101
|
Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H, Yang B. Inhibition of Ubiquitin-Specific Proteases as a Novel Anticancer Therapeutic Strategy. Front Pharmacol 2018; 9:1080. [PMID: 30319415 PMCID: PMC6171565 DOI: 10.3389/fphar.2018.01080] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Dysfunction or dysregulation of the ubiquitin proteasome system (UPS) is closely related to tumorigenesis and the development of multiple cancers. Targeting the UPS provides a new anticancer therapeutic strategy, but clinically available UPS-targeted inhibitors, including lenalidomide and bortezomib, are limited to treat solid tumors. Under physiological conditions, deubiquitinases or deubiquitinating enzymes (DUBs) play vital roles in the UPS by removing ubiquitin from substrate proteins and regulating their proteasomal degradation and sub-localization, thus maintaining the balance between ubiquitination and deubiquitination for protein quality control and homeostasis. The aberrant expression or function of DUBs generally leads to the occurrence and progression of a series of disorders, including malignant tumors. Therefore, targeting DUBs is a novel anticancer therapeutic strategy. Ubiquitin-specific proteases (USPs) are the largest subfamily of DUBs which have attracted considerable interest as anticancer targets. Most of USPs are abnormally activated or expressed in a variety of malignant tumors or in the tumor microenvironment, making them ideal anticancer target candidates, which indicates that USPs inhibitors may be a class of potential anticancer therapeutic agents. However, there are no relevant inhibitors targeting USPs have entered clinical trial so far. In this review, we will summarize the roles and mechanisms of USPs in malignant transformation and progression as well as recent advances of small-molecule inhibitors targeting USPs.
Collapse
Affiliation(s)
- Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
102
|
Gui W, Ott CA, Yang K, Chung JS, Shen S, Zhuang Z. Cell-Permeable Activity-Based Ubiquitin Probes Enable Intracellular Profiling of Human Deubiquitinases. J Am Chem Soc 2018; 140:12424-12433. [PMID: 30240200 DOI: 10.1021/jacs.8b05147] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Advancement in our knowledge of deubiquitinases (DUBs) and their biological functions requires biochemical tools permitting interrogation of DUB activities under physiologically relevant conditions. Activity-based DUB probes (DUB ABPs) have been widely used in investigating the function and activity of DUBs. However, most ubiquitin (Ub)-based DUB ABPs are not cell-permeable, limiting their utility to purified proteins and cell lysates. Lysis of cells usually leads to dilution of the cytoplasm and disruption of the normal cellular organization, which may alter the activity of many DUBs and DUB complexes. Here, we report a new class of cell-permeable DUB ABPs that enable intracellular DUB profiling. We used a semisynthetic approach to generate modular ubiquitin-based DUB probes containing a reactive warhead for covalent trapping of DUBs with a catalytic cysteine. We employed cell-penetrating peptides (CPPs), particualrly cyclic polyarginine (cR10), to deliver the DUB ABPs into cells, as confirmed using live-cell fluorescence microscopy and DUB ABPs containing a fluorophore at the C-terminus of Ub. In comparison to TAT, enhanced intacellular delivery was observed through conjugation of a cyclic polyarginine (cR10) to the N-terminus of ubiquitin via a disulfide linkage. Using the new cell-permeable DUB ABPs, we carried out DUB profiling in intact HeLa cells, and identified active DUBs using immunocapture and label-free quantitative mass spectrometry. Additionally, we demonstrated that the cell-permeable DUB ABPs can be used in assessing the inhibition of DUBs by small-molecule inhibitors in intact cells. Our results indicate that cell-permeable DUB ABPs hold great promise in providing a better understanding of the cellular functions of DUBs and advancing drug discovery efforts targeting human DUBs.
Collapse
Affiliation(s)
- Weijun Gui
- Department of Chemistry and Biochemistry , University of Delaware , 214A Drake Hall , Newark , Delaware 19716 , United States
| | - Christine A Ott
- Department of Chemistry and Biochemistry , University of Delaware , 214A Drake Hall , Newark , Delaware 19716 , United States
| | - Kun Yang
- Department of Chemistry and Biochemistry , University of Delaware , 214A Drake Hall , Newark , Delaware 19716 , United States
| | - Jedidiah S Chung
- Department of Chemistry and Biochemistry , University of Delaware , 214A Drake Hall , Newark , Delaware 19716 , United States
| | - Siqi Shen
- Department of Chemistry and Biochemistry , University of Delaware , 214A Drake Hall , Newark , Delaware 19716 , United States
| | - Zhihao Zhuang
- Department of Chemistry and Biochemistry , University of Delaware , 214A Drake Hall , Newark , Delaware 19716 , United States
| |
Collapse
|
103
|
Kim J, Alavi Naini F, Sun Y, Ma L. Ubiquitin-specific peptidase 2a (USP2a) deubiquitinates and stabilizes β-catenin. Am J Cancer Res 2018; 8:1823-1836. [PMID: 30323974 PMCID: PMC6176183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/08/2018] [Indexed: 06/08/2023] Open
Abstract
β-catenin is not only a key component of adherens junctions but also a transcriptional co-activator downstream of canonical Wnt signaling. The Wnt/β-catenin pathway plays critical roles in animal development and tissue homeostasis, while mutation or overexpression of β-catenin often leads to tumorigenesis and metastasis. Ubiquitination-mediated proteasomal degradation of β-catenin is a key molecular event in the Wnt/β-catenin pathway. Because deubiquitination of β-catenin can stabilize β-catenin and activate Wnt/β-catenin signaling, targeting the β-catenin deubiquitinase may provide a strategy for treating β-catenin-driven cancers. Here, by screening a human deubiquitinase library, we identified USP2a as a deubiquitinase that binds, deubiquitinates, and stabilizes β-catenin protein. USP2a promotes the nuclear accumulation and transcriptional activity of β-catenin, leading to elevated expression of Wnt/β-catenin target genes. Importantly, either genetic knockdown or pharmacological inhibition of USP2a leads to β-catenin destabilization. These findings suggest that USP2a may serve as a therapeutic target for targeting the cancer-promoting protein β-catenin.
Collapse
Affiliation(s)
- Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Fatemeh Alavi Naini
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- Houston Baptist UniversityHouston, Texas 77074, USA
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer CenterHouston, Texas 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHouston, Texas 77030, USA
| |
Collapse
|
104
|
Cui X, Sun D, Shen B, Wang X. MEG-3-mediated Wnt/β-catenin signaling pathway controls the inhibition of tunicamycin-mediated viability in glioblastoma. Oncol Lett 2018; 16:2797-2804. [PMID: 30127865 PMCID: PMC6096123 DOI: 10.3892/ol.2018.9048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 01/03/2018] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma is the most common primary brain carcinoma and leads to a poor survival rate of patients worldwide. Results of previous studies have suggested that tunicamycin may inhibit aggressiveness by promoting apoptosis of glioblastoma cells. In the present study, the effects of tunicamycin and its potential molecular mechanisms underlying the viability and aggressiveness of glioblastoma cells were investigated. Western blot analysis, the reverse transcription-quantitative polymerase chain reaction, immunohistochemistry, apoptosis assays and immunofluorescence were employed to examine the effects of tunicamycin on apoptosis, viability, aggressiveness and cell cycle arrest of glioblastoma cells by downregulation of the expression levels of fibronectin and epithelial cadherin. In vitro experiments demonstrated that tunicamycin significantly inhibited the viability, migration and invasion of glioblastoma cells. Results demonstrated that tunicamycin administration promoted apoptosis of glioblastoma cells through the upregulation of poly(ADP-ribose) polymerase and caspase-9. Cell cycle assays revealed that tunicamycin suppressed the proliferation of, and induced cell cycle arrest at S phase in, glioblastoma cells. Additionally, tunicamycin increased the expression of maternally expressed gene-3 (MEG-3) and wingless/integrated (Wnt)/β-catenin in glioblastoma cells. Results also indicated that tunicamycin administration promoted the Wnt/β-catenin signaling pathway in glioblastoma cells. Knockdown of MEG-3 inhibited tunicamycin-mediated downregulation of the Wnt/β-catenin signaling pathway, which was inhibited further by tunicamycin-mediated inhibition of viability and aggressiveness in glioblastoma. In vivo assays demonstrated that tunicamycin treatment significantly inhibited tumor viability and promoted apoptosis, which further led to an increased survival rate of tumor-bearing mice compared with that of the control group. In conclusion, these results indicate that tunicamycin may inhibit the viability and aggressiveness by regulating MEG-3-mediated Wnt/β-catenin signaling, suggesting that tunicamycin may be a potential anticancer agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Xiangyu Cui
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| | - Dezhou Sun
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| | - Bin Shen
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| | - Xin Wang
- Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 253045, P.R. China
| |
Collapse
|
105
|
Li X, Xue L, Peng Q. Tunicamycin inhibits progression of glioma cells through downregulation of the MEG-3-regulated wnt/β-catenin signaling pathway. Oncol Lett 2018; 15:8470-8476. [PMID: 29805584 PMCID: PMC5950543 DOI: 10.3892/ol.2018.8416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 01/24/2018] [Indexed: 01/26/2023] Open
Abstract
Glioma is derived from the oncogenic transformation of brain and spinal cord glial cells, and is one of the most common primary brain tumors. Tunicamycin (TUN) can significantly inhibit glioma growth and aggressiveness by promoting apoptosis in glioma cells. The purpose of the present study was to investigate the effects of TUN on growth of glioma cells and examine the TUN-mediated signaling pathway. The inhibitory effects of TUN on apoptosis, growth, aggressiveness and cell cycle arrest of glioma tumor cells were determined by western blotting, reverse transcription-quantitative polymerase chain reaction, apoptotic assays and immunofluorescence. The results demonstrated that treatment with TUN suppressed growth, migration and invasion of glioma carcinoma cells. In addition, TUN treatment induced apoptosis of glioma cells through downregulation of Bcl-2 and P53 expression levels. Findings also indicated that TUN suppressed proliferation and arrested the glioma cells in the S phase of the cell cycle. Further analysis of the mechanisms of TUN demonstrated that TUN treatment upregulated the expression levels of maternally expressed gene (MEG)-3, wnt and β-catenin in glioma cells. Furthermore, knockdown of MEG-3 expression reversed the TUN-decreased wnt/β-catenin signaling pathway, which subsequently also reversed the TUN-inhibited growth and aggressiveness of glioma cells. In conclusion, the findings in the present study indicated that TUN treatment inhibited growth and aggressiveness through MEG-3-mediated wnt/β-catenin signaling, suggesting that TUN may be an efficient anticancer agent for the treatment of glioma.
Collapse
Affiliation(s)
- Xin Li
- Department of Neurosurgery, Jinshazhou Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Lei Xue
- Clinical Skills Training Center, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China
| | - Qin Peng
- Department of Orthopedics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
106
|
Tomala MD, Magiera-Mularz K, Kubica K, Krzanik S, Zieba B, Musielak B, Pustula M, Popowicz GM, Sattler M, Dubin G, Skalniak L, Holak TA. Identification of small-molecule inhibitors of USP2a. Eur J Med Chem 2018. [PMID: 29529503 DOI: 10.1016/j.ejmech.2018.03.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
USP2a is a deubiquitinating protease that rescues its target proteins from destruction by the proteasome by reversing the process of protein ubiquitination. USP2a shows oncogenic properties in vivo and has been found to be a specific activator of cyclin D1. Many types of cancers are addicted to cyclin D1 expression. Targeting USP2a is a promising strategy for cancer therapy but little progress has been made in the field of inhibition of USP2a. Using NMR-based fragment screening and biophysical binding assays, we have discovered small molecules that bind to USP2a. Iterations of fragment combination and structure-driven design identified two 5-(2-thienyl)-3-isoxazoles as the inhibitors of the USP2a-ubiquitin protein-protein interaction. The affinity of these molecules for the catalytic domain of USP2a parallels their ability to interfere with USP2a binding to ubiquitin in vitro. Altogether, our results establish the 5-(2-thienyl)-3-isoxazole pharmacophore as an attractive starting point for lead optimization.
Collapse
Affiliation(s)
- Marcin D Tomala
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | | | - Katarzyna Kubica
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Sylwia Krzanik
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Bartosz Zieba
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Bogdan Musielak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Marcin Pustula
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Grzegorz M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Grzegorz Dubin
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Lukasz Skalniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Tad A Holak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| |
Collapse
|
107
|
6-Thioguanine is a noncompetitive and slow binding inhibitor of human deubiquitinating protease USP2. Sci Rep 2018; 8:3102. [PMID: 29449607 PMCID: PMC5814560 DOI: 10.1038/s41598-018-21476-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Ubiquitin-specific protease 2 (USP2) belongs to the family of deubiquitinases that can rescue protein targets from proteasomal degradation by reversing their ubiquitination. In various cancers, including prostate cancer and ovarian carcinoma, upregulation of USP2 leads to an increase in the levels of deubiquitinated substrates such as fatty acid synthase, MDM2, cyclin D1 and Aurora-A. USP2 thus plays a critical role in tumor cells’ survival and therefore represents a therapeutic target. Here a leukemia drug, 6-thioguanine, was found to be a potent inhibitor of USP2. Enzyme-kinetic and X-ray crystallographic data suggest that 6-thioguanine displays a noncompetitive and slow-binding inhibitory mechanism against USP2. Our study provides a clear rationale for the clinical evaluation of 6-thioguanine for USP2-upregulated cancers.
Collapse
|
108
|
Abstract
More than a decade after a Nobel Prize was awarded for the discovery of the ubiquitin-proteasome system and clinical approval of proteasome and ubiquitin E3 ligase inhibitors, first-generation deubiquitylating enzyme (DUB) inhibitors are now approaching clinical trials. However, although our knowledge of the physiological and pathophysiological roles of DUBs has evolved tremendously, the clinical development of selective DUB inhibitors has been challenging. In this Review, we discuss these issues and highlight recent advances in our understanding of DUB enzymology and biology as well as technological improvements that have contributed to the current interest in DUBs as therapeutic targets in diseases ranging from oncology to neurodegeneration.
Collapse
Affiliation(s)
- Jeanine A. Harrigan
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Xavier Jacq
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
| | - Niall M. Martin
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| | - Stephen P. Jackson
- Mission Therapeutics Ltd, Moneta, Babraham Research Campus, Cambridge, CB22 3AT UK
- Present Address: and Department of Biochemistry, The Wellcome Trust and Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QN UK
- Present address: Artios Pharmaceuticals Ltd, Maia, Babraham Research Campus, Cambridge CB22 3AT, UK,
| |
Collapse
|
109
|
Zhu HQ, Gao FH. The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products. Int J Biol Sci 2017; 13:1489-1496. [PMID: 29230097 PMCID: PMC5723915 DOI: 10.7150/ijbs.21637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/10/2017] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) has a regulatory function in cell growth or death and is involved in the pathogenesis of various diseases. USP2 gene can generate 7 splicing variants through alternative splicing, and 5 variants respectively as USP2-201, USP2-202, USP2-204, USP2-205, USP2-206 can encode proteins. The influence of circadian rhythm, nutrition and androgen on specific signaling molecules or cytokines can regulate the alternative splicing of USP2. Specifically, PKC activator, IL-1β, TNF-α, PDGF-BB, TGF-β1 are all regulatory factors for USP2's alternative splicing. USP2-201 plays a crucial role in cell cycle progression, and is also of great significance in EGFR recycling. USP2-202 can activate apoptosis signaling pathway to participate in cell apoptosis, and USP2-204 can induce cell anti-virus reaction to decrease. In general, we collect and summarize the factors involved in the alternative splicing of USP2 in this review to further understand the mechanism behind the USP2's alternative splicing.
Collapse
Affiliation(s)
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, China
| |
Collapse
|
110
|
Wang Z, Xie W, Zhu M, Zhou H. Development of a highly reliable assay for ubiquitin-specific protease 2 inhibitors. Bioorg Med Chem Lett 2017; 27:4015-4018. [PMID: 28778469 DOI: 10.1016/j.bmcl.2017.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
The dynamic modification of proteins with ubiquitin plays crucial roles in major celluar functions, and is associated with a number of pathological conditions. Ubiquitin-specific proteases (USPs) cleave ubiquitin from substrate proteins, and rescue them from proteasomal degradation. Among them, USP2 is overexpressed and plays important roles in various cancers including prostate cancer. Thus, it represents an attractive target for drug discovery. In order to develop potent and selective USP2 inhibitors, a highly reliable assay is needed for in-depth structure-activity relationship study. We report the cloning, expression, and purification of USP2 and UBA52, and the development of a highly reliable assay based on readily available SDS-PAGE-Coomassie systeme using UBA52 as the substrate protein. A number of effective USP2 inhibitors were also identified using this assay.
Collapse
Affiliation(s)
- Zhongli Wang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjuan Xie
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
111
|
Gopinath P, Mahammed A, Eilon-Shaffer T, Nawatha M, Ohayon S, Shabat D, Gross Z, Brik A. Switching Futilepara-Quinone to Efficient Reactive Oxygen Species Generator: Ubiquitin-Specific Protease-2 Inhibition, Electrocatalysis, and Quantification. Chembiochem 2017. [DOI: 10.1002/cbic.201700330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pushparathinam Gopinath
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Tal Eilon-Shaffer
- School of Chemistry; Raymond and Beverly Sackler; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Mickal Nawatha
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Shimrit Ohayon
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Doron Shabat
- School of Chemistry; Raymond and Beverly Sackler; Faculty of Exact Sciences; Tel Aviv University; Tel Aviv 69978 Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 3200008 Israel
| |
Collapse
|
112
|
Hu W, Wei H, Li K, Li P, Lin J, Feng R. Downregulation of USP32 inhibits cell proliferation, migration and invasion in human small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28597490 DOI: 10.1111/cpr.12343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/14/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Ubiquitin specific protease 32 (USP32) is a highly conserved but uncharacterized gene, which has been reported to be associated with growth of breast cancer cells. However, the role of USP32 in human small cell lung cancer (SCLC) has not been uncovered. The aim of this study was to investigate and evaluate the clinical significance of USP32 in patients with SCLC. MATERIALS AND METHODS Expression of USP32 was firstly investigated using public online data sets and then determined in SCLC tissues and cell lines using quantitative real-time PCR, Western blotting and immunohistochemical staining. SCLC cells were transfected with a small-interfering RNA targeting USP32 mRNA and analysed for cell viability, proliferation ability, cell cycle distribution, apoptosis and invasion. RESULTS USP32 was found to be overexpressed in SCLC tissues compared with normal tissues. High USP32 expression was significantly correlated with disease stage and invasion. In vitro experiments demonstrated that silencing of USP32 caused a significant decrease in the proliferation and migration rate of cells. Furthermore, USP32 silencing arrested cell cycle progression at G0/G1 phase via decreasing CDK4/Cyclin D1 complex and elevating p21. In addition, downregulation of USP32 significantly induced cell apoptosis by activating cleaved caspase-3 and cleaved PARP, as well as inhibiting cell invasiveness via altering epithelial mesenchymal transition expression. CONCLUSIONS Our results suggest for the first time that USP32 is important for SCLC progression and might be a potential target for molecular therapy of SCLC.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Ji Nan, Shandong, China
| | - Keming Li
- Department of Medicine science, Shandong Academy of Traditional Medicine, Ji Nan, Shandong, China
| | - Pei Li
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Jiamao Lin
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Rui Feng
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| |
Collapse
|
113
|
Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA, Skalniak L. Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G 0/G 1 Arrest by Inhibiting Deubiquitinase USP2a. Cell Chem Biol 2017; 24:458-470.e18. [PMID: 28343940 PMCID: PMC5404848 DOI: 10.1016/j.chembiol.2017.03.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/26/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
USP2a is a deubiquitinase responsible for stabilization of cyclin D1, a crucial regulator of cell-cycle progression and a proto-oncoprotein overexpressed in numerous cancer types. Here we report that lithocholic acid (LCA) derivatives are inhibitors of USP proteins, including USP2a. The most potent LCA derivative, LCA hydroxyamide (LCAHA), inhibits USP2a, leading to a significant Akt/GSK3β-independent destabilization of cyclin D1, but does not change the expression of p27. This leads to the defects in cell-cycle progression. As a result, LCAHA inhibits the growth of cyclin D1-expressing, but not cyclin D1-negative cells, independently of the p53 status. We show that LCA derivatives may be considered as future therapeutics for the treatment of cyclin D1-addicted p53-expressing and p53-defective cancer types.
Collapse
Affiliation(s)
- Katarzyna Magiera
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Marcin Tomala
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Kubica
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bartosz J Zieba
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Les
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
114
|
Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells. Int J Mol Sci 2016; 18:ijms18010044. [PMID: 28035994 PMCID: PMC5297679 DOI: 10.3390/ijms18010044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G1-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G1-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.
Collapse
|
115
|
Anti-spasmogenic effect of cyproheptadine on guinea-pig ileum. Cancers (Basel) 1984; 11:cancers11070965. [PMID: 31324052 PMCID: PMC6678244 DOI: 10.3390/cancers11070965] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that lacks targeted therapy options, and patients diagnosed with TNBC have poorer outcomes than patients with other breast cancer subtypes. Emerging evidence suggests that breast cancer stem cells (BCSCs), which have tumor-initiating potential and possess self-renewal capacity, may be responsible for this poor outcome by promoting therapy resistance, metastasis, and recurrence. TNBC cells have been consistently reported to display cancer stem cell (CSC) signatures at functional, molecular, and transcriptional levels. In recent decades, CSC-targeting strategies have shown therapeutic effects on TNBC in multiple preclinical studies, and some of these strategies are currently being evaluated in clinical trials. Therefore, understanding CSC biology in TNBC has the potential to guide the discovery of novel therapeutic agents in the future. In this review, we focus on the self-renewal signaling pathways (SRSPs) that are aberrantly activated in TNBC cells and discuss the specific signaling components that are involved in the tumor-initiating potential of TNBC cells. Additionally, we describe the molecular mechanisms shared by both TNBC cells and CSCs, including metabolic plasticity, which enables TNBC cells to switch between metabolic pathways according to substrate availability to meet the energetic and biosynthetic demands for rapid growth and survival under harsh conditions. We highlight CSCs as potential key regulators driving the aggressiveness of TNBC. Thus, the manipulation of CSCs in TNBC can be a targeted therapeutic strategy for TNBC in the future.
Collapse
|