. J Ocul Pharmacol Ther 2010; 26:441-7. [DOI: 10.1089/jop.2010.0049] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- V. Sasikala
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - B.N. Rooban
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - S.G. Siva Priya
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| | - V. Sahasranamam
- Regional Institute of Ophthalmology, Thiruvananthapuram, India
| | - Annie Abraham
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
147
|
Lewinska A, Wnuk M, Grzelak A, Bartosz G. Nucleolus as an oxidative stress sensor in the yeast Saccharomyces cerevisiae. Redox Rep 2010; 15:87-96. [PMID: 20500990 DOI: 10.1179/174329210x12650506623366] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In mammals, the nucleolus is thought to be a stress sensor; upon cellular stress conditions, a release of nucleolar proteins and down-regulation of rDNA transcription occurs. Since yeast Rrn3p is a homolog of the mammalian RNA polymerase I (Pol I)-specific transcription factor TIF-IA, we decided to investigate the role of Rrn3p in oxidant-induced nucleolar stress in yeast. We show that, after oxidant treatment, the level of Rrn3p is unaffected but Rrn3p is translocated from the nucleolus into the cytoplasm and a point mutation in the RRN3 gene leads to hypersensitivity of the yeast to oxidants. This hypersensitivity can be abolished by re-introduction of the active RRN3 gene, antioxidant supplementation and anoxic atmosphere. Additionally, we employed the PRINS technique to monitor oxidant-mediated changes in the nucleolar structure. Taken together, our results suggest the role of the yeast nucleolus in the response to oxidative stress signals.
Collapse
Affiliation(s)
- Anna Lewinska
- Department of Biochemistry and Cell Biology, University of Rzeszow, Pigonia 6, PL35-959 Rzeszow, Poland.
| | | | | | | |
Collapse
|
148
|
Nishimura A, Kotani T, Sasano Y, Takagi H. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res 2010; 10:687-98. [DOI: 10.1111/j.1567-1364.2010.00650.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
149
|
Escherichia coli population heterogeneity: subpopulation dynamics at super-optimal temperatures. Food Microbiol 2010; 28:667-77. [PMID: 21511126 DOI: 10.1016/j.fm.2010.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 06/15/2010] [Accepted: 06/23/2010] [Indexed: 11/20/2022]
Abstract
In the past years, we explored the dynamics of Escherichia coli K12 at super-optimal temperatures under static and dynamic temperature conditions (Van Derlinden et al. (2008b, 2009, 2010). Disturbed sigmoid growth curves, i.e., a sequence of growth, inactivation and re-growth, were observed, especially close to the maximum growth temperature. Based on the limited set of experiments (i.e., 2 static temperatures and 2 dynamic temperature profiles), the irregular growth curves were explained by postulating the co-existence of two subpopulations: a more resistant, growing population and a temperature sensitive, inactivating population. In this study, the dynamics of the two subpopulations are studied rigorously at 11 constant temperature levels in the region between 45°C and 46°C, with at least five repetitions per temperature. At all temperatures, the total population follows a sequence of growth, inactivation and re-growth. The sequence of different stages in the growth curves can be explained by the two subpopulations. The first growth phase and the inactivation phase reflect the presence of the sensitive subpopulation. Hereafter, the population's dynamics are dominated by the growth of the resistant subpopulation. Generally, cell counts are characterized by a large variability. The dynamics of the two subpopulations are carefully analyzed using a heterogeneous subpopulation type model to study the relation between the kinetic parameters of the two subpopulations and temperature, and to evaluate if the fraction d of resistant cells varies with temperature. Results indicate that the growth rate of the sensitive subpopulation decreases with increasing temperature within the range of 45-46°C. Furthermore, results point in the direction that the duration of this initial growth phase is approximately constant, i.e., around 2h. Possibly, the stress resistance of the cells decreases after a certain period because the metabolism is fully adapted to exponential growth. Also, the growth rate of the resistant subpopulation decreases with increasing temperature. Due to the extreme variability in the cell density data, derivation of accurate relations was not possible. From the heterogeneous model implementations, given the experimental set-up, both a constant d value and a temperature dependent d value seem plausible.
Collapse
|
150
|
Cerioni L, Volentini S, Prado F, Rapisarda V, Rodríguez-Montelongo L. Cellular damage induced by a sequential oxidative treatment on Penicillium digitatum. J Appl Microbiol 2010; 109:1441-9. [DOI: 10.1111/j.1365-2672.2010.04775.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|