101
|
Aulić S, Masperone L, Narkiewicz J, Isopi E, Bistaffa E, Ambrosetti E, Pastore B, De Cecco E, Scaini D, Zago P, Moda F, Tagliavini F, Legname G. α-Synuclein Amyloids Hijack Prion Protein to Gain Cell Entry, Facilitate Cell-to-Cell Spreading and Block Prion Replication. Sci Rep 2017; 7:10050. [PMID: 28855681 PMCID: PMC5577263 DOI: 10.1038/s41598-017-10236-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/07/2017] [Indexed: 01/17/2023] Open
Abstract
The precise molecular mechanism of how misfolded α-synuclein (α-Syn) accumulates and spreads in synucleinopathies is still unknown. Here, we show the role of the cellular prion protein (PrPC) in mediating the uptake and the spread of recombinant α-Syn amyloids. The in vitro data revealed that the presence of PrPC fosters the higher uptake of α-Syn amyloid fibrils, which was also confirmed in vivo in wild type (Prnp+/+) compared to PrP knock-out (Prnp−/−) mice. Additionally, the presence of α-Syn amyloids blocked the replication of scrapie prions (PrPSc) in vitro and ex vivo, indicating a link between the two proteins. Indeed, whilst PrPC is mediating the internalization of α-Syn amyloids, PrPSc is not able to replicate in their presence. This observation has pathological relevance, since several reported case studies show that the accumulation of α-Syn amyloid deposits in Creutzfeldt-Jakob disease patients is accompanied by a longer disease course.
Collapse
Affiliation(s)
- Suzana Aulić
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Lara Masperone
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Joanna Narkiewicz
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Elisa Isopi
- Department of Medical, Oral, and Biotechnology Science and Center on Aging Sciences and Translational Medicine (CeSI-MeT) "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Edoardo Bistaffa
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute Italy Laboratory, Milano, Italy
| | - Elena Ambrosetti
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - Beatrice Pastore
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Elena De Cecco
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Denis Scaini
- ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Paola Zago
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Fabio Moda
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute Italy Laboratory, Milano, Italy
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute Italy Laboratory, Milano, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy. .,ELETTRA Sincrotrone Trieste S.C.p.A, Basovizza, Trieste, Italy.
| |
Collapse
|
102
|
Bove-Fenderson E, Urano R, Straub JE, Harris DA. Cellular prion protein targets amyloid-β fibril ends via its C-terminal domain to prevent elongation. J Biol Chem 2017; 292:16858-16871. [PMID: 28842494 DOI: 10.1074/jbc.m117.789990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/15/2017] [Indexed: 11/06/2022] Open
Abstract
Oligomeric forms of the amyloid-β (Aβ) peptide are thought to represent the primary synaptotoxic species underlying the neurodegenerative changes seen in Alzheimer's disease. It has been proposed that the cellular prion protein (PrPC) functions as a cell-surface receptor, which binds to Aβ oligomers and transduces their toxic effects. However, the molecular details of the PrPC-Aβ interaction remain uncertain. Here, we investigated the effect of PrPC on polymerization of Aβ under rigorously controlled conditions in which Aβ converts from a monomeric to a fibrillar state via a series of kinetically defined steps. We demonstrated that PrPC specifically inhibited elongation of Aβ fibrils, most likely by binding to the ends of growing fibrils. Surprisingly, this inhibitory effect required the globular C-terminal domain of PrPC, which has not been previously implicated in interactions with Aβ. Our results suggest that PrPC recognizes structural features common to both Aβ oligomers and fibril ends and that this interaction could contribute to the neurotoxic effect of Aβ aggregates. Additionally, our results identify the C terminus of PrPC as a new and potentially more druggable molecular target for treating Alzheimer's disease.
Collapse
Affiliation(s)
- Erin Bove-Fenderson
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - Ryo Urano
- the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - John E Straub
- the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - David A Harris
- From the Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
103
|
Copper- and Zinc-Promoted Interdomain Structure in the Prion Protein: A Mechanism for Autoinhibition of the Neurotoxic N-Terminus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:35-56. [PMID: 28838668 DOI: 10.1016/bs.pmbts.2017.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The function of the cellular prion protein (PrPC), while still poorly understood, is increasingly linked to its ability to bind physiological metal ions at the cell surface. PrPC binds divalent forms of both copper and zinc through its unstructured N-terminal domain, modulating interactions between PrPC and various receptors at the cell surface and ultimately tuning downstream cellular processes. In this chapter, we briefly discuss the molecular features of copper and zinc uptake by PrPC and summarize evidence implicating these metal ions in PrP-mediated physiology. We then focus our review on recent biophysical evidence revealing a physical interaction between the flexible N-terminal and globular C-terminal domains of PrPC. This interdomain cis interaction is electrostatic in nature and is promoted by the binding of Cu2+ and Zn2+ to the N-terminal octarepeat domain. These findings, along with recent cellular studies, suggest a mechanism whereby NC interactions serve to regulate the activity and/or toxicity of the PrPC N-terminus. We discuss this potential mechanism in relation to familial prion disease mutations, lethal deletions of the PrPC central region, and neurotoxicity induced by certain globular domain ligands, including bona fide prions and toxic amyloid-β oligomers.
Collapse
|
104
|
Linsenmeier L, Altmeppen HC, Wetzel S, Mohammadi B, Saftig P, Glatzel M. Diverse functions of the prion protein - Does proteolytic processing hold the key? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2128-2137. [PMID: 28693923 DOI: 10.1016/j.bbamcr.2017.06.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Proteolytic processing of the cellular and disease-associated form of the prion protein leads to generation of bioactive soluble prion protein fragments and modifies the structure and function of its cell-bound form. The nature of proteases responsible for shedding, α-, β-, and γ-cleavage of the prion protein are only partially identified and their regulation is largely unknown. Here, we provide an overview of the increasingly multifaceted picture of prion protein proteolysis and shed light on physiological and pathological roles associated with these cleavages. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
105
|
Elezgarai SR, Biasini E. Common therapeutic strategies for prion and Alzheimer's diseases. Biol Chem 2017; 397:1115-1124. [PMID: 27279060 DOI: 10.1515/hsz-2016-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 01/19/2023]
Abstract
A number of unexpected pathophysiological connections linking different neurodegenerative diseases have emerged over the past decade. An example is provided by prion and Alzheimer's diseases. Despite being distinct pathologies, these disorders share several neurotoxic mechanisms, including accumulation of misfolded protein isoforms, stress of the protein synthesis machinery, and activation of a neurotoxic signaling mediated by the cellular prion protein. Here, in addition to reviewing these mechanisms, we will discuss the potential therapeutic interventions for prion and Alzheimer's diseases that are arising from the comprehension of their common neurodegenerative pathways.
Collapse
|
106
|
Urrea L, Ferrer I, Gavín R, del Río JA. The cellular prion protein (PrP C) as neuronal receptor for α-synuclein. Prion 2017; 11:226-233. [PMID: 28759332 PMCID: PMC5553301 DOI: 10.1080/19336896.2017.1334748] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
The term 'prion-like' is used to define some misfolded protein species that propagate intercellularly, triggering protein aggregation in recipient cells. For cell binding, both direct plasma membrane interaction and membrane receptors have been described for particular amyloids. In this respect, emerging evidence demonstrates that several β-sheet enriched proteins can bind to the cellular prion protein (PrPC). Among other interactions, the physiological relevance of the binding between β-amyloid and PrPC has been a relevant focus of numerous studies. At the molecular level, published data point to the second charged cluster domain of the PrPC molecule as the relevant binding domain of the β-amyloid/PrPC interaction. In addition to β-amyloid, participation of PrPC in binding α-synuclein, responsible for neurodegenerative synucleopathies, has been reported. Although results indicate relevant participation of PrPC in the spreading of α-synuclein in living mice, the physiological relevance of the interaction remains elusive. In this comment, we focus our attention on summarizing current knowledge of PrPC as a receptor for amyloid proteins and its physiological significance, with particular focus on α-synuclein.
Collapse
Affiliation(s)
- Laura Urrea
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Isidro Ferrer
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- Senior Consultant Neuropathology, Service of Pathology, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Hospitalet de Llobregat, Spain
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
107
|
Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 2017. [PMID: 28650319 PMCID: PMC5505701 DOI: 10.7554/elife.28401] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD. DOI:http://dx.doi.org/10.7554/eLife.28401.001 Treating Alzheimer’s disease and related dementias is one of the major challenges currently facing healthcare providers worldwide. A hallmark of the disease is the formation of large deposits of a specific molecule, known as amyloid beta (Aβ), in the brain. However, more and more research suggests that smaller and particularly toxic amyloid beta clumps – often referred to as oligomeric Aβ – appear as an early sign of Alzheimer’s disease. To understand how the formation of these smaller amyloid beta clumps triggers other aspects of the disease, it is important to identify molecules in the human brain that oligomeric Aβ binds to. To this end, Wang et al. attached amyloid beta or oligomeric Aβ molecules to microscopically small beads. The beads were then exposed to human brain extracts in a test tube, which allowed molecules in the extracts to bind to the amyloid beta or oligomeric Aβ. The samples were then spun at high speed, meaning that the beads and any other molecules bound to them sunk and formed pellets at the bottom of the tubes. Each pellet was then analyzed to see which molecules it contained. The experiments identified more than a hundred human brain proteins that can bind to amyloid beta. One of them, known as somatostatin, selectively binds to oligomeric Aβ. Wang et al. were able to determine the structural features of somatostatin that control this binding. Finally, in further experiments performed in test tubes, Wang et al. noticed that smaller oligomeric Aβ clumps were more likely to form than larger amyloid beta deposits when somatostatin was present. This could signify a previously unrecognized role of somatostatin in the development of Alzheimer’s disease. Further studies are now needed to confirm whether the presence of somatostatin in the brain favors the formation of smaller, toxic oligomeric Aβ clumps over large innocuous amyloid beta deposits. If so, new treatments could be developed that aim to reduce oligomeric Aβ levels in the brain by preventing somatostatin from interacting with amyloid beta molecules. Wang et al. also suggest that somatostatin could be used in diagnostic tests to detect abnormal levels of oligomeric Aβ in the brain or body fluids of people who have Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.28401.002
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Punam Ghosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Alejandro Ruiz-Riquelme
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
108
|
Abstract
The misfolding of the cellular prion protein (PrPC) causes fatal neurodegenerative diseases. Yet PrPC is highly conserved in mammals, suggesting that it exerts beneficial functions preventing its evolutionary elimination. Ablation of PrPC in mice results in well-defined structural and functional alterations in the peripheral nervous system. Many additional phenotypes were ascribed to the lack of PrPC, but some of these were found to arise from genetic artifacts of the underlying mouse models. Here, we revisit the proposed physiological roles of PrPC in the central and peripheral nervous systems and highlight the need for their critical reassessment using new, rigorously controlled animal models.
Collapse
Affiliation(s)
- Marie-Angela Wulf
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Assunta Senatore
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| |
Collapse
|
109
|
Xing Y, Feng XZ, Zhang L, Hou J, Han GC, Chen Z. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles. Int J Nanomedicine 2017; 12:3171-3179. [PMID: 28458538 PMCID: PMC5402878 DOI: 10.2147/ijn.s132776] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soluble beta-amyloid (Aβ) oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD) patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP) aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF) samples was demonstrated.
Collapse
Affiliation(s)
- Yun Xing
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Lipeng Zhang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang
| | - Jiating Hou
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People's Republic of China
| |
Collapse
|
110
|
Castle AR, Gill AC. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci 2017; 4:19. [PMID: 28428956 PMCID: PMC5382174 DOI: 10.3389/fmolb.2017.00019] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023] Open
Abstract
The prion protein, PrPC, is a small, cell-surface glycoprotein notable primarily for its critical role in pathogenesis of the neurodegenerative disorders known as prion diseases. A hallmark of prion diseases is the conversion of PrPC into an abnormally folded isoform, which provides a template for further pathogenic conversion of PrPC, allowing disease to spread from cell to cell and, in some circumstances, to transfer to a new host. In addition to the putative neurotoxicity caused by the misfolded form(s), loss of normal PrPC function could be an integral part of the neurodegenerative processes and, consequently, significant research efforts have been directed toward determining the physiological functions of PrPC. In this review, we first summarise important aspects of the biochemistry of PrPC before moving on to address the current understanding of the various proposed functions of the protein, including details of the underlying molecular mechanisms potentially involved in these functions. Over years of study, PrPC has been associated with a wide array of different cellular processes and many interacting partners have been suggested. However, recent studies have cast doubt on the previously well-established links between PrPC and processes such as stress-protection, copper homeostasis and neuronal excitability. Instead, the functions best-supported by the current literature include regulation of myelin maintenance and of processes linked to cellular differentiation, including proliferation, adhesion, and control of cell morphology. Intriguing connections have also been made between PrPC and the modulation of circadian rhythm, glucose homeostasis, immune function and cellular iron uptake, all of which warrant further investigation.
Collapse
|
111
|
Linden R. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules. Front Mol Neurosci 2017; 10:77. [PMID: 28373833 PMCID: PMC5357658 DOI: 10.3389/fnmol.2017.00077] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022] Open
Abstract
The prion glycoprotein (PrPC) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrPC is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer’s Disease (AD). PrPC is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrPC at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrPC, despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrPC with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrPC serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific signaling; mediation of the crosstalk of signaling pathways; reciprocal allosteric regulation with binding partners; compartmentalized responses; dependence of signaling properties upon posttranslational modification; and stoichiometric requirements and/or oligomerization-dependent impact on signaling. The scaffold concept may contribute to novel approaches to the development of effective treatments to hitherto incurable neurodegenerative diseases, through informed modulation of prion protein-ligand interactions.
Collapse
Affiliation(s)
- Rafael Linden
- Laboratory of Neurogenesis, Institute of Biophysics, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
112
|
Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells. J Virol 2017; 91:JVI.01862-16. [PMID: 28077650 DOI: 10.1128/jvi.01862-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/05/2017] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear.IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and several proteins, including abnormal PrP in prion disease and the Aβ oligomer in Alzheimer's disease. In the present study, melanin, a main determinant of skin color, was newly found to interact with this N-terminal region and inhibits abnormal PrP formation in prion-infected cells. However, the data for prion infection in mice lacking melanin production suggest that melanin is not associated with the prion disease mechanism, although the incidence of prion disease is reportedly much higher in white people than in black people. Thus, the roles of the PrP-melanin interaction remain to be further elucidated, but melanin might be a useful competitive tool for evaluating the functions of other ligands at the N-terminal region.
Collapse
|
113
|
Salazar SV, Strittmatter SM. Cellular prion protein as a receptor for amyloid-β oligomers in Alzheimer's disease. Biochem Biophys Res Commun 2017; 483:1143-1147. [PMID: 27639648 PMCID: PMC5303667 DOI: 10.1016/j.bbrc.2016.09.062] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 11/16/2022]
Abstract
Soluble oligomers of amyloid-beta (Aβo) are implicated by biochemical and genetic evidence as a trigger for Alzheimer's disease (AD) pathophysiology. A key step is Aβo interaction with the neuronal surface to initiate a cascade of altered signal transduction leading to synaptic dysfunction and damage. This review discusses neuronal cell surface molecules with high affinity selectively for oligomeric disease-associated states of Aβ, with a particular focus on the role of cellular prion protein (PrPC) in this process. Additional receptors may contribute to mediation of Aβo action, but PrPC appears to play a primary role in a number of systems. The specificity of binding, the genetic necessity in mouse models of disease and downstream signaling pathways are considered. Signal transduction downstream of Aβo complexes with PrPC involves metabotropic glutamate receptor 5 (mGluR5), Fyn kinase and Pyk2 kinase, with deleterious effects on synaptic transmission and maintenance. Current data support the hypothesis that a substantial portion of Aβo toxicity in AD is mediated after initial interaction with PrPC on the neuronal surface. As such, the interaction of Aβo with PrPC is a potential therapeutic intervention site for AD.
Collapse
Affiliation(s)
- Santiago V Salazar
- Cellular Neuroscience, Neurodegeneration & Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration & Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
114
|
Abstract
Like numerous proteins of various structural and functional classes, the glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPC) has been recognized to undergo endoproteolytic processing for decades, a phenomenon observed in various cultured cell lines, as well as human and several animal tissue extracts. Despite this, the physiological significance of PrPC proteolytic cleavage has not yet been entirely elucidated. Experimental evidence suggests independent normal biological functions of the full-length and truncated PrPC species, as well as probable links of endoproteolysis to prion disease transmission susceptibility, pathogenesis, and toxicity. The accurate characterization of constitutive PrPC processing, through the method outlined in this chapter, is therefore an important tool in order to investigate the biological relevance of the alternative cleavage events.
Collapse
Affiliation(s)
- Victoria Lewis
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
115
|
Structural Modeling of Human Prion Protein's Point Mutations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:105-122. [DOI: 10.1016/bs.pmbts.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
116
|
Xia N, Zhou B, Huang N, Jiang M, Zhang J, Liu L. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens Bioelectron 2016; 85:625-632. [DOI: 10.1016/j.bios.2016.05.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
|
117
|
Zhao J, Ma B, Nussinov R. Compilation and Analysis of Enzymes, Engineered Antibodies, and Nanoparticles Designed to Interfere with Amyloid-β Aggregation. Isr J Chem 2016. [DOI: 10.1002/ijch.201600093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Buyong Ma
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
| | - Ruth Nussinov
- Basic Science Program; Leidos Biomedical Research, Inc.; Cancer and Inflammation Program; National Cancer Institute; Frederick Maryland 21702 USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
118
|
Xia N, Wang X, Zhou B, Wu Y, Mao W, Liu L. Electrochemical Detection of Amyloid-β Oligomers Based on the Signal Amplification of a Network of Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19303-19311. [PMID: 27414520 DOI: 10.1021/acsami.6b05423] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amyloid-β oligomers (AβOs) are the most important toxic species in the brain of Alzheimer's disease (AD) patient. AβOs, therefore, are considered reliable molecular biomarkers for the diagnosis of AD. Herein, we reported a simple and sensitive electrochemical method for the selective detection of AβOs using silver nanoparticles (AgNPs) as the redox reporters and PrP(95-110), an AβOs-specific binding peptide, as the receptor. Specifically, adamantine (Ad)-labeled PrP(95-110), denoted as Ad-PrP(95-110), induced the aggregation and color change of AgNPs and the follow-up formation of a network of Ad-PrP(95-110)-AgNPs. Then, Ad-PrP(95-110)-AgNPs were anchored onto a β-cyclodextrin (β-CD)-covered electrode surface through the host-guest interaction between Ad and β-CD, thus producing an amplified electrochemical signal through the solid-state Ag/AgCl reaction by the AgNPs. In the presence of AβOs, Ad-PrP(95-110) interacted specifically with the AβOs, thus losing the capability to bind AgNPs and to induce the formation of an AgNPs-based network on the electrode surface. Consequently, the electrochemical signal decreased with an increase in the concentration of AβOs in the range of 20 pM to 100 nM. The biosensor had a detection limit of 8 pM and showed no response to amyloid-β monomers (AβMs) and fibrils (AβFs). On the basis of the well-defined and amplified electrochemical signal of the AgNPs-based network architecture, these results should be valuable for the design of novel electrochemical biosensors by marrying specific receptors.
Collapse
Affiliation(s)
- Ning Xia
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Xin Wang
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Binbin Zhou
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Yangyang Wu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Wenhui Mao
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| | - Lin Liu
- Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University , Anyang, Henan 455000, People's Republic of China
| |
Collapse
|
119
|
A Neuronal Culture System to Detect Prion Synaptotoxicity. PLoS Pathog 2016; 12:e1005623. [PMID: 27227882 PMCID: PMC4881977 DOI: 10.1371/journal.ppat.1005623] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/19/2016] [Indexed: 12/02/2022] Open
Abstract
Synaptic pathology is an early feature of prion as well as other neurodegenerative diseases. Although the self-templating process by which prions propagate is well established, the mechanisms by which prions cause synaptotoxicity are poorly understood, due largely to the absence of experimentally tractable cell culture models. Here, we report that exposure of cultured hippocampal neurons to PrPSc, the infectious isoform of the prion protein, results in rapid retraction of dendritic spines. This effect is entirely dependent on expression of the cellular prion protein, PrPC, by target neurons, and on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic loss. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents. Prion diseases are fatal neurodegenerative disorders that cause memory loss, impaired coordination, and abnormal movements. The molecular culprit in prion diseases is PrPSc, an infectious isoform of a host-encoded glycoprotein (PrPC) that can propagate itself by a self-templating mechanism. Whether PrPSc itself is toxic to neurons, and if so, the cellular mechanisms by which it produces neuronal pathology are largely unknown, in part because of the absence of suitable cell culture models. We describe here a hippocampal neuronal cultural system to detect the toxic effect of PrPSc on dendritic spines, which are postsynaptic elements responsible for excitatory synaptic transmission, and which are implicated in learning, memory, and the earliest stages of neurodegenerative diseases. We found that purified, exogenously applied PrPSc causes acute retraction of dendritic spines, an effect that is entirely dependent on expression of PrPC by target neurons, and on the on the presence of a nine-amino acid, polybasic region at the N-terminus of the PrPC molecule. Both protease-resistant and protease-sensitive forms of PrPSc cause dendritic retraction. This system provides new insights into the mechanisms responsible for prion neurotoxicity, and it provides a platform for characterizing different pathogenic forms of PrPSc and testing potential therapeutic agents.
Collapse
|
120
|
Domains of STIP1 responsible for regulating PrPC-dependent amyloid-β oligomer toxicity. Biochem J 2016; 473:2119-30. [PMID: 27208175 DOI: 10.1042/bcj20160087] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
Abstract
Soluble oligomers of amyloid-beta peptide (AβO) transmit neurotoxic signals through the cellular prion protein (PrP(C)) in Alzheimer's disease (AD). Secreted stress-inducible phosphoprotein 1 (STIP1), an Hsp70 and Hsp90 cochaperone, inhibits AβO binding to PrP(C) and protects neurons from AβO-induced cell death. Here, we investigated the molecular interactions between AβO and STIP1 binding to PrP(C) and their effect on neuronal cell death. We showed that residues located in a short region of PrP (90-110) mediate AβO binding and we narrowed the major interaction in this site to amino acids 91-100. In contrast, multiple binding sites on STIP1 (DP1, TPR1 and TPR2A) contribute to PrP binding. DP1 bound the N-terminal of PrP (residues 23-95), whereas TPR1 and TPR2A showed binding to the C-terminal of PrP (residues 90-231). Importantly, only TPR1 and TPR2A directly inhibit both AβO binding to PrP and cell death. Furthermore, our structural studies reveal that TPR1 and TPR2A bind to PrP through distinct regions. The TPR2A interface was shown to be much more extensive and to partially overlap with the Hsp90 binding site. Our data show the possibility of a PrP, STIP1 and Hsp90 ternary complex, which may influence AβO-mediated cell death.
Collapse
|
121
|
Synaptic Cell Adhesion Molecules in Alzheimer's Disease. Neural Plast 2016; 2016:6427537. [PMID: 27242933 PMCID: PMC4868906 DOI: 10.1155/2016/6427537] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/13/2016] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with the loss of synapses between neurons in the brain. Synaptic cell adhesion molecules are cell surface glycoproteins which are expressed at the synaptic plasma membranes of neurons. These proteins play key roles in formation and maintenance of synapses and regulation of synaptic plasticity. Genetic studies and biochemical analysis of the human brain tissue, cerebrospinal fluid, and sera from AD patients indicate that levels and function of synaptic cell adhesion molecules are affected in AD. Synaptic cell adhesion molecules interact with Aβ, a peptide accumulating in AD brains, which affects their expression and synaptic localization. Synaptic cell adhesion molecules also regulate the production of Aβ via interaction with the key enzymes involved in Aβ formation. Aβ-dependent changes in synaptic adhesion affect the function and integrity of synapses suggesting that alterations in synaptic adhesion play key roles in the disruption of neuronal networks in AD.
Collapse
|
122
|
Bruno V, Caraci F, Copani A, Matrisciano F, Nicoletti F, Battaglia G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A "dark side" in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology 2016; 115:180-192. [PMID: 27140693 DOI: 10.1016/j.neuropharm.2016.04.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 12/17/2022]
Abstract
Metabotropic glutamate (mGlu) receptor ligands are under clinical development for the treatment of CNS disorders with high social and economic burden, such as schizophrenia, major depressive disorder (MDD), and Parkinson's disease (PD), and are promising drug candidates for the treatment of Alzheimer's disease (AD). So far, clinical studies have shown symptomatic effects of mGlu receptor ligands, but it is unknown whether these drugs act as disease modifiers or, at the opposite end, they accelerate disease progression by enhancing neurodegeneration. This is a fundamental issue in the treatment of PD and AD, and is also an emerging theme in the treatment of schizophrenia and MDD, in which neurodegeneration is also present and contribute to disease progression. Moving from in vitro data and preclinical studies, we discuss the potential impact of drugs targeting mGlu2, mGlu3, mGlu4 and mGlu5 receptor ligands on active neurodegeneration associated with AD, PD, schizophrenia, and MDD. We wish to highlight that our final comments on the best drug candidates are not influenced by commercial interests or by previous or ongoing collaborations with drug companies. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.
Collapse
Affiliation(s)
- Valeria Bruno
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy.
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; I.R.C.C.S. Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, 94018 Troina, Italy
| | - Agata Copani
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; National Research Council, Institute of Biostructure and Bioimaging (IBB-CNR), 95126 Catania, Italy
| | - Francesco Matrisciano
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, USA
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza, 00185 Rome, Italy; I.R.C.C.S. Neuromed, 86077 Pozzilli, Italy
| | | |
Collapse
|
123
|
Peptides Composed of Alternating L- and D-Amino Acids Inhibit Amyloidogenesis in Three Distinct Amyloid Systems Independent of Sequence. J Mol Biol 2016; 428:2317-2328. [PMID: 27012425 DOI: 10.1016/j.jmb.2016.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 11/23/2022]
Abstract
There is now substantial evidence that soluble oligomers are primary toxic agents in amyloid diseases. The development of an antibody recognizing the toxic soluble oligomeric forms of different and unrelated amyloid species suggests a common conformational intermediate during amyloidogenesis. We previously observed a common occurrence of a novel secondary structure element, which we call α-sheet, in molecular dynamics (MD) simulations of various amyloidogenic proteins, and we hypothesized that the toxic conformer is composed of α-sheet structure. As such, α-sheet may represent a conformational signature of the misfolded intermediates of amyloidogenesis and a potential unique binding target for peptide inhibitors. Recently, we reported the design and characterization of a novel hairpin peptide (α1 or AP90) that adopts stable α-sheet structure and inhibits the aggregation of the β-Amyloid Peptide Aβ42 and transthyretin. AP90 is a 23-residue hairpin peptide featuring alternating D- and L-amino acids with favorable conformational propensities for α-sheet formation, and a designed turn. For this study, we reverse engineered AP90 to identify which of its design features is most responsible for conferring α-sheet stability and inhibitory activity. We present experimental characterization (CD and FTIR) of seven peptides designed to accomplish this. In addition, we measured their ability to inhibit aggregation in three unrelated amyloid species: Aβ42, transthyretin, and human islet amylin polypeptide. We found that a hairpin peptide featuring alternating L- and D-amino acids, independent of sequence, is sufficient for conferring α-sheet structure and inhibition of aggregation. Additionally, we show a correlation between α-sheet structural stability and inhibitory activity.
Collapse
|
124
|
Guntupalli S, Widagdo J, Anggono V. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking. Neural Plast 2016; 2016:3204519. [PMID: 27073700 PMCID: PMC4814684 DOI: 10.1155/2016/3204519] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/28/2016] [Indexed: 01/22/2023] Open
Abstract
Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ) is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer's disease (AD). There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ.
Collapse
Affiliation(s)
- Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
125
|
Massignan T, Cimini S, Stincardini C, Cerovic M, Vanni I, Elezgarai SR, Moreno J, Stravalaci M, Negro A, Sangiovanni V, Restelli E, Riccardi G, Gobbi M, Castilla J, Borsello T, Nonno R, Biasini E. A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci Rep 2016; 6:23180. [PMID: 26976106 PMCID: PMC4791597 DOI: 10.1038/srep23180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
Prion diseases are rare neurodegenerative conditions associated with the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a self-replicating isoform (prion) that accumulates in the central nervous system of affected individuals. The structure of PrPSc is poorly defined, and likely to be heterogeneous, as suggested by the existence of different prion strains. The latter represents a relevant problem for therapy in prion diseases, as some potent anti-prion compounds have shown strain-specificity. Designing therapeutics that target PrPC may provide an opportunity to overcome these problems. PrPC ligands may theoretically inhibit the replication of multiple prion strains, by acting on the common substrate of any prion replication reaction. Here, we characterized the properties of a cationic tetrapyrrole [Fe(III)-TMPyP], which was previously shown to bind PrPC, and inhibit the replication of a mouse prion strain. We report that the compound is active against multiple prion strains in vitro and in cells. Interestingly, we also find that Fe(III)-TMPyP inhibits several PrPC-related toxic activities, including the channel-forming ability of a PrP mutant, and the PrPC-dependent synaptotoxicity of amyloid-β (Aβ) oligomers, which are associated with Alzheimer’s Disease. These results demonstrate that molecules binding to PrPC may produce a dual effect of blocking prion replication and inhibiting PrPC-mediated toxicity.
Collapse
Affiliation(s)
- Tania Massignan
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Sara Cimini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Claudia Stincardini
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Milica Cerovic
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Ilaria Vanni
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Saioa R Elezgarai
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Jorge Moreno
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Matteo Stravalaci
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Valeria Sangiovanni
- Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Geraldina Riccardi
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Marco Gobbi
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain
| | - Tiziana Borsello
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Milan University, 20133 Milan Italy
| | - Romolo Nonno
- Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy
| | - Emiliano Biasini
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, 20156 Milan, Italy.,Department of Food Safety and Veterinary Health, Istituto Superiore di Sanitá, 00161 Rome, Italy.,Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| |
Collapse
|
126
|
Scott-McKean JJ, Surewicz K, Choi JK, Ruffin VA, Salameh AI, Nieznanski K, Costa ACS, Surewicz WK. Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Aβ oligomers: Implications for novel therapeutic strategy in Alzheimer's disease. Neurobiol Dis 2016; 91:124-131. [PMID: 26949218 DOI: 10.1016/j.nbd.2016.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/25/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022] Open
Abstract
The pathogenic process in Alzheimer's disease (AD) appears to be closely linked to the neurotoxic action of amyloid-β (Aβ) oligomers. Recent studies have shown that these oligomers bind with high affinity to the membrane-anchored cellular prion protein (PrP(C)). It has also been proposed that this binding might mediate some of the toxic effects of the oligomers. Here, we show that the soluble (membrane anchor-free) recombinant human prion protein (rPrP) and its N-terminal fragment N1 block Aβ oligomers-induced inhibition of long-term potentiation (LTP) in hippocampal slices, an important surrogate marker of cognitive deficit associated with AD. rPrP and N1 are also strikingly potent inhibitors of Aβ cytotoxicity in primary hippocampal neurons. Furthermore, experiments using hippocampal slices and neurons from wild-type and PrP(C) null mice (as well as rat neurons in which PrP(C) expression was greatly reduced by gene silencing) indicate that, in contrast to the impairment of synaptic plasticity by Aβ oligomers, the cytotoxic effects of these oligomers, and the inhibition of these effects by rPrP and N1, are independent of the presence of endogenous PrP(C). This suggests fundamentally different mechanisms by which soluble rPrP and its fragments inhibit these two toxic responses to Aβ. Overall, these findings provide strong support to recent suggestions that PrP-based compounds may offer new avenues for pharmacological intervention in AD.
Collapse
Affiliation(s)
- Jonah J Scott-McKean
- Division of Pediatric Neurology, Department of Pediatrics, Cleveland, OH, USA 44116
| | | | - Jin-Kyu Choi
- Department of Physiology and Biophysics, Cleveland, OH, USA 44116
| | - Vernon A Ruffin
- Department of Physiology and Biophysics, Cleveland, OH, USA 44116
| | - Ahlam I Salameh
- Department of Physiology and Biophysics, Cleveland, OH, USA 44116
| | - Krzysztof Nieznanski
- Department of Biochemistry, Nencki Institute of Experimental Biology, 02-093Warsaw, Poland
| | - Alberto C S Costa
- Division of Pediatric Neurology, Department of Pediatrics, Cleveland, OH, USA 44116.,Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA 44116
| | | |
Collapse
|
127
|
Sempou E, Biasini E, Pinzón-Olejua A, Harris DA, Málaga-Trillo E. Activation of zebrafish Src family kinases by the prion protein is an amyloid-β-sensitive signal that prevents the endocytosis and degradation of E-cadherin/β-catenin complexes in vivo. Mol Neurodegener 2016; 11:18. [PMID: 26860872 PMCID: PMC4748561 DOI: 10.1186/s13024-016-0076-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/18/2016] [Indexed: 11/25/2022] Open
Abstract
Background Prions and amyloid-β (Aβ) oligomers trigger neurodegeneration by hijacking a poorly understood cellular signal mediated by the prion protein (PrP) at the plasma membrane. In early zebrafish embryos, PrP-1-dependent signals control cell-cell adhesion via a tyrosine phosphorylation-dependent mechanism. Results Here we report that the Src family kinases (SFKs) Fyn and Yes act downstream of PrP-1 to prevent the endocytosis and degradation of E-cadherin/β-catenin adhesion complexes in vivo. Accordingly, knockdown of PrP-1 or Fyn/Yes cause similar zebrafish gastrulation phenotypes, whereas Fyn/Yes expression rescues the PrP-1 knockdown phenotype. We also show that zebrafish and mouse PrPs positively regulate the activity of Src kinases and that these have an unexpected positive effect on E-cadherin-mediated cell adhesion. Interestingly, while PrP knockdown impairs β-catenin adhesive function, PrP overexpression enhances it, thereby antagonizing its nuclear, wnt-related signaling activity and disturbing embryonic dorsoventral specification. The ability of mouse PrP to influence these events in zebrafish embryos requires its neuroprotective, polybasic N-terminus but not its neurotoxicity-associated central region. Remarkably, human Aβ oligomers up-regulate the PrP-1/SFK/E-cadherin/β-catenin pathway in zebrafish embryonic cells, mimicking a PrP gain-of-function scenario. Conclusions Our gain- and loss-of-function experiments in zebrafish suggest that PrP and SFKs enhance the cell surface stability of embryonic adherens junctions via the same complex mechanism through which they over-activate neuroreceptors that trigger synaptic damage. The profound impact of this pathway on early zebrafish development makes these embryos an ideal model to study the cellular and molecular events affected by neurotoxic PrP mutations and ligands in vivo. In particular, our finding that human Aβ oligomers activate the zebrafish PrP/SFK/E-cadherin pathway opens the possibility of using fish embryos to rapidly screen for novel therapeutic targets and compounds against prion- and Alzheimer's-related neurodegeneration. Altogether, our data illustrate PrP-dependent signals relevant to embryonic development, neuronal physiology and neurological disease. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0076-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Sempou
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Present address: Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Emiliano Biasini
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA. .,Present address: Dulbecco Telethon Institute, Laboratory of Prions and Amyloids, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Alejandro Pinzón-Olejua
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Present address: Max PIanck Institute for Brain Research, Department of Synaptic Plasticity, 60438, Frankfurt/Main, Germany.
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Edward Málaga-Trillo
- Department of Biology, University of Konstanz, Constance, 78457, Germany. .,Department of Biology, Universidad Peruana Cayetano Heredia, Lima 31, Perú.
| |
Collapse
|
128
|
Lewis V, Johanssen VA, Crouch PJ, Klug GM, Hooper NM, Collins SJ. Prion protein "gamma-cleavage": characterizing a novel endoproteolytic processing event. Cell Mol Life Sci 2016; 73:667-83. [PMID: 26298290 PMCID: PMC11108375 DOI: 10.1007/s00018-015-2022-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 12/31/2022]
Abstract
The cellular prion protein (PrP(C)) is a ubiquitously expressed protein of currently unresolved but potentially diverse function. Of putative relevance to normal biological activity, PrP(C) is recognized to undergo both α- and β-endoproteolysis, producing the cleavage fragment pairs N1/C1 and N2/C2, respectively. Experimental evidence suggests the likelihood that these processing events serve differing cellular needs. Through the engineering of a C-terminal c-myc tag onto murine PrP(C), as well as the selective use of a far-C-terminal anti-PrP antibody, we have identified a new PrP(C) fragment, nominally 'C3', and elaborating existing nomenclature, 'γ-cleavage' as the responsible proteolysis. Our studies indicate that this novel γ-cleavage event can occur during transit through the secretory pathway after exiting the endoplasmic reticulum, and after PrP(C) has reached the cell surface, by a matrix metalloprotease. We found that C3 is GPI-anchored like other C-terminal and full length PrP(C) species, though it does not localize primarily at the cell surface, and is preferentially cleaved from an unglycosylated substrate. Importantly, we observed that C3 exists in diverse cell types as well as mouse and human brain tissue, and of possible pathogenic significance, γ-cleavage may increase in human prion diseases. Given the likely relevance of PrP(C) processing to both its normal function, and susceptibility to prion disease, the potential importance of this previously underappreciated and overlooked cleavage event warrants further consideration.
Collapse
Affiliation(s)
- Victoria Lewis
- Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Vanessa A Johanssen
- Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter J Crouch
- Department of Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Genevieve M Klug
- Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia
- The Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Nigel M Hooper
- Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, M13 9PT, UK
| | - Steven J Collins
- Department of Medicine, RMH, The University of Melbourne, Parkville, VIC, 3010, Australia.
- The Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
129
|
Pan Y, Wang B, Zhang T, Zhang Y, Wang H, Xu B. Nanoscale insights into full-length prion protein aggregation on model lipid membranes. Chem Commun (Camb) 2016; 52:8533-6. [DOI: 10.1039/c6cc03029g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aggregates of the full-length human recombinant prion protein (PrP) (23–231) on model membranes were investigated by combining the atomic force microscopy (AFM) measurements and theoretical calculations at pH 5.0, showing the great effect of PrP concentration on its supramolecular assemblies on the lipid bilayer.
Collapse
Affiliation(s)
- Yangang Pan
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Bin Wang
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Tong Zhang
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Yanan Zhang
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Bingqian Xu
- Single Molecule Study Laboratory
- Faculty of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Athens
- USA
| |
Collapse
|
130
|
Jarosz-Griffiths HH, Noble E, Rushworth JV, Hooper NM. Amyloid-β Receptors: The Good, the Bad, and the Prion Protein. J Biol Chem 2015; 291:3174-83. [PMID: 26719327 PMCID: PMC4751366 DOI: 10.1074/jbc.r115.702704] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several different receptor proteins have been identified that bind monomeric, oligomeric, or fibrillar forms of amyloid-β (Aβ). "Good" receptors internalize Aβ or promote its transcytosis out of the brain, whereas "bad" receptors bind oligomeric forms of Aβ that are largely responsible for the synapticloss, memory impairments, and neurotoxicity that underlie Alzheimer disease. The prion protein both removes Aβ from the brain and transduces the toxic actions of Aβ. The clustering of distinct receptors in cell surface signaling platforms likely underlies the actions of distinct oligomeric species of Aβ. These Aβ receptor-signaling platforms provide opportunities for therapeutic intervention in Alzheimer disease.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- From the Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT and
| | - Elizabeth Noble
- From the Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT and
| | - Jo V Rushworth
- the Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, United Kingdom
| | - Nigel M Hooper
- From the Institute of Brain, Behaviour and Mental Health, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT and
| |
Collapse
|
131
|
Williams TL, Choi JK, Surewicz K, Surewicz WK. Soluble Prion Protein Binds Isolated Low Molecular Weight Amyloid-β Oligomers Causing Cytotoxicity Inhibition. ACS Chem Neurosci 2015; 6:1972-80. [PMID: 26466138 DOI: 10.1021/acschemneuro.5b00229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A growing number of observations indicate that soluble amyloid-β (Aβ) oligomers play a major role in Alzheimer's disease. Recent studies strongly suggest that at least some of the neurotoxic effects of these oligomers are mediated by cellular, membrane-anchored prion protein and that Aβ neurotoxicity can be inhibited by soluble recombinant prion protein (rPrP) and its fragments. However, the mechanism by which rPrP interacts with Aβ oligomers and prevents their toxicity is largely unknown, and studies in this regard are hindered by the large structural heterogeneity of Aβ oligomers. To overcome this difficulty, here we used photoinduced cross-linking of unmodified proteins (PICUP) to isolate well-defined oligomers of Aβ42 and characterize these species with regard to their cytotoxicity and interaction with rPrP, as well the mechanism by which rPrP inhibits Aβ42 cytotoxicity. Our data shows that the addition of rPrP to the assembling Aβ42 results in a shift in oligomer size distribution, decreasing the population of toxic tetramers and higher order oligomers and increasing the population of nontoxic (and possibly neuroprotective) monomers. Isolated oligomeric species of Aβ42 are cytotoxic to primary neurons and cause permeation of model lipid bilayers. These toxic effects, which are oligomer size-dependent, can be inhibited by the addition of rPrP, and our data suggest potential mechanisms of this inhibitory action. This insight should help in current efforts to develop PrP-based therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Thomas L. Williams
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Jin-Kyu Choi
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Krystyna Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
132
|
Haas LT, Salazar SV, Kostylev MA, Um JW, Kaufman AC, Strittmatter SM. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain 2015; 139:526-46. [PMID: 26667279 DOI: 10.1093/brain/awv356] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/17/2015] [Indexed: 01/27/2023] Open
Abstract
Alzheimer's disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer's disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer's disease transgenes or by human Alzheimer's disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp-Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer's disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer's disease pathogenesis, and the complex is a potential target for disease-modifying intervention.
Collapse
Affiliation(s)
- Laura T Haas
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA 2 Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, D-72074 Tuebingen, Germany
| | - Santiago V Salazar
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Mikhail A Kostylev
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ji Won Um
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Adam C Kaufman
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- 1 Cellular Neuroscience, Neurodegeneration and Repair Program, Department of Neurology, Yale University School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
133
|
Mutated but Not Deleted Ovine PrP(C) N-Terminal Polybasic Region Strongly Interferes with Prion Propagation in Transgenic Mice. J Virol 2015; 90:1638-46. [PMID: 26608316 DOI: 10.1128/jvi.02805-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/18/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Mammalian prions are proteinaceous infectious agents composed of misfolded assemblies of the host-encoded, cellular prion protein (PrP). Physiologically, the N-terminal polybasic region of residues 23 to 31 of PrP has been shown to be involved in its endocytic trafficking and interactions with glycosaminoglycans or putative ectodomains of membrane-associated proteins. Several recent reports also describe this PrP region as important for the toxicity of mutant prion proteins and the efficiency of prion propagation, both in vitro and in vivo. The question remains as to whether the latter observations made with mouse PrP and mouse prions would be relevant to other PrP species/prion strain combinations given the dramatic impact on prion susceptibility of minimal amino acid substitutions and structural variations in PrP. Here, we report that transgenic mouse lines expressing ovine PrP with a deletion of residues 23 to 26 (KKRP) or mutated in this N-terminal region (KQHPH instead of KKRPK) exhibited a variable, strain-dependent susceptibility to prion infection with regard to the proportion of affected mice and disease tempo relative to findings in their wild-type counterparts. Deletion has no major effect on 127S scrapie prion pathogenesis, whereas mutation increased by almost 3-fold the survival time of the mice. Deletion marginally affected the incubation time of scrapie LA19K and ovine bovine spongiform encephalopathy (BSE) prions, whereas mutation caused apparent resistance to disease. IMPORTANCE Recent reports suggested that the N-terminal polybasic region of the prion protein could be a therapeutic target to prevent prion propagation or toxic signaling associated with more common neurodegenerative diseases such as Alzheimer's disease. Mutating or deleting this region in ovine PrP completes the data previously obtained with the mouse protein by identifying the key amino acid residues involved.
Collapse
|
134
|
Li B. The pathogenesis of soluble PrP fragments containing Aβ binding sites. Virus Res 2015; 211:194-8. [PMID: 26528810 DOI: 10.1016/j.virusres.2015.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 12/28/2022]
Abstract
Prion protein (PrP) has proven to bind amyloid beta (Aβ) oligomers with high affinity, changing our understanding of both prion diseases (PD) and Alzheimer's disease (AD) at the molecular and phenotypic levels, although the latter currently lacks sufficient attentions. Transgenic mice expressing anchorless PrP developed unusual diseases reminiscent of AD with tremendous amyloid plaque formation. In this review, we described two interesting observations at the phenotypic level. First, common pathogenic mutations of the PRNP gene in Gerstmann-Sträussler-Scheinker (GSS) syndrome were clustered at PrP95-105. Meanwhile, all nonsense PRNP mutations that generated soluble PrP 95-105 exhibited phenotypes with abundant amyloid formations. We speculate that PrP-Aβ oligomers binding might be the underlying mechanism of the predominant amyloid phenotypes. Second, soluble PrP-Aβ oligomer complexes might exist in the extracellular space at the beginning of both PD and AD and subserve an initial neuroprotective function. Thus, the diseases would only present after long-term accumulation. This might be the central common pathogenic event of both PD and AD.
Collapse
Affiliation(s)
- Baiya Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
135
|
Electrochemical detection of amyloid-β oligomer with the signal amplification of alkaline phosphatase plus electrochemical–chemical–chemical redox cycling. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.06.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
136
|
Iraci N, Stincardini C, Barreca ML, Biasini E. Decoding the function of the N-terminal tail of the cellular prion protein to inspire novel therapeutic avenues for neurodegenerative diseases. Virus Res 2015; 207:62-8. [DOI: 10.1016/j.virusres.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
|
137
|
Bellingham SA, Guo B, Hill AF. The secret life of extracellular vesicles in metal homeostasis and neurodegeneration. Biol Cell 2015; 107:389-418. [PMID: 26032945 DOI: 10.1111/boc.201500030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Biologically active metals such as copper, zinc and iron are fundamental for sustaining life in different organisms with the regulation of cellular metal homeostasis tightly controlled through proteins that coordinate metal uptake, efflux and detoxification. Many of the proteins involved in either uptake or efflux of metals are localised and function on the plasma membrane, traffic between intracellular compartments depending upon the cellular metal environment and can undergo recycling via the endosomal pathway. The biogenesis of exosomes also occurs within the endosomal system, with several major neurodegenerative disease proteins shown to be released in association with these vesicles, including the amyloid-β (Aβ) peptide in Alzheimer's disease and the infectious prion protein involved in Prion diseases. Aβ peptide and the prion protein also bind biologically active metals and are postulated to play important roles in metal homeostasis. In this review, we will discuss the role of extracellular vesicles in Alzheimer's and Prion diseases and explore their potential contribution to metal homeostasis.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Belinda Guo
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, Australia.,Bio21 Molecular Science and Biotechnology Institute, Parkville, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
138
|
Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 2015; 5:10934. [PMID: 26055072 PMCID: PMC4460729 DOI: 10.1038/srep10934] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/08/2015] [Indexed: 01/08/2023] Open
Abstract
The acute neurotoxicity of oligomeric forms of amyloid-β 1-42 (Aβ) is implicated in the pathogenesis of Alzheimer’s disease (AD). However, how these oligomers might first impair neuronal function at the onset of pathology is poorly understood. Here we have examined the underlying toxic effects caused by an increase in levels of intracellular Aβ, an event that could be important during the early stages of the disease. We show that oligomerised Aβ induces a rapid enhancement of AMPA receptor-mediated synaptic transmission (EPSCA) when applied intracellularly. This effect is dependent on postsynaptic Ca2+ and PKA. Knockdown of GluA1, but not GluA2, prevents the effect, as does expression of a S845-phosphomutant of GluA1. Significantly, an inhibitor of Ca2+-permeable AMPARs (CP-AMPARs), IEM 1460, reverses the increase in the amplitude of EPSCA. These results suggest that a primary neuronal response to intracellular Aβ oligomers is the rapid synaptic insertion of CP-AMPARs.
Collapse
|
139
|
Kostylev MA, Kaufman AC, Nygaard HB, Patel P, Haas LT, Gunther EC, Vortmeyer A, Strittmatter SM. Prion-Protein-interacting Amyloid-β Oligomers of High Molecular Weight Are Tightly Correlated with Memory Impairment in Multiple Alzheimer Mouse Models. J Biol Chem 2015; 290:17415-38. [PMID: 26018073 DOI: 10.1074/jbc.m115.643577] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Indexed: 12/22/2022] Open
Abstract
Alzheimer disease (AD) is characterized by amyloid-β accumulation, with soluble oligomers (Aβo) being the most synaptotoxic. However, the multivalent and unstable nature of Aβo limits molecular characterization and hinders research reproducibility. Here, we characterized multiple Aβo forms throughout the life span of various AD mice and in post-mortem human brain. Aβo exists in several populations, where prion protein (PrP(C))-interacting Aβo is a high molecular weight Aβ assembly present in multiple mice and humans with AD. Levels of PrP(C)-interacting Aβo match closely with mouse memory and are equal or superior to other Aβ measures in predicting behavioral impairment. However, Aβo metrics vary considerably between mouse strains. Deleting PrP(C) expression in mice with relatively low PrP(C)-interacting Aβo (Tg2576) results in partial rescue of cognitive performance as opposed to complete recovery in animals with a high percentage of PrP(C)-interacting Aβo (APP/PSEN1). These findings highlight the relative contributions and interplay of Aβo forms in AD.
Collapse
Affiliation(s)
- Mikhail A Kostylev
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Adam C Kaufman
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Haakon B Nygaard
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Pujan Patel
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Laura T Haas
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and
| | - Erik C Gunther
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Alexander Vortmeyer
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06536 and
| | - Stephen M Strittmatter
- From the Program in Cellular Neuroscience, Neurodegeneration, and Repair and the Department of Neurology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
140
|
Risse E, Nicoll AJ, Taylor WA, Wright D, Badoni M, Yang X, Farrow MA, Collinge J. Identification of a Compound That Disrupts Binding of Amyloid-β to the Prion Protein Using a Novel Fluorescence-based Assay. J Biol Chem 2015; 290:17020-8. [PMID: 25995455 PMCID: PMC4505445 DOI: 10.1074/jbc.m115.637124] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 11/20/2022] Open
Abstract
The prion protein (PrP) has been implicated both in prion diseases such as Creutzfeldt-Jakob disease, where its monomeric cellular isoform (PrPC) is recruited into pathogenic self-propagating polymers of misfolded protein, and in Alzheimer disease, where PrPC may act as a receptor for synaptotoxic oligomeric forms of amyloid-β (Aβ). There has been considerable interest in identification of compounds that bind to PrPC, stabilizing its native fold and thereby acting as pharmacological chaperones to block prion propagation and pathogenesis. However, compounds binding PrPC could also inhibit the binding of toxic Aβ species and may have a role in treating Alzheimer disease, a highly prevalent dementia for which there are currently no disease-modifying treatments. However, the absence of a unitary, readily measurable, physiological function of PrP makes screening for ligands challenging, and the highly heterogeneous nature of Aβ oligomer preparations makes conventional competition binding assays difficult to interpret. We have therefore developed a high-throughput screen that utilizes site-specifically fluorescently labeled protein to identify compounds that bind to PrP and inhibit both Aβ binding and prion propagation. Following a screen of 1,200 approved drugs, we identified Chicago Sky Blue 6B as the first small molecule PrP ligand capable of inhibiting Aβ binding, demonstrating the feasibility of development of drugs to block this interaction. The interaction of Chicago Sky Blue 6B was characterized by isothermal titration calorimetry, and its ability to inhibit Aβ binding and reduce prion levels was established in cell-based assays.
Collapse
Affiliation(s)
- Emmanuel Risse
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Andrew J Nicoll
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - William A Taylor
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Daniel Wright
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Mayank Badoni
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Xiaofan Yang
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - Mark A Farrow
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| | - John Collinge
- From the Medical Research Council (MRC) Prion Unit and Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, United Kingdom
| |
Collapse
|
141
|
Petersen RB, Lissemore FM, Appleby B, Aggarwal N, Boyatzis R, Casadesus G, Cummings J, Jack A, Perry G, Safar J, Sajatovic M, Surewicz WK, Wang Y, Whitehouse P, Lerner A. From Neurodegeneration to Brain Health: An Integrated Approach. J Alzheimers Dis 2015; 46:271-83. [DOI: 10.3233/jad-150043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Robert B. Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Brian Appleby
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Neelum Aggarwal
- Department of Neurology, Rush University Medical Center, Chicago, IL, USA
| | - Richard Boyatzis
- Departments of Organizational Behavior, Cognitive Science, and Psychology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jeff Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Anthony Jack
- Department of Philosophy, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- Department of Biology, University of Texas, San Antonio, TX, USA
| | - Jiri Safar
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Martha Sajatovic
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, USA
| | - Witold K. Surewicz
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Yanming Wang
- Departments of Radiology, Chemistry, and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Whitehouse
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Alan Lerner
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
- Department of Neurology, University Hospitals Case Medical Center, Cleveland, OH, USA
| |
Collapse
|
142
|
Nygaard HB, Wagner AF, Bowen GS, Good SP, MacAvoy MG, Strittmatter KA, Kaufman AC, Rosenberg BJ, Sekine-Konno T, Varma P, Chen K, Koleske AJ, Reiman EM, Strittmatter SM, van Dyck CH. A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2015; 7:35. [PMID: 25874001 PMCID: PMC4396171 DOI: 10.1186/s13195-015-0119-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/16/2015] [Indexed: 12/31/2022]
Abstract
Introduction Despite significant progress, a disease-modifying therapy for Alzheimer’s disease (AD) has not yet been developed. Recent findings implicate soluble oligomeric amyloid beta as the most relevant protein conformation in AD pathogenesis. We recently described a signaling cascade whereby oligomeric amyloid beta binds to cellular prion protein on the neuronal cell surface, activating intracellular Fyn kinase to mediate synaptotoxicity. Fyn kinase has been implicated in AD pathophysiology both in in vitro models and in human subjects, and is a promising new therapeutic target for AD. Herein, we present a Phase Ib trial of the repurposed investigational drug AZD0530, a Src family kinase inhibitor specific for Fyn and Src kinase, for the treatment of patients with mild-to-moderate AD. Methods The study was a 4-week Phase Ib multiple ascending dose, randomized, double-blind, placebo-controlled trial of AZD0530 in AD patients with Mini-Mental State Examination (MMSE) scores ranging from 16 to 26. A total of 24 subjects were recruited in three sequential groups, with each randomized to receive oral AZD0530 at doses of 50 mg, 100 mg, 125 mg, or placebo daily for 4 weeks. The drug:placebo ratio was 3:1. Primary endpoints were safety, tolerability, and cerebrospinal fluid (CSF) penetration of AZD0530. Secondary endpoints included changes in clinical efficacy measures (Alzheimer’s Disease Assessment Scale – cognitive subscale, MMSE, Alzheimer’s Disease Cooperative Study – Activities of Daily Living Inventory, Neuropsychiatric Inventory, and Clinical Dementia Rating Scale – Sum of Boxes) and regional cerebral glucose metabolism measured by fluorodeoxyglucose positron emission tomography. Results AZD0530 was generally safe and well tolerated across doses. One subject receiving 125 mg of AZD0530 was discontinued from the study due to the development of congestive heart failure and atypical pneumonia, which were considered possibly related to the study drug. Plasma/CSF ratio of AZD0530 was 0.4. The 100 mg and 125 mg doses achieved CSF drug levels corresponding to brain levels that rescued memory deficits in transgenic mouse models. One-month treatment with AZD0530 had no significant effect on clinical efficacy measures or regional cerebral glucose metabolism. Conclusions AZD0530 is reasonably safe and well tolerated in patients with mild-to-moderate AD, achieving substantial central nervous system penetration with oral dosing at 100–125 mg. Targeting Fyn kinase may be a promising therapeutic approach in AD, and a larger Phase IIa clinical trial of AZD0530 for the treatment of patients with AD has recently launched. Trial registration ClinicalTrials.gov: NCT01864655. Registered 12 June 2014.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA ; Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA ; Current address: University of British Columbia, Division of Neurology, Djavad Mowafaghian Centre for Brain Health, Vancouver, Canada
| | - Allison F Wagner
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Garrett S Bowen
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Susan P Good
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Martha G MacAvoy
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Kurt A Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA
| | - Adam C Kaufman
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA
| | - Brian J Rosenberg
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut USA
| | - Tomoko Sekine-Konno
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Pradeep Varma
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, Arizona USA
| | - Anthony J Koleske
- Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA ; Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut USA
| | | | - Stephen M Strittmatter
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA ; Program in Cellular Neuroscience, Neurodegeneration and Repair (CNNR), Yale University School of Medicine, New Haven, Connecticut USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Neurology, Yale University School of Medicine, New Haven, Connecticut USA ; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut USA
| |
Collapse
|
143
|
Wang ZX, Tan L, Liu J, Yu JT. The Essential Role of Soluble Aβ Oligomers in Alzheimer's Disease. Mol Neurobiol 2015; 53:1905-1924. [PMID: 25833098 DOI: 10.1007/s12035-015-9143-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/18/2015] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid plaque and neurofibrillary tangles (NFT). With the finding that soluble nonfibrillar Aβ levels actually correlate strongly with the severity of the disease, the initial focus on amyloid plaques shifted to the contemporary concept that AD memory failure is caused by soluble Aβ oligomers. The soluble Aβ are known to be more neurotoxicthan fibrillar Aβ species. In this paper, we summarize the essential role of soluble Aβ oligomers in AD and discuss therapeutic strategies that target soluble Aβ oligomers.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China.
| | - Jinyuan Liu
- Columbia College, Columbia University, New York, NY, USA
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, China. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA, USA.
| |
Collapse
|
144
|
Haigh CL, McGlade AR, Collins SJ. MEK1 transduces the prion protein N2 fragment antioxidant effects. Cell Mol Life Sci 2015; 72:1613-29. [PMID: 25391659 PMCID: PMC11114014 DOI: 10.1007/s00018-014-1777-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/13/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
The prion protein (PrP(C)) when mis-folded is causally linked with a group of fatal neurodegenerative diseases called transmissible spongiform encephalopathies or prion diseases. PrP(C) normal function is still incompletely defined with such investigations complicated by PrP(C) post-translational modifications, such as internal cleavage, which feasibly could change, activate, or deactivate the function of this protein. Oxidative stress induces β-cleavage and the N-terminal product of this cleavage event, N2, demonstrates a cellular protective response against oxidative stress. The mechanisms by which N2 mediates cellular antioxidant protection were investigated within an in vitro cell model. N2 protection was regulated by copper binding to the octarepeat domain, directing the route of internalisation, which stimulated MEK1 signalling. Precise membrane interactions of N2, determined by copper saturation, and involving both the copper-co-ordinating octarepeat region and the structure conferred upon the N-terminal polybasic region by the proline motif, were essential for the correct engagement of this pathway. The phenomenon of PrP(C) post-translational modification, such as cleavage and copper co-ordination, as a molecular "switch" for activation or deactivation of certain functions provides new insight into the apparent multi-functionality of PrP(C).
Collapse
Affiliation(s)
- C. L. Haigh
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
| | - A. R. McGlade
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
- Mental Health Research Institute, The University of Melbourne, Parkville, Melbourne, 3010 Australia
| | - S. J. Collins
- Department of Pathology, Melbourne Brain Centre, The University of Melbourne, Parkville, Melbourne, 3010 Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC 3010 Australia
| |
Collapse
|
145
|
Volpina OM, Volkova TD, Medvinskaya NI, Kamynina AV, Zaporozhskaya YV, Aleksandrova IY, Koroev DO, Samokhin AN, Nesterova IV, Deygin VI, Bobkova NV. Protective activity of fragments of the prion protein after immunization of animals with experimentally induced Alzheimer’s disease. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:145-53. [DOI: 10.1134/s1068162015020168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
146
|
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Wang C, Derreumaux P. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Chem Rev 2015; 115:3518-63. [PMID: 25789869 DOI: 10.1021/cr500638n] [Citation(s) in RCA: 499] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jessica Nasica-Labouze
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Phuong H Nguyen
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Fabio Sterpone
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivia Berthoumieu
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Sébastien Coté
- ∥Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3T5, Canada
| | - Alfonso De Simone
- ⊥Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrew J Doig
- #Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Peter Faller
- ‡LCC (Laboratoire de Chimie de Coordination), CNRS, Université de Toulouse, Université Paul Sabatier (UPS), Institut National Polytechnique de Toulouse (INPT), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
| | | | - Alessandro Laio
- ○The International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Mai Suan Li
- ◆Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.,¶Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| | - Simone Melchionna
- ⬠Instituto Processi Chimico-Fisici, CNR-IPCF, Consiglio Nazionale delle Ricerche, 00185 Roma, Italy
| | | | - Yuguang Mu
- ▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anant Paravastu
- ⊕National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Samuela Pasquali
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | | | - Birgit Strodel
- △Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Bogdan Tarus
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - John H Viles
- ▼School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Tong Zhang
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,▲School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | | | - Philippe Derreumaux
- †Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique (IBPC), UPR9080 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France.,□Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
147
|
Didonna A, Venturini AC, Hartman K, Vranac T, Čurin Šerbec V, Legname G. Characterization of four new monoclonal antibodies against the distal N-terminal region of PrP(c). PeerJ 2015; 3:e811. [PMID: 25802800 PMCID: PMC4369333 DOI: 10.7717/peerj.811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 02/11/2015] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders that affect humans and animals. They are characterized by the accumulation in the central nervous system of a pathological form of the host-encoded prion protein (PrPC). The prion protein is a membrane glycoprotein that consists of two domains: a globular, structured C-terminus and an unstructured N-terminus. The N-terminal part of the protein is involved in different functions in both health and disease. In the present work we discuss the production and biochemical characterization of a panel of four monoclonal antibodies (mAbs) against the distal N-terminus of PrPC using a well-established methodology based on the immunization of Prnp0/0 mice. Additionally, we show their ability to block prion (PrPSc) replication at nanomolar concentrations in a cell culture model of prion infection. These mAbs represent a promising tool for prion diagnostics and for studying the physiological role of the N-terminal domain of PrPC.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Anja Colja Venturini
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Katrina Hartman
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Tanja Vranac
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Vladka Čurin Šerbec
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,ELETTRA-Sincrotrone Trieste S.C.p.A, Trieste, Italy
| |
Collapse
|
148
|
Béland M, Roucou X. Taking advantage of physiological proteolytic processing of the prion protein for a therapeutic perspective in prion and Alzheimer diseases. Prion 2015; 8:106-10. [PMID: 24335160 DOI: 10.4161/pri.27438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prion and Alzheimer diseases are fatal neurodegenerative diseases caused by misfolding and aggregation of the cellular prion protein (PrP(C)) and the β-amyloid peptide, respectively. Soluble oligomeric species rather than large aggregates are now believed to be neurotoxic. PrP(C) undergoes three proteolytic cleavages as part of its natural life cycle, α-cleavage, β-cleavage, and ectodomain shedding. Recent evidences demonstrate that the resulting secreted PrP(C) molecules might represent natural inhibitors against soluble toxic species. In this mini-review, we summarize recent observations suggesting the potential benefit of using PrP(C)-derived molecules as therapeutic agents in prion and Alzheimer diseases.
Collapse
|
149
|
Di Natale G, Turi I, Pappalardo G, Sóvágó I, Rizzarelli E. Cross-Talk Between the Octarepeat Domain and the Fifth Binding Site of Prion Protein Driven by the Interaction of Copper(II) with the N-terminus. Chemistry 2015; 21:4071-84. [DOI: 10.1002/chem.201405502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 12/21/2022]
|
150
|
Xing Y, Xia N. Biosensors for the Determination of Amyloid-Beta Peptides and their Aggregates with Application to Alzheimer's Disease. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.968925] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|