101
|
Costechareyre D, Bertolla F, Nesme X. Homologous Recombination in Agrobacterium: Potential Implications for the Genomic Species Concept in Bacteria. Mol Biol Evol 2008; 26:167-76. [DOI: 10.1093/molbev/msn236] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
102
|
Rocha EPC. Evolutionary patterns in prokaryotic genomes. Curr Opin Microbiol 2008; 11:454-60. [DOI: 10.1016/j.mib.2008.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 09/08/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
|
103
|
Hughes AL, Friedman R, Rivailler P, French JO. Synonymous and nonsynonymous polymorphisms versus divergences in bacterial genomes. Mol Biol Evol 2008; 25:2199-209. [PMID: 18667439 PMCID: PMC2734133 DOI: 10.1093/molbev/msn166] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2008] [Indexed: 11/14/2022] Open
Abstract
Comparison of the ratio of nonsynonymous to synonymous polymorphisms within species with the ratio of nonsynonymous to synonymous substitutions between species has been widely used as a supposed indicator of positive Darwinian selection, with the ratio of these 2 ratios being designated as a neutrality index (NI). Comparison of genome-wide polymorphism within 12 species of bacteria with divergence from an outgroup species showed substantial differences in NI among taxa. A low level of nonsynonymous polymorphism at a locus was the best predictor of NI < 1, rather than a high level of nonsynonymous substitution between species. Moreover, genes with NI < 1 showed a strong tendency toward the occurrence of rare nonsynonymous polymorphisms, as expected under the action of ongoing purifying selection. Thus, our results are more consistent with the hypothesis that a high relative rate of between-species nonsynonymous substitution reflects mainly the action of purifying selection within species to eliminate slightly deleterious mutations rather than positive selection between species. This conclusion is consistent with previous results highlighting an important role of slightly deleterious variants in bacterial evolution and suggests caution in the use of the McDonald-Kreitman test and related statistics as tests of positive selection.
Collapse
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, USA
| | | | | | | |
Collapse
|
104
|
Tsuru T, Kobayashi I. Multiple genome comparison within a bacterial species reveals a unit of evolution spanning two adjacent genes in a tandem paralog cluster. Mol Biol Evol 2008; 25:2457-73. [PMID: 18765438 PMCID: PMC2568036 DOI: 10.1093/molbev/msn192] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It has been assumed that an open reading frame (ORF) represents a unit of gene evolution as well as a unit of gene expression and function. In the present work, we report a case in which a unit comprising the 3' region of an ORF linked to a downstream intergenic region that is in turn linked to the 5' region of a downstream ORF has been conserved, and has served as the unit of gene evolution. The genes are tandem paralogous genes from the bacterium Staphylococcus aureus, for which more than ten entire genomes have been sequenced. We compared these multiple genome sequences at a locus for the lpl (lipoprotein-like) cluster (encoding lipoprotein homologs presumably related to their host interaction) in the genomic island termed nuSaalpha. A highly conserved nucleotide sequence found within every lpl ORF is likely to provide a site for homologous recombination. Comparison of phylogenies of the 5'-variable region and the 3'-variable region within the same ORF revealed significant incongruence. In contrast, pairs of the 3'-variable region of an ORF and the 5'-variable region of the next downstream ORF gave more congruent phylogenies, with distinct groups of conserved pairs. The intergenic region seemed to have coevolved with the flanking variable regions. Multiple recombination events at the central conserved region appear to have caused various types of rearrangements among strains, shuffling the two variable regions in one ORF, but maintaining a conserved unit comprising the 3'-variable region, the intergenic region, and the 5'-variable region spanning adjacent ORFs. This result has strong impact on our understanding of gene evolution because most gene lineages underwent tandem duplication and then diversified. This work also illustrates the use of multiple genome sequences for high-resolution evolutionary analysis within the same species.
Collapse
Affiliation(s)
- Takeshi Tsuru
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
105
|
Konstantinidis KT, DeLong EF. Genomic patterns of recombination, clonal divergence and environment in marine microbial populations. ISME JOURNAL 2008; 2:1052-65. [PMID: 18580971 DOI: 10.1038/ismej.2008.62] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms represent the largest reservoir of biodiversity on Earth, both in numbers and total genetic diversity, but it remains unclear whether this biodiversity is organized in discrete units that correspond to ecologically coherent species. To further explore this question, we examined patterns of genomic diversity in sympatric microbial populations. Analyses of a total of approximately 200 Mb of microbial community genomic DNA sequence recovered from 4000 m depth in the Pacific Ocean revealed discrete sequence-defined populations of Bacteria and Archaea, with intrapopulation genomic sequence divergence ranging from approximately 1% to approximately 6%. The populations appeared to be maintained, at least in part, by intrapopulation genetic exchange (homologous recombination), although the frequency of recombination was estimated to be about three times lower than that observed previously in thermoacidophilic archaeal biofilm populations. Furthermore, the genotypes of a given population were clearly distinguishable from their closest co-occurring relatives based on their relative abundance in situ. The genetic distinctiveness and the matching sympatric abundances imply that these genotypes share similar ecophysiological properties, and therefore may represent fundamental units of microbial diversity in the deep sea. Comparisons to surface-dwelling relatives of the Sargasso Sea revealed that distinct sequence-based clusters were not always detectable, presumably due to environmental variations, further underscoring the important relationship between environmental contexts and genetic mechanisms, which together shape and sustain microbial population structure.
Collapse
|
106
|
Nicolas SD, Leflon M, Liu Z, Eber F, Chelysheva L, Coriton O, Chèvre AM, Jenczewski E. Chromosome 'speed dating' during meiosis of polyploid Brassica hybrids and haploids. Cytogenet Genome Res 2008; 120:331-8. [PMID: 18504362 DOI: 10.1159/000121082] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2007] [Indexed: 01/17/2023] Open
Abstract
Given their tremendous importance for correct chromosome segregation, the number and distribution of crossovers are tightly controlled during meiosis. In this review, we give an overview of crossover formation in polyploid Brassica hybrids and haploids that illustrates or underscores several aspects of crossover control. We first demonstrate that multiple targets for crossover formation (i.e. different but related chromosomes or duplicated regions) are sorted out during meiosis based on their level of relatedness. In euploid Brassica napus (AACC; 2n = 38), crossovers essentially occur between homologous chromosomes and only a few of them form between homeologues. The situation is different in B. napus haploids in which crossovers preferentially occur between homeologous chromosomes and a few can then form between more divergent duplicated regions. We then provide evidence that the frequency of crossovers between a given pair of chromosomes is influenced by the karyotypic and genetic composition of the plants that undergo meiosis. For instance, genetic evidence indicates that the number of crossovers between exactly the same pairs of homologous A chromosomes gets a boost in Brassica digenomic tetraploid (AACC) and triploid (AAC) hybrids. Increased autosyndesis within B. napus haploids as compared to monoploid B. rapa and B. oleracea is another illustration of this process. All these observations may suggest that polyploidization overall boosts up crossover machinery and/or that the number of crossovers is modulated through inter-bivalents or univalent-bivalent cross-talk effects. The last part of this review gives an up-to-date account of what we know about the genetic control of homologous and homeologous crossover formation among Brassica species.
Collapse
Affiliation(s)
- S D Nicolas
- UMR INRA-Agrocampus Rennes, Amélioration des Plantes et Biotechnologies Végétales, Le Rheu, France
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Martinsohn JT, Radman M, Petit MA. The lambda red proteins promote efficient recombination between diverged sequences: implications for bacteriophage genome mosaicism. PLoS Genet 2008; 4:e1000065. [PMID: 18451987 PMCID: PMC2327257 DOI: 10.1371/journal.pgen.1000065] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 04/03/2008] [Indexed: 11/26/2022] Open
Abstract
Genome mosaicism in temperate bacterial viruses (bacteriophages) is so great that it obscures their phylogeny at the genome level. However, the precise molecular processes underlying this mosaicism are unknown. Illegitimate recombination has been proposed, but homeologous recombination could also be at play. To test this, we have measured the efficiency of homeologous recombination between diverged oxa gene pairs inserted into λ. High yields of recombinants between 22% diverged genes have been obtained when the virus Red Gam pathway was active, and 100 fold less when the host Escherichia coli RecABCD pathway was active. The recombination editing proteins, MutS and UvrD, showed only marginal effects on λ recombination. Thus, escape from host editing contributes to the high proficiency of virus recombination. Moreover, our bioinformatics study suggests that homeologous recombination between similar lambdoid viruses has created part of their mosaicism. We therefore propose that the remarkable propensity of the λ-encoded Red and Gam proteins to recombine diverged DNA is effectively contributing to mosaicism, and more generally, that a correlation may exist between virus genome mosaicism and the presence of Red/Gam-like systems. Temperate bacterial viruses alternate between a dormant state, during which viral DNA remains integrated in the host genome, and a lytic state of phage multiplication. Temperate viruses have a characteristic genome organisation known as ‘mosaic’ – they contain ‘foreign’ segments that originate from related viruses. In pairwise alignments between a given virus and its relatives, the overall nucleotide sequence identity is around 50%. In contrast, the mosaic segments are 90% to 100% identical. How mosaics are generated is largely unknown, but it is likely that related viruses meet in the same bacterium and undergo random recombination, with emergence of the most robust recombinatory viruses. The prevalent hypothesis is that mosaics are formed by illegitimate recombination. We propose and demonstrate that an alternative driving mechanism, homologous recombination, is used for mosaic formation between similar but diverged viral sequences. Using the well known Escherichia coli λ virus as a paradigm, we show that such homeologous recombination is remarkably efficient. This finding has important implications in the field of virus genome evolution, as it may explain the high plasticity of viral genomes. It is also applicable to the field of biotechnology, and reveals viruses to be promising vectors for shuffling genes in vivo.
Collapse
Affiliation(s)
- Jann T. Martinsohn
- Faculté de Médecine R. Descartes, INSERM U571, Université Paris Descartes, Paris, France
| | - Miroslav Radman
- Faculté de Médecine R. Descartes, INSERM U571, Université Paris Descartes, Paris, France
| | - Marie-Agnès Petit
- Faculté de Médecine R. Descartes, INSERM U571, Université Paris Descartes, Paris, France
- INRA, UR888, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
108
|
Jiang J, Zhang R, Cui Z, He J, Gu L, Li S. Parameters controlling the gene-targeting frequency at the Sphingomonas species rrn site and expression of the methyl parathion hydrolase gene. J Appl Microbiol 2007; 102:1578-85. [PMID: 17578423 DOI: 10.1111/j.1365-2672.2006.03184.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS To investigate the key parameters controlling the exogenous methyl parathion hydrolase (MPH) gene mpd-targeting frequency at the ribosomal RNA operon (rrn) site of Sphingomonas species which has a wide range of biotechnological applications. METHODS AND RESULTS Targeting vectors with different homology lengths and recipient target DNA with different homology identities were used to investigate the parameters controlling the targeting frequency at the Sphingomonas species rrn site. Targeting frequency decreased with the reduction of homology length, and the minimal size for normal homologous recombination was >100 bp. Homologous recombination could succeed even if there were 3-4% mismatches; however, targeting frequency decreased with increasing sequence divergence. The Red recombination system could increase the targeting frequency to some extent. Targeting of the mpd gene to the rrn site did not affect cell viability and resulted in an increase of MPH-specific activity in recombinants. CONCLUSIONS Targeting frequency was affected by homology length, identity and the Red recombination system. The rrn site is a good target site for the expression of exogenous genes. SIGNIFICANCE AND IMPACT OF THE STUDY This work is useful as a foundation for a better understanding of recombination events involving homologous sequences and for the improved manipulation of Sphingomonas genes in biotechnological applications.
Collapse
Affiliation(s)
- J Jiang
- Department of Microbiology, Key Laboratory for Microbiological Engineering of Agricultural Environment of Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
109
|
Shneyer VS. On the species-specificity of DNA: Fifty years later. BIOCHEMISTRY (MOSCOW) 2007; 72:1377-84. [DOI: 10.1134/s0006297907120127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
110
|
Mutation rate and genome reduction in endosymbiotic and free-living bacteria. Genetica 2007; 134:205-10. [DOI: 10.1007/s10709-007-9226-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 11/03/2007] [Indexed: 10/22/2022]
|
111
|
Abstract
Because bacterial recombination involves the occasional transfer of small DNA fragments between strains, different sets of niche-specific genes may be maintained in populations that freely recombine at other loci. Therefore, genetic isolation may be established at different times for different chromosomal regions during speciation as recombination at niche-specific genes is curtailed. To test this model, we separated sequence divergence into rate and time components, revealing that different regions of the Escherichia coli and Salmonella enterica chromosomes diverged over a approximately 70-million-year period. Genetic isolation first occurred at regions carrying species-specific genes, indicating that physiological distinctiveness between the nascent Escherichia and Salmonella lineages was maintained for tens of millions of years before the complete genetic isolation of their chromosomes.
Collapse
Affiliation(s)
- Adam C Retchless
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
112
|
Eppley JM, Tyson GW, Getz WM, Banfield JF. Genetic exchange across a species boundary in the archaeal genus ferroplasma. Genetics 2007; 177:407-16. [PMID: 17603112 PMCID: PMC2013692 DOI: 10.1534/genetics.107.072892] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Speciation as the result of barriers to genetic exchange is the foundation for the general biological species concept. However, the relevance of genetic exchange for defining microbial species is uncertain. In fact, the extent to which microbial populations comprise discrete clusters of evolutionarily related organisms is generally unclear. Metagenomic data from an acidophilic microbial community enabled a genomewide, comprehensive investigation of variation in individuals from two coexisting natural archaeal populations. Individuals are clustered into species-like groups in which cohesion appears to be maintained by homologous recombination. We quantified the dependence of recombination frequency on sequence similarity genomewide and found a decline in recombination with increasing evolutionary distance. Both inter- and intralineage recombination frequencies have a log-linear dependence on sequence divergence. In the declining phase of interspecies genetic exchange, recombination events cluster near the origin of replication and are localized by tRNAs and short regions of unusually high sequence similarity. The breakdown of genetic exchange with increasing sequence divergence could contribute to, or explain, the establishment and preservation of the observed population clusters in a manner consistent with the biological species concept.
Collapse
Affiliation(s)
- John M Eppley
- Department of Bioengineering, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
113
|
Elez M, Radman M, Matic I. The frequency and structure of recombinant products is determined by the cellular level of MutL. Proc Natl Acad Sci U S A 2007; 104:8935-40. [PMID: 17502621 PMCID: PMC1885606 DOI: 10.1073/pnas.0610149104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of repeated DNA sequences is a genomic liability, because interrepeat recombination can result in chromosomal rearrangements. The mismatch repair system prevents recombination between nonidentical repeats, but the mechanism of antirecombination has not been established. Although the MutS protein binds to base pair mismatches in heteroduplex DNA, the role of the MutL protein in preventing recombination is unknown. In a screen designed to identify new cellular functions that suppress deletion formation involving nonidentical DNA repeats, we isolated a mutL mutant having a separation-of-function phenotype. The mutant showed an increased frequency of deletions but not of mutations. The split phenotype is due to a decreased MutL level, indicating that recombination, but not replication editing, is highly sensitive to MutL level. By altering the MutL level, we found that the frequency of deletion-generating recombination is inversely related to the amount of cellular MutL. DNA sequence analysis of the recombined repeats shows that the tolerance of base pair mismatches in heteroduplex DNA is also inversely correlated with MutL level. Unlike recombination, correction of misincorporation errors by mismatch repair is insensitive to fluctuations in MutL level. Overproduction of MutS does not affect either of these phenotypes, suggesting that, unlike MutL, MutS is not limiting for mismatch repair activities. These results indicate that MutL (i) determines effective DNA homology in recombination processes and (ii) fine tunes the process of deletion formation involving repeated, diverged DNA sequences.
Collapse
Affiliation(s)
- Marina Elez
- *Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médicine, Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France; and
| | - Miroslav Radman
- *Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médicine, Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France; and
- Mediterranean Institute for Life Sciences, Mestrovicevo Setaliste bb, 21000 Split, Croatia
| | - Ivan Matic
- *Institut National de la Santé et de la Recherche Médicale U571, Faculté de Médicine, Université Paris V, 156 Rue de Vaugirard, 75730 Paris Cedex 15, France; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
114
|
Bailly X, Olivieri I, Brunel B, Cleyet-Marel JC, Béna G. Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol 2007; 189:5223-36. [PMID: 17496100 PMCID: PMC1951869 DOI: 10.1128/jb.00105-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using nitrogen-fixing Sinorhizobium species that interact with Medicago plants as a model system, we aimed at clarifying how sex has shaped the diversity of bacteria associated with the genus Medicago on the interspecific and intraspecific scales. To gain insights into the diversification of these symbionts, we inferred a topology that includes the different specificity groups which interact with Medicago species, based on sequences of the nodulation gene cluster. Furthermore, 126 bacterial isolates were obtained from two soil samples, using Medicago truncatula and Medicago laciniata as host plants, to study the differentiation between populations of Sinorhizobium medicae, Sinorhizobium meliloti bv. meliloti, and S. meliloti bv. medicaginis. The former two can be associated with M. truncatula (among other species of Medicago), whereas the last organism is the specific symbiont of M. laciniata. These bacteria were characterized using a multilocus sequence analysis of four loci, located on the chromosome and on the two megaplasmids of S. meliloti. The phylogenetic results reveal that several interspecific horizontal gene transfers occurred during the diversification of Medicago symbionts. Within S. meliloti, the analyses show that nod genes specific to different host plants have spread to different genetic backgrounds through homologous recombination, preventing further divergence of the different ecotypes. Thus, specialization to different host plant species does not prevent the occurrence of gene flow among host-specific biovars of S. meliloti, whereas reproductive isolation between S. meliloti bv. meliloti and S. medicae is maintained even though these bacteria can cooccur in sympatry on the same individual host plants.
Collapse
Affiliation(s)
- Xavier Bailly
- Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR 113 IRD-Cirad-Ensam-UM2/USC INRA, Campus de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
115
|
Abstract
Bacterial systematists face unique challenges when trying to identify ecologically meaningful units of biological diversity. Whereas plant and animal systematists are guided by a theory-based concept of species, microbiologists have yet to agree upon a set of ecological and evolutionary properties that will serve to define a bacterial species. Advances in molecular techniques have given us a glimpse of the tremendous diversity present within the microbial world, but significant work remains to be done in order to understand the ecological and evolutionary dynamics that can account for the origin, maintenance, and distribution of that diversity. We have developed a conceptual framework that uses ecological and evolutionary theory to identify the DNA sequence clusters most likely corresponding to the fundamental units of bacterial diversity. Taking into account diverse models of bacterial evolution, we argue that bacterial systematics should seek to identify ecologically distinct groups with evidence of a history of coexistence, as based on interpretation of sequence clusters. This would establish a theory-based species unit that holds the dynamic properties broadly attributed to species outside of microbiology.
Collapse
Affiliation(s)
- Frederick M Cohan
- Department of Biology, Wesleyan University, Middletown, Connecticut 06459-0170, USA.
| | | |
Collapse
|
116
|
Larsen J, Pedersen AG, Christensen H, Bisgaard M, Angen Ø, Ahrens P, Olsen JE. Evidence for Vertical Inheritance and Loss of the Leukotoxin Operon in Genus Mannheimia. J Mol Evol 2007; 64:423-37. [PMID: 17437147 DOI: 10.1007/s00239-006-0065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Accepted: 01/30/2007] [Indexed: 11/29/2022]
Abstract
The Mannheimia subclades belong to the same bacterial genus but have taken divergent paths toward their distinct lifestyles. M. haemolytica + M. glucosida are potential pathogens of the respiratory tract in the mammalian suborder Ruminantia, whereas M. ruminalis, the supposed sister group, lives as a commensal in the ovine rumen. We have tested the hypothesis that horizontal gene transfer of the leukotoxin operon has catalyzed pathogenic adaptation and speciation of M. haemolytica + M. glucosida, or other major subclades, by using a strategy that combines compositional and phylogenetic methods. We show that it has been vertically inherited from the last common ancestor of the diverging Mannheimia subclades, although several strains belonging to M. ruminalis have lost the operon. Our analyses support that divergence within M. ruminalis following colonization of the ovine rumen was very rapid and that functional decay of most of the leukotoxin operons occurred early when the adaptation to the rumen was fastest, suggesting that antagonistic pleiotropy was the main contributor to losses in the radiating lineages of M. ruminalis. To sum up, the scenario derived from these analyses reflects two aspects. On one hand, it opposes the hypothesis of horizontal gene transfer as a catalyst of pathogenic adaptation and speciation. On the other hand, it indicates that losses of the leukotoxin operons in the radiating lineages of M. ruminalis have catalyzed their adaptation to a commensal environment and reproductive isolation (speciation).
Collapse
Affiliation(s)
- Jesper Larsen
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen, Frederiksberg C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
117
|
López E, Elez M, Matic I, Blázquez J. Antibiotic-mediated recombination: ciprofloxacin stimulates SOS-independent recombination of divergent sequences in Escherichia coli. Mol Microbiol 2007; 64:83-93. [PMID: 17376074 DOI: 10.1111/j.1365-2958.2007.05642.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The widespread use and abuse of antibiotics as therapeutic agents has produced a major challenge for bacteria, leading to the selection and spread of antibiotic resistant variants. However, antibiotics do not seem to be mere selectors of these variants. Here we show that the fluoroquinolone antibiotic ciprofloxacin, an inhibitor of type II DNA topoisomerases, stimulates intrachromosomal recombination of DNA sequences. The stimulation of recombination between divergent sequences occurs via either the RecBCD or RecFOR pathways and is, surprisingly, independent of SOS induction. Additionally, this stimulation also occurs in a hyperrecombinogenic mismatch repair mutS mutant. It is worth noting that ciprofloxacin also stimulates the conjugational recombination of an antibiotic resistance gene. Finally, we demonstrate that Escherichia coli is able to recover from treatments with recombination-stimulating concentrations of the antibiotic. Thus, fluoroquinolones can increase genetic variation by the stimulation of the recombinogenic capability of treated bacteria (via an SOS-independent mechanism) and consequently may favour the acquisition, evolution and spread of antibiotic resistance determinants.
Collapse
Affiliation(s)
- Elena López
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología-CSIC, Campus UAM-Cantoblanco, 28049-Madrid, Spain
| | | | | | | |
Collapse
|
118
|
Abstract
Genetic surveys reveal the diversity of bacteria and lead to the questioning of species concepts used to categorize bacteria. One difficulty in defining bacterial species arises from the high rates of recombination that results in the transfer of DNA between relatively distantly related bacteria. Barriers to this process, which could be used to define species naturally, are not apparent. Here, we review conceptual models of bacterial speciation and describe our computer simulations of speciation. Our findings suggest that the rate of recombination and its relation to genetic divergence have a strong influence on outcomes. We propose that a distinction be made between clonal divergence and sexual speciation. Hence, to make sense of bacterial diversity, we need data not only from genetic surveys but also from experimental determination of selection pressures and recombination rates and from theoretical models.
Collapse
Affiliation(s)
- Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, UK.
| | | | | |
Collapse
|
119
|
Abstract
A central problem in understanding bacterial speciation is how clusters of closely related strains emerge and persist in the face of recombination. We use a neutral Fisher–Wright model in which genotypes, defined by the alleles at 140 house-keeping loci, change in each generation by mutation or recombination, and examine conditions in which an initially uniform population gives rise to resolved clusters. Where recombination occurs at equal frequency between all members of the population, we observe a transition between clonal structure and sexual structure as the rate of recombination increases. In the clonal situation, clearly resolved clusters are regularly formed, break up or go extinct. In the sexual situation, the formation of distinct clusters is prevented by the cohesive force of recombination. Where the rate of recombination is a declining log-linear function of the genetic distance between the donor and recipient strain, distinct clusters emerge even with high rates of recombination. These clusters arise in the absence of selection, and have many of the properties of species, with high recombination rates and thus sexual cohesion within clusters and low rates between clusters. Distance-scaled recombination can thus lead to a population splitting into distinct genotypic clusters, a process that mimics sympatric speciation. However, empirical estimates of the relationship between sequence divergence and recombination rate indicate that the decline in recombination is an insufficiently steep function of genetic distance to generate species in nature under neutral drift, and thus that other mechanisms should be invoked to explain speciation in the presence of recombination.
Collapse
|
120
|
McNutt PM, Dehart MJ, Matej LA. Characterization of the 16S-23S internal transcribed spacer among 34 higher plants: suitability for interspecific plastid transformation. PLANT CELL REPORTS 2007; 26:47-60. [PMID: 16912867 DOI: 10.1007/s00299-006-0203-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2006] [Revised: 06/03/2006] [Accepted: 06/18/2006] [Indexed: 05/11/2023]
Abstract
Biomanufacturing by chloroplast transgene expression has the potential to produce significant amounts of biopharmaceuticals, endow plants with novel commercial or humanitarian capabilities, enhance phytoremediation methods and harden plants against adverse environments. Plastid bioengineering exploits the phenomenon of homologous recombination to specifically integrate heterologous sequences into the plastid genome. Previous research suggests the plastid genome 16S-23S internal transcribed spacer provides an advantageous integration site for transgene expression. To characterize the suitability of the 16S-23S region for interspecific recombination, we developed primers against conserved plastid sequences and amplified approximately 2.6 kb from 25 plant species. We analyzed the amplicons with nine species from Genbank for homeology, phylogenetic relationships, potential to form chimeric rDNA elements disruptive to translational/replication systems, and the potential number of recombination events for various minimal essential processing segments (MEPS) lengths. Multiple sequence alignment of the 34 species revealed considerable conservation, with identities exceeding 95% among the angiosperms. Substitutions were statistically clustered, generally in noncoding sites, although proposed functional elements such as the OriA region and 3' terminus of the 16S rRNA exhibited unexpected variation. The nonrandom distribution of substitutions undermines the established, statistical method of estimating the number of recombination initiation sites. This finding is further substantiated by comparing statistical estimates of the number of MEPS sites to a direct count at three different MEPS lengths. We frame this in silico analysis in terms of the potential of the 16S-23S region as a target for interspecific transformation, and describe a 'primer-to-plastid' system to rapidly generate species-specific flanking regions for transformation vectors.
Collapse
MESH Headings
- Base Sequence
- DNA, Chloroplast/chemistry
- DNA, Chloroplast/genetics
- DNA, Ribosomal Spacer/chemistry
- DNA, Ribosomal Spacer/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Plants/classification
- Plants/genetics
- Plastids/genetics
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Patrick M McNutt
- Department of Clinical Investigation, Madigan Army Medical Center, Fort Lewis, WA 98327, USA.
| | | | | |
Collapse
|
121
|
Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 2006; 361:1929-40. [PMID: 17062412 PMCID: PMC1764935 DOI: 10.1098/rstb.2006.1920] [Citation(s) in RCA: 418] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The bacterial species definition, despite its eminent practical significance for identification, diagnosis, quarantine and diversity surveys, remains a very difficult issue to advance. Genomics now offers novel insights into intra-species diversity and the potential for emergence of a more soundly based system. Although we share the excitement, we argue that it is premature for a universal change to the definition because current knowledge is based on too few phylogenetic groups and too few samples of natural populations. Our analysis of five important bacterial groups suggests, however, that more stringent standards for species may be justifiable when a solid understanding of gene content and ecological distinctiveness becomes available. Our analysis also reveals what is actually encompassed in a species according to the current standards, in terms of whole-genome sequence and gene-content diversity, and shows that this does not correspond to coherent clusters for the environmental Burkholderia and Shewanella genera examined. In contrast, the obligatory pathogens, which have a very restricted ecological niche, do exhibit clusters. Therefore, the idea of biologically meaningful clusters of diversity that applies to most eukaryotes may not be universally applicable in the microbial world, or if such clusters exist, they may be found at different levels of distinction.
Collapse
|
122
|
Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc Lond B Biol Sci 2006; 361:2009-21. [PMID: 17062417 PMCID: PMC1764928 DOI: 10.1098/rstb.2006.1928] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microbes in the ocean dominate biogeochemical processes and are far more diverse than anticipated. Thus, in order to understand the ocean system, we need to delineate microbial populations with predictable ecological functions. Recent observations suggest that ocean communities comprise diverse groups of bacteria organized into genotypic (and phenotypic) clusters of closely related organisms. Although such patterns are similar to metazoan communities, the underlying mechanisms for microbial communities may differ substantially. Indeed, the potential among ocean microbes for vast population sizes, extensive migration and both homologous and illegitimate genetic recombinations, which are uncoupled from reproduction, challenges classical population models primarily developed for sexually reproducing animals. We examine possible mechanisms leading to the formation of genotypic clusters and consider alternative population genetic models for differentiation at individual loci as well as gene content at the level of whole genomes. We further suggest that ocean bacteria follow at least two different adaptive strategies, which constrain rates and bounds of evolutionary processes: the 'opportunitroph', exploiting spatially and temporally variable resources; and the passive oligotroph, efficiently using low nutrient concentrations. These ecological lifestyle differences may represent a fundamental divide with major consequences for growth and predation rates, genome evolution and population diversity, as emergent properties driving the division of labour within microbial communities.
Collapse
Affiliation(s)
- Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
123
|
Sagi D, Tlusty T, Stavans J. High fidelity of RecA-catalyzed recombination: a watchdog of genetic diversity. Nucleic Acids Res 2006; 34:5021-31. [PMID: 16990254 PMCID: PMC1636419 DOI: 10.1093/nar/gkl586] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Homologous recombination plays a key role in generating genetic diversity, while maintaining protein functionality. The mechanisms by which RecA enables a single-stranded segment of DNA to recognize a homologous tract within a whole genome are poorly understood. The scale by which homology recognition takes place is of a few tens of base pairs, after which the quest for homology is over. To study the mechanism of homology recognition, RecA-promoted homologous recombination between short DNA oligomers with different degrees of heterology was studied in vitro, using fluorescence resonant energy transfer. RecA can detect single mismatches at the initial stages of recombination, and the efficiency of recombination is strongly dependent on the location and distribution of mismatches. Mismatches near the 5′ end of the incoming strand have a minute effect, whereas mismatches near the 3′ end hinder strand exchange dramatically. There is a characteristic DNA length above which the sensitivity to heterology decreases sharply. Experiments with competitor sequences with varying degrees of homology yield information about the process of homology search and synapse lifetime. The exquisite sensitivity to mismatches and the directionality in the exchange process support a mechanism for homology recognition that can be modeled as a kinetic proofreading cascade.
Collapse
Affiliation(s)
| | | | - Joel Stavans
- To whom correspondence should be addressed. Tel: +972 8 9342615; Fax: +972 8 9344109;
| |
Collapse
|
124
|
Portier P, Fischer-Le Saux M, Mougel C, Lerondelle C, Chapulliot D, Thioulouse J, Nesme X. Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Appl Environ Microbiol 2006; 72:7123-31. [PMID: 16936063 PMCID: PMC1636187 DOI: 10.1128/aem.00018-06] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biovar 1 of the genus Agrobacterium consists of at least nine genomic species that have not yet received accepted species names. However, rapid identification of these organisms in various biotopes is needed to elucidate crown gall epidemiology, as well as Agrobacterium ecology. For this purpose, the AFLP methodology provides rapid and unambiguous determination of the genomic species status of agrobacteria, as confirmed by additional DNA-DNA hybridizations. The AFLP method has been proven to be reliable and to eliminate the need for DNA-DNA hybridization. In addition, AFLP fragments common to all members of the three major genomic species of agrobacteria, genomic species G1 (reference strain, strain TT111), G4 (reference strain, strain B6, the type strain of Agrobacterium tumefaciens), and G8 (reference strain, strain C58), have been identified, and these fragments facilitate analysis and show the applicability of the method. The maximal infraspecies current genome mispairing (CGM) value found for the biovar 1 taxon is 10.8%, while the smallest CGM value found for pairs of genomic species is 15.2%. This emphasizes the gap in the distribution of genome divergence values upon which the genomic species definition is based. The three main genomic species of agrobacteria in biovar 1 displayed high infraspecies current genome mispairing values (9 to 9.7%). The common fragments of a genomic species are thus likely "species-specific" markers tagging the core genomes of the species.
Collapse
Affiliation(s)
- Perrine Portier
- Ecologie Microbienne, Université Claude Bernard-Lyon 1, Domaine scientifique de La Doua, 16 rue Raphaël Dubois, 69622 Villeurbanne cedex, France
| | | | | | | | | | | | | |
Collapse
|
125
|
Pettersen AK, Bøhn T, Primicerio R, Shorten PR, Soboleva TK, Nielsen KM. Modeling suggests frequency estimates are not informative for predicting the long-term effect of horizontal gene transfer in bacteria. ACTA ACUST UNITED AC 2006; 4:223-33. [PMID: 16827550 DOI: 10.1051/ebr:2006008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Horizontal gene transfer (HGT) is an important mechanism by which bacteria recombine and acquire novel genes and functions. Risk scenarios where novel plant transgenes transfer horizontally into bacteria have been addressed in numerical theoretical assessments and experimental studies. A key outcome of these studies has been that the frequencies of such inter-domain transfer are very low, if occurring at all, suggesting that such transfers would not occur at a level that is biologically significant. The relationship between transfer frequencies and the subsequent selection or genetic drift of transgene carrying bacteria often remains unresolved in these studies and assessments. Here we present a stochastic model to better understand the initial establishment and population dynamics of rare bacterial transformants carrying horizontally acquired (trans)genes. The following key parameters are considered: initial transformant numbers, strength of selection, bacterial population size and bacterial generations (time). We find that the initial number of transformants is important for the subsequent persistence of transformants only in the range of 1 to approximately 50 independent HGT events. Our simulations show that transformant populations under a wide range of HGT rates and selection coefficients undergo stochastic developments where they persist at low frequencies for up to several years (at frequencies that are below detection using available field sampling methodology), after which they eventually may go to fixation. Stochastic variability may thus play a crucial but disregarded role in the design of field monitoring strategies e.g. in biosafety assessments. We also estimate the time required for transformants to reach 0.0002% prevalence in a bacterial population, a threshold that allows experimental detection of transgene carrying bacteria through sampling of the larger bacterial populations.
Collapse
|
126
|
Li L, Jean M, Belzile F. The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:908-16. [PMID: 16507082 DOI: 10.1111/j.1365-313x.2006.02657.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We examined the effects of substrate divergence and DNA mismatch repair (MMR) on recombination in Arabidopsis thaliana. Relative to the frequency observed in plants with a homologous construct (0% divergence), recombination was decreased 4.1-, 9.6-, 11.7- or 20.3-fold, respectively, in lines with constructs containing 0.5%, 2%, 4% or 9% divergence between the recombination substrates. To evaluate the contribution of the MMR system in this decrease, 12 independent reporter lines (two or three lines per reporter construct) were crossed to an AtMSH2 T-DNA insertional mutant. We examined the recombination frequency in progeny homozygous for a reporter T-DNA and homozygous either for the wild type or the mutant allele of AtMSH2. The loss of MMR activity led to a two- to ninefold increase in homeologous recombination and the size of the increase did not seem to correlate with the amount of divergence. Inversely, complementation of the insertional mutant with a wild-type cDNA of AtMSH2 reduced recombination. Our results demonstrate clearly that sequence divergence can dramatically reduce the recombination frequency in plants and that the MMR system plays a part in this decrease.
Collapse
Affiliation(s)
- Liangliang Li
- Département de phytologie, 1243 Pavillon C.-E. Marchand, Université Laval, Québec, QC, Canada G1K 7P4
| | | | | |
Collapse
|
127
|
Abstract
To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.
Collapse
Affiliation(s)
- J Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA.
| | | |
Collapse
|
128
|
Thomas CM, Nielsen KM. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 2005; 3:711-21. [PMID: 16138099 DOI: 10.1038/nrmicro1234] [Citation(s) in RCA: 1289] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria evolve rapidly not only by mutation and rapid multiplication, but also by transfer of DNA, which can result in strains with beneficial mutations from more than one parent. Transformation involves the release of naked DNA followed by uptake and recombination. Homologous recombination and DNA-repair processes normally limit this to DNA from similar bacteria. However, if a gene moves onto a broad-host-range plasmid it might be able to spread without the need for recombination. There are barriers to both these processes but they reduce, rather than prevent, gene acquisition.
Collapse
Affiliation(s)
- Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
129
|
Nightingale KK, Windham K, Wiedmann M. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 2005; 187:5537-51. [PMID: 16077098 PMCID: PMC1196091 DOI: 10.1128/jb.187.16.5537-5551.2005] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To probe the evolution and phylogeny of Listeria monocytogenes from defined host species and environments, L. monocytogenes isolates from human (n = 60) and animal (n = 30) listeriosis cases and food samples (n = 30) were randomly selected from a larger collection of isolates (n = 354) obtained in New York State between 1999 and 2001. Partial sequencing of four housekeeping genes (gap, prs, purM, and ribC), one stress response gene (sigB), and two virulence genes (actA and inlA) revealed between 11 (gap) and 33 (inlA) allelic types as well as 52 sequence types (unique combination of allelic types). actA, ribC, and purM demonstrated the highest levels of nucleotide diversity (pi > 0.05). actA and inlA as well as prs and the hypervariable housekeeping genes ribC and purM showed evidence of horizontal gene transfer and recombination. actA and inlA also showed evidence of positive selection at specific amino acid sites. Maximum likelihood phylogenies for all seven genes confirmed that L. monocytogenes contains two deeply separated evolutionary lineages. Lineage I was found to be highly clonal, while lineage II showed greater diversity and evidence of horizontal gene transfer. Allelic types were exclusive to lineages, except for a single gap allele, and nucleotide distance within lineages was much lower than that between lineages, suggesting that genetic exchange between lineages is rare. Our data show that (i) L. monocytogenes is a highly diverse species with at least two distinct phylogenetic lineages differing in their evolutionary history and population structure and (ii) horizontal gene transfer as well as positive selection contributed to the evolution of L. monocytogenes.
Collapse
Affiliation(s)
- K K Nightingale
- Department of Food Science, Cornell University, 412B Stocking Hall, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
130
|
Rocha EPC, Cornet E, Michel B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. PLoS Genet 2005; 1:e15. [PMID: 16132081 PMCID: PMC1193525 DOI: 10.1371/journal.pgen.0010015] [Citation(s) in RCA: 249] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/09/2005] [Indexed: 11/18/2022] Open
Abstract
Homologous recombination is a housekeeping process involved in the maintenance of chromosome integrity and generation of genetic variability. Although detailed biochemical studies have described the mechanism of action of its components in model organisms, there is no recent extensive assessment of this knowledge, using comparative genomics and taking advantage of available experimental data on recombination. Using comparative genomics, we assessed the diversity of recombination processes among bacteria, and simulations suggest that we missed very few homologs. The work included the identification of orthologs and the analysis of their evolutionary history and genomic context. Some genes, for proteins such as RecA, the resolvases, and RecR, were found to be nearly ubiquitous, suggesting that the large majority of bacterial genomes are capable of homologous recombination. Yet many genomes show incomplete sets of presynaptic systems, with RecFOR being more frequent than RecBCD/AddAB. There is a significant pattern of co-occurrence between these systems and antirecombinant proteins such as the ones of mismatch repair and SbcB, but no significant association with nonhomologous end joining, which seems rare in bacteria. Surprisingly, a large number of genomes in which homologous recombination has been reported lack many of the enzymes involved in the presynaptic systems. The lack of obvious correlation between the presence of characterized presynaptic genes and experimental data on the frequency of recombination suggests the existence of still-unknown presynaptic mechanisms in bacteria. It also indicates that, at the moment, the assessment of the intrinsic stability or recombination isolation of bacteria in most cases cannot be inferred from the identification of known recombination proteins in the genomes. Genomes evolve mostly by modifications involving large pieces of genetic material (DNA). Exchanges of chromosome pieces between different organisms as well as intragenomic movements of DNA regions are the result of a process named homologous recombination. The central actor of this process, the RecA protein, is amazingly conserved from bacteria to human. In addition to its role in the generation of genetic variability, homologous recombination is also the guardian of genome integrity, as it acts to repair DNA damage. RecA-catalyzed DNA exchange (synapse) is facilitated by the action of presynaptic enzymes and completed by postsynaptic enzymes (resolvases). In addition, some enzymes counteract RecA. Here, the researchers assess the diversity of recombination proteins among 117 different bacterial species. They find that resolvases are nearly as ubiquitous and as well conserved at the sequence level as RecA. This suggests that the large majority of bacterial genomes are capable of homologous recombination. Presynaptic systems are less ubiquitous, and there is no obvious correlation between their presence and experimental data on the frequency of recombination. However, there is a significant pattern of co-occurrence between these systems and antirecombinant proteins.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Unité Génétique des Génomes Bactériens, Institut Pasteur, Paris, France.
| | | | | |
Collapse
|
131
|
Opperman R, Emmanuel E, Levy AA. The effect of sequence divergence on recombination between direct repeats in Arabidopsis. Genetics 2005; 168:2207-15. [PMID: 15611187 PMCID: PMC1448723 DOI: 10.1534/genetics.104.032896] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well established that sequence divergence has an inhibitory effect on homologous recombination. However, a detailed analysis of this relationship is missing for most higher eukaryotes. We have measured the rate of somatic recombination between direct repeats as a function of the number, type, and position of divergent nucleotides in Arabidopsis. We show that a minor divergence level of 0.16% (one mutation in otherwise identical 618 bp) has a profound effect, decreasing the recombination rate approximately threefold. A further increase in the divergence level affects the recombination rate to a smaller extent until a "divergence saturation" effect is reached at relatively low levels of divergence ( approximately 0.5%). The type of mismatched nucleotide does not affect recombination rates. The decrease in the rate of recombination caused by a single mismatch was not affected by the position of the mismatch along the repeat. This suggests that most recombination intermediate tracts contain a mismatch and thus are as long as the full length of the 618-bp repeats. Finally, we could deduce an antirecombination efficiency of approximately 66% for the first mismatch in the repeat. Altogether, this work shows some degree of conservation across kingdoms when compared to previous reports in yeast; it also provides new insight into the effect of sequence divergence on homologous recombination.
Collapse
Affiliation(s)
- Roy Opperman
- Plant Sciences Department, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | | | |
Collapse
|
132
|
Kunin V, Goldovsky L, Darzentas N, Ouzounis CA. The net of life: reconstructing the microbial phylogenetic network. Genome Res 2005; 15:954-9. [PMID: 15965028 PMCID: PMC1172039 DOI: 10.1101/gr.3666505] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has previously been suggested that the phylogeny of microbial species might be better described as a network containing vertical and horizontal gene transfer (HGT) events. Yet, all phylogenetic reconstructions so far have presented microbial trees rather than networks. Here, we present a first attempt to reconstruct such an evolutionary network, which we term the "net of life". We use available tree reconstruction methods to infer vertical inheritance, and use an ancestral state inference algorithm to map HGT events on the tree. We also describe a weighting scheme used to estimate the number of genes exchanged between pairs of organisms. We demonstrate that vertical inheritance constitutes the bulk of gene transfer on the tree of life. We term the bulk of horizontal gene flow between tree nodes as "vines", and demonstrate that multiple but mostly tiny vines interconnect the tree. Our results strongly suggest that the HGT network is a scale-free graph, a finding with important implications for genome evolution. We propose that genes might propagate extremely rapidly across microbial species through the HGT network, using certain organisms as hubs.
Collapse
Affiliation(s)
- Victor Kunin
- Computational Genomics Group, The European Bioinformatics Institute, EMBL Cambridge Outstation, Cambridge CB10 1SD, United Kingdom
| | | | | | | |
Collapse
|
133
|
Vetsigian K, Goldenfeld N. Global divergence of microbial genome sequences mediated by propagating fronts. Proc Natl Acad Sci U S A 2005; 102:7332-7. [PMID: 15878987 PMCID: PMC1129147 DOI: 10.1073/pnas.0502757102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We model the competition between homologous recombination and point mutation in microbial genomes, and present evidence for two distinct phases, one uniform, the other genetically diverse. Depending on the specifics of homologous recombination, we find that global sequence divergence can be mediated by fronts propagating along the genome, whose characteristic signature on genome structure is elucidated, and apparently observed in closely related Bacillus strains. Front propagation provides an emergent, generic mechanism for microbial "speciation," and suggests a classification of microorganisms on the basis of their propensity to support propagating fronts.
Collapse
Affiliation(s)
- Kalin Vetsigian
- Department of Physics and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080, USA
| | | |
Collapse
|
134
|
Ochman H, Lerat E, Daubin V. Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci U S A 2005; 102 Suppl 1:6595-9. [PMID: 15851673 PMCID: PMC1131874 DOI: 10.1073/pnas.0502035102] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even in lieu of a dependable species concept for asexual organisms, the classification of bacteria into discrete taxonomic units is considered to be obstructed by the potential for lateral gene transfer (LGT) among lineages at virtually all phylogenetic levels. In most bacterial genomes, large proportions of genes are introduced by LGT, as indicated by their compositional features and/or phylogenetic distributions, and there is also clear evidence of LGT between very distantly related organisms. By adopting a whole-genome approach, which examined the history of every gene in numerous bacterial genomes, we show that LGT does not hamper phylogenetic reconstruction at many of the shallower taxonomic levels. Despite the high levels of gene acquisition, the only taxonomic group for which appreciable amounts of homologous recombination were detected was within bacterial species. Taken as a whole, the results derived from the analysis of complete gene inventories support several of the current means to recognize and define bacterial species.
Collapse
Affiliation(s)
- Howard Ochman
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, 85721, USA.
| | | | | |
Collapse
|
135
|
Prunier AL, Leclercq R. Role of mutS and mutL genes in hypermutability and recombination in Staphylococcus aureus. J Bacteriol 2005; 187:3455-64. [PMID: 15866932 PMCID: PMC1112015 DOI: 10.1128/jb.187.10.3455-3464.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 02/11/2005] [Indexed: 01/06/2023] Open
Abstract
The mutator phenotype has been linked in several bacterial genera to a defect in the methyl-mismatch repair system, in which the major components are MutS and MutL. This system is involved both in mismatch repair and in prevention of recombination between homeologous fragments in Escherichia coli and has been shown to play an important role in the adaptation of bacterial populations in changing and stressful environments. In this report we describe the molecular analysis of the mutS and mutL genes of Staphylococcus aureus. A genetic analysis of the mutSL region was performed in S. aureus RN4220. Reverse transcriptase PCR experiments confirmed the operon structure already reported in other gram-positive organisms. Insertional inactivation of mutS and mutL genes and complementation showed the role of both genes in hypermutability in this species. We also designed an in vitro model to study the role of MutS and MutL in homeologous recombination in S. aureus. For this purpose, we constructed a bank of S. aureus RN4220 and mutS and mutL mutants containing the integrative thermosensitive vector pBT1 in which fragments with various levels of identity (74% to 100%) to the S. aureus sodA gene were cloned. MutS and MutL proteins seemed to have a limited effect on the control of homeologous recombination. Sequence of mutS and mutL genes was analyzed in 11 hypermutable S. aureus clinical isolates. In four of five isolates with mutated or deleted mutS or mutL genes, a relationship between alterations and mutator phenotypes could be established by negative complementation of the mutS or mutL mutants.
Collapse
Affiliation(s)
- Anne-Laure Prunier
- Service de Microbiologie and EA 2128 Relations hôte et microorganismes des épithéliums, Hôpital Côte de Nacre, Université de Caen, France
| | | |
Collapse
|
136
|
Hanage WP, Fraser C, Spratt BG. Fuzzy species among recombinogenic bacteria. BMC Biol 2005; 3:6. [PMID: 15752428 PMCID: PMC554772 DOI: 10.1186/1741-7007-3-6] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Accepted: 03/07/2005] [Indexed: 12/02/2022] Open
Abstract
Background It is a matter of ongoing debate whether a universal species concept is possible for bacteria. Indeed, it is not clear whether closely related isolates of bacteria typically form discrete genotypic clusters that can be assigned as species. The most challenging test of whether species can be clearly delineated is provided by analysis of large populations of closely-related, highly recombinogenic, bacteria that colonise the same body site. We have used concatenated sequences of seven house-keeping loci from 770 strains of 11 named Neisseria species, and phylogenetic trees, to investigate whether genotypic clusters can be resolved among these recombinogenic bacteria and, if so, the extent to which they correspond to named species. Results Alleles at individual loci were widely distributed among the named species but this distorting effect of recombination was largely buffered by using concatenated sequences, which resolved clusters corresponding to the three species most numerous in the sample, N. meningitidis, N. lactamica and N. gonorrhoeae. A few isolates arose from the branch that separated N. meningitidis from N. lactamica leading us to describe these species as 'fuzzy'. Conclusion A multilocus approach using large samples of closely related isolates delineates species even in the highly recombinogenic human Neisseria where individual loci are inadequate for the task. This approach should be applied by taxonomists to large samples of other groups of closely-related bacteria, and especially to those where species delineation has historically been difficult, to determine whether genotypic clusters can be delineated, and to guide the definition of species.
Collapse
Affiliation(s)
- William P Hanage
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Christophe Fraser
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Brian G Spratt
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| |
Collapse
|
137
|
Delmas S, Matic I. Cellular response to horizontally transferred DNA in Escherichia coli is tuned by DNA repair systems. DNA Repair (Amst) 2005; 4:221-9. [PMID: 15590330 DOI: 10.1016/j.dnarep.2004.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
We studied how DNA divergence between recombining DNAs and the mismatch repair system modulate the SOS response in Escherichia coli. The observed positive log-linear correlation between SOS induction and DNA divergence, and the negative correlation between SOS induction and frequency of recombination, suggest that the level of SOS induction precisely reflects the difficulty of RecA protein to initiate a productive strand exchange process. Our results suggest that the mismatch repair system could contribute to this SOS induction more by affecting the RecA-catalyzed homology search than by acting on mismatched recombination intermediates. The propensity of the recombination machinery to promote recombination between the blocks of sequences with the highest identity results in the increasing ratios of merodiploids (partial diploids) over genuine recombinants (homologous replacements) with increasing DNA divergence. We discuss the role of molecular mechanisms involved in the control of the recombination between diverged DNA sequences in the maintenance of genomic stability and genome evolution.
Collapse
Affiliation(s)
- Stéphane Delmas
- INSERM U571, Faculté de Médecine Necker-Enfants Malades Université Paris V, 156 rue Vaugirard, 75730 Paris Cedex 15, France
| | | |
Collapse
|
138
|
Meier P, Wackernagel W. Impact of mutS inactivation on foreign DNA acquisition by natural transformation in Pseudomonas stutzeri. J Bacteriol 2005; 187:143-54. [PMID: 15601698 PMCID: PMC538834 DOI: 10.1128/jb.187.1.143-154.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/17/2004] [Indexed: 11/20/2022] Open
Abstract
In prokaryotic mismatch repair the MutS protein and its homologs recognize the mismatches. The mutS gene of naturally transformable Pseudomonas stutzeri ATCC 17587 (genomovar 2) was identified and characterized. The deduced amino acid sequence (859 amino acids; 95.6 kDa) displayed protein domains I to IV and a mismatch-binding motif similar to those in MutS of Escherichia coli. A mutS::aac mutant showed 20- to 163-fold-greater spontaneous mutability. Transformation experiments with DNA fragments of rpoB containing single nucleotide changes (providing rifampin resistance) indicated that mismatches resulting from both transitions and transversions were eliminated with about 90% efficiency in mutS+. The mutS+ gene of strain ATCC 17587 did not complement an E. coli mutant but partially complemented a P. stutzeri JM300 mutant (genomovar 4). The declining heterogamic transformation by DNA with 0.1 to 14.6% sequence divergence was partially alleviated by mutS::aac, indicating that there was a 14 to 16% contribution of mismatch repair to sexual isolation. Expression of mutS+ from a multicopy plasmid eliminated autogamic transformation and greatly decreased heterogamic transformation, suggesting that there is strong limitation of MutS in the wild type for marker rejection. Remarkably, mutS::aac altered foreign DNA acquisition by homology-facilitated illegitimate recombination (HFIR) during transformation, as follows: (i) the mean length of acquired DNA was increased in transformants having a net gain of DNA, (ii) the HFIR events became clustered (hot spots) and less dependent on microhomologies, which may have been due to topoisomerase action, and (iii) a novel type of transformants (14%) had integrated foreign DNA with no loss of resident DNA. We concluded that in P. stutzeri upregulation of MutS could enforce sexual isolation and downregulation could increase foreign DNA acquisition and that MutS affects mechanisms of HFIR.
Collapse
Affiliation(s)
- Petra Meier
- Genetics, Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Germany
| | | |
Collapse
|
139
|
Li L, Santerre-Ayotte S, Boivin EB, Jean M, Belzile F. A novel reporter for intrachromosomal homoeologous recombination in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:1007-15. [PMID: 15584964 DOI: 10.1111/j.1365-313x.2004.02270.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A reporter system using engineered introns as recombination substrates in the uidA (GUS) gene has been developed and characterized in Arabidopsis thaliana. The non-coding nature of the recombination substrate has allowed us to monitor recombination events between duplicated copies of the intron that are either identical (homologous recombination) or harbour sequence polymorphisms (homoeologous recombination). The effects of substrate length and divergence on the frequency of recombination events were examined. A positive correlation between substrate length and somatic recombination frequency was found as the frequency of recombination increased 183-fold when the recombination substrate was lengthened from 153 to 589 bp. The existence of 11 polymorphisms in a 589-bp recombination substrate (1.9% sequence divergence) led to an almost 10-fold reduction in the frequency of recombination. This result demonstrates that relatively modest levels of sequence divergence can substantially reduce the frequency of recombination in plants. A molecular analysis of recombination products revealed that the recombination junctions are more frequent in the central segment of the recombination substrate.
Collapse
Affiliation(s)
- Liangliang Li
- Département de phytologie, 1243 Pavillon C.-E. Marchand, Université Laval, Québec, Qc, Canada G1K 7P4
| | | | | | | | | |
Collapse
|
140
|
Springer B, Sander P, Sedlacek L, Hardt WD, Mizrahi V, Schär P, Böttger EC. Lack of mismatch correction facilitates genome evolution in mycobacteria. Mol Microbiol 2004; 53:1601-9. [PMID: 15341642 DOI: 10.1111/j.1365-2958.2004.04231.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In silico genome sequence analyses suggested that mycobacteria are devoid of the highly conserved mutLS-based post-replicative mismatch repair system. Here, we present the first biological evidence for the lack of a classical mismatch repair function in mycobacteria. We found that frameshifts, but not general mutation rates are unusually high in Mycobacterium smegmatis. However, despite the absence of mismatch correction, M. smegmatis establishes a strong barrier to recombination between homeologous DNA sequences. We show that 10-12% of DNA sequence heterology restricts initiation of recombination but not extension of heteroduplex DNA intermediates. Together, the lack of mismatch correction and a high stringency of initiation of homologous recombination provide an adequate strategy for mycobacterial genome evolution, which occurs by gene duplication and divergent evolution.
Collapse
Affiliation(s)
- Burkhard Springer
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-3028 Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
141
|
|
142
|
Abstract
For bacteria, the primary genetic barrier against the genetic exchange of DNA that is not self-transmissible is dissimilarity in the bacterial DNA sequences concerned. Genetic exchange by homologous recombination is frequent among close bacterial relatives and recent experiments have shown that it can enable the uptake of closely linked nonhomologous foreign DNA. Artificial vectors are mosaics of mobile DNA elements from free-living bacterial isolates and so bear a residual similarity to their ubiquitous natural progenitors. This homology is tightly linked to the multitude of different DNA sequences that are inserted into synthetic vectors. Can homology between vector and bacterial DNA enable the uptake of these foreign DNA inserts? In this review we investigate pUC18 as an example of an artificial vector and consider whether its homology to broad host-range antibiotic resistance transposons and plasmid origins of replication could enable the uptake of insert DNA in the light of studies of homology-facilitated foreign DNA uptake. We also discuss the disposal of recombinant DNA, its persistence in the environment and whether homologies to pUC18 may exist in naturally competent bacteria. Most DNA that is inserted into the cloning site of artificial vectors would be of little use to a bacterium, but perhaps not all.
Collapse
Affiliation(s)
- D Bensasson
- Evolutionary Genomics Department, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.
| | | | | |
Collapse
|
143
|
Abstract
Multilocus enzyme electrophoresis of 161 Hafnia alvei isolates from 158 hosts and 3 water column samples collected in Australia revealed that this species consists of two genetically distinct groups. The two groups of H. alvei differed significantly in their genetic structure and host distribution. The taxonomic class of the host but not geographic locality explained a significant proportion of the observed genetic and biochemical variation among strains within each genetic group.
Collapse
Affiliation(s)
- Shoko Okada
- School of Botany and Zoology, Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
144
|
Roberts MS, Garland JL, Mills AL. Microbial astronauts: assembling microbial communities for advanced life support systems. MICROBIAL ECOLOGY 2004; 47:137-149. [PMID: 14994179 DOI: 10.1007/s00248-003-1060-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Accepted: 11/08/2003] [Indexed: 05/24/2023]
Abstract
Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem processes in the space environment.
Collapse
Affiliation(s)
- M S Roberts
- Dynamac Inc., DYN-3, John F. Kennedy Space Center, FL 32899, USA.
| | | | | |
Collapse
|
145
|
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 2004; 428:37-43. [PMID: 14961025 DOI: 10.1038/nature02340] [Citation(s) in RCA: 1349] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Accepted: 01/19/2004] [Indexed: 02/07/2023]
Abstract
Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
Collapse
Affiliation(s)
- Gene W Tyson
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Wertz JE, Goldstone C, Gordon DM, Riley MA. A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. J Evol Biol 2003; 16:1236-48. [PMID: 14640415 DOI: 10.1046/j.1420-9101.2003.00612.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A molecular phylogeny for seven taxa of enteric bacteria (Citrobacter freundii, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia plymuthica) was made from multiple isolates per taxa taken from a collection of environmental enteric bacteria. Sequences from five housekeeping genes (gapA, groEL, gyrA, ompA, and pgi) and the 16S rRNA gene were used to infer individual gene trees and were concatenated to infer a composite molecular phylogeny for the species. The isolates from each taxa formed tight species clusters in the individual gene trees, suggesting the existence of 'genotypic' clusters that correspond to traditional species designations. These sequence data and the resulting gene trees and consensus tree provide the first data set with which to assess the utility of the recently proposed core genome hypothesis (CGH). The CGH provides a genetically based approach to applying the biological species concept to bacteria.
Collapse
Affiliation(s)
- J E Wertz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
| | | | | | | |
Collapse
|
147
|
Greig D, Travisano M, Louis EJ, Borts RH. A role for the mismatch repair system during incipient speciation in Saccharomyces. J Evol Biol 2003; 16:429-37. [PMID: 14635842 DOI: 10.1046/j.1420-9101.2003.00546.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cause of reproductive isolation between biological species is a major issue in the field of biology. Most explanations of hybrid sterility require either genetic incompatibilities between nascent species or gross physical imbalances between their chromosomes, such as rearrangements or ploidy changes. An alternative possibility is that genomes become incompatible at a molecular level, dependent on interactions between primary DNA sequences. The mismatch repair system has previously been shown to contribute to sterility in a hybrid between established yeast species by preventing successful meiotic crossing-over leading to aneuploidy. This system could also promote or reinforce the formation of new species in a similar manner, by making diverging genomes incompatible in meiosis. To test this possibility we crossed yeast strains of the same species but from diverse historical or geographic sources. We show that these crosses are partially sterile and present evidence that the mismatch repair system is largely responsible for this sterility.
Collapse
Affiliation(s)
- D Greig
- The Galton Laboratory, Department of Biology, University College London, London, UK
| | | | | | | |
Collapse
|
148
|
Bell JS, McCulloch R. Mismatch repair regulates homologous recombination, but has little influence on antigenic variation, in Trypanosoma brucei. J Biol Chem 2003; 278:45182-8. [PMID: 12933800 DOI: 10.1074/jbc.m308123200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antigenic variation is critical in the life of the African trypanosome, as it allows the parasite to survive in the face of host immunity and enhance its transmission to other hosts. Much of trypanosome antigenic variation uses homologous recombination of variant surface glycoprotein (VSG)-encoding genes into specialized transcription sites, but little is known about the processes that regulate it. Here we describe the effects on VSG switching when two central mismatch repair genes, MSH2 and MLH1, are mutated. We show that disruption of the parasite mismatch repair system causes an increased frequency of homologous recombination, both between perfectly matched DNA molecules and between DNA molecules with divergent sequences. Mismatch repair therefore provides an important regulatory role in homologous recombination in this ancient eukaryote. Despite this, the mismatch repair system has no detectable role in regulating antigenic variation, meaning that VSG switching is either immune to mismatch selection or that mismatch repair acts in a subtle manner, undetectable by current assays.
Collapse
Affiliation(s)
- Joanna S Bell
- Wellcome Centre for Molecular Parasitology, University of Glasgow, Anderson College, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, United Kingdom
| | | |
Collapse
|
149
|
Blázquez J. Hypermutation as a Factor Contributing to the Acquisition of Antimicrobial Resistance. Clin Infect Dis 2003; 37:1201-9. [PMID: 14557965 DOI: 10.1086/378810] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Accepted: 07/05/2003] [Indexed: 11/03/2022] Open
Abstract
Contrary to what was thought previously, bacteria seem to be, not merely spectators to their own evolution, but, through a variety of mechanisms, able to increase the rate at which mutations occur and, consequently, to increase their chances of becoming resistant to antibiotics. Laboratory studies and mathematical models suggest that, under stressful conditions, such as antibiotic challenge, selective pressure favors mutator strains of bacteria over nonmutator strains. These hypermutable strains have been found in natural bacterial populations at higher frequencies than expected. The presence of mutator strains in the clinical setting may indicate an enhanced risk of acquiring antibiotic resistance through mutational and recombinational events. In addition, some antibiotics are inducers of mechanisms that transiently increase the mutation rate, and thus probably act, not only as mere selectors of antibiotic resistant clones, but also as resistance-promoters.
Collapse
Affiliation(s)
- Jesús Blázquez
- Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Campus Universidad Autonoma de Madrid, Spain.
| |
Collapse
|
150
|
Ferat JL, Le Gouar M, Michel F. A group II intron has invaded the genus Azotobacter and is inserted within the termination codon of the essential groEL gene. Mol Microbiol 2003; 49:1407-23. [PMID: 12940996 DOI: 10.1046/j.1365-2958.2003.03649.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A group II intron that was previously identified within Azotobacter vinelandii by polymerase chain reac-tion with consensus primers has been completely sequenced, together with its flanking exons. In contrast to other bacterial members of group II, which are associated with mobile or other presumably non-essential DNA, the A. vinelandii intron is inserted within the termination codon of the groEL coding sequence, which it changes from UAA to UAG. Both the host gene and the intron appear to be functional as (i) the ribozyme component of the intron self-splices in vitro and (ii) both intron-carrying and intronless versions of the single-copy groEL gene from A. vinelandii complement groEL mutations in Escherichia coli. Moreover, analysis of nucleotide substitutions within and around a closely related intron sequence that is present at the same site in Azotobacter chroococcum provides indirect evidence of intron transposition posterior to the divergence of the two Azotobacter taxa. Somewhat surprisingly, however, analyses of RNA extracted from cells that had or had not undergone a heat shock show that the bulk of groEL transcripts end within the first 140 nucleotides of the intron. These findings are discussed in the light of our current knowledge of the biochemistry of group II introns.
Collapse
MESH Headings
- Azotobacter vinelandii/genetics
- Azotobacter vinelandii/metabolism
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Sequence
- Chaperonin 60/genetics
- Chaperonin 60/metabolism
- Codon, Terminator
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- Escherichia coli/genetics
- Gene Expression Regulation, Bacterial
- Genetic Complementation Test
- Introns/genetics
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Pseudomonadaceae/genetics
- Pseudomonadaceae/metabolism
- RNA Splice Sites
- RNA Splicing
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- Sequence Homology
- Terminator Regions, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Jean-Luc Ferat
- Centre de Génétique Moléculaire du CNRS, 91190 Gif-sur-Yvette, France.
| | | | | |
Collapse
|