101
|
Hehner SP, Hofmann TG, Dröge W, Schmitz ML. The Antiinflammatory Sesquiterpene Lactone Parthenolide Inhibits NF-κB by Targeting the IκB Kinase Complex. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The transcription factor NF-κB is a key regulator of the cellular inflammatory and immune response. Therefore, components of the NF-κB-activating signaling pathways are frequent targets for antiinflammatory agents. This study shows that the sesquiterpene lactone parthenolide inhibits a common step in NF-κB activation by preventing the TNF-α-induced induction of IκB kinase (IKK) and IKKβ, without affecting the activation of p38 and c-Jun N-terminal kinase. Parthenolide impairs NF-κB-dependent transcription triggered by expression of TNFR-associated factor-2, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK1), and NF-κB-inducing kinase. This compound also prevents activation of both IKKs and DNA binding of NF-κB induced by MEKK and NF-κB-inducing kinase. Parthenolide targets a component of the IκB kinase complex without directly inhibiting IKKα, IKKβ, or MEKK1. Therefore, this sesquiterpene lactone could serve as a lead compound for the development of antiinflammatory remedies and is suitable as a molecular tool, allowing the dissection of TNF-α-derived signaling pathways leading to the activation of NF-κB, c-Jun N-terminal kinase, and p38.
Collapse
Affiliation(s)
- Steffen P. Hehner
- Department of Immunochemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas G. Hofmann
- Department of Immunochemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wulf Dröge
- Department of Immunochemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M. Lienhard Schmitz
- Department of Immunochemistry, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
102
|
Abstract
Theileria parva and T. annulata provide intriguing models for the study of parasite-host interactions. Both parasites possess the unique property of being able to transform the cells they infect; T. parva transforms T and B cells, whereas T. annulata affects B cells and monocytes/macrophages. Parasitized cells do not require antigenic stimulation or exogenous growth factors and acquire the ability to proliferate continuously. In vivo, parasitized cells undergo clonal expansion and infiltrate both lymphoid and non-lymphoid tissues of the infected host. Theileria-induced transformation is entirely reversible and is accompanied by the expression of a wide range of different lymphokines and cytokines, some of which may contribute to proliferation or may enhance spread and survival of the parasitized cell in the host. The presence of the parasite in the host-cell cytoplasm modulates the state of activation of a number of signal transduction pathways. This, in turn, leads to the activation of transcription factors, including nuclear factor-kappa B, which appear to be essential for the survival of Theileria-transformed T cells.
Collapse
Affiliation(s)
- D Dobbelaere
- Department of Molecular Pathology, University of Berne, Switzerland.
| | | |
Collapse
|
103
|
Tsukahara T, Kannagi M, Ohashi T, Kato H, Arai M, Nunez G, Iwanaga Y, Yamamoto N, Ohtani K, Nakamura M, Fujii M. Induction of Bcl-x(L) expression by human T-cell leukemia virus type 1 Tax through NF-kappaB in apoptosis-resistant T-cell transfectants with Tax. J Virol 1999; 73:7981-7. [PMID: 10482545 PMCID: PMC112812 DOI: 10.1128/jvi.73.10.7981-7987.1999] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) Tax is thought to play a pivotal role in immortalization of T cells. We have recently shown that the expression of Tax protected the mouse T-cell line CTLL-2 against apoptosis induced by interleukin-2 (IL-2) deprivation and converted its growth from being IL-2 dependent to being IL-2 independent. In this study, we demonstrate that constitutive expression of bcl-xl but not bcl-2, bcl-xs, bak, bad, or bax was associated with apoptosis resistance after IL-2 deprivation in CTLL-2 cells that expressed Tax. Transient-transfection assays showed that bcl-x promoter was transactivated by wild-type Tax. Similar effects were observed in mutant Tax retaining transactivating ability through NF-kappaB. Deletion or substitution of a putative NF-kappaB binding site identified in the bcl-x promoter significantly decreased Tax-induced transactivation. This NF-kappaB-like element was able to form a complex with NF-kappaB family proteins in vitro. Furthermore, Tax-induced transactivation of the bcl-x promoter was also diminished by the mutant IkappaBalpha, which specifically inhibits NF-kappaB activity. Our findings suggest that constitutive expression of Bcl-x(L) induced by Tax through the NF-kappaB pathway contributes to the inhibition of apoptosis in CTLL-2 cells after IL-2 deprivation.
Collapse
Affiliation(s)
- T Tsukahara
- Department of Immunotherapeutics, Medical Research Division, Tokyo Medical and Dental University, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
IκB Kinase Complex Is an Intracellular Target for Endotoxic Lipopolysaccharide in Human Monocytic Cells. Blood 1999. [DOI: 10.1182/blood.v94.5.1711.417k20_1711_1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxic lipopolysaccharide (LPS) is a proinflammatory agonist produced by gram-negative bacteria and a contributor to the majority of the 400,000 septic shock cases recorded annually in US hospitals. The primary target cells for LPS are monocytes and macrophages. Their response consists of massive production of proinflammatory cytokines, reactive oxygen- and nitrogen-intermediates, procoagulants, and cell adhesion molecules. In turn, expression of these LPS-responsive factors contributes to collapse of the circulatory system, to disseminated intravascular coagulation, and to a 30% mortality rate. A common intracellular mechanism responsible for the expression of septic shock genes in monocytes and macrophages involves the activation of NF-κB. This transcription factor is regulated by a family of structurally related inhibitors including IκB, IκBβ, and IκBɛ, which trap NF-κB in the cytoplasm. In this report, the investigators show that LPS derived from different gram-negative bacteria activates cytokine-responsive IκB kinases containing catalytic subunits termed IKK (IKK1) and IKKβ (IKK2). The kinetics of IKK and IKKβ activation in LPS-stimulated human monocytic cells differ from that recorded on their stimulation with tumor necrosis factor-, thereby implying a distinct activation mechanism. LPS-activated IKK complexes phosphorylate all 3 inhibitors of NF-κB: IκB, IκBβ, and IκBɛ. Moreover, LPS activates IKKβ preferentially, relative to IKK. Thus, IKK complex constitutes the main intracellular target for LPS-induced NF-κB signaling to the nucleus in human monocytic cells to activate genes responsible for septic shock.
Collapse
|
105
|
DeLuca C, Kwon H, Lin R, Wainberg M, Hiscott J. NF-kappaB activation and HIV-1 induced apoptosis. Cytokine Growth Factor Rev 1999; 10:235-53. [PMID: 10647779 DOI: 10.1016/s1359-6101(99)00015-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
HIV infection leads to the progressive loss of CD4+ T cells and the near complete destruction of the immune system in the majority of infected individuals. High levels of viral gene expression and replication result in part from the activation of NF-kappaB transcription factors, which in addition to orchestrating the host inflammatory response also activate the HIV-1 long terminal repeat. NF-kappaB induces the expression of numerous cytokine, chemokine, growth factor and immunoregulatory genes, many of which promote HIV-1 replication. Thus, NF-kappaB activation represents a double edged sword in HIV-1 infected cells, since stimuli that induce an NF-kappaB mediated immune response will also lead to enhanced HIV-1 transcription. NF-kappaB has also been implicated in apoptotic signaling, protecting cells from programmed cell death under most circumstances and accelerating apoptosis in others. Therefore, activation of NF-kappaB can impact upon HIV-1 replication and pathogenesis at many levels, making the relationship between HIV-1 expression and NF-kappaB activation multi-faceted. This review will attempt to analyse the many faces and functions of NF-kappaB in the HIV-1 lifecycle.
Collapse
Affiliation(s)
- C DeLuca
- Lady Davis Institute for Medical Research, Department of Microbiology, McGill AIDS Center, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|
106
|
Weil R, Sirma H, Giannini C, Kremsdorf D, Bessia C, Dargemont C, Bréchot C, Israël A. Direct association and nuclear import of the hepatitis B virus X protein with the NF-kappaB inhibitor IkappaBalpha. Mol Cell Biol 1999; 19:6345-54. [PMID: 10454581 PMCID: PMC84605 DOI: 10.1128/mcb.19.9.6345] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The X protein of hepatitis B virus (HBV) is a transcriptional activator which is required for infection and may play an important role in HBV-associated hepatocarcinogenesis. It has been suggested that X acts as a nuclear coactivator or stimulates several signal transduction pathways by acting in the cytoplasm. One of these pathways leads to the nuclear translocation of NF-kappaB. A recent report indicates that X activates NF-kappaB by acting on two cytoplasmic inhibitors of this family of transcription factors: IkappaBalpha and the precursor/inhibitor p105. We demonstrate here that X directly interacts with IkappaBalpha, which is able to transport it to the nucleus by a piggyback mechanism. This transport requires a region of IkappaBalpha (the second ankyrin repeat) which has been demonstrated to be involved in its nuclear import following NF-kappaB activation. Using deletion mutants, we showed that amino acids 249 to 253 of IkappaBalpha (located in the C-terminal part of the sixth ankyrin repeat) play a critical role in the interaction with X. This small region overlaps one of the domains of IkappaBalpha mediating the interaction with the p50 and p65 subunits of NF-kappaB and is also close to the nuclear export sequence of IkappaBalpha, therefore providing a potential explanation for the nuclear accumulation of IkappaBalpha with X. This association can also be observed upon the induction of endogenous IkappaBalpha by tumor necrosis factor alpha (TNF-alpha) treatment of Chang cells expressing X. In accordance with this observation, band shift analysis indicates that X induces a sustained NF-kappaB activation following TNF-alpha treatment, probably by preventing the reassociation of newly synthesized nuclear IkappaBalpha with DNA-bound NF-kappaB complexes.
Collapse
Affiliation(s)
- R Weil
- Unité de Biologie Moléculaire de l'Expression Génique, URA 1773 Centre National de la Recherche Scientifique, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
107
|
IκB Kinase Complex Is an Intracellular Target for Endotoxic Lipopolysaccharide in Human Monocytic Cells. Blood 1999. [DOI: 10.1182/blood.v94.5.1711] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractEndotoxic lipopolysaccharide (LPS) is a proinflammatory agonist produced by gram-negative bacteria and a contributor to the majority of the 400,000 septic shock cases recorded annually in US hospitals. The primary target cells for LPS are monocytes and macrophages. Their response consists of massive production of proinflammatory cytokines, reactive oxygen- and nitrogen-intermediates, procoagulants, and cell adhesion molecules. In turn, expression of these LPS-responsive factors contributes to collapse of the circulatory system, to disseminated intravascular coagulation, and to a 30% mortality rate. A common intracellular mechanism responsible for the expression of septic shock genes in monocytes and macrophages involves the activation of NF-κB. This transcription factor is regulated by a family of structurally related inhibitors including IκB, IκBβ, and IκBɛ, which trap NF-κB in the cytoplasm. In this report, the investigators show that LPS derived from different gram-negative bacteria activates cytokine-responsive IκB kinases containing catalytic subunits termed IKK (IKK1) and IKKβ (IKK2). The kinetics of IKK and IKKβ activation in LPS-stimulated human monocytic cells differ from that recorded on their stimulation with tumor necrosis factor-, thereby implying a distinct activation mechanism. LPS-activated IKK complexes phosphorylate all 3 inhibitors of NF-κB: IκB, IκBβ, and IκBɛ. Moreover, LPS activates IKKβ preferentially, relative to IKK. Thus, IKK complex constitutes the main intracellular target for LPS-induced NF-κB signaling to the nucleus in human monocytic cells to activate genes responsible for septic shock.
Collapse
|
108
|
Harhaj EW, Sun SC. IKKgamma serves as a docking subunit of the IkappaB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J Biol Chem 1999; 274:22911-4. [PMID: 10438454 DOI: 10.1074/jbc.274.33.22911] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tax gene product of human T-cell leukemia virus type I induces activation of transcription factor NF-kappaB, which contributes to deregulated expression of various cellular genes. Tax expression triggers persistent phosphorylation and degradation of the NF-kappaB inhibitory proteins IkappaBalpha and IkappaBbeta, resulting in constitutive nuclear expression of NF-kappaB. Recent studies demonstrate that Tax activates the IkappaB kinase (IKK), although the underlying mechanism remains unclear. In this report, we show that Tax physically interacts with a regulatory component of the IKK complex, the NF-kappaB essential modulator or IKKgamma (NEMO/IKKgamma). This molecular interaction appears to be important for recruiting Tax to the IKK catalytic subunits, IKKalpha and IKKbeta. Expression of NEMO/IKKgamma greatly promotes binding of Tax to IKKalpha and IKKbeta and stimulates Tax-mediated IKK activation. Interestingly, a mutant form of Tax defective in IKK activation exhibited a markedly diminished level of NEMO/IKKgamma association. These findings suggest that the physical interaction of Tax with NEMO/IKKgamma may play an important role in Tax-mediated IKK activation.
Collapse
Affiliation(s)
- E W Harhaj
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
109
|
Zandi E, Karin M. Bridging the gap: composition, regulation, and physiological function of the IkappaB kinase complex. Mol Cell Biol 1999; 19:4547-51. [PMID: 10373503 PMCID: PMC84252 DOI: 10.1128/mcb.19.7.4547] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- E Zandi
- Norris Comprehensive Cancer Center and Department of Molecular Microbiology and Immunology, University of Southern California School of Medicine, Los Angeles, California 90033, USA.
| | | |
Collapse
|
110
|
Arima N, Matsushita K, Obata H, Ohtsubo H, Fujiwara H, Arimura K, Kukita T, Suruga Y, Wakamatsu S, Hidaka S, Tei C. NF-kappaB involvement in the activation of primary adult T-cell leukemia cells and its clinical implications. Exp Hematol 1999; 27:1168-75. [PMID: 10390192 DOI: 10.1016/s0301-472x(99)00053-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HTLV-I provirus-encoded Tax protein induces NF-kappaB in Tax-transfected Jurkat T cells or HTLVL-I- infected T cells in vitro. Tax induction of NF-kappaB is presumed to be involved in proliferation and activation of primary leukemia cells in vivo. Recent studies have demonstrated that NF-kappaB activities in human T cells are mediated by at least four c-Rel-related DNA binding proteins - p50, p55, p75 and p85. We examined the significance of NF-kappaB induction in primary adult T cell leukemia cells and the induction kinetics of each of the four NF-kappaB species. Marked NF-kappaB activity was detected using an electrophoretic mobility shift assay (EMSA) in the primary cells of patients with acute disease, but little activity was noted in the cells of chronic patients. NF-kappaB activity was enhanced in a time-dependent manner in acute type cells cultured with mitogen-free medium; there was no induction of activity in chronic type cells. UV crosslinking demonstrated all four species of NFkappaB complex - high levels of p50 and lower levels of p55 and p75, in acute type cells; chronic type cells showed only the p50. As a control, normal resting T cells similarly showed only p50; control cells showed little change in activity when cultured without mitogenic stimulation, analogous to chronic type ATL. Northern blotting revealed enhancement of c-rel (encoding p85) and KBFI (encoding p50 and p55) expression in acute type cells during culture, while there was no significant enhancement of mRNAs in chronic type ATL cells or unstimulated normal T cells. Northern blotting also revealed that Tax is upregulated at the mRNA level in acute- but not chronic-type cells during culture. Expression of c-rel and KBF1 mRNAs in acute type cells appeared to be related to Tax mRNA expression. These results suggest that Tax is capable of inducing nuclear expression of all four NF-kappaB species in primary ATL cells of acute type patients, with marked effects on p55, p75, and p85. Tax induction of NF-kappaB species is regulated, at least in part, at a pretranslational level involving increases in c-rel and KBF1 mRNA.
Collapse
MESH Headings
- Acute Disease
- Aged
- Aged, 80 and over
- Chronic Disease
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Disease Progression
- Female
- Gene Expression Regulation, Leukemic
- Gene Expression Regulation, Viral
- Gene Products, tax/physiology
- Genes, pX
- Human T-lymphotropic virus 1/genetics
- Humans
- Jurkat Cells
- Kinetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/pathology
- Male
- Middle Aged
- NF-kappa B/biosynthesis
- NF-kappa B/genetics
- NF-kappa B/physiology
- NF-kappa B p50 Subunit
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplastic Stem Cells/metabolism
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins c-rel
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcriptional Activation
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- N Arima
- First Department of Internal Medicine, Faculty of Medicine, Kagoshima University, Sakuragaoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Heyninck K, De Valck D, Vanden Berghe W, Van Criekinge W, Contreras R, Fiers W, Haegeman G, Beyaert R. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-kappaB-inhibiting protein ABIN. J Cell Biol 1999; 145:1471-82. [PMID: 10385526 PMCID: PMC2133159 DOI: 10.1083/jcb.145.7.1471] [Citation(s) in RCA: 252] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1998] [Revised: 03/29/1999] [Indexed: 01/28/2023] Open
Abstract
The zinc finger protein A20 is a tumor necrosis factor (TNF)- and interleukin 1 (IL-1)-inducible protein that negatively regulates nuclear factor-kappa B (NF-kappaB)-dependent gene expression. However, the molecular mechanism by which A20 exerts this effect is still unclear. We show that A20 does not inhibit TNF- induced nuclear translocation and DNA binding of NF-kappaB, although it completely prevents the TNF- induced activation of an NF-kappaB-dependent reporter gene, as well as TNF-induced IL-6 and granulocyte macrophage-colony stimulating factor gene expression. Moreover, NF-kappaB activation induced by overexpression of the TNF receptor-associated proteins TNF receptor-associated death domain protein (TRADD), receptor interacting protein (RIP), and TNF recep- tor-associated factor 2 (TRAF2) was also inhibited by expression of A20, whereas NF-kappaB activation induced by overexpression of NF-kappaB-inducing kinase (NIK) or the human T cell leukemia virus type 1 (HTLV-1) Tax was unaffected. These results demonstrate that A20 inhibits NF-kappaB-dependent gene expression by interfering with a novel TNF-induced and RIP- or TRAF2-mediated pathway that is different from the NIK-IkappaB kinase pathway and that is specifically involved in the transactivation of NF-kappaB. Via yeast two-hybrid screening, we found that A20 binds to a novel protein, ABIN, which mimics the NF-kappaB inhibiting effects of A20 upon overexpression, suggesting that the effect of A20 is mediated by its interaction with this NF-kappaB inhibiting protein, ABIN.
Collapse
Affiliation(s)
- K Heyninck
- Department of Molecular Biology, Flanders Interuniversity Institute for Biotechnology, University of Ghent, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Jin DY, Giordano V, Kibler KV, Nakano H, Jeang KT. Role of adapter function in oncoprotein-mediated activation of NF-kappaB. Human T-cell leukemia virus type I Tax interacts directly with IkappaB kinase gamma. J Biol Chem 1999; 274:17402-5. [PMID: 10364167 DOI: 10.1074/jbc.274.25.17402] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms by which the human T-cell leukemia virus type I Tax oncoprotein activates NF-kappaB remain incompletely understood. Although others have described an interaction between Tax and a holo-IkappaB kinase (IKK) complex, the exact details of protein-protein contact are not fully defined. Here we show that Tax binds to neither IKK-alpha nor IKK-beta but instead complexes directly with IKK-gamma, a newly characterized component of the IKK complex. This direct interaction with IKK-gamma correlates with Tax-induced IkappaB-alpha phosphorylation and NF-kappaB activation. Thus, our findings establish IKK-gamma as a key molecule for adapting an oncoprotein-specific signaling to IKK-alpha and IKK-beta.
Collapse
Affiliation(s)
- D Y Jin
- Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | | | | | |
Collapse
|
113
|
Abstract
The interactions between human T-cell lymphotropic virus type I (HTLV-I) and the cellular immune system can be divided into viral interference with functions of the infected host T cell and the subsequent interactions between the infected T cell and the cellular immune system. HTLV-I-mediated activation of the infected host T cell is induced primarily by the viral protein Tax, which influences transcriptional activation, signal transduction pathways, cell cycle control, and apoptosis. These properties of Tax may well explain the ability of HTLV-I to immortalize T cells. It is not clear, though, how HTLV-I induces T-cell transformation (interleukin-2 [IL-2] independence). Recent evidence suggests that Tax may promote the G1- to S-phase transition, although this may involve additional proteins. A role for other viral proteins that may constitutively activate the IL-2 receptor pathway has also been suggested. By virtue of their activated state, HTLV-I-infected T cells can nonspecifically activate resting, uninfected T cells via virus-mediated upregulation of adhesion molecules. This may favor viral dissemination. Moreover, the induction of a remarkably high frequency of antiviral CD8(+) T cells does not appear to eliminate the infection. Indeed, individuals with a high frequency of virus-specific CD8(+) T cells have a high viral load, indicating a state of chronic immune system stimulation. Thus, while an activated immune system is needed to eradicate the infection, the spread of the HTLV-I is also accelerated under these conditions. A detailed knowledge of the molecular interactions between virus-specific CD8(+) T cells and immunodominant viral epitopes holds promise for the development of specific antiviral therapy.
Collapse
Affiliation(s)
- P Höllsberg
- Department of Medical Microbiology and Immunology, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
114
|
Chu ZL, Shin YA, Yang JM, DiDonato JA, Ballard DW. IKKgamma mediates the interaction of cellular IkappaB kinases with the tax transforming protein of human T cell leukemia virus type 1. J Biol Chem 1999; 274:15297-300. [PMID: 10336413 DOI: 10.1074/jbc.274.22.15297] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tax oncoprotein of human T cell leukemia virus type 1 constitutively activates transcription factor NF-kappaB by a mechanism involving Tax-induced phosphorylation of IkappaBalpha, a labile cytoplasmic inhibitor of NF-kappaB. To trigger this signaling cascade, Tax associates stably with and persistently activates a cellular IkappaB kinase (IKK) containing both catalytic (IKKalpha and IKKbeta) and noncatalytic (IKKgamma) subunits. We now demonstrate that IKKgamma enables Tax to dock with the IKKbeta catalytic subunit, resulting in chronic IkappaB kinase activation. Mutations in either IKKgamma or Tax that prevent formation of these higher order Tax.IKK complexes also interfere with the ability of Tax to induce IKKbeta catalytic function in vivo. Deletion mapping studies indicate that amino acids 1-100 of IKKgamma are required for this Tax targeting function. Together, these findings identify IKKgamma as an adaptor protein that directs the stable formation of pathologic Tax.IKK complexes in virally infected T cells.
Collapse
Affiliation(s)
- Z L Chu
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0295, USA
| | | | | | | | | |
Collapse
|
115
|
Sakurai H, Miyoshi H, Toriumi W, Sugita T. Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-kappaB activation. J Biol Chem 1999; 274:10641-8. [PMID: 10187861 DOI: 10.1074/jbc.274.15.10641] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several mitogen-activated protein kinase kinase kinases play critical roles in nuclear factor-kappaB (NF-kappaB) activation. We recently reported that the overexpression of transforming growth factor-beta-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family, together with its activator TAK1-binding protein 1 (TAB1) stimulates NF-kappaB activation. Here we investigated the molecular mechanism of TAK1-induced NF-kappaB activation. Dominant negative mutants of IkappaB kinase (IKK) alpha and IKKbeta inhibited TAK1-induced NF-kappaB activation. TAK1 activated IKKalpha and IKKbeta in the presence of TAB1. IKKalpha and IKKbeta were coimmunoprecipitated with TAK1 in the absence of TAB1. TAB1-induced TAK1 activation promoted the dissociation of active forms of IKKalpha and IKKbeta from active TAK1, whereas the IKK mutants remained to interact with active TAK1. Furthermore, tumor necrosis factor-alpha activated endogenous TAK1, and the kinase-negative TAK1 acted as a dominant negative inhibitor against tumor necrosis factor-alpha-induced NF-kappaB activation. These results demonstrated a novel signaling pathway to NF-kappaB activation through TAK1 in which TAK1 may act as a regulatory kinase of IKKs.
Collapse
Affiliation(s)
- H Sakurai
- Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., 16-89 Kashima 3-chome, Yodogawa-ku, Osaka 532-8505, Japan
| | | | | | | |
Collapse
|
116
|
Algarté M, Nguyen H, Heylbroeck C, Lin R, Hiscott J. IkappaB-mediated inhibition of virus-induced beta interferon transcription. J Virol 1999; 73:2694-702. [PMID: 10074115 PMCID: PMC104025 DOI: 10.1128/jvi.73.4.2694-2702.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have examined the consequences of overexpression of the IkappaBalpha and IkappaBbeta inhibitory proteins on the regulation of NF-kappaB-dependent beta interferon (IFN-beta) gene transcription in human cells after Sendai virus infection. In transient coexpression studies or in cell lines engineered to express different forms of IkappaB under tetracycline-inducible control, the IFN-beta promoter (-281 to +19) linked to the chloramphenicol acetyltransferase reporter gene was differentially inhibited in response to virus infection. IkappaBalpha exhibited a strong inhibitory effect on virus-induced IFN-beta expression, whereas IkappaBbeta exerted an inhibitory effect only at a high concentration. Despite activation of the IkappaB kinase complex by Sendai virus infection, overexpression of the double-point-mutated (S32A/S36A) dominant repressors of IkappaBalpha (TD-IkappaBalpha) completely blocked IFN-beta gene activation by Sendai virus. Endogenous IFN-beta RNA production was also inhibited in Tet-inducible TD-IkappaBalpha-expressing cells. Inhibition of IFN-beta expression directly correlated with a reduction in the binding of NF-kappaB (p50-RelA) complex to PRDII after Sendai virus infection in IkappaBalpha-expressing cells, whereas IFN-beta expression and NF-kappaB binding were only slightly reduced in IkappaBbeta-expressing cells. These experiments demonstrate a major role for IkappaBalpha in the regulation of NF-kappaB-induced IFN-beta gene activation and a minor role for IkappaBbeta in the activation process.
Collapse
Affiliation(s)
- M Algarté
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | | | |
Collapse
|
117
|
Jin DY, Jeang KT. Isolation of full-length cDNA and chromosomal localization of human NF-kappaB modulator NEMO to Xq28. J Biomed Sci 1999; 6:115-20. [PMID: 10087442 DOI: 10.1007/bf02256442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
NEMO is an essential component of the IkappaB kinase complex. Others have shown that expression of mouse NEMO can complement the lack of responsiveness to NF-kappaB stimuli in two NEMO-deficient cell lines. Here we report the isolation of a full-length human NEMO cDNA. Virtual translation of human NEMO cDNA predicts a 48-kD coiled-coil protein which shares 87.9% identity and 90.5% similarity with the mouse homolog. By sequence alignment, we mapped the human NEMO gene to chromosome Xq28. We note that the NEMO and the G6PD (glucose-6-phosphate dehydrogenase) loci are arranged in a head-to-head orientation separated by no more than 800 bp. This map location is further supported by the sequence of an alternatively spliced variant of human NEMO mRNA. Thus, human NEMO is an X-linked gene closely adjacent to the G6PD locus.
Collapse
Affiliation(s)
- D Y Jin
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Bethesda, Md., USA
| | | |
Collapse
|
118
|
You LR, Chen CM, Lee YH. Hepatitis C virus core protein enhances NF-kappaB signal pathway triggering by lymphotoxin-beta receptor ligand and tumor necrosis factor alpha. J Virol 1999; 73:1672-81. [PMID: 9882379 PMCID: PMC103998 DOI: 10.1128/jvi.73.2.1672-1681.1999] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/1998] [Accepted: 10/20/1998] [Indexed: 12/14/2022] Open
Abstract
Our previous study indicated that the core protein of hepatitis C virus (HCV) can associate with tumor necrosis factor receptor (TNFR)-related lymphotoxin-beta receptor (LT-betaR) and that this protein-protein interaction plays a modulatory effect on the cytolytic activity of recombinant form LT-betaR ligand (LT-alpha1beta2) but not tumor necrosis factor alpha (TNF-alpha) in certain cell types. Since both TNF-alpha/TNFR and LT-alpha1beta2/LT-betaR are also engaged in transcriptional activator NF-kappaB activation or c-Jun N-terminal kinase (JNK) activation, the biological effects of the HCV core protein on these regards were elucidated in this study. As demonstrated by the electrophoretic mobility shift assay, the expression of HCV core protein prolonged or enhanced the TNF-alpha or LT-alpha1beta2-induced NF-kappaB DNA-binding activity in HuH-7 and HeLa cells. The presence of HCV core protein in HeLa or HuH-7 cells with or without cytokine treatment also enhanced the NF-kappaB-dependent reporter plasmid activity, and this effect was more strongly seen with HuH-7 cells than with HeLa cells. Western blot analysis suggested that this modulation of the NF-kappaB activity by the HCV core protein was in part due to elevated or prolonged nuclear retention of p50 or p65 species of NF-kappaB in core protein-producing cells with or without cytokine treatment. Furthermore, the HCV core protein enhanced or prolonged the IkappaB-beta degradation triggering by TNF-alpha or LT-alpha1beta2 both in HeLa and HuH-7 cells. In contrast to that of IkappaB-beta, the increased degradation of IkappaB-alpha occurred only in LT-alpha1beta2-treated core-producing HeLa cells and not in TNF-alpha-treated cells. Therefore, the HCV core protein plays a modulatory effect on NF-kappaB activation triggering by both cytokines, though the mechanism of NF-kappaB activation, in particular the regulation of IkappaB degradation, is rather cell line and cytokine specific. Studies also suggested that the HCV core protein had no effect on TNF-alpha-stimulated JNK activity in both HeLa and HuH-7 cells. These findings, together with our previous study, strongly suggest that among three signaling pathways triggered by the TNF-alpha-related cytokines, the HCV core protein potentiates NF-kappaB activation in most cell types, which in turn may contribute to the chronically activated, persistent state of HCV-infected cells.
Collapse
Affiliation(s)
- L R You
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
119
|
Newbound GC, O'Rourke JP, Collins ND, DeWille J, Lairmore MD. Comparison of HTLV-I basal transcription and expression of CREB/ATF-1/CREM family members in peripheral blood mononuclear cells and Jurkat T cells. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1999; 20:1-10. [PMID: 9928723 DOI: 10.1097/00042560-199901010-00001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HTLV-I is the etiologic agent of adult T-cell leukemia/lymphoma and is associated with tropical spastic paraparesis/HTLV-I-associated myelopathy. Following integration into the host cell genome, HTLV-I replication is regulated by both host and viral mechanisms that control transcription. Low levels of viral transcription (basal transcription) occur before expression of the virally encoded Tax protein (Tax-mediated transcription). Members of the cyclic adenosine monophosphate (cAMP) response element binding (CREB)/activating transcription factor 1 (ATF-1) family of transcription factors bind three 21-bp repeats (Tax-responsive element-1, or TRE-1) within the viral promoter and are important for basal and Tax-mediated transcription. Using mitogen stimulated and quiescent peripheral blood mononuclear cells (PBMC) and Jurkat cells, we compared differences in basal transcription and amounts and binding of transcription factors with TRE-1. We demonstrate that amounts of transcriptionally active phosphorylated CREB protein (P-CREB) differ between activated PBMC and Jurkat cells. Following stimulation, P-CREB levels remain elevated in PBMC for up to 24 hours whereas CREB is dephosphorylated in Jurkat cells within 4 hours following stimulation. The differences in P-CREB levels between PBMC and Jurkat cells were directly correlated with basal transcription of HTLV-I in the two cell types. Using electrophoretic mobility shift assays, we determined that the pattern of band migration differed between the two cell types. These data demonstrate that PBMC differentially regulate basal HTLV-I transcription compared with Jurkat T cells, and this differential regulation is due, in part to differential phosphorylation and binding of CREB/ATF-1 to TRE-1 in the HTLV-I promoter. We demonstrate the utility of using primary lymphocyte models to study HTLV-I transcription in the context of cell signaling and suggest that activated PBMC maintain elevated levels of P-CREB, which promote basal HTLV-I transcription and enhance viral persistence in vivo.
Collapse
Affiliation(s)
- G C Newbound
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus 43210-1092, USA
| | | | | | | | | |
Collapse
|
120
|
Petropoulos L, Hiscott J. Association between HTLV-1 Tax and I kappa B alpha is dependent on the I kappa B alpha phosphorylation state. Virology 1998; 252:189-99. [PMID: 9875328 DOI: 10.1006/viro.1998.9430] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Biological, molecular, and epidemiological data have demonstrated that human T cell leukemia virus type 1 (HTLV-1) encoded Tax protein plays a central role in the initiation of T cell malignancy. The 40-kDa Tax oncoprotein serves as a potent transcriptional activator that induces viral gene expression driven by the HTLV-1 long terminal repeats and also stimulates multiple cellular genes involved in T cell activation, cell cycle regulation, and gene activation. Since Tax has been shown to interact directly and indirectly with the NF-kappa B/I kappa B regulatory proteins, we examined the significance of an in vivo association between Tax and the I kappa B alpha inhibitor. Using GST affinity chromatography, Tax was shown to interact with the I kappa B alpha ankyrin repeats which are essential for interaction with the NF-kappa B/Rel proteins. In vivo, using I kappa B alpha mutants and co-immunoprecipitation, a preferential interaction between HTLV-1 Tax and N-terminally hypophosphorylated I kappa B alpha was detected. Tax also enhanced binding of I kappa B alpha to the proteasome subunit HsN3, resulting in a Tax-enhanced, constitutive degradation of wild-type and mutated forms of I kappa B alpha in the absence of phosphorylation and ubiquitination. Binding of I kappa B alpha to proteasome subunit HC9 was also observed, but this interaction occurred independently of Tax. Taken together, these results suggest a role for Tax as a viral chaperone resulting in the enhanced constitutive turnover of I kappa B alpha. The association of Tax with hypophosphorylated I kappa B alpha may prevent I kappa B alpha from binding to NF-kappa B and also target I kappa B alpha to the proteasome for degradation via a phosphorylation-independent pathway.
Collapse
Affiliation(s)
- L Petropoulos
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montréal, Québec, Canada
| | | |
Collapse
|