101
|
Gupta S, Malviya N, Kushwaha H, Nasim J, Bisht NC, Singh VK, Yadav D. Insights into structural and functional diversity of Dof (DNA binding with one finger) transcription factor. PLANTA 2015; 241:549-62. [PMID: 25564353 DOI: 10.1007/s00425-014-2239-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/25/2014] [Indexed: 05/18/2023]
Abstract
The structural, functional and in-silico studies of Dof transcription factor attempted so far reveals immense opportunity to analyze the plant genomes in terms of number of Dof genes and discuss in light of the evolution. The multiple functions of Dof genes needs to explored for crop improvement. Transcription factors play a very vital role in gene regulation at transcriptional level and are being extensively studied across phylas. In recent years, sequencing of plant genomes has led to genome-wide identification and characterizations of diverse types of plant-specific transcription factor gene family providing key insights into their structural and functional diversity. The DNA binding with one finger (Dof), a class belonging to C2H2-type zinc finger family proteins, is a plant-specific transcription factor having multiple roles such as seed maturation and germination, phytohormone and light-mediated regulation and plant responses to biotic and abiotic stresses. Dof proteins are present across plant lineage, from green algae to higher angiosperm, and represent a unique class of transcription factor having bifunctional binding activities, with both DNA and proteins, to regulate the complex transcriptional machinery in plant cells. The structural and functional diversity of the Dof transcription factor family along with the bioinformatics analysis highlighting the phylogeny of Dof families is reviewed in light of its importance in plant biotechnology for crop improvement.
Collapse
Affiliation(s)
- S Gupta
- Department of Biotechnology, D.D.U Gorakhpur University, Gorakhpur, 273 009, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
102
|
Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lv Y, Zhao H, Xiao H, Song R. Genome-wide characterization of cis-acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. THE PLANT CELL 2015; 27:532-45. [PMID: 25691733 PMCID: PMC4558662 DOI: 10.1105/tpc.114.134858] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/21/2015] [Accepted: 02/03/2015] [Indexed: 05/18/2023]
Abstract
Opaque2 (O2) is a transcription factor that plays important roles during maize endosperm development. Mutation of the O2 gene improves the nutritional value of maize seeds but also confers pleiotropic effects that result in reduced agronomic quality. To reveal the transcriptional regulatory framework of O2, we studied the transcriptome of o2 mutants using RNA sequencing (RNA-Seq) and determined O2 DNA binding targets using chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq). The RNA-Seq analysis revealed 1605 differentially expressed genes (DEGs) and 383 differentially expressed long, noncoding RNAs. The DEGs cover a wide range of functions related to nutrient reservoir activity, nitrogen metabolism, stress resistance, etc. ChIP-Seq analysis detected 1686 O2 DNA binding sites distributed over 1143 genes. Overlay of the RNA-Seq and ChIP-Seq results revealed 35 O2-modulated target genes. We identified four O2 binding motifs; among them, TGACGTGG appears to be the most conserved and strongest. We confirmed that, except for the 16- and 18-kD zeins, O2 directly regulates expression of all other zeins. O2 directly regulates two transcription factors, genes linked to carbon and amino acid metabolism and abiotic stress resistance. We built a hierarchical regulatory model for O2 that provides an understanding of its pleiotropic biological effects.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chromatin Immunoprecipitation
- DNA, Plant/genetics
- Down-Regulation/genetics
- Gene Expression Regulation, Plant
- Gene Ontology
- Genes, Plant
- Genome, Plant
- Molecular Sequence Data
- Mutation
- Nitrogen/metabolism
- Nucleotide Motifs/genetics
- Open Reading Frames/genetics
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Untranslated/genetics
- Sequence Analysis, RNA
- Stress, Physiological/genetics
- Transcription, Genetic
- Zea mays/genetics
- Zein/genetics
Collapse
Affiliation(s)
- Chaobin Li
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Zhenyi Qiao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China Coordinated Crop Biology Research Center, Beijing 100193, China
| | - Qian Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xi Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Bing Mei
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanda Lv
- Institute of Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Han Zhao
- Institute of Biotechnology, Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Han Xiao
- National Key Laboratory of Plant Molecular Genetics/CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China Coordinated Crop Biology Research Center, Beijing 100193, China
| |
Collapse
|
103
|
Ma J, Li MY, Wang F, Tang J, Xiong AS. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage. BMC Genomics 2015; 16:33. [PMID: 25636232 PMCID: PMC4320540 DOI: 10.1186/s12864-015-1242-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 01/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chinese cabbage is an important leaf vegetable that experienced long-term cultivation and artificial selection. Dof (DNA-binding One Zinc Finger) transcription factors, with a highly conserved Dof domain, are members of a major plant-specific transcription factor family that play important roles in many plant biological processes. The Dof family transcription factors, one of the most important families of transcriptional regulators in higher plants, are involved in massive aspects of plant growth, development, and response to abiotic stresses. Our study will supply resources for understanding how Dof transcription factors respond to abiotic stress and the interaction network of these genes in tolerance mechanism. RESULTS In this study, we performed a comprehensive analysis of Dof family factors in Chinese cabbage. In total, 76 genes encoding BraDof family transcription factor were identified from Chinese cabbage, and those BraDof factors were divided into nine classes. Fifteen motifs were found based on Dof amino acid sequence alignments. Chromosome locations and gene duplications of BraDof family genes were also analyzed. Ten duplicate events of BraDof genes were discovered in Chinese cabbage chromosomes. The uneven distribution of BraDof genes in Brassica chromosomes may cause the expansion of BraDof genes. In the Dof family, 37 and 7 orthologous genes were identified between Chinese cabbage and Arabidopsis and between Chinese cabbage and Oryza sativa, respectively. The interaction networks of Dof factors in Chinese cabbage were also constructed. Expression profiles of nine selected genes from different nine classes subjected to four abiotic stresses (cold, heat, salt and drought) were further investigated by quantitative real-time PCR to obtain a better understanding of the functions and regulation mechanisms of BraDof family transcription factors in two Chinese cabbage varieties, 'Lubaisanhao' and 'Qingdao 87-114'. CONCLUSIONS Dof-family transcription factors were analyzed in genome of Chinese cabbage. Chromosomal locations showed that duplication might result in expansion. Response to abiotic stresses was elucidated in Chinese cabbage varieties. The results provide novel insights into the stress responses of BraDof genes and promote a better understanding of the construction and function of Dofs in Chinese cabbage.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jun Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
104
|
Sutoh K, Washio K, Imai R, Wada M, Nakai T, Yamauchi D. An N-terminal region of a Myb-like protein is involved in its intracellular localization and activation of a gibberellin-inducible proteinase gene in germinated rice seeds. Biosci Biotechnol Biochem 2015; 79:747-59. [PMID: 25559339 DOI: 10.1080/09168451.2014.998620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.
Collapse
Affiliation(s)
- Keita Sutoh
- a R&D Planning Admin Dept , Life Science Institute Co. Ltd , Tokyo , Japan
| | | | | | | | | | | |
Collapse
|
105
|
Wang Y, Wang H, Ma Y, Du H, Yang Q, Yu D. Identification of transcriptional regulatory nodes in soybean defense networks using transient co-transactivation assays. FRONTIERS IN PLANT SCIENCE 2015; 6:915. [PMID: 26579162 PMCID: PMC4621403 DOI: 10.3389/fpls.2015.00915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/12/2015] [Indexed: 05/03/2023]
Abstract
Plant responses to major environmental stressors, such as insect feeding, not only occur via the functions of defense genes but also involve a series of regulatory factors. Our previous transcriptome studies proposed that, in addition to two defense-related genes, GmVSPβ and GmN:IFR, a high proportion of transcription factors (TFs) participate in the incompatible soybean-common cutworm interaction networks. However, the regulatory mechanisms and effects of these TFs on those induced defense-related genes remain unknown. In the present work, we isolated and identified 12 genes encoding MYB, WRKY, NAC, bZIP, and DREB TFs from a common cutworm-induced cDNA library of a resistant soybean line. Sequence analysis of the promoters of three co-expressed genes, including GmVSPα, GmVSPβ, and GmN:IFR, revealed the enrichment of various TF-binding sites for defense and stress responses. To further identify the regulatory nodes composed of these TFs and defense gene promoters, we performed extensive transient co-transactivation assays to directly test the transcriptional activity of the 12 TFs binding at different levels to the three co-expressed gene promoters. The results showed that all 12 TFs were able to transactivate the GmVSPβ and GmN:IFR promoters. GmbZIP110 and GmMYB75 functioned as distinct regulators of GmVSPα/β and GmN:IFR expression, respectively, while GmWRKY39 acted as a common central regulator of GmVSPα/β and GmN:IFR expression. These corresponding TFs play crucial roles in coordinated plant defense regulation, which provides valuable information for understanding the molecular mechanisms involved in insect-induced transcriptional regulation in soybean. More importantly, the identified TFs and suitable promoters can be used to engineer insect-resistant plants in molecular breeding studies.
Collapse
Affiliation(s)
- Yongli Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- Biofuels Institute, School of the Environment, Jiangsu UniversityZhenjiang, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Yujie Ma
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Haiping Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Qing Yang
- College of Life Sciences, Nanjing Agricultural UniversityNanjing, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Deyue Yu,
| |
Collapse
|
106
|
Joshi JB, Geetha S, Singh B, Kumar KK, Kokiladevi E, Arul L, Balasubramanian P, Sudhakar D. A maize α-zein promoter drives an endosperm-specific expression of transgene in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2015; 21:35-42. [PMID: 25649529 PMCID: PMC4312335 DOI: 10.1007/s12298-014-0268-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Accepted: 10/14/2014] [Indexed: 06/04/2023]
Abstract
An alpha-zein promoter isolated from maize containing P-box, E motif sequence TGTAAAGT, opaque-2 box and TATA box was studied for its tissue-specific expression in rice. A 1,098 bp promoter region of alpha-zein gene, fused to the upstream of gusA reporter gene was used for transforming rice immature embryos (ASD 16 or IR 64) via the particle bombardment-mediated method. PCR analysis of putative transformants demonstrated the presence of transgenes (the zein promoter, gusA and hpt). Nineteen out of 37 and two out of five events generated from ASD 16 and IR 64 were found to be GUS-positive. A histological staining analysis performed on sections of mature T1 seeds revealed that the GUS expression was limited to the endosperm and not to the pericarp or the endothelial region. GUS expression was observed only in the following seed development stages : milky (14-15 DAF), soft dough (17-18 DAF), hard dough (20-23 DAF), and mature stages (28-30 DAF) of zein-gusA transformed (T0) plants. On the contrary a constitutive expression of GUS was evident in CaMV35S-gusA plants. PCR and Southern blotting analyses on T1 plants demonstrated a stable integration and inheritance of transgene in the subsequent T1 generation. GUS assay on T2 seeds revealed that the expression of gusA gene driven by alpha-zein promoter was stable and tissue-specific over two generations. Results suggest that this alpha-zein promoter could serve as an alternative promoter to drive endosperm-specific expression of transgenes in rice and other cereal transformation experiments.
Collapse
Affiliation(s)
- J. Beslin Joshi
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - S. Geetha
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - Birla Singh
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - K. K. Kumar
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - E. Kokiladevi
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - L. Arul
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - P. Balasubramanian
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| | - D. Sudhakar
- Department of Plant Molecular Biology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641 003 India
| |
Collapse
|
107
|
Wu J, Zhu C, Pang J, Zhang X, Yang C, Xia G, Tian Y, He C. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in Oryza sativa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:1118-30. [PMID: 25353370 DOI: 10.1111/tpj.12714] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 08/25/2014] [Accepted: 10/20/2014] [Indexed: 05/05/2023]
Abstract
Seed germination is a key developmental process in the plant life cycle that is influenced by various environmental cues and phytohormones through gene expression and a series of metabolism pathways. In the present study, we investigated a C2C2-type finger protein, OsLOL1, which promotes gibberellin (GA) biosynthesis and affects seed germination in Oryza sativa (rice). We used OsLOL1 antisense and sense transgenic lines to explore OsLOL1 functions. Seed germination timing in antisense plants was restored to wild type when exogenous GA3 was applied. The reduced expression of the GA biosynthesis gene OsKO2 and the accumulation of ent-kaurene were observed during germination in antisense plants. Based on yeast two-hybrid and firefly luciferase complementation analyses, OsLOL1 interacted with the basic leucine zipper protein OsbZIP58. The results from electrophoretic mobility shift and dual-luciferase reporter assays showed that OsbZIP58 binds the G-box cis-element of the OsKO2 promoter and activates LUC reporter gene expression, and that interaction between OsLOL1 and OsbZIP58 activates OsKO2 gene expression. In addition, OsLOL1 decreased SOD1 gene expression and accelerated programmed cell death (PCD) in the aleurone layer of rice grains. These findings demonstrate that the interaction between OsLOL1 and OsbZIP58 influences GA biosynthesis through the activation of OsKO2 via OsbZIP58, thereby stimulating aleurone PCD and seed germination.
Collapse
Affiliation(s)
- Jiahe Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Dong Q, Jiang H, Xu Q, Li X, Peng X, Yu H, Xiang Y, Cheng B. Cloning and characterization of a multifunctional promoter from maize (Zea mays L.). Appl Biochem Biotechnol 2014; 175:1344-57. [PMID: 25391545 DOI: 10.1007/s12010-014-1277-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
The use of tissue-specific promoters to drive the expression of target genes during certain developmental stages or in specific organs can prevent unnecessary gene expression caused by constitutive promoters. Utilizing heterologous promoters to regulate the expression of genes in transgenic receptors can help prevent gene silencing. Here, we engineered heterologous maize promoters that regulate gene-specific expression in rice plant receptors. We performed a histochemical and quantitative β-glucuronidase (GUS) analysis of the Zea mays legumin1 (ZM-LEGF) gene promoter and detailed detection of stably transformed rice expressing the GUS gene under the control of the promoter of ZM-LEGF (pZM-LEGF) and its truncated promoters throughout development. When the promoter sequence was truncated, the location and intensity of GUS expression changed. The results suggest that the sequence from -140 to +41 is a critical region that confers the expression of the entire promoter. Truncation of pZM-LEG (3'-deleted region of pZM-LEGF) markedly increased the GUS activity, with the core cis-elements located in the -273 to -140 regions, namely pZM-LEG6. Detailed analysis of pZM-LEG6::GUS T2 transformant rice seeds and plant tissues at different developmental stages indicated that this promoter is an ideal vegetative tissue-specific promoter that can serve as a valuable tool for transgenic rice breeding and genetic engineering studies.
Collapse
Affiliation(s)
- Qing Dong
- Key Lab of Biomass Improvement and Conversion, Anhui Agricultural University, Hefei, 230036, China
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Ravel C, Fiquet S, Boudet J, Dardevet M, Vincent J, Merlino M, Michard R, Martre P. Conserved cis-regulatory modules in promoters of genes encoding wheat high-molecular-weight glutenin subunits. FRONTIERS IN PLANT SCIENCE 2014; 5:621. [PMID: 25429295 PMCID: PMC4228979 DOI: 10.3389/fpls.2014.00621] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/21/2014] [Indexed: 05/19/2023]
Abstract
The concentration and composition of the gliadin and glutenin seed storage proteins (SSPs) in wheat flour are the most important determinants of its end-use value. In cereals, the synthesis of SSPs is predominantly regulated at the transcriptional level by a complex network involving at least five cis-elements in gene promoters. The high-molecular-weight glutenin subunits (HMW-GS) are encoded by two tightly linked genes located on the long arms of group 1 chromosomes. Here, we sequenced and annotated the HMW-GS gene promoters of 22 electrophoretic wheat alleles to identify putative cis-regulatory motifs. We focused on 24 motifs known to be involved in SSP gene regulation. Most of them were identified in at least one HMW-GS gene promoter sequence. A common regulatory framework was observed in all the HMW-GS gene promoters, as they shared conserved cis-regulatory modules (CCRMs) including all the five motifs known to regulate the transcription of SSP genes. This common regulatory framework comprises a composite box made of the GATA motifs and GCN4-like Motifs (GLMs) and was shown to be functional as the GLMs are able to bind a bZIP transcriptional factor SPA (Storage Protein Activator). In addition to this regulatory framework, each HMW-GS gene promoter had additional motifs organized differently. The promoters of most highly expressed x-type HMW-GS genes contain an additional box predicted to bind R2R3-MYB transcriptional factors. However, the differences in annotation between promoter alleles could not be related to their level of expression. In summary, we identified a common modular organization of HMW-GS gene promoters but the lack of correlation between the cis-motifs of each HMW-GS gene promoter and their level of expression suggests that other cis-elements or other mechanisms regulate HMW-GS gene expression.
Collapse
Affiliation(s)
- Catherine Ravel
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Samuel Fiquet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Julie Boudet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Mireille Dardevet
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Jonathan Vincent
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Marielle Merlino
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Robin Michard
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| | - Pierre Martre
- Institut National de la Recherche Agronomique, UMR1095, Genetics, Diversity and Ecophysiology of Cereals Clermont-Ferrand, France ; UMR1095, Genetics, Diversity and Ecophysiology of Cereals, Department of Biology, Blaise Pascal University Aubière, France
| |
Collapse
|
110
|
Bhunia RK, Chakraborty A, Kaur R, Gayatri T, Bhattacharyya J, Basu A, Maiti MK, Sen SK. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops. PLANT MOLECULAR BIOLOGY 2014; 86:351-65. [PMID: 25139230 DOI: 10.1007/s11103-014-0233-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
The sesame 2S albumin (2Salb) promoter was evaluated for its capacity to express the reporter gusA gene encoding β-glucuronidase in transgenic tobacco seeds relative to the soybean fad3C gene promoter element. Results revealed increased expression of gusA gene in tobacco seed tissue when driven by sesame 2S albumin promoter. Prediction based deletion analysis of both the promoter elements confirmed the necessary cis-acting regulatory elements as well as the minimal promoter element for optimal expression in each case. The results also revealed that cis-regulatory elements might have been responsible for high level expression as well as spatio-temporal regulation of the sesame 2S albumin promoter. Transgenic over-expression of a fatty acid desaturase (fad3C) gene of soybean driven by 2S albumin promoter resulted in seed-specific enhanced level of α-linolenic acid in sesame. The present study, for the first time helped to identify that the sesame 2S albumin promoter is a promising endogenous genetic element in genetic engineering approaches requiring spatio-temporal regulation of gene(s) of interest in sesame and can also be useful as a heterologous genetic element in other important oil seed crop plants in general for which seed oil is the harvested product. The study also established the feasibility of fatty acid metabolic engineering strategy undertaken to improve quality of edible seed oil in sesame using the 2S albumin promoter as regulatory element.
Collapse
Affiliation(s)
- Rupam Kumar Bhunia
- Advanced Laboratory for Plant Genetic Engineering, Indian Institute of Technology, Kharagpur, 721302, India
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Malviya N, Gupta S, Singh VK, Yadav MK, Bisht NC, Sarangi BK, Yadav D. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.). Mol Biol Rep 2014; 42:535-52. [PMID: 25344821 DOI: 10.1007/s11033-014-3797-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 10/14/2014] [Indexed: 11/24/2022]
Abstract
The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.
Collapse
Affiliation(s)
- N Malviya
- Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur, 273 009, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
112
|
Chen J, Zeng B, Zhang M, Xie S, Wang G, Hauck A, Lai J. Dynamic transcriptome landscape of maize embryo and endosperm development. PLANT PHYSIOLOGY 2014; 166:252-64. [PMID: 25037214 PMCID: PMC4149711 DOI: 10.1104/pp.114.240689] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Maize (Zea mays) is an excellent cereal model for research on seed development because of its relatively large size for both embryo and endosperm. Despite the importance of seed in agriculture, the genome-wide transcriptome pattern throughout seed development has not been well characterized. Using high-throughput RNA sequencing, we developed a spatiotemporal transcriptome atlas of B73 maize seed development based on 53 samples from fertilization to maturity for embryo, endosperm, and whole seed tissues. A total of 26,105 genes were found to be involved in programming seed development, including 1,614 transcription factors. Global comparisons of gene expression highlighted the fundamental transcriptomic reprogramming and the phases of development. Coexpression analysis provided further insight into the dynamic reprogramming of the transcriptome by revealing functional transitions during maturation. Combined with the published nonseed high-throughput RNA sequencing data, we identified 91 transcription factors and 1,167 other seed-specific genes, which should help elucidate key mechanisms and regulatory networks that underlie seed development. In addition, correlation of gene expression with the pattern of DNA methylation revealed that hypomethylation of the gene body region should be an important factor for the expressional activation of seed-specific genes, especially for extremely highly expressed genes such as zeins. This study provides a valuable resource for understanding the genetic control of seed development of monocotyledon plants.
Collapse
Affiliation(s)
- Jian Chen
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Biao Zeng
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shaojun Xie
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Gaokui Wang
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Andrew Hauck
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agro-biotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
113
|
Genome wide analysis of Arabidopsis thaliana reveals high frequency of AAAGN7CTTT motif. Meta Gene 2014; 2:606-15. [PMID: 25606443 PMCID: PMC4288566 DOI: 10.1016/j.mgene.2014.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/14/2014] [Indexed: 11/20/2022] Open
Abstract
Sequence specific elements in DNA regulate transcription by recruiting transcription factors. The Dof proteins are a large family of transcription factors that share a single highly conserved zinc finger. The core to which Dof proteins bind has a consensus AAAG or ACTTTA sequence. These motifs have been over represented in many promoters. We performed a genome wide analysis of AAAG repeat elements increasing the spacer length from 0 to 25. Similar analyses was done with AAAG-CTTT motifs. We report unusual high frequency of AAAGN7CTTT in Arabidopsis thaliana genome. We also conclude that there is a preference for A/G nucleotides in spacer sequence between two AAAG repeats.
Collapse
|
114
|
Yin G, Xu H, Liu J, Gao C, Sun J, Yan Y, Hu Y. Screening and identification of soybean seed-specific genes by using integrated bioinformatics of digital differential display, microarray, and RNA-seq data. Gene 2014; 546:177-86. [PMID: 24929124 DOI: 10.1016/j.gene.2014.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 05/16/2014] [Accepted: 06/10/2014] [Indexed: 01/09/2023]
Abstract
Soybean is one of the most economically important crops in the world. Soybean seeds have abundant protein and lipid content and very high economic value. In this study, a total of 184 seed-specific genes were obtained using online microarray databases, DDD, and RNA-seq data. The reported seed-specific genes in soybean and the 184 seed-specific genes analyzed in this paper were compared. Of the screened genes, 26 were common to both previous reports and the current screening. Meanwhile, 90 of the 184 genes have homologous counterparts in Arabidopsis, among which 24 have seed-specific expression, as indicated by microarray data for Arabidopsis. Furthermore, promoter analysis showed that almost all seed-specific genes contain at least one seed specific-related element. Seed-specific element Skn-1 motif exists in most, if not all, of the seed-specific genes screened. Five genes were randomly selected from 184 soybean seed specific gene pool and their expressions were quantified using quantitative real time polymerase chain reaction (qRT-PCR) to further confirm the specificity of the screened genes. The results indicated that all five genes showed seed-specific expression. Moreover, the identification of genes with seed-specific expression screened in this study provides information valuable to the in-depth study of soybean.
Collapse
Affiliation(s)
- Guangjun Yin
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Hongliang Xu
- Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jingyi Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Cong Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Jinyue Sun
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon S7N 0W9, Canada.
| | - Yueming Yan
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Yingkao Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
115
|
Tao YB, Luo L, He LL, Ni J, Xu ZF. A promoter analysis of MOTHER OF FT AND TFL1 1 (JcMFT1), a seed-preferential gene from the biofuel plant Jatropha curcas. JOURNAL OF PLANT RESEARCH 2014; 127:513-24. [PMID: 24879400 DOI: 10.1007/s10265-014-0639-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/07/2014] [Indexed: 05/06/2023]
Abstract
MOTHER OF FT AND TFL1 (MFT)-like genes belong to the phosphatidylethanoamine-binding protein (PEBP) gene family in plants. In contrast to their homologs FLOWERING LOCUS T (FT)-like and TERMINAL FLOWER 1 (TFL1)-like genes, which are involved in the regulation of the flowering time pathway, MFT-like genes function mainly during seed development and germination. In this study, a full-length cDNA of the MFT-like gene JcMFT1 from the biodiesel plant Jatropha curcas (L.) was isolated and found to be highly expressed in seeds. The promoter of JcMFT1 was cloned and characterized in transgenic Arabidopsis. A histochemical β-glucuronidase (GUS) assay indicated that the JcMFT1 promoter was predominantly expressed in both embryos and endosperms of transgenic Arabidopsis seeds. Fluorometric GUS analysis revealed that the JcMFT1 promoter was highly active at the mid to late stages of seed development. After seed germination, the JcMFT1 promoter activity decreased gradually. In addition, both the JcMFT1 expression in germinating Jatropha embryos and its promoter activity in germinating Arabidopsis embryos were induced by abscisic acid (ABA), possibly due to two ABA-responsive elements, a G-box and an RY repeat, in the JcMFT1 promoter region. These results show that the JcMFT1 promoter is seed-preferential and can be used to control transgene expression in the seeds of Jatropha and other transgenic plants.
Collapse
Affiliation(s)
- Yan-Bin Tao
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China,
| | | | | | | | | |
Collapse
|
116
|
Jin Z, Chandrasekaran U, Liu A. Genome-wide analysis of the Dof transcription factors in castor bean (Ricinus communis L.). Genes Genomics 2014. [DOI: 10.1007/s13258-014-0189-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
117
|
Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci U S A 2014; 111:7582-7. [PMID: 24821765 DOI: 10.1073/pnas.1406383111] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endosperm is a filial structure resulting from a second fertilization event in angiosperms. As an absorptive storage organ, endosperm plays an essential role in support of embryo development and seedling germination. The accumulation of carbohydrate and protein storage products in cereal endosperm provides humanity with a major portion of its food, feed, and renewable resources. Little is known regarding the regulatory gene networks controlling endosperm proliferation and differentiation. As a first step toward understanding these networks, we profiled all mRNAs in the maize kernel and endosperm at eight successive stages during the first 12 d after pollination. Analysis of these gene sets identified temporal programs of gene expression, including hundreds of transcription-factor genes. We found a close correlation of the sequentially expressed gene sets with distinct cellular and metabolic programs in distinct compartments of the developing endosperm. The results constitute a preliminary atlas of spatiotemporal patterns of endosperm gene expression in support of future efforts for understanding the underlying mechanisms that control seed yield and quality.
Collapse
|
118
|
Bioinformatics study of delta-12 fatty acid desaturase 2 (FAD2) gene in oilseeds. Mol Biol Rep 2014; 41:5077-87. [DOI: 10.1007/s11033-014-3373-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
|
119
|
Chen Y, Sun A, Wang M, Zhu Z, Ouwerkerk PBF. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice. PLANT MOLECULAR BIOLOGY 2014; 84:621-34. [PMID: 24282069 DOI: 10.1007/s11103-013-0158-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/20/2013] [Indexed: 05/19/2023]
Abstract
Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we describe a zinc finger gene of the Cys3His1 (CCCH or C3H) class, named OsGZF1, which was identified in a yeast one-hybrid screening using the core promoter region of GluB-1 as bait and cDNA expression libraries prepared from developing rice panicles and grains as prey. The OsGZF1 protein binds specifically to the bait sequence in yeast and this interaction was confirmed in vitro. OsGZF1 is predominantly expressed in a confined domain surrounding the scutellum of the developing embryo and is localised in the nucleus. Transient expression experiments demonstrated that OsGZF1 can down-regulate a GluB-1-GUS (β-glucuronidase) reporter and OsGZF1 was also able to significantly reduce activation conferred by RISBZ1 which is a known strong GluB-1 activator. Furthermore, down-regulation of OsGZF1 by an RNAi approach increased grain nitrogen concentration. We propose that OsGZF1 has a function in regulating the GluB-1 promoter and controls accumulation of glutelins during grain development.
Collapse
Affiliation(s)
- Yi Chen
- Sylvius Laboratory, Institute of Biology (IBL), Leiden University, Sylviusweg 72, 2333 BE, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
120
|
Lang Z, Wills DM, Lemmon ZH, Shannon LM, Bukowski R, Wu Y, Messing J, Doebley JF. Defining the Role of prolamin-box binding factor1 Gene During Maize Domestication. J Hered 2014; 105:576-582. [PMID: 24683184 DOI: 10.1093/jhered/esu019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/19/2014] [Indexed: 11/14/2022] Open
Abstract
The prolamin-box binding factor1 (pbf1) gene encodes a transcription factor that controls the expression of seed storage protein (zein) genes in maize. Prior studies show that pbf1 underwent selection during maize domestication although how it affected trait change during domestication is unknown. To assay how pbf1 affects phenotypic differences between maize and teosinte, we compared nearly isogenic lines (NILs) that differ for a maize versus teosinte allele of pbf1 Kernel weight for the teosinte NIL (162mg) is slightly but significantly greater than that for the maize NIL (156mg). RNAseq data for developing kernels show that the teosinte allele of pbf1 is expressed at about twice the level of the maize allele. However, RNA and protein assays showed no difference in zein profile between the two NILs. The lower expression for the maize pbf1 allele suggests that selection may have favored this change; however, how reduced pbf1 expression alters phenotype remains unknown. One possibility is that pbf1 regulates genes other than zeins and thereby is a domestication trait. The observed drop in seed weight associated with the maize allele of pbf1 is counterintuitive but could represent a negative pleiotropic effect of selection on some other aspect of kernel composition.
Collapse
Affiliation(s)
- Zhihong Lang
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - David M Wills
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - Zachary H Lemmon
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - Laura M Shannon
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - Robert Bukowski
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - Yongrui Wu
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - Joachim Messing
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu)
| | - John F Doebley
- From the Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No.12 Zhongguancun Nandajie, Beijing 100081, China (Lang); the Department of Genetics, University of Wisconsin-Madison, 425 Henry Mall, Madison, WI 53706 (Wills, Lemmon, Shannon, and Doebley); the Department of Biomedical Sciences, Cornell University, T8 016D Veterinary Research Tower, Ithaca, NY 14853 (Shannon); the Computational Biology Service Unit, Cornell University, 620 Rhodes Hall, Ithaca, NY 14853 (Bukowski); Waksman Institute of Microbiology, Rutgers University, 190 Frelinghuysen Road, Piscataway, NJ 08854 (Wu and Messing); and the Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, CAS, 300 Feng Lin Road, Shanghai 200032, China (Wu).
| |
Collapse
|
121
|
Corrales AR, Nebauer SG, Carrillo L, Fernández-Nohales P, Marqués J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV, Medina J. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:995-1012. [PMID: 24399177 DOI: 10.1093/jxb/ert451] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF1-5 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF1-5 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Collapse
Affiliation(s)
- Alba-Rocío Corrales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Autopista M40 (km 38), 28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Schmidt R, Schippers JHM, Mieulet D, Watanabe M, Hoefgen R, Guiderdoni E, Mueller-Roeber B. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice. MOLECULAR PLANT 2014; 7:404-21. [PMID: 24046061 DOI: 10.1093/mp/sst131] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
123
|
Corral JM, Vogel H, Aliyu OM, Hensel G, Thiel T, Kumlehn J, Sharbel TF. A conserved apomixis-specific polymorphism is correlated with exclusive exonuclease expression in premeiotic ovules of apomictic boechera species. PLANT PHYSIOLOGY 2013; 163:1660-72. [PMID: 24163323 PMCID: PMC3850208 DOI: 10.1104/pp.113.222430] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/23/2013] [Indexed: 05/19/2023]
Abstract
Apomixis (asexual seed production) is characterized by meiotically unreduced egg cell production (apomeiosis) followed by its parthenogenetic development into offspring that are genetic clones of the mother plant. Fertilization (i.e. pseudogamy) of the central cell is important for the production of a functional endosperm with a balanced 2:1 maternal:paternal genome ratio. Here, we present the APOLLO (for apomixis-linked locus) gene, an Aspartate Glutamate Aspartate Aspartate histidine exonuclease whose transcripts are down-regulated in sexual ovules entering meiosis while being up-regulated in apomeiotic ovules at the same stage of development in plants of the genus Boechera. APOLLO has both "apoalleles," which are characterized by a set of linked apomixis-specific polymorphisms, and "sexalleles." All apomictic Boechera spp. accessions proved to be heterozygous for the APOLLO gene (having at least one apoallele and one sexallele), while all sexual genotypes were homozygous for sexalleles. Apoalleles contained a 20-nucleotide polymorphism present in the 5' untranslated region that contains specific transcription factor-binding sites for ARABIDOPSIS THALIANA HOMEOBOX PROTEIN5, LIM1 (for LINEAGE ABNORMAL11, INSULIN1, MECHANOSENSORY PROTEIN3), SORLIP1AT (for SEQUENCES OVERREPRESENTED IN LIGHT-INDUCED PROMOTERS IN ARABIDOPSIS THALIANA1), SORLIP2AT, and POLYA SIGNAL1. In the same region, sexalleles contain transcription factor-binding sites for DNA BINDING WITH ONE FINGER2, DNA BINDING WITH ONE FINGER3, and PROLAMIN BOX-BINDING FACTOR. Our results suggest that the expression of a single deregulated allele could induce the cascade of events leading to asexual female gamete formation in an apomictic plant.
Collapse
|
124
|
Basnet RK, Moreno-Pachon N, Lin K, Bucher J, Visser RGF, Maliepaard C, Bonnema G. Genome-wide analysis of coordinated transcript abundance during seed development in different Brassica rapa morphotypes. BMC Genomics 2013; 14:840. [PMID: 24289287 PMCID: PMC4046715 DOI: 10.1186/1471-2164-14-840] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/13/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Brassica seeds are important as basic units of plant growth and sources of vegetable oil. Seed development is regulated by many dynamic metabolic processes controlled by complex networks of spatially and temporally expressed genes. We conducted a global microarray gene co-expression analysis by measuring transcript abundance of developing seeds from two diverse B. rapa morphotypes: a pak choi (leafy-type) and a yellow sarson (oil-type), and two of their doubled haploid (DH) progenies, (1) to study the timing of metabolic processes in developing seeds, (2) to explore the major transcriptional differences in developing seeds of the two morphotypes, and (3) to identify the optimum stage for a genetical genomics study in B. rapa seed. RESULTS Seed developmental stages were similar in developing seeds of pak choi and yellow sarson of B. rapa; however, the colour of embryo and seed coat differed among these two morphotypes. In this study, most transcriptional changes occurred between 25 and 35 DAP, which shows that the timing of seed developmental processes in B. rapa is at later developmental stages than in the related species B. napus. Using a Weighted Gene Co-expression Network Analysis (WGCNA), we identified 47 "gene modules", of which 27 showed a significant association with temporal and/or genotypic variation. An additional hierarchical cluster analysis identified broad spectra of gene expression patterns during seed development. The predominant variation in gene expression was according to developmental stages rather than morphotype differences. Since lipids are the major storage compounds of Brassica seeds, we investigated in more detail the regulation of lipid metabolism. Four co-regulated gene clusters were identified with 17 putative cis-regulatory elements predicted in their 1000 bp upstream region, either specific or common to different lipid metabolic pathways. CONCLUSIONS This is the first study of genome-wide profiling of transcript abundance during seed development in B. rapa. The identification of key physiological events, major expression patterns, and putative cis-regulatory elements provides useful information to construct gene regulatory networks in B. rapa developing seeds and provides a starting point for a genetical genomics study of seed quality traits.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guusje Bonnema
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
125
|
Li QF, Sun SSM, Liu QQ. Characterization of the spatial and temporal expression of the OsSSII-3 gene encoding a key soluble starch synthase in rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3184-90. [PMID: 23681703 DOI: 10.1002/jsfa.6230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 05/07/2023]
Abstract
BACKGROUND Starch, the major component of rice grain, consists of amylose and amylopectin. SSIIa, a key soluble starch synthase involved in the biosynthesis of rice amylopectin, is a major factor that controls the gelatinization temperature of rice grain. Extensive work has been done and impressive progress has been made in elaborating the function of the gene encoding SSIIa (OsSSII-3). However, the systematic expression analysis of OsSSII-3 is still rare. RESULTS In the present study, we performed a comprehensive expression analysis of OsSSII-3 in both the developing seeds and other tissues of indica rice 9311 by using quantitative real-time PCR. The results showed that the gene was dominantly expressed in the developing seeds. In addition, the promoter sequence of OsSSII-3 was cloned and fused with the GUS reporter gene and its expression was carefully monitored in the transgenic rice. The data from both histochemical and fluorometric analyses showed that the OsSSII-3 promoter was capable of driving the target gene to have an endosperm-specific expression, which may be due to the existing of several endosperm-specific motifs in the promoter, including the -300 elements, AACA motifs and GCN4 motifs. This result was quite consistent with that of the endogenous transcription analysis of OsSSII-3. CONCLUSION This study not only advanced our understanding of the spatial and temporal expression characteristics of OsSSII-3, but also provided a valuable promoter for future application in generating elite rice varieties with high nutritional or medicinal value.
Collapse
Affiliation(s)
- Qian-Feng Li
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Jiangsu, 225009, China; Institute of Plant Molecular Biology and Agri-Biotechnology, Department of Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
126
|
Chen Z, Huang J, Muttucumaru N, Powers SJ, Halford NG. Expression analysis of abscisic acid (ABA) and metabolic signalling factors in developing endosperm and embryo of barley. J Cereal Sci 2013; 58:255-262. [PMID: 24748715 PMCID: PMC3990443 DOI: 10.1016/j.jcs.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 01/01/2023]
Abstract
The expression of genes encoding components of ABA and metabolic signalling pathways in developing barley endosperm and embryo was investigated. The genes included HvRCAR35_47387 and HvRCAR35_2538 (encoding ABA receptors), HvABI1d (protein phosphatase 2C), HvSnRK2.4, HvSnRK2.6 and HvPKABA1 (SnRK2-type protein kinases) and HvABI5 (ABA response element binding protein; AREBP), as well as two genes encoding SnRK1-type protein kinases. Both SnRK1 and SnRK2 phosphorylate AREBPs, but SnRK2 is activated by ABA whereas SnRK1 may be broken down. Multiple cereal AREBPs with two conserved SnRK1/2 target sites and another class of BZIP transcription factors with SnRK1/2 binding sites, including HvBLZ1, were identified. Barley grain (cv. Triumph) was sampled at 15, 20, 25 and 30 days post-anthesis (dpa). HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 were expressed highly in the endosperm but at much lower levels in the embryo. Conversely, HvPKABA1 and HvRCAR35_2538 were expressed at higher levels in the embryo than the endosperm, while HvSnRK2.6 was expressed at similar levels in both. HvRCAR35_47387, HvABI1d, HvSnRK2.4 and HvABI5 all peaked in expression in the endosperm at 20 dpa. A model is proposed in which ABA brings about a transition from a SnRK1-dominated state in the endosperm during grain filling to a SnRK2-dominated state during maturation. Components of ABA signalling pathway differ between endosperm and embryo in barley. ABA signalling pathway components are highly expressed in barley endosperm at 20 dpa. ABA may bring about change from SnRK1-dominated state to SnRK2-dominated state. This may play key role in transition from grain filling to maturation in barley. BLZ1/OHP1 class of bZIP transcription factors contain multiple SnRK1/2 target sites.
Collapse
Affiliation(s)
- Zhiwei Chen
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Minhang District, Shanghai 201106, Peoples' Republic of China
| | - Jianhua Huang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Minhang District, Shanghai 201106, Peoples' Republic of China
| | - Nira Muttucumaru
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Stephen J. Powers
- Computational and Systems Biology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Nigel G. Halford
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
- Corresponding author. Tel.: +44 (0) 1582 763133x2203, +44 (0) 785 762 6662 (mobile); fax: +44 (0) 1582 763010.
| |
Collapse
|
127
|
Plessis A, Ravel C, Bordes J, Balfourier F, Martre P. Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3627-44. [PMID: 23881399 PMCID: PMC3745720 DOI: 10.1093/jxb/ert188] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Wheat grain storage protein (GSP) content and composition are the main determinants of the end-use value of bread wheat (Triticum aestivum L.) grain. The accumulation of glutenins and gliadins, the two main classes of GSP in wheat, is believed to be mainly controlled at the transcriptional level through a network of transcription factors. This regulation network could lead to stable cross-environment allometric scaling relationships between the quantity of GSP classes/subunits and the total quantity of nitrogen per grain. This work conducted a genetic mapping study of GSP content and composition and allometric scaling parameters of grain N allocation using a bread wheat worldwide core collection grown in three environments. The core collection was genotyped with 873 markers for genome-wide association and 167 single nucleotide polymorphism markers in 51 candidate genes for candidate association. The candidate genes included 35 transcription factors (TFs) expressed in grain. This work identified 74 loci associated with 38 variables, of which 19 were candidate genes or were tightly linked with candidate genes. Besides structural GSP genes, several loci putatively trans-regulating GSP accumulation were identified. Seven candidate TFs, including four wheat orthologues of barley TFs that control hordein gene expression, were associated or in strong linkage disequilibrium with markers associated with the composition or quantity of glutenin or gliadin, or allometric grain N allocation parameters, confirming the importance of the transcriptional control of GSP accumulation. Genome-wide association results suggest that the genes regulating glutenin and gliadin compositions are mostly distinct from each other and operate differently.
Collapse
Affiliation(s)
- Anne Plessis
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
- * These authors contributed equally to this manuscript
| | - Catherine Ravel
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
- * These authors contributed equally to this manuscript
| | - Jacques Bordes
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
| | - François Balfourier
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
| | - Pierre Martre
- INRA, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, 5 Chemin de Beaulieu, F-63100 Clermont-Ferrand, France
- Blaise Pascal University, UMR1095, Genetics, Diversity and Ecophysiology of Cereals, F-63170 Aubière, France
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
128
|
Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 209:32-45. [PMID: 23759101 DOI: 10.1016/j.plantsci.2013.03.016] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.
Collapse
|
129
|
Wang K, Zhang X, Zhao Y, Chen F, Xia G. Structure, variation and expression analysis of glutenin gene promoters from Triticum aestivum cultivar Chinese Spring shows the distal region of promoter 1Bx7 is key regulatory sequence. Gene 2013; 527:484-90. [PMID: 23850729 DOI: 10.1016/j.gene.2013.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2,554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> -700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5'-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.
Collapse
Affiliation(s)
- Kai Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan 250100, PR China
| | | | | | | | | |
Collapse
|
130
|
Downs GS, Bi YM, Colasanti J, Wu W, Chen X, Zhu T, Rothstein SJ, Lukens LN. A developmental transcriptional network for maize defines coexpression modules. PLANT PHYSIOLOGY 2013; 161:1830-43. [PMID: 23388120 PMCID: PMC3613459 DOI: 10.1104/pp.112.213231] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here, we present a genome-wide overview of transcriptional circuits in the agriculturally significant crop species maize (Zea mays). We examined transcript abundance data at 50 developmental stages, from embryogenesis to senescence, for 34,876 gene models and classified genes into 24 robust coexpression modules. Modules were strongly associated with tissue types and related biological processes. Sixteen of the 24 modules (67%) have preferential transcript abundance within specific tissues. One-third of modules had an absence of gene expression in specific tissues. Genes within a number of modules also correlated with the developmental age of tissues. Coexpression of genes is likely due to transcriptional control. For a number of modules, key genes involved in transcriptional control have expression profiles that mimic the expression profiles of module genes, although the expression of transcriptional control genes is not unusually representative of module gene expression. Known regulatory motifs are enriched in several modules. Finally, of the 13 network modules with more than 200 genes, three contain genes that are notably clustered (P < 0.05) within the genome. This work, based on a carefully selected set of major tissues representing diverse stages of maize development, demonstrates the remarkable power of transcript-level coexpression networks to identify underlying biological processes and their molecular components.
Collapse
|
131
|
The transcription factor AtDOF4.2 regulates shoot branching and seed coat formation in Arabidopsis. Biochem J 2013; 449:373-88. [PMID: 23095045 DOI: 10.1042/bj20110060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plant-specific DOF (DNA-binding with one finger)-type transcription factors regulate various biological processes. In the present study we characterized a silique-abundant gene AtDOF (Arabidopsis thaliana DOF) 4.2 for its functions in Arabidopsis. AtDOF4.2 is localized in the nuclear region and has transcriptional activation activity in both yeast and plant protoplast assays. The T-M-D motif in AtDOF4.2 is essential for its activation. AtDOF4.2-overexpressing plants exhibit an increased branching phenotype and mutation of the T-M-D motif in AtDOF4.2 significantly reduces branching in transgenic plants. AtDOF4.2 may achieve this function through the up-regulation of three branching-related genes, AtSTM (A. thaliana SHOOT MERISTEMLESS), AtTFL1 (A. thaliana TERMINAL FLOWER1) and AtCYP83B1 (A. thaliana CYTOCHROME P450 83B1). The seeds of an AtDOF4.2-overexpressing plant show a collapse-like morphology in the epidermal cells of the seed coat. The mucilage contents and the concentration and composition of mucilage monosaccharides are significantly changed in the seed coat of transgenic plants. AtDOF4.2 may exert its effects on the seed epidermis through the direct binding and activation of the cell wall loosening-related gene AtEXPA9 (A. thaliana EXPANSIN-A9). The dof4.2 mutant did not exhibit changes in branching or its seed coat; however, the silique length and seed yield were increased. AtDOF4.4, which is a close homologue of AtDOF4.2, also promotes shoot branching and affects silique size and seed yield. Manipulation of these genes should have a practical use in the improvement of agronomic traits in important crops.
Collapse
|
132
|
A root-specific wall-associated kinase gene, HvWAK1, regulates root growth and is highly divergent in barley and other cereals. Funct Integr Genomics 2013; 13:167-77. [PMID: 23443578 DOI: 10.1007/s10142-013-0310-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/20/2013] [Accepted: 02/04/2013] [Indexed: 01/07/2023]
Abstract
Wall-associated receptor-like kinases (WAKs) are important candidates for directly linking the extracellular matrix with intracellular compartments and are involved in developmental processes and stress response. WAK gene family has been identified in plants such as Arabidopsis and rice. Here, we present a detailed analysis of the WAK1 gene from barley cv. Golden Promise, mapped to chromosome 5H. Three BAC clones corresponding to the WAK fragment were sequenced and the full-length WAK1 gene was characterized. The gene has three exons and two short introns with a coding region of 2,178 bp encoding a protein of 725 amino acids. A regulatory region was analyzed in -1,000 bp sequence upstream to start codon. Using conserved domains database and SMART, various conserved domains such as GUB WAK Bind, epidermal growth factor CA, and protein kinase C as well as other regions like signal peptides, active sites, and transmembrane domains were identified. The gene organization of HvWAK1 was compared with wheat (TaWAK1) and Arabidopsis (AtWAK1), suggesting that the WAK1 gene organization has remained highly conserved. Nonetheless, WAK1 was found to be highly divergent when compared with sequences available from barley cv. Haruna Nijo (50 %), rice (46 %), wheat (21 %), Arabidopsis (25 %), and maize (19 %). This divergence may have facilitated a better adaptation to surrounding environments due to its role in communication between the extracellular matrix, cell, and outer environment. Semiquantitative RT-PCR-based expression analysis indicates HvWAK1 expression is specific to roots. Significant differences in root growth between GP wild type and GP-Ds mutant seedlings were observed under control and salt stress conditions.
Collapse
|
133
|
Chen Y, Wang M, Ouwerkerk PBF. Molecular and environmental factors determining grain quality in rice. Food Energy Secur 2012. [DOI: 10.1002/fes3.11] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Yi Chen
- Sylvius Laboratory Department of Molecular and Developmental Genetics Institute of Biology Leiden University Sylviusweg 72 PO Box 9505 2300 RA Leiden The Netherlands
| | - Mei Wang
- Sylvius Laboratory Department of Molecular and Developmental Genetics Institute of Biology Leiden University Sylviusweg 72 PO Box 9505 2300 RA Leiden The Netherlands
- SU BioMedicine‐TNO Utrechtseweg 48 3704 HE Zeist PO Box 360 3700 AJ Zeist The Netherlands
| | - Pieter B. F. Ouwerkerk
- Sylvius Laboratory Department of Molecular and Developmental Genetics Institute of Biology Leiden University Sylviusweg 72 PO Box 9505 2300 RA Leiden The Netherlands
| |
Collapse
|
134
|
Hernando-Amado S, González-Calle V, Carbonero P, Barrero-Sicilia C. The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC PLANT BIOLOGY 2012; 12:202. [PMID: 23126376 PMCID: PMC3579746 DOI: 10.1186/1471-2229-12-202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/30/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transcription factors (TFs) are proteins that have played a central role both in evolution and in domestication, and are major regulators of development in living organisms. Plant genome sequences reveal that approximately 7% of all genes encode putative TFs. The DOF (DNA binding with One Finger) TF family has been associated with vital processes exclusive to higher plants and to their close ancestors (algae, mosses and ferns). These are seed maturation and germination, light-mediated regulation, phytohormone and plant responses to biotic and abiotic stresses, etc. In Hordeum vulgare and Oryza sativa, 26 and 30 different Dof genes, respectively, have been annotated. Brachypodium distachyon has been the first Pooideae grass to be sequenced and, due to its genomic, morphological and physiological characteristics, has emerged as the model system for temperate cereals, such as wheat and barley. RESULTS Through searches in the B. distachyon genome, 27 Dof genes have been identified and a phylogenetic comparison with the Oryza sativa and the Hordeum vulgare DOFs has been performed. To explore the evolutionary relationship among these DOF proteins, a combined phylogenetic tree has been constructed with the Brachypodium DOFs and those from rice and barley. This phylogenetic analysis has classified the DOF proteins into four Major Cluster of Orthologous Groups (MCOGs). Using RT-qPCR analysis the expression profiles of the annotated BdDof genes across four organs (leaves, roots, spikes and seeds) has been investigated. These results have led to a classification of the BdDof genes into two groups, according to their expression levels. The genes highly or preferentially expressed in seeds have been subjected to a more detailed expression analysis (maturation, dry stage and germination). CONCLUSIONS Comparison of the expression profiles of the Brachypodium Dof genes with the published functions of closely related DOF sequences from the cereal species considered here, deduced from the phylogenetic analysis, indicates that although the expression profile has been conserved in many of the putative orthologs, in some cases duplication followed by subsequent divergence may have occurred (neo-functionalization).
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
135
|
Zhang N, Qiao Z, Liang Z, Mei B, Xu Z, Song R. Zea mays Taxilin protein negatively regulates opaque-2 transcriptional activity by causing a change in its sub-cellular distribution. PLoS One 2012; 7:e43822. [PMID: 22937104 PMCID: PMC3427180 DOI: 10.1371/journal.pone.0043822] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/26/2012] [Indexed: 11/24/2022] Open
Abstract
Zea mays (maize) Opaque-2 (ZmO2) protein is an important bZIP transcription factor that regulates the expression of major storage proteins (22-kD zeins) and other important genes during maize seed development. ZmO2 is subject to functional regulation through protein-protein interactions. To unveil the potential regulatory network associated with ZmO2, a protein-protein interaction study was carried out using the truncated version of ZmO2 (O2-2) as bait in a yeast two-hybrid screen with a maize seed cDNA library. A protein with homology to Taxilin was found to have stable interaction with ZmO2 in yeast and was designated as ZmTaxilin. Sequence analysis indicated that ZmTaxilin has a long coiled-coil domain containing three conserved zipper motifs. Each of the three zipper motifs is individually able to interact with ZmO2 in yeast. A GST pull-down assay demonstrated the interaction between GST-fused ZmTaxilin and ZmO2 extracted from developing maize seeds. Using onion epidermal cells as in vivo assay system, we found that ZmTaxilin could change the sub-cellular distribution of ZmO2. We also demonstrated that this change significantly repressed the transcriptional activity of ZmO2 on the 22-kD zein promoter. Our study suggests that a Taxilin-mediated change in sub-cellular distribution of ZmO2 may have important functional consequences for ZmO2 activity.
Collapse
Affiliation(s)
- Nan Zhang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhenyi Qiao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheng Liang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Bing Mei
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zhengkai Xu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- * E-mail:
| |
Collapse
|
136
|
Rapid divergence of prolamin gene promoters of maize after gene amplification and dispersal. Genetics 2012; 192:507-19. [PMID: 22798485 DOI: 10.1534/genetics.112.142372] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Seeds have evolved to accommodate complicated processes like senescence, dormancy, and germination. Central to these is the storage of carbohydrates and proteins derived from sugars and amino acids synthesized during photosynthesis. In the grasses, the bulk of amino acids is stored in the prolamin superfamily that specifically accumulates in seed endosperm during senescence. Their promoters contain a conserved cis-element, called prolamin-box (P-box), recognized by the trans-activator P-box binding factor (PBF). Because of the lack of null mutants in all grass species, its physiological role in storage-protein gene expression has been elusive. In contrast, a null mutant of another endosperm-specific trans-activator Opaque2 (O2) has been shown to be required for the transcriptional activation of subsets of this superfamily by binding to the O2 box. Here, we used RNAi to knockdown Pbf expression and found that only 27-kDa γ- and 22-kDa α-zein gene expression were affected, whereas the level of other zeins remained unchanged. Still, transgenic seeds had an opaque seed phenotype. Combination of PbfRNAi and o2 resulted in further reduction of α-zein expression. We also tested the interaction of promoters and constitutively expressed PBF and O2. Whereas transgenic promoters could be activated, endogenous promoters appeared to be not accessible to transcriptional activation, presumably due to differential chromatin states. Although analysis of the methylation of binding sites of PBF and O2 correlated with the expression of endogenous 22-kDa α-zein promoters, a different mechanism seems to apply to the 27-kDa γ-zein promoter, which does not undergo methylation changes.
Collapse
|
137
|
Sugiyama T, Ishida T, Tabei N, Shigyo M, Konishi M, Yoneyama T, Yanagisawa S. Involvement of PpDof1 transcriptional repressor in the nutrient condition-dependent growth control of protonemal filaments in Physcomitrella patens. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3185-97. [PMID: 22345635 PMCID: PMC3350930 DOI: 10.1093/jxb/ers042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 05/20/2023]
Abstract
In higher plants, the Dof transcription factors that harbour a conserved plant-specific DNA-binding domain function in the regulation of diverse biological processes that are unique to plants. Although these factors are present in both higher and lower plants, they have not yet been characterized in lower plants. Here six genes encoding Dof transcription factors in the moss Physcomitrella patens are characterized and two of these genes, PpDof1 and PpDof2, are functionally analysed. The targeted disruption of PpDof1 caused delayed or reduced gametophore formation, accompanied by an effect on development of the caulonema from the chloronema. Furthermore, the ppdof1 disruptants were found to form smaller colonies with a reduced frequency of branching of protonemal filaments, depending on the nutrients in the media. Most of these phenotypes were not apparent in the ppdof2 disruptant, although the ppdof2 disruptants also formed smaller colonies on a particular medium. Transcriptional repressor activity of PpDof1 and PpDof2 and modified expression of a number of genes in the ppdof disruptant lines were also shown. These results thus suggest that the PpDof1 transcriptional repressor has a role in controlling nutrient-dependent filament growth.
Collapse
Affiliation(s)
- Takumi Sugiyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuya Ishida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nobumitsu Tabei
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikao Shigyo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mineko Konishi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- Biotechnology Research Center, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
138
|
Faix B, Radchuk V, Nerlich A, Hümmer C, Radchuk R, Emery RJN, Keller H, Götz KP, Weschke W, Geigenberger P, Weber H. Barley grains, deficient in cytosolic small subunit of ADP-glucose pyrophosphorylase, reveal coordinate adjustment of C:N metabolism mediated by an overlapping metabolic-hormonal control. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1077-1093. [PMID: 22098161 DOI: 10.1111/j.1365-313x.2011.04857.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The barley Risø16 mutation leads to inactivation of cytosolic ADP-Glc pyrophosphorylase, and results in decreased ADP-Glc and endospermal starch levels. Here we show that this mutation is accompanied by a decrease in storage protein accumulation and seed size, which indicates that alteration of a single enzymatic step can change the network of storage metabolism as a whole. We used comprehensive transcript, metabolite and hormonal profiling to compare grain metabolism and development of Risø16 and wild-type endosperm. Despite increased sugar availability in mutant endosperm, glycolytic intermediates downstream of hexose phosphates remained unchanged or decreased, while several glycolytic enzymes were downregulated at the transcriptional level. Metabolite and transcript profiling also indicated an inhibition of the tricarboxylic acid cycle at the level of mitochondrial nicotinamide adenine dinucleotide (NAD)-isocitrate dehydrogenase and an attendant decrease in alpha-ketoglutarate and amino acids levels in Risø16, compared with wild type. Decreased levels of cytokinins in Risø16 endosperm suggested co-regulation between starch synthesis, abscisic acid (ABA) deficiency and cytokinin biosynthesis. Comparative cis-element analysis in promoters of jointly downregulated genes in Risø16 revealed an overlap between metabolic and hormonal regulation, which leds to a coordinated downregulation of endosperm-specific and ABA-inducible gene expression (storage proteins) together with repression by sugars (isocitrate dehydrogenase, amylases). Such co-regulation ensured that decreased carbon fluxes into starch lead to a coordinated inhibition of glycolysis, amino acid and storage proteins biosynthesis, which is useful in the prevention of osmotic imbalances and oxidative stress due to increased accumulation of sugars.
Collapse
Affiliation(s)
- Benjamin Faix
- Department Biologie I, Ludwig-Maximilians-Universität München, Grosshaderner Str. 2-4, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Expression pattern of the alpha-kafirin promoter coupled with a signal peptide from Sorghum bicolor L. Moench. J Biomed Biotechnol 2012; 2012:752391. [PMID: 22315514 PMCID: PMC3270457 DOI: 10.1155/2012/752391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/09/2011] [Accepted: 10/11/2011] [Indexed: 11/23/2022] Open
Abstract
Regulatory sequences with endosperm specificity are essential for foreign gene expression in the desired tissue for both grain quality improvement and molecular pharming. In this study, promoters of seed storage α-kafirin genes coupled with signal sequence (ss) were isolated from Sorghum bicolor L. Moench genomic DNA by PCR. The α-kafirin promoter (α-kaf) contains endosperm specificity-determining motifs, prolamin-box, the O2-box 1, CATC, and TATA boxes required for α-kafirin gene expression in sorghum seeds. The constructs pMB-Ubi-gfp and pMB-kaf-gfp were microprojectile bombarded into various sorghum and sweet corn explants. GFP expression was detected on all explants using the Ubi promoter but only in seeds for the α-kaf promoter. This shows that the α-kaf promoter isolated was functional and demonstrated seed-specific GFP expression. The constructs pMB-Ubi-ss-gfp and pMB-kaf-ss-gfp were also bombarded into the same explants. Detection of GFP expression showed that the signal peptide (SP)::GFP fusion can assemble and fold properly, preserving the fluorescent properties of GFP.
Collapse
|
140
|
Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA. Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. PLANT PHYSIOLOGY 2012; 158:824-34. [PMID: 22135431 PMCID: PMC3271770 DOI: 10.1104/pp.111.185033] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 05/18/2023]
Abstract
The maize (Zea mays) kernel plays a critical role in feeding humans and livestock around the world and in a wide array of industrial applications. An understanding of the regulation of kernel starch, protein, and oil is needed in order to manipulate composition to meet future needs. We conducted joint-linkage quantitative trait locus mapping and genome-wide association studies (GWAS) for kernel starch, protein, and oil in the maize nested association mapping population, composed of 25 recombinant inbred line families derived from diverse inbred lines. Joint-linkage mapping revealed that the genetic architecture of kernel composition traits is controlled by 21-26 quantitative trait loci. Numerous GWAS associations were detected, including several oil and starch associations in acyl-CoA:diacylglycerol acyltransferase1-2, a gene that regulates oil composition and quantity. Results from nested association mapping were verified in a 282 inbred association panel using both GWAS and candidate gene association approaches. We identified many beneficial alleles that will be useful for improving kernel starch, protein, and oil content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sherry A. Flint-Garcia
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211 (J.P.C., M.D.M., S.A.F.-G.); United States Department of Agriculture-Agricultural Research Service, Columbia, Missouri 65211 (M.D.M., S.A.F.-G.); United States Department of Agriculture-Agricultural Research Service, Raleigh, North Carolina 27695 (J.B.H.); United States Department of Agriculture-Agricultural Research Service, Ithaca, New York 14853 (P.B., E.S.B.); Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 (J.B.H.); Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853 (F.T., P.B., E.S.B.); Department of Plant Sciences, University of California, Davis, California 95616 (J.R.-I.)
| |
Collapse
|
141
|
Juhász A, Makai S, Sebestyén E, Tamás L, Balázs E. Role of conserved non-coding regulatory elements in LMW glutenin gene expression. PLoS One 2011; 6:e29501. [PMID: 22242127 PMCID: PMC3248431 DOI: 10.1371/journal.pone.0029501] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/29/2011] [Indexed: 02/02/2023] Open
Abstract
Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types.
Collapse
Affiliation(s)
- Angéla Juhász
- Applied Genomics Department, Agricultural Research Institute of the Hungarian Academy of Sciences, Martonvásár, Hungary.
| | | | | | | | | |
Collapse
|
142
|
Londe LN, Ueira-Vieira C, Kerr WE, Bonetti AM. Characterization of DNA polymorphisms in Caryocar brasiliense in populations with and without thorn at the endocarp by RAPD markers. AN ACAD BRAS CIENC 2011; 82:779-89. [PMID: 21562705 DOI: 10.1590/s0001-37652010000300024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/08/2010] [Indexed: 11/22/2022] Open
Abstract
Caryocar brasiliense (pequi), is one of the main species at the biome of the Brazilian savannah due to its use in culinary, popular medicine, industry in general, and iron and steel industry. At São José do Xingu (MT), a tree of C. brasiliense without thorn at the endocarp was found, which enables the improvement of C. brasiliense not only for consumption but also to the high appreciation it already has. To detect the existing differences between the pequi with and without the thorn at the endocarp, RADP markers were used. The generated polymorphisms were cloned and sequenced in order to identify the sequences that are responsible for the fenotypical alteration. It was observed that the pequi without thorn is genetically isolated from the other populations of pequi with thorn at the endocarp, proving that this characteristic is related to the genetic divergence of the species. Analysis in BLASTn evidenced the similarity of the Dof1 genes of Zea mays to its gene of phosphinotricin acetyl transferase. In the analysis of BLASTx, the similarity was verified to the proteins responsible for the deficiency in ferric reductase 4, and catalase.
Collapse
Affiliation(s)
- Luciana N Londe
- Empresa de Pesquisa Agropecuária de Minas Gerais, Laboratório de Biotecnologia, Nova Porteirinha, MG, Brazil.
| | | | | | | |
Collapse
|
143
|
Cândido EDS, Pinto MFS, Pelegrini PB, Lima TB, Silva ON, Pogue R, Grossi-de-Sá MF, Franco OL. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J 2011; 25:3290-305. [PMID: 21746866 DOI: 10.1096/fj.11-184291] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine-rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology-based medications and products for agribusiness, is also presented.
Collapse
Affiliation(s)
- Elizabete de Souza Cândido
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Campus Avançado Asa Norte, SGAN 916 Avenida W5, CEP: 70790-160, Brasilia, DF, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Hartings H, Lauria M, Lazzaroni N, Pirona R, Motto M. The Zea mays mutants opaque-2 and opaque-7 disclose extensive changes in endosperm metabolism as revealed by protein, amino acid, and transcriptome-wide analyses. BMC Genomics 2011; 12:41. [PMID: 21241522 PMCID: PMC3033817 DOI: 10.1186/1471-2164-12-41] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 01/18/2011] [Indexed: 11/16/2022] Open
Abstract
Background The changes in storage reserve accumulation during maize (Zea mays L.) grain maturation are well established. However, the key molecular determinants controlling carbon flux to the grain and the partitioning of carbon to starch and protein are more elusive. The Opaque-2 (O2) gene, one of the best-characterized plant transcription factors, is a good example of the integration of carbohydrate, amino acid and storage protein metabolisms in maize endosperm development. Evidence also indicates that the Opaque-7 (O7) gene plays a role in affecting endosperm metabolism. The focus of this study was to assess the changes induced by the o2 and o7 mutations on maize endosperm metabolism by evaluating protein and amino acid composition and by transcriptome profiling, in order to investigate the functional interplay between these two genes in single and double mutants. Results We show that the overall amino acid composition of the mutants analyzed appeared similar. Each mutant had a high Lys and reduced Glx and Leu content with respect to wild type. Gene expression profiling, based on a unigene set composed of 7,250 ESTs, allowed us to identify a series of mutant-related down (17.1%) and up-regulated (3.2%) transcripts. Several differentially expressed ESTs homologous to genes encoding enzymes involved in amino acid synthesis, carbon metabolism (TCA cycle and glycolysis), in storage protein and starch metabolism, in gene transcription and translation processes, in signal transduction, and in protein, fatty acid, and lipid synthesis were identified. Our analyses demonstrate that the mutants investigated are pleiotropic and play a critical role in several endosperm-related metabolic processes. Pleiotropic effects were less evident in the o7 mutant, but severe in the o2 and o2o7 backgrounds, with large changes in gene expression patterns, affecting a broad range of kernel-expressed genes. Conclusion Although, by necessity, this paper is descriptive and more work is required to define gene functions and dissect the complex regulation of gene expression, the genes isolated and characterized to date give us an intriguing insight into the mechanisms underlying endosperm metabolism.
Collapse
Affiliation(s)
- Hans Hartings
- Unità di Ricerca per la Maiscoltura, Via Stezzano 24, 24126 Bergamo, Italy
| | | | | | | | | |
Collapse
|
145
|
Agarwal P, Kapoor S, Tyagi AK. Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 2011; 33:189-202. [PMID: 21319185 DOI: 10.1002/bies.201000107] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Seed development in this paper has been classified into the three landmark stages of cell division, organ initiation and maturation, based on morphological changes, and the available literature. The entire process proceeds at the behest of an interplay of various specific and general transcription factors (TFs). Monocots and dicots utilize overlapping, as well as distinct, TF networks during the process of seed development. The known TFs in rice and Arabidopsis have been chronologically categorized into the three stages. The main regulators of seed development contain B3 or HAP3 domains. These interact with bZIP and AP2 TFs. Other TFs that play an indispensable role during the process contain homeobox-, NAC-, MYB-, or ARF-domains. This paper is a comprehensive analysis of the TFs essential for seed development and their interactions. An understanding of this interplay will not only help unravel an integrated developmental process, but will also pave the way for biotechnological applications.
Collapse
Affiliation(s)
- Pinky Agarwal
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | |
Collapse
|
146
|
Kushwaha H, Gupta S, Singh VK, Rastogi S, Yadav D. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol Biol Rep 2010; 38:5037-53. [PMID: 21161392 DOI: 10.1007/s11033-010-0650-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/04/2010] [Indexed: 11/30/2022]
Abstract
The Dof (DNA binding with One Finger) family represents a classic zinc-finger transcription factors involved with multifarious roles exclusively in plants. There exists great diversity in terms of number of Dof genes observed in different crops. In current study, a total of 28 putative Dof genes have been predicted in silico from the recently available whole genome shotgun sequence of Sorghum bicolor (L.) Moench (with assigned accession numbers TPA:BK006983-BK007006 and TPA:BK007079-BK007082). The predicted SbDof genes are distributed on nine out of ten chromosomes of sorghum and most of these genes lack introns based on canonical intron/exon structure. Phylogenetic analysis of 28 SbDof proteins resulted in four subgroups constituting six clusters. The comparative phylogenetic analysis of these Dof proteins along with 30 rice and 36 Arabidopsis Dof proteins revealed six major groups similar to what has been observed earlier for rice and Arabidopsis. Motif analysis revealed the presence of conserved 50-52 amino acids Dof domain uniformly distributed across all the 28 Dof proteins of sorghum. The in silico cis-regulatory elements analysis of these SbDof genes suggested its diverse functions associated with light responsiveness, endosperm specific gene expression, hormone responsiveness, meristem specific expression and stress responsiveness.
Collapse
Affiliation(s)
- Hariom Kushwaha
- Department of Biotechnology, Integral University, Lucknow 226026, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
147
|
Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:939-53. [PMID: 20731787 DOI: 10.1111/j.1467-7652.2010.00559.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cereal seeds provide an ideal production platform for high-value products such as pharmaceuticals and industrial materials because seeds have ample and stable space for the deposition of recombinant products without loss of activity at room. Seed storage proteins (SSPs) are predominantly synthesized and stably accumulated in maturing endosperm tissue. Therefore, understanding the molecular mechanisms regulating SSP expression and accumulation is expected to provide valuable information for producing higher amounts of recombinant products. SSP levels are regulated by several steps at the transcriptional (promoters, transcription factors), translational and post-translational levels (modification, processing trafficking, and deposition). Our objective is to develop a seed production platform capable of producing very high yields of recombinant product. Towards this goal, we review here the individual regulatory steps controlling SSP synthesis and accumulation.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Transgenic Crop Research & Development Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
148
|
Costenaro-da-Silva D, Passaia G, Henriques JAP, Margis R, Pasquali G, Revers LF. Identification and expression analysis of genes associated with the early berry development in the seedless grapevine (Vitis vinifera L.) cultivar Sultanine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2010; 179:510-9. [PMID: 21802609 DOI: 10.1016/j.plantsci.2010.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/23/2010] [Accepted: 07/27/2010] [Indexed: 05/13/2023]
Abstract
Sultanine grapevine (Vitis vinifera L.) is one of the most important commercial seedless table-grape varieties and the main source of seedlessness for breeding programs around the world. Despite its commercial relevance, little is known about the genetic control of seedlessness in grapes, remaining unknown the molecular identity of genes responsible for such phenotype. Actually, studies concerning berry development in seedless grapes are scarce at the molecular level. We therefore developed a representational difference analysis (RDA) modified method named Bulk Representational Analysis of Transcripts (BRAT) in the attempt to identify genes specifically associated with each of the main developmental stages of Sultanine grapevine berries. A total of 2400 transcript-derived fragments (TDFs) were identified and cloned by RDA according to three specific developmental berry stages. After sequencing and in silico analysis, 1554 (64.75%) TDFs were validated according to our sequence quality cut-off. The assembly of these expressed sequence tags (ESTs) yielded 504 singletons and 77 clusters, with an overall EST redundancy of approximately 67%. Amongst all stage-specific cDNAs, nine candidate genes were selected and, along with two reference genes, submitted to a deeper analysis of their temporal expression profiles by reverse transcription-quantitative PCR. Seven out of nine genes proved to be in agreement with the stage-specific expression that allowed their isolation by RDA.
Collapse
Affiliation(s)
- Danielle Costenaro-da-Silva
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, P.O. Box 15.005, CEP 91.501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
149
|
Kawakatsu T, Takaiwa F. Differences in Transcriptional Regulatory Mechanisms Functioning for Free Lysine Content and Seed Storage Protein Accumulation in Rice Grain. ACTA ACUST UNITED AC 2010; 51:1964-74. [DOI: 10.1093/pcp/pcq164] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
150
|
She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. THE PLANT CELL 2010; 22:3280-94. [PMID: 20889913 PMCID: PMC2990130 DOI: 10.1105/tpc.109.070821] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 09/02/2010] [Accepted: 09/15/2010] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) endosperm accumulates a massive amount of storage starch and storage proteins during seed development. However, little is known about the regulatory system involved in the production of storage substances. The rice flo2 mutation resulted in reduced grain size and starch quality. Map-based cloning identified FLOURY ENDOSPERM2 (FLO2), a member of a novel gene family conserved in plants, as the gene responsible for the rice flo2 mutation. FLO2 harbors a tetratricopeptide repeat motif, considered to mediate a protein-protein interactions. FLO2 was abundantly expressed in developing seeds coincident with production of storage starch and protein, as well as in leaves, while abundant expression of its homologs was observed only in leaves. The flo2 mutation decreased expression of genes involved in production of storage starch and storage proteins in the endosperm. Differences between cultivars in their responsiveness of FLO2 expression during high-temperature stress indicated that FLO2 may be involved in heat tolerance during seed development. Overexpression of FLO2 enlarged the size of grains significantly. These results suggest that FLO2 plays a pivotal regulatory role in rice grain size and starch quality by affecting storage substance accumulation in the endosperm.
Collapse
Affiliation(s)
- Kao-Chih She
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
| | - Hiroaki Kusano
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Kazuyoshi Koizumi
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | | | - Makoto Hakata
- National Agricultural Research Center, Joetsu 943-0193, Japan
| | - Tomohiro Imamura
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
| | - Masato Fukuda
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Natsuka Naito
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Yumi Tsurumaki
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Mitsuhiro Yaeshima
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Tomohiko Tsuge
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Ken'ichiro Matsumoto
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Mari Kudoh
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Eiko Itoh
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Shoshi Kikuchi
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Naoki Kishimoto
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Junshi Yazaki
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Tsuyu Ando
- STAFF Institute, Tsukuba 305-0854, Japan
| | - Masahiro Yano
- National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | - Takashi Aoyama
- Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
| | - Tadamasa Sasaki
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
| | - Hikaru Satoh
- Institute of Genetic Resources, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for RNA Science, Research Institute for Science and Technology, Tokyo University of Science, Noda 278-8510 Japan
- Address correspondence to
| |
Collapse
|