101
|
Proteomic Characterization of Colorectal Cancer Cells versus Normal-Derived Colon Mucosa Cells: Approaching Identification of Novel Diagnostic Protein Biomarkers in Colorectal Cancer. Int J Mol Sci 2020; 21:ijms21103466. [PMID: 32422974 PMCID: PMC7278953 DOI: 10.3390/ijms21103466] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
In the western world, colorectal cancer (CRC) is the third most common cause of cancer-related deaths. Survival is closely related to the stage of cancer at diagnosis striking the clinical need for biomarkers capable of early detection. To search for possible biological parameters for early diagnosis of CRC we evaluated protein expression for three CREC (acronym: Cab45, reticulocalbin, ERC-55, calumenin) proteins: reticulocalbin, calumenin, and ERC-55 in a cellular model consisting of a normal derived colon mucosa cell line, NCM460, and a primary adenocarcinoma cell line of the colon, SW480. Furthermore, this cellular model was analyzed by a top-down proteomic approach, 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for novel putative diagnostic markers by identification of differentially expressed proteins between the two cell lines. A different colorectal carcinoma cell line, HCT 116, was used in a bottom-up proteomic approach with label-free quantification (LFQ) LC-MS/MS. The two cellular models gave sets of putative diagnostic CRC biomarkers. Various of these novel putative markers were verified with increased expression in CRC patient neoplastic tissue compared to the expression in a non-involved part of the colon, including reticulocalbin, calumenin, S100A6 and protein SET. Characterization of these novel identified biological features for CRC patients may have diagnostic potential and therapeutic relevance in this malignancy characterized by a still unmet clinical need.
Collapse
|
102
|
Quandt E, Ribeiro MPC, Clotet J. Atypical cyclins in cancer: New kids on the block? Semin Cell Dev Biol 2020; 107:46-53. [PMID: 32417219 DOI: 10.1016/j.semcdb.2020.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Atypical cyclins have recently emerged as a new subfamily of cyclins characterized by common structural features and interactor pattern. Interestingly, atypical cyclins are phylogenetically close to canonical cyclins, which have well-established roles in cell cycle regulation and cancer. Therefore, although the function of atypical cyclins is still poorly characterized, it seems likely that they are involved in cancer pathogenesis as well. Here, we coupled gene expression and prognostic significance analysis to bibliographic search in order to provide new insights into the role of atypical cyclins in cancer. The information gathered suggests that atypical cyclins intervene in critical processes to sustain cancer growth and have potential to become novel prognostic markers and drug targets in cancer.
Collapse
Affiliation(s)
- Eva Quandt
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain
| | - Mariana P C Ribeiro
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| | - Josep Clotet
- Faculty of Medicine and Health Sciences, Universitat Internacional De Catalunya, 08195, Sant Cugat Del Vallès, Barcelona, Spain.
| |
Collapse
|
103
|
Israelsson P, Dehlin E, Nagaev I, Lundin E, Ottander U, Mincheva-Nilsson L. Cytokine mRNA and protein expression by cell cultures of epithelial ovarian cancer-Methodological considerations on the choice of analytical method for cytokine analyses. Am J Reprod Immunol 2020; 84:e13249. [PMID: 32307767 DOI: 10.1111/aji.13249] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM To get a comprehensive picture of cytokine expression in health and disease is difficult, cytokines are transiently and locally expressed, and protein analyses are burdened by biological modifications, technical issues, and sensitivity to handling of samples. Thus, alternative methods, based on molecular techniques for cytokine mRNA analyses, are often used. We compared cytokine mRNA and protein expression to evaluate whether cytokine mRNA profiles can be used instead of protein analyses. METHOD OF STUDY In kinetic experiments, cytokine mRNA and protein expression of IL-1β, IL-6, IL-8, TNF-α, and TNF-β/LTA were studied using real-time RT-qPCR and Luminex® microarrays in the ovarian cancer cell lines OVCAR-3, SKOV-3 and the T-cell line Jurkat, after activation of transcription by thermal stress. In addition, we analyzed IL-6 and IL-8 mRNA and protein in a small number of ovarian cancer patients. RESULTS Ovarian cancer cells can express cytokines on both mRNA and protein level, with 1-4 hours' time delay between the mRNA and protein peak and a negative Spearman correlation. The mRNA and protein expression in patient samples was poorly correlated, reflecting previous studies. CONCLUSION Cytokine mRNA and protein expression levels show diverging results, depending on the material analyzed and the method used. Considering the high sensitivity and reproducibility of real-time RT-qPCR, we suggest that cytokine mRNA profiles could be used as a proxy for protein expression for some specific purposes, such as comparisons between different patient groups, and in defining mechanistic pathways involved in the pathogenesis of cancer and other pathological conditions.
Collapse
Affiliation(s)
- Pernilla Israelsson
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden.,Department of Clinical Sciences/Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Eva Dehlin
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Ivan Nagaev
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| | - Eva Lundin
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Ulrika Ottander
- Department of Clinical Sciences/Obstetrics and Gynecology, Umeå University, Umeå, Sweden
| | - Lucia Mincheva-Nilsson
- Department of Clinical Microbiology, Infection and Immunology, Umeå University, Umeå, Sweden
| |
Collapse
|
104
|
Wang F, Zhang J, Zhou G. HIF1α/PLD2 axis linked to glycolysis induces T-cell immunity in oral lichen planus. Biochim Biophys Acta Gen Subj 2020; 1864:129602. [PMID: 32205175 DOI: 10.1016/j.bbagen.2020.129602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/18/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oral lichen planus (OLP) is a common T-cell-mediated immunological disease. Hypoxia-inducible factor 1 alpha (HIF1α) plays an integral role in the glycolytic metabolism that facilitates immune functions from boosting cellular proliferative capacity to driving T-cell differentiation. In general, phospholipase D2 (PLD2) is required for HIF1α regulation. However, the involvement of HIF1α and PLD2 in dysfunctional T-cell immunity of OLP remains elusive. METHODS HIF1α and PLD2 expression in OLP lesions were determined by qRT-PCR, immunohistochemistry and immunofluorescence staining, and correlation analysis was carried out between their expressions. HIF1α or PLD2 silencing in T cells was performed to investigate the glycolytic alteration. Then their involvement in T-cell immunobiology was evaluated by detecting cell proliferation, cell cycle, apoptosis, and effector subsets differentiation. Additionally, the modulation of HIF1α on PLD2 expression and the engagement of mTOR in this process were explored. RESULTS HIF1α and PLD2 protein were highly expressed in OLP lesions and they were both observed in large numbers of local CD3+ T cells in OLP. Besides, HIF1α expression was positively correlated with PLD2 expression in OLP. Both HIF1α and PLD2 promoted T-cell proliferation and pro-inflammatory phenotype differentiation, which was associated with the upregulation of glycolysis mediated by HIF1α or PLD2. Moreover, HIF1α induced PLD2 expression in an mTOR-independent way. CONCLUSIONS HIF1α/PLD2 axis was supposed to be critical regulatory signaling involved in the T-cell immunity of OLP.
Collapse
Affiliation(s)
- Fang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, PR China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, PR China; Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, PR China.
| |
Collapse
|
105
|
Kabak YB, Sozmen M, Devrim AK, Sudagidan M, Yildirim F, Guvenc T, Yarim M, Gulbahar YM, Ahmed I, Karaca E, Inal S. Expression levels of angiogenic growth factors in feline squamous cell carcinoma. Acta Vet Hung 2020; 68:37-48. [PMID: 32384073 DOI: 10.1556/004.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 11/13/2019] [Indexed: 01/16/2023]
Abstract
Squamous cell carcinoma (SCC) is the most common malignant neoplasm of the skin in cats. Tumour angiogenesis is the pivotal event for tumour progression and metastasis. We assessed protein and gene expression of angiogenic growth factors including bFGF, VEGF-C, TGF-β, PDGF-A, PDGF-C and PDGFR-α that possibly contribute to the angiogenic phenotype of feline SCC (FSCC) and could, therefore, be a good target in the treatment of SCC. In the present study, a total of 27 FSCC cases were investigated. Tumour cases were histopathologically classified as well differentiated (10/27), moderately differentiated (5/27), and poorly differentiated (12/27). The expression levels of the growth factors were detected using immunohistochemistry and assessed semi-quantitatively. Growth factor expression levels were evaluated at different locations: in the oral region, in areas exposed to solar UV radiation including the ears, eyelids and nasal planum, and other miscellaneous locations. Our findings have revealed that FSCC arising from different anatomical sites of the body and showing differences in aggressiveness, metastasis, and prognosis may be angiogenesis dependent, and angiogenic key regulators could play a role in the development of FSCC.
Collapse
Affiliation(s)
- Yonca B. Kabak
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Mahmut Sozmen
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Alparslan K. Devrim
- 2Department of Biochemistry, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale, Turkey
| | - Mert Sudagidan
- 3Konya Food and Agriculture University, Kit-Argem, Konya, Turkey
| | - Funda Yildirim
- 4Department of Pathology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Tolga Guvenc
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Murat Yarim
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Yavuz M. Gulbahar
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Ishtiaq Ahmed
- 5Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Efe Karaca
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| | - Sinem Inal
- 1Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit, 55200 Atakum, Samsun, Turkey
| |
Collapse
|
106
|
Pal R, Schaubhut J, Clark D, Brown L, Stewart JJ. Single-Cell Analysis of Cytokine mRNA and Protein Expression by Flow Cytometry. ACTA ACUST UNITED AC 2020; 92:e69. [PMID: 32092227 DOI: 10.1002/cpcy.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Understanding how immune cells respond to external stimuli such as pathogens or drugs is a key component of biomedical research. Critical to the immune response are the expression of cell-surface receptors and the secretion of cytokines, which are tightly regulated by gene expression and protein synthesis. Previously, cytokine mRNA expression levels have been measured from bulk analysis of heterogeneous or sorted cell populations, and the correlation between cytokine mRNA expression and protein levels using these techniques can be highly variable. Flow cytometry is used to monitor changes in cell-surface and intracellular proteins, but some proteins such as cytokines may be transient and difficult to measure. Thus, a flow cytometry method that can simultaneously measure cytokine mRNA and protein levels in single cells is a very powerful tool. We defined a flow cytometry method that combines the conventional measurement of T cell surface proteins (CD45, CD3, CD4, CD8) and intracellular cytokines (IL-2, INF-γ) with fluorescent in situ hybridization and branched DNA technology for amplification and detection of IL-2 and INF-γ mRNA transcripts in activated T cells. This method has been applied to frozen peripheral mononuclear blood cells (PBMCs) and frozen blood samples, making it applicable to clinical trial specimens that require shipment to the test site. In CD4+ cells from activated PBMCs, the concordance between mRNA and protein levels was 41% for IL-2 and 21% for and INF-γ. In CD8+ cells from activated PBMCs, the concordance was 15% for IL-2 and 32% for INF-γ. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Detection of IL-2 and IFN-γ mRNA and protein expression in frozen PBMCs Alternate Protocol: Detection of IL-2 and IFN-γ mRNA and protein expression in frozen blood.
Collapse
Affiliation(s)
- Rubina Pal
- Flow Contract Site Laboratory, LLC, Bothell, Washington
| | | | - Darcey Clark
- Flow Contract Site Laboratory, LLC, Bothell, Washington
| | - Lynette Brown
- Flow Contract Site Laboratory, LLC, Bothell, Washington
| | | |
Collapse
|
107
|
Mégret L, Nair SS, Dancourt J, Aaronson J, Rosinski J, Neri C. Combining feature selection and shape analysis uncovers precise rules for miRNA regulation in Huntington's disease mice. BMC Bioinformatics 2020; 21:75. [PMID: 32093602 PMCID: PMC7041117 DOI: 10.1186/s12859-020-3418-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Background MicroRNA (miRNA) regulation is associated with several diseases, including neurodegenerative diseases. Several approaches can be used for modeling miRNA regulation. However, their precision may be limited for analyzing multidimensional data. Here, we addressed this question by integrating shape analysis and feature selection into miRAMINT, a methodology that we used for analyzing multidimensional RNA-seq and proteomic data from a knock-in mouse model (Hdh mice) of Huntington’s disease (HD), a disease caused by CAG repeat expansion in huntingtin (htt). This dataset covers 6 CAG repeat alleles and 3 age points in the striatum and cortex of Hdh mice. Results Remarkably, compared to previous analyzes of this multidimensional dataset, the miRAMINT approach retained only 31 explanatory striatal miRNA-mRNA pairs that are precisely associated with the shape of CAG repeat dependence over time, among which 5 pairs with a strong change of target expression levels. Several of these pairs were previously associated with neuronal homeostasis or HD pathogenesis, or both. Such miRNA-mRNA pairs were not detected in cortex. Conclusions These data suggest that miRNA regulation has a limited global role in HD while providing accurately-selected miRNA-target pairs to study how the brain may compute molecular responses to HD over time. These data also provide a methodological framework for researchers to explore how shape analysis can enhance multidimensional data analytics in biology and disease.
Collapse
Affiliation(s)
- Lucile Mégret
- Sorbonne Université, CNRS UMR8256, INSERM ERL U1164, Brain-C Lab, Paris, France.
| | | | - Julia Dancourt
- Sorbonne Université, CNRS UMR8256, INSERM ERL U1164, Brain-C Lab, Paris, France
| | | | | | - Christian Neri
- Sorbonne Université, CNRS UMR8256, INSERM ERL U1164, Brain-C Lab, Paris, France.
| |
Collapse
|
108
|
O’Donnell ST, Ross RP, Stanton C. The Progress of Multi-Omics Technologies: Determining Function in Lactic Acid Bacteria Using a Systems Level Approach. Front Microbiol 2020; 10:3084. [PMID: 32047482 PMCID: PMC6997344 DOI: 10.3389/fmicb.2019.03084] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic Acid Bacteria (LAB) have long been recognized as having a significant impact ranging from commercial to health domains. A vast amount of research has been carried out on these microbes, deciphering many of the pathways and components responsible for these desirable effects. However, a large proportion of this functional information has been derived from a reductionist approach working with pure culture strains. This provides limited insight into understanding the impact of LAB within intricate systems such as the gut microbiome or multi strain starter cultures. Whole genome sequencing of strains and shotgun metagenomics of entire systems are powerful techniques that are currently widely used to decipher function in microbes, but they also have their limitations. An available genome or metagenome can provide an image of what a strain or microbiome, respectively, is potentially capable of and the functions that they may carry out. A top-down, multi-omics approach has the power to resolve the functional potential of an ecosystem into an image of what is being expressed, translated and produced. With this image, it is possible to see the real functions that members of a system are performing and allow more accurate and impactful predictions of the effects of these microorganisms. This review will discuss how technological advances have the potential to increase the yield of information from genomics, transcriptomics, proteomics and metabolomics. The potential for integrated omics to resolve the role of LAB in complex systems will also be assessed. Finally, the current software approaches for managing these omics data sets will be discussed.
Collapse
Affiliation(s)
- Shane Thomas O’Donnell
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- Department of Microbiology, University College Cork – National University of Ireland, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
- APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
109
|
Xu W, Yu S, Xiong J, Long J, Zheng Y, Sang X. CeRNA regulatory network-based analysis to study the roles of noncoding RNAs in the pathogenesis of intrahepatic cholangiocellular carcinoma. Aging (Albany NY) 2020; 12:1047-1086. [PMID: 31956102 PMCID: PMC7053603 DOI: 10.18632/aging.102634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023]
Abstract
To explore and understand the competitive mechanism of ceRNAs in intrahepatic cholangiocarcinoma (ICC), we used bioinformatics analysis methods to construct an ICC-related ceRNA regulatory network (ceRNET), which contained 340 lncRNA-miRNA-mRNA regulatory relationships based on the RNA expression datasets in the NCBI GEO database. We identified the core regulatory pathway RP11-328K4.1-hsa-miR-27a-3p-PROS1, which is related to ICC, for further validation by molecular biology assays. GO analysis of 44 differentially expressed mRNAs in ceRNET revealed that they were mainly enriched in biological processes including “negative regulation of epithelial cell proliferation” and "positive regulation of activated T lymphocyte proliferation.” KEGG analysis showed that they were mainly enriched in the “complement and coagulation cascade” pathway. The molecular biology assay showed that lncRNA RP11-328K4.1 expression was significantly lower in the cancerous tissues and peripheral plasma of ICC patients than in normal controls (p<0.05). In addition, hsa-miR-27a-3p was found to be significantly upregulated in the cancer tissues and peripheral plasma of ICC patients (p<0.05). Compared to normal controls, the expression of PROS1 mRNA was significantly downregulated in ICC patient cancer tissues (p<0.05) but not in peripheral plasma (p>0.05). Furthermore, ROC analysis revealed that RP11-328K4.1, hsa-miR-27a-3p, and PROS1 had significant diagnostic value in ICC. We concluded that the upregulation of lncRNA RP11-328K4.1, which might act as a miRNA sponge, exerts an antitumor effect in ICC by eliminating the inhibition of PROS1 mRNA expression by oncogenic miRNA hsa-miR-27a.
Collapse
Affiliation(s)
- Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Xi-Cheng, Beijing 100050, People's Republic of China
| | - Si Yu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Jianping Xiong
- Department of Interventional Radiology, Beijing Friendship Hospital, Capital Medical University, Xi-Cheng, Beijing 100050, People's Republic of China
| | - Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Wangfujing, Beijing 100730, People's Republic of China
| |
Collapse
|
110
|
Environmental influences on placental programming and offspring outcomes following maternal immune activation. Brain Behav Immun 2020; 83:44-55. [PMID: 31493445 PMCID: PMC6906258 DOI: 10.1016/j.bbi.2019.08.192] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Adverse experiences during pregnancy induce placental programming, affecting the fetus and its developmental trajectory. However, the influence of 'positive' maternal experiences on the placenta and fetus remain unclear. In animal models of early life stress, environmental enrichment (EE) has ameliorated and even prevented associated impairments in brain and behavior. Here, using a maternal immune activation (MIA) model in rats, we test whether EE attenuates maternal, placental and/or fetal responses to an inflammatory challenge, thereby offering a mechanism by which fetal programming may be prevented. Moreover, we evaluate life-long EE exposure on offspring development and examine a constellation of genes and epigenetic writers that may protect against MIA challenges. In our model, maternal plasma corticosterone and interleukin-1β were elevated 3 h after MIA, validating the maternal inflammatory response. Evidence for developmental programming was demonstrated by a simultaneous decrease in the placental enzymes Hsd11b2 and Hsd11b2/Hsd11b1, suggesting disturbances in glucocorticoid metabolism. Reductions of Hsd11b2 in response to challenge is thought to result in excess glucocorticoid exposure to the fetus and altered glucocorticoid receptor expression, increasing susceptibility to behavioral impairments later in life. The placental, but not maternal, glucocorticoid implications of MIA were attenuated by EE. There were also sustained changes in epigenetic writers in both placenta and fetal brain as a consequence of environmental experience and sex. Following MIA, both male and female juvenile animals were impaired in social discrimination ability. Life-long EE mitigated these impairments, in addition to the sex specific MIA associated disruptions in central Fkbp5 and Oprm1. These data provide the first evidence that EE protects placental functioning during stressor exposure, underscoring the importance of addressing maternal health and well-being throughout pregnancy. Future work must evaluate critical periods of EE use to determine if postnatal EE experience is necessary, or if prenatal exposure alone is sufficient to confer protection.
Collapse
|
111
|
Pan-cancer molecular subtypes revealed by mass-spectrometry-based proteomic characterization of more than 500 human cancers. Nat Commun 2019; 10:5679. [PMID: 31831737 PMCID: PMC6908580 DOI: 10.1038/s41467-019-13528-0] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Mass-spectrometry-based proteomic profiling of human cancers has the potential for pan-cancer analyses to identify molecular subtypes and associated pathway features that might be otherwise missed using transcriptomics. Here, we classify 532 cancers, representing six tissue-based types (breast, colon, ovarian, renal, uterine), into ten proteome-based, pan-cancer subtypes that cut across tumor lineages. The proteome-based subtypes are observable in external cancer proteomic datasets surveyed. Gene signatures of oncogenic or metabolic pathways can further distinguish between the subtypes. Two distinct subtypes both involve the immune system, one associated with the adaptive immune response and T-cell activation, and the other associated with the humoral immune response. Two additional subtypes each involve the tumor stroma, one of these including the collagen VI interacting network. Three additional proteome-based subtypes—respectively involving proteins related to Golgi apparatus, hemoglobin complex, and endoplasmic reticulum—were not reflected in previous transcriptomics analyses. A data portal is available at UALCAN website. Mass-spectrometry-based profiling can be used to stratify tumours into molecular subtypes. Here, by classifying over 500 tumours, the authors show that this approach reveals proteomic subgroups which cut across tumour types.
Collapse
|
112
|
Katzir R, Polat IH, Harel M, Katz S, Foguet C, Selivanov VA, Sabatier P, Cascante M, Geiger T, Ruppin E. The landscape of tiered regulation of breast cancer cell metabolism. Sci Rep 2019; 9:17760. [PMID: 31780802 PMCID: PMC6882817 DOI: 10.1038/s41598-019-54221-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 10/21/2019] [Indexed: 01/10/2023] Open
Abstract
Altered metabolism is a hallmark of cancer, but little is still known about its regulation. In this study, we measure transcriptomic, proteomic, phospho-proteomic and fluxomics data in a breast cancer cell-line (MCF7) across three different growth conditions. Integrating these multiomics data within a genome scale human metabolic model in combination with machine learning, we systematically chart the different layers of metabolic regulation in breast cancer cells, predicting which enzymes and pathways are regulated at which level. We distinguish between two types of reactions, directly and indirectly regulated. Directly-regulated reactions include those whose flux is regulated by transcriptomic alterations (~890) or via proteomic or phospho-proteomics alterations (~140) in the enzymes catalyzing them. We term the reactions that currently lack evidence for direct regulation as (putative) indirectly regulated (~930). Many metabolic pathways are predicted to be regulated at different levels, and those may change at different media conditions. Remarkably, we find that the flux of predicted indirectly regulated reactions is strongly coupled to the flux of the predicted directly regulated ones, uncovering a tiered hierarchical organization of breast cancer cell metabolism. Furthermore, the predicted indirectly regulated reactions are predominantly reversible. Taken together, this architecture may facilitate rapid and efficient metabolic reprogramming in response to the varying environmental conditions incurred by the tumor cells. The approach presented lays a conceptual and computational basis for mapping metabolic regulation in additional cancers.
Collapse
Affiliation(s)
- Rotem Katzir
- Center for BioInformatics and Computational Biology, Dept. of Computer Science and the University of Maryland Institute of Advanced Computer Studies (UMIACS), University of Maryland, College Park, MD, 20742, USA
| | - Ibrahim H Polat
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Equipe environnement et prédiction de la santé des populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, La Tronche, France
| | - Michal Harel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shir Katz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carles Foguet
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Vitaly A Selivanov
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Philippe Sabatier
- Equipe environnement et prédiction de la santé des populations, Laboratoire TIMC (UMR 5525), CHU de Grenoble, Université Grenoble Alpes, La Tronche, France
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
113
|
Ivanova O, Richards LB, Vijverberg SJ, Neerincx AH, Sinha A, Sterk PJ, Maitland‐van der Zee AH. What did we learn from multiple omics studies in asthma? Allergy 2019; 74:2129-2145. [PMID: 31004501 DOI: 10.1111/all.13833] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
More than a decade has passed since the finalization of the Human Genome Project. Omics technologies made a huge leap from trendy and very expensive to routinely executed and relatively cheap assays. Simultaneously, we understood that omics is not a panacea for every problem in the area of human health and personalized medicine. Whilst in some areas of research omics showed immediate results, in other fields, including asthma, it only allowed us to identify the incredibly complicated molecular processes. Along with their possibilities, omics technologies also bring many issues connected to sample collection, analyses and interpretation. It is often impossible to separate the intrinsic imperfection of omics from asthma heterogeneity. Still, many insights and directions from applied omics were acquired-presumable phenotypic clusters of patients, plausible biomarkers and potential pathways involved. Omics technologies develop rapidly, bringing improvements also to asthma research. These improvements, together with our growing understanding of asthma subphenotypes and underlying cellular processes, will likely play a role in asthma management strategies.
Collapse
Affiliation(s)
- Olga Ivanova
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Levi B. Richards
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Susanne J. Vijverberg
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anne H. Neerincx
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anirban Sinha
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Peter J. Sterk
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
| | - Anke H. Maitland‐van der Zee
- Department of Respiratory Medicine, Amsterdam University Medical Centres (AUMC) University of Amsterdam Amsterdam the Netherlands
- Department of Paediatric Pulmonology Amsterdam UMC/ Emma Children's Hospital Amsterdam the Netherlands
| |
Collapse
|
114
|
Mai Y, Peng S, Li H, Lai Z. Histological, biochemical and transcriptomic analyses reveal liver damage in zebrafish (Danio rerio) exposed to phenanthrene. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108582. [PMID: 31374294 DOI: 10.1016/j.cbpc.2019.108582] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 07/05/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023]
Abstract
Phenanthrene (PHE) is a common polycyclic aromatic hydrocarbon (PAH) in aquatic environments, and this contaminant can cause adverse effects on teleostean performance. In this study, we exposed the model freshwater fish (zebrafish; Danio rerio) to 300 μg/L PHE for 15 days. Histological analysis demonstrated that liver morphology deteriorated in PHE-exposed zebrafish, and cellular damage in the liver increased. Biological analysis revealed that exposure to PHE elicited significant changes in glutathione S-transferases (GST) and superoxide dismutase (SOD) activities. 476 differentially expressed genes (DEGs) were identified in liver between control and PHE treated groups through the transcriptomic analysis. Gene Ontology enrichment analysis (GO) suggested that PHE exposure induced changes in the expression of genes associated with "lipid transporter activity", "catalytic activity", "metal ion binding", "lipid transport" and "transmembrane transport". Furthermore, the "vitamin digestion and absorption" and "fat digestion and absorption" pathways enriched in Kyoto Encyclopedia of Genes and Genomes analysis (KEGG). Additionally, five candidate biomarkers associated with the PHE response in zebrafish were identified. In conclusion, our results elucidate the physiological and molecular responses to PHE exposure in the liver of zebrafish, and provide a framework for further studies of the mechanisms underlying the toxic effects of polycyclic aromatic hydrocarbons (PAHs) on aquatic organisms.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyan Li
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
115
|
Ouaguia L, Moralès O, Aoudjehane L, Wychowski C, Kumar A, Dubuisson J, Calmus Y, Conti F, Delhem N. Hepatitis C Virus Improves Human Tregs Suppressive Function and Promotes Their Recruitment to the Liver. Cells 2019; 8:cells8101296. [PMID: 31652598 PMCID: PMC6829901 DOI: 10.3390/cells8101296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The role of regulatory T cells (Tregs) is now well established in the progression of hepatocellular carcinoma (HCC) linked to Hepatitis C virus (HCV) infection. However, nothing is known about the potential interplay between Tregs and HCV. In this pilot study, we have investigated the ability of Tregs to hang HCV on and the subsequent effect on their suppressive function and phenotype. Moreover, we have evaluated how HCV could promote the recruitment of Tregs by infected primary human hepatocytes. Methods: Tregs of healthy donors were incubated with JFH-1/HCVcc. Viral inoculation was assessed using adapted assays (RT-qPCR, Flow Citometry (FACS) and Western Blot (WB). Expression of Tregs phenotypic (CD4, CD25, CD127 and Foxp3) and functional (IL-10, GZMB, TGF-β1 and IL-2) markers was monitored by RT-qPCR, FACS and ELISA. Suppressive activity was validated by suppressive assays. Tregs recruitment by infected primary hepatic cells was evaluated using Boyden Chamber. Results: Tregs express the classical HCV receptors (CD81, CLDN1 and LDLR) and some co-receptors (CD5). HCV inoculation significantly increases the suppressive phenotype and activity of Tregs, and raises their anergy by inducing an unexpected IL-2 production. Moreover, HCV infection induces the expression of chemokines (CCL17, CXCL16, and CCL20) by primary hepatic human hepatocytes and chemokine receptors (CCR4, CXCR6 and CCR6) by Tregs. Finally, infected hepatocytes have a significantly higher potential to recruit Tregs in a seemingly CCL20-dependent manner. Conclusions: Direct interaction between HCV and Tregs represents a newly defined mechanism that could potentiate HCV immune evasion and favor intratumoral recruitment contributing to HCC progression.
Collapse
Affiliation(s)
- Laurissa Ouaguia
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| | - Olivier Moralès
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| | - Lynda Aoudjehane
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
| | - Czeslaw Wychowski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Abhishek Kumar
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Yvon Calmus
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France.
| | - Filomena Conti
- Sorbonne Université, INSERM, Institute of Cardiometabolism and Nutrition (ICAN), F-75013 Paris, France.
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), F-75012 Paris, France.
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France.
| | - Nadira Delhem
- Université Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, F-59000 Lille, France.
- CNRS-UMR 8161, F-59000 Lille, France.
- Institut Pasteur de Lille, F-59000 Lille, France.
| |
Collapse
|
116
|
Proteomic profiling identifies outcome-predictive markers in patients with peripheral T-cell lymphoma, not otherwise specified. Blood Adv 2019; 2:2533-2542. [PMID: 30291111 DOI: 10.1182/bloodadvances.2018019893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/27/2018] [Indexed: 11/20/2022] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) constitutes a heterogeneous category of lymphomas, which do not fit into any of the specifically defined T-cell lymphoma entities. Both the pathogenesis and tumor biology in PTCL-NOS are poorly understood. Protein expression in pretherapeutic PTCL-NOS tumors was analyzed by proteomics. Differentially expressed proteins were compared in 3 distinct scenarios: (A) PTCL-NOS tumor tissue (n = 18) vs benign lymphoid tissue (n = 8), (B) clusters defined by principal component analysis (PCA), and (C) tumors from patients with chemosensitive vs refractory PTCL-NOS. Selected differentially expressed proteins identified by proteomics were correlated with clinico-pathological features and outcome in a larger cohort of patients with PTCL-NOS (n = 87) by immunohistochemistry (IHC). Most proteins with altered expression were identified comparing PTCL-NOS vs benign lymphoid tissue. PCA of the protein profile defined 3 distinct clusters. All benign samples clustered together, whereas PTCL-NOS tumors separated into 2 clusters with different patient overall survival rates (P = .001). Differentially expressed proteins reflected large biological diversity among PTCL-NOS, particularly associated with alterations of "immunological" pathways. The 2 PTCL-NOS subclusters defined by PCA showed disturbance of "stress-related" and "protein metabolic" pathways. α-Enolase 1 (ENO1) was found differentially expressed in all 3 analyses, and high intratumoral ENO1 expression evaluated by IHC correlated with poor outcome (hazard ratio, 2.09; 95% confidence interval, 1.17-3.73; P = .013). High expression of triosephosphate isomerase (TPI1) also showed a tendency to correlate with poor survival (P = .057). In conclusion, proteomic profiling of PTCL-NOS provided evidence of markedly altered protein expression and identified ENO1 as a novel potential prognostic marker.
Collapse
|
117
|
Faundez V, Wynne M, Crocker A, Tarquinio D. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Front Integr Neurosci 2019; 13:30. [PMID: 31379529 PMCID: PMC6650571 DOI: 10.3389/fnint.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Meghan Wynne
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT, United States
| | - Daniel Tarquinio
- Rare Neurological Diseases (Private Research Institution), Atlanta, GA, United States
| |
Collapse
|
118
|
Tiono J, Surate Solaligue DE, Mižíková I, Nardiello C, Vadász I, Böttcher-Friebertshäuser E, Ehrhardt H, Herold S, Seeger W, Morty RE. Mouse genetic background impacts susceptibility to hyperoxia-driven perturbations to lung maturation. Pediatr Pulmonol 2019; 54:1060-1077. [PMID: 30848059 DOI: 10.1002/ppul.24304] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND The laboratory mouse is widely used in preclinical models of bronchopulmonary dysplasia, where lung alveolarization is stunted by exposure of pups to hyperoxia. Whether the diverse genetic backgrounds of different inbred mouse strains impacts lung development in newborn mice exposed to hyperoxia has not been systematically assessed. METHODS Hyperoxia (85% O2 , 14 days)-induced perturbations to lung alveolarization were assessed by design-based stereology in C57BL/6J, BALB/cJ, FVB/NJ, C3H/HeJ, and DBA/2J inbred mouse strains. The expression of components of the lung antioxidant machinery was assessed by real-time reverse transcriptase polymerase chain reaction and immunoblot. RESULTS Hyperoxia-reduced lung alveolar density in all five mouse strains to different degrees (C57BL/6J, 64.8%; FVB/NJ, 47.4%; BALB/cJ, 46.4%; DBA/2J, 45.9%; and C3H/HeJ, 35.9%). Hyperoxia caused a 94.5% increase in mean linear intercept in the C57BL/6J strain, whilst the C3H/HeJ strain was the least affected (31.6% increase). In contrast, hyperoxia caused a 65.4% increase in septal thickness in the FVB/NJ strain, where the C57BL/6J strain was the least affected (30.3% increase). The expression of components of the lung antioxidant machinery in response to hyperoxia was strain dependent, with the C57BL/6J strain exhibiting the most dramatic engagement. Baseline expression levels of components of the lung antioxidant systems were different in the five mouse strains studied, under both normoxic and hyperoxic conditions. CONCLUSION The genetic background of laboratory mouse strains dramatically influenced the response of the developing lung to hyperoxic insult. This might be explained, at least in part, by differences in how antioxidant systems are engaged by different mouse strains after hyperoxia exposure.
Collapse
Affiliation(s)
- Jennifer Tiono
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - István Vadász
- Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | | | - Harald Ehrhardt
- Division of General Pediatrics and Neonatology, University Children's Hospital Giessen, Justus Liebig, University, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), Universities of Giessen and Marburg Lung Center, member of The German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
119
|
Sun L, Xu Q, Zhang W, Jiao C, Wu H, Chen X. The involvement of spinal annexin A10/NF-κB/MMP-9 pathway in the development of neuropathic pain in rats. BMC Neurosci 2019; 20:28. [PMID: 31208343 PMCID: PMC6580616 DOI: 10.1186/s12868-019-0513-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022] Open
Abstract
Background Neuropathic pain (NP) is a prevalent disease, which badly impairs the life quality of patients. The underlying mechanism of NP is still not fully understood. It has been reported that spinal Annexin A10 (ANXA10) contributes to NP. This study aims at exploring the underlying mechanisms of spinal ANXA10 in regulating NP in rats. Methods Spinal nerve ligation (SNL) was adopted to establish a NP model in rats. After SNL, paw withdrawal threshold and paw withdrawal latency were recorded to measure pain behaviors, RT-PCR was used to check the change of the expression of spinal ANXA10 mRNA, western blot analysis was used to detect the change of the protein level of ANXA10, nuclear factor kappa B (NF-κB), and maisrix metalloproteinase-9 (MMP-9) in the spinal cord. The levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukine-1β (IL-1β), and interleukine-6 (IL-6), were explored by ELISA kits. The effects of both knockdown of spinal ANXA10 and inhibition of NF-κB on pain behaviors and the expression of MMP-9 and proinflammatory cytokines were investigated. Results Our present findings highlighted that SNL caused pain hypersensitivity and increased the expression of spinal ANXA10/pNF-κB, TNF-α, IL-1β, and IL-6 both in the early and late phase of NP in rats, while spinal MMP-9 was only slightly increased in the early phase of NP. Knockdown of ANXA10 at the spinal cord level suppressed the SNL-induced hyperalgesia and blocked the activation of NF-κB, TNF-α and IL-1β both in the early and late phase of NP. Spinal ANXA10 knockdown could prevent the upregulation of spinal MMP-9 in the early phase and inhibit IL-6 expression in the late phase of SNL-induced NP. Conclusions In conclusion, spinal ANXA10/NF-κB/MMP-9 pathway, along with the activation of proinflammatory cytokines, was involved in the SNL-induced NP. MMP-9 may act as the downstream target of ANXA10/NF-κB pathway in the development rather than the maintenance of NP.
Collapse
Affiliation(s)
- LiHong Sun
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Qi Xu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - WenXin Zhang
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - CuiCui Jiao
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - Hui Wu
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China
| | - XinZhong Chen
- Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, Zhejiang Province, China.
| |
Collapse
|
120
|
Zhao Z, Liu B, Sun J, Lu L, Liu L, Qiu J, Li Q, Yan C, Jiang S, Mohammadtursun N, Ma W, Li M, Dong J, Gong W. Scutellaria Flavonoids Effectively Inhibit the Malignant Phenotypes of Non-small Cell Lung Cancer in an Id1-dependent Manner. Int J Biol Sci 2019; 15:1500-1513. [PMID: 31337979 PMCID: PMC6643150 DOI: 10.7150/ijbs.33146] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer death in the world. Inhibitor of differentiation 1 (Id1) is overexpressed in NSCLC and involved in promoting its progression and metastasis. Identifying natural compounds targeting Id1 may have utility in NSCLC treatment. Here, we sought to determine whether the anti-tumor activities of Scutellaria flavonoids (SFs) were related to Id1. We reported that three SFs (baicalin, baicalein and wogonin) exhibited strong antitumor activity in NSCLC cells in vitro and in vivo. Id1 played a pivotal role on blockage of migration and invasion by SFs. Abrogation of invasion and migration mediated by baicalin, baicalein and wogonin were totally abolished by ectopic overexpression of Id1. Mechanistically, baicalin, baicalein and wogonin activated Rap1-GTP binding and dephosphorylated Akt and Src by suppressing a7nAChR, consequently triggering inhibition of Id1. Then attenuation of its downstream mediators, VEGF-A, N-cadherin, vimentin, combined with augment of E-cadherin led to the blockage of proliferation, EMT and angiogenesis of NSCLC. Overall, our data shed light on heretofore-undescribed role of SFs as modulators of Id1, which may be a useful strategy in the treatment of NSCLC.
Collapse
Affiliation(s)
- Zhengxiao Zhao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Lumei Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Jian Qiu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Qiuping Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Shan Jiang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Nabijan Mohammadtursun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Wenjuan Ma
- Department of dermatology, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China.,Institutes of Integrative Medicine, Fudan University, Shanghai, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Weiyi Gong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
121
|
Chen X, Tao Y, Ali A, Zhuang Z, Guo D, Guo Q, Riaz A, Zhang H, Xu P, Liao Y, Wang J, Sun C, Xiang Q, Wu X. Transcriptome and Proteome Profiling of Different Colored Rice Reveals Physiological Dynamics Involved in the Flavonoid Pathway. Int J Mol Sci 2019; 20:E2463. [PMID: 31109052 PMCID: PMC6566916 DOI: 10.3390/ijms20102463] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/22/2022] Open
Abstract
Black and red rice are rich in both anthocyanin and proanthocyanin content, which belong to a large class of flavonoids derived from a group of phenolic secondary metabolites. However, the molecular pathways and mechanisms underlying the flavonoid biosynthetic pathway are far from clear. Therefore, this study was undertaken to gain insight into physiological factors that are involved in the flavonoid biosynthetic pathway in rice cultivars with red, black, and white colors. RNA sequencing of caryopsis and isobaric tags for relative and absolute quantification (iTRAQ) analyses have generated a nearly complete catalog of mRNA and expressed proteins in different colored rice cultivars. A total of 31,700 genes were identified, of which 3417, 329, and 227 genes were found specific for red, white, and black rice, respectively. A total of 13,996 unique peptides corresponding to 3916 proteins were detected in the proteomes of black, white, and red rice. Coexpression network analyses of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) among the different rice cultivars showed significant differences in photosynthesis and flavonoid biosynthesis pathways. Based on a differential enrichment analysis, 32 genes involved in the flavonoid biosynthesis pathway were detected, out of which only CHI, F3H, ANS, and FLS were detected by iTRAQ. Taken together, the results point to differences in flavonoid biosynthesis pathways among different colored rice cultivars, which may reflect differences in physiological functions. The differences in contents and types of flavonoids among the different colored rice cultivars are related to changes in base sequences of Os06G0162500, Os09G0455500, Os09G0455500, and Os10G0536400. Current findings expand and deepen our understanding of flavonoid biosynthesis and concurrently provides potential candidate genes for improving the nutritional qualities of rice.
Collapse
Affiliation(s)
- Xiaoqiong Chen
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yu Tao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhenhua Zhuang
- Chengdu Life Baseline Technology, Chengdu 610041, China.
| | - Daiming Guo
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiaoling Guo
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Asad Riaz
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hongyu Zhang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Peizhou Xu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yongxiang Liao
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Wang
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Changhui Sun
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xianjun Wu
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
122
|
Kozak J, Wdowiak P, Maciejewski R, Torres A. Interactions between microRNA-200 family and Sestrin proteins in endometrial cancer cell lines and their significance to anoikis. Mol Cell Biochem 2019; 459:21-34. [PMID: 31073887 PMCID: PMC6679835 DOI: 10.1007/s11010-019-03547-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
In the present study, we intend to determine whether Sestrin proteins 1, 2, and 3 (SESN1-3) are targets of microRNA-200 family (miR-200) in endometrial cancer (EC) Ishikawa, AN3CA, KLE, and RL 95-2 cell lines and to investigate how these potential interactions influence anoikis resistance of EC cell lines. The luciferase reporter assay, qRT-PCR, and western blotting assays were used to verify whether SESN1-3 are direct targets of miR-200. Moreover, the anoikis assay and transient transfections of miR-200 mimics or inhibitors into EC cell lines were performed to evaluate the modulatory role of miR-200 and SESN proteins on anoikis resistance. We demonstrated that SESN2 protein is a direct target of mir-141 in KLE and RL-95-2 EC cell lines and the functional interaction of miR-141 and SESN2 protein has a downstream effect on anoikis resistance and SESN2 expression level in Ishikawa and AN3CA cell lines. Moreover, we have shown that SESN3 protein is a direct target of miR-200b, miR-200c, and miR-429 in Ishikawa, AN3CA, and KLE cell lines. Our results show that manipulation of miR-200b, miR-200c, and miR-429 expression patterns also has an influence on anoikis resistance in EC cell lines. In conclusion, we identified new interactions between miR-200 and the oxidative stress response SESN proteins that affect anoikis resistance in human EC cells.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland.
| | - Paulina Wdowiak
- Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Ryszard Maciejewski
- Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| | - Anna Torres
- Department of Normal Anatomy, Medical University of Lublin, 20-090, Lublin, Poland
| |
Collapse
|
123
|
Zhao X, Zhou C, Lvov Y, Liu M. Clay Nanotubes Aligned with Shear Forces for Mesenchymal Stem Cell Patterning. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900357. [PMID: 30957957 DOI: 10.1002/smll.201900357] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Aligned halloysite nanotubes on solid substrates are fabricated by a shearing method with brush assistance. These clay nanotubes are aligned by shear force in strip-like patterns accomplished with drying ordering at elevated temperatures. The nanotubes' orientation is governed by "coffee-ring" formation mechanisms depending on the dispersion concentration, nanotube charge, and speed of thermos-evaporation. Polarized light irradiated through the patterns demonstrates birefringence and confirms the orientation. Scanning electron microscopy and atomic force microscopy show that the nanotubes are aligned along the direction of the wetting lines above 4 wt%, while they are not oriented at lower concentrations. Halloysite concentration, drying temperature, and type of brush fibers affect the pattern ordering. The aligned halloysite systems on glass, tissue culture plates, and polymer films, provide a promising platform for biocell guiding. Human foreskin fibroblasts proliferated well on the aligned clay patterns and the cell orientation agrees with the nanotube direction. Human bone mesenchymal stem cells (HBMSCs) are also cultured on the organized halloysite coating. The clay patterns support HBMSC proliferation with alignment, and such nanostructured substrates promote osteogenesis differentiation without growth factors. This facile method for preparing aligned halloysite patterns on solid substrates is very promising for surface modification in biotissue engineering.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Changren Zhou
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", Moscow, 119049, Russia
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, 71272, USA
| |
Collapse
|
124
|
Guo Z, Tada H, Kitamura N, Hamada Y, Miyashita M, Harada-Shoji N, Sato A, Hamanaka Y, Tsuboi K, Harada N, Takano-Kasuya M, Okada H, Nakano Y, Ohuchi N, Hayashi SI, Ishida T, Gonda K. Automated Quantification of Extranuclear ERα using Phosphor-integrated Dots for Predicting Endocrine Therapy Resistance in HR +/HER2 - Breast Cancer. Cancers (Basel) 2019; 11:cancers11040526. [PMID: 31013810 PMCID: PMC6520781 DOI: 10.3390/cancers11040526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 11/26/2022] Open
Abstract
In addition to genomic signaling, Estrogen receptor alpha (ERα) is associated with cell proliferation and survival through extranuclear signaling contributing to endocrine therapy (ET) resistance. However, the relationship between extranuclear ERα and ET resistance has not been extensively studied. We sought to measure extranuclear ERα expression by immunohistochemistry using phosphor-integrated dots (IHC-PIDs) and to assess its predictive value for ET resistance. After quantitative detection of ERα by IHC-PIDs in vitro, we developed “the nearest-neighbor method” to calculate the extranuclear ERα. Furthermore, tissue sections from 65 patients with HR+/HER2- BC were examined by IHC-PIDs, and the total ERα, nuclear ERα, extranuclear ERα PIDs score, and ratio of extranuclear-to-nuclear ERα (ENR) were measured using the novel method. We demonstrate that quantification of ERα using IHC-PIDs exhibited strong correlations to real-time qRT-PCR (r2 = 0.94) and flow cytometry (r2 = 0.98). High ERα ENR was significantly associated with poor overall survival (p = 0.048) and disease-free survival (DFS) (p = 0.007). Multivariate analysis revealed that the ERα ENR was an independent prognostic factor for DFS [hazard ratio, 3.8; 95% CI, 1.4–11.8; p = 0.006]. Our automated measurement has high accuracy to localize and assess extranuclear ERα. A high ERα ENR in HR+/HER2− BC indicates decreased likelihood of benefiting from ET.
Collapse
Affiliation(s)
- Zhaorong Guo
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Hiroshi Tada
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Narufumi Kitamura
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Yoh Hamada
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Minoru Miyashita
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Narumi Harada-Shoji
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Akiko Sato
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Yohei Hamanaka
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Kouki Tsuboi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Nobuhisa Harada
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICA MINOLTA, INC., Hino, Tokyo 191-8511, Japan.
| | - Mayumi Takano-Kasuya
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Hisatake Okada
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICA MINOLTA, INC., Hino, Tokyo 191-8511, Japan.
| | - Yasushi Nakano
- Bio Systems Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, KONICA MINOLTA, INC., Hino, Tokyo 191-8511, Japan.
| | - Noriaki Ohuchi
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Functional Dynamics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| | - Kohsuke Gonda
- Department of Medical Physics, Graduate School of Medicine, Tohoku University, Sendai, Miyagi 980-8574, Japan.
| |
Collapse
|
125
|
Chai D, Li K, Du H, Yang S, Yang R, Xu Y, Lian X. β2-microglobulin has a different regulatory molecular mechanism between ER + and ER - breast cancer with HER2 . BMC Cancer 2019; 19:223. [PMID: 30866857 PMCID: PMC6417228 DOI: 10.1186/s12885-019-5410-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Background Previous studies have demonstrated that β2-microglobulin (β2M) promotes the growth and survival of a variety of cancer cells and has different regulatory effects on the expression of Bcl-2 and HER2 in HER2− breast cancer cells. However, β2M-mediated signaling in ER+ and ER− breast cancer with HER2− remains unclear. Methods β2M expression vector and siRNA were transfected into two types of HER2− breast cancer cells, and the possible relevant signaling molecules were subsequently analyzed by real-time PCR and western blotting. These signaling molecules were also analyzed by real-time PCR and immunohistochemistry (IHC) in two types of HER2− breast cancer tissues, and the associations between β2M and these signaling molecules were assessed using Spearman’s correlation analysis. Results β2M silencing downregulated p-SGK1/SGK1 levels and Bcl-2 expression, and β2M overexpression downregulated p-CREB/CREB and significantly upregulated p-SGK1/SGK1 levels and Bcl-2 expression, and both resulting processes did not affect HER2, HIF-1α, VEGF, and ERK signaling in ER+ breast cancer cells with HER2−. β2M silencing upregulated p-CREB/CREB and VEGF protein and significantly downregulated p-ERK/ERK levels, and β2M overexpression downregulated p-CREB/CREB and VEGF, significantly upregulated p-ERK/ERK levels, and both resulting processes did not affect HIF-1α and SGK1 signaling in ER− breast cancer cells with HER2−. β2M expression was positively correlated with p-CREB, p-SGK1, and Bcl-2 expression and had no correlation with HIF-1α, VEGF, and p-ERK1/2, whereas p-SGK1 exhibited a significantly positive correlation with Bcl-2 expression in cancer tissues of patients with luminal A breast cancer, which coincide with the results obtained from the same molecular types of breast cancer cells except CREB signaling. However, β2M expression did not show a significant correlation with HIF-1α, p-CREB, VEGF, p-SGK1, p-ERK1/2, and Bcl-2 expression in cancer tissues of patients with basal-like breast cancer, which was discordant with the results obtained from the same molecular types of breast cancer cells. Conclusions β2M has a different molecular regulatory mechanism between ER+ and ER− breast cancer with HER2−, and it may promote tumor survival through the SGK1/Bcl-2 signaling pathway in ER+ breast cancer with HER2− and has no regulatory effects on ER− breast cancer with HER2−.
Collapse
Affiliation(s)
- Dandan Chai
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| | - Kesheng Li
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China.
| | - Huifen Du
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| | - Suisheng Yang
- Department of Breast Surgery, Tumor Hospital of Gansu Province, Lanzhou, China
| | - Rong Yang
- Department of Pathology, Tumor Hospital of Gansu Province, Lanzhou, China
| | - Yang Xu
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| | - Xiaowen Lian
- Department of Medicine Biotechnology, Medicine and Science Research Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
126
|
Alonso-Del-Real J, Pérez-Torrado R, Querol A, Barrio E. Dominance of wine Saccharomyces cerevisiae strains over S. kudriavzevii in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environ Microbiol 2019; 21:1627-1644. [PMID: 30672093 DOI: 10.1111/1462-2920.14536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/01/2023]
Abstract
Grape must is a sugar-rich habitat for a complex microbiota which is replaced by Saccharomyces cerevisiae strains during the first fermentation stages. Interest on yeast competitive interactions has recently been propelled due to the use of alternative yeasts in the wine industry to respond to new market demands. The main issue resides in the persistence of these yeasts due to the specific competitive activity of S. cerevisiae. To gather deeper knowledge of the molecular mechanisms involved, we performed a comparative transcriptomic analysis during fermentation carried out by a wine S. cerevisiae strain and a strain representative of the cryophilic S. kudriavzevii, which exhibits high genetic and physiological similarities to S. cerevisiae, but also differences of biotechnological interest. In this study, we report that transcriptomic response to the presence of a competitor is stronger in S. cerevisiae than in S. kudriavzevii. Our results demonstrate that a wine S. cerevisiae industrial strain accelerates nutrient uptake and utilization to outcompete the co-inoculated yeast, and that this process requires cell-to-cell contact to occur. Finally, we propose that this competitive phenotype evolved recently, during the adaptation of S. cerevisiae to man-manipulated fermentative environments, since a non-wine S. cerevisiae strain, isolated from a North American oak, showed a remarkable low response to competition.
Collapse
Affiliation(s)
- Javier Alonso-Del-Real
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain
| | - Eladio Barrio
- Departamento de Biotecnología de los Alimentos, Grupo de Biología de Sistemas en Levaduras de Interés Biotecnológico, Instituto de Agroquímica y Tecnología de los Alimentos (IATA)-CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, València, Spain
| |
Collapse
|
127
|
Fujisawa T, Tsuta K, Yanagimoto H, Yagi M, Suzuki K, Nishikawa K, Takahashi M, Okada H, Nakano Y, Iwai H. Quantitative immunohistochemical assay with novel digital immunostaining for comparisons of PD-L1 antibodies. Mol Clin Oncol 2019; 10:391-396. [PMID: 30847180 PMCID: PMC6388504 DOI: 10.3892/mco.2019.1801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/09/2019] [Indexed: 11/12/2022] Open
Abstract
One obstacle in diagnostic pathology is the harmonization of one drug-one diagnostic tests for programmed death ligand-1 (PD-L1). There are many challenges in accurate comparisons of diagnostic tests, such as differences in the titer of each antibody, detection system and dynamic range of visualization. Our previously developed digital immunostaining technique is highly sensitive and quantitative with the ability to quantify particles that bind in a one-to-one fashion with antibody in each cell. Determining the differences in the titer of each antibody with digital immunostaining may be beneficial for future harmonized analysis. To demonstrate the accuracy of digital immunostaining, the present study compared the number of particles with ELISA and nCounter data from five cell lines. NCI-H460 exhib-ited the highest level of PD-L1 protein, followed by A549, PC-3, NCI-H1299, and NCI-H446 cells. In addition, the PD-L1 mRNA values determined by nCounter corresponded with the order of the protein levels determined by ELISA. The present study revealed that digital immunostaining for PD-L1 was highly associated with ELISA and nCounter data. Among the four antibodies tested, the titer of all but SP142 coincided with ELISA and nCounter data. These results indicated that our digital immunostaining technique may be beneficial for future harmonized analysis.
Collapse
Affiliation(s)
- Takuo Fujisawa
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka 573-1010, Japan
| | - Koji Tsuta
- Department of Pathology and Laboratory Medicine, Kansai Medical University, Osaka 573-1010, Japan
| | | | - Masao Yagi
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka 573-1010, Japan
| | - Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka 573-1010, Japan
| | - Kenji Nishikawa
- Bio System Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, Konica-Minolta, Inc., Tokyo 191-8511, Japan
| | - Masaru Takahashi
- Bio System Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, Konica-Minolta, Inc., Tokyo 191-8511, Japan
| | - Hisatake Okada
- Bio System Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, Konica-Minolta, Inc., Tokyo 191-8511, Japan
| | - Yasushi Nakano
- Bio System Development Group, Bio Advanced Technology Division, Corporate R&D Headquarters, Konica-Minolta, Inc., Tokyo 191-8511, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, Osaka 573-1010, Japan
| |
Collapse
|
128
|
Metzinger-Le Meuth V, Metzinger L. miR-223 and other miRNA's evaluation in chronic kidney disease: Innovative biomarkers and therapeutic tools. Noncoding RNA Res 2019; 4:30-35. [PMID: 30891535 PMCID: PMC6404357 DOI: 10.1016/j.ncrna.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 01/18/2019] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) represent a recent breakthrough regarding gene expression regulation. They are instrumental players known to regulate post-transcriptional expression. miRNAs are short single stranded RNAs that base-pair with target mRNAs in specific regions mainly within their 3' untranslated region. We know now that miRNAs are involved in kidney physiopathology. We outline in this review the recent discoveries made on the roles of miRNAs in cellular and animal models of kidney disease but also in patients suffering from chronic kidney disease, acute kidney injury and so forth. miRNAs are potential innovative biomarkers in nephrology, but before being used in daily clinical routine, their expression in large cohorts will have to be assessed, and an effort will have to be made to standardize measurement methods and to select the most suitable tissues and biofluids. In addition to a putative role as biomarkers, up- or down-regulating miRNAs is a novel therapeutic approach to cure kidney disorders. We discuss in this review recent methods that could be used to deliver miRNAs in a specific and suitable way in kidney and other organs damaged by kidney failure such as the cardiovascular system.
Collapse
Affiliation(s)
- Valérie Metzinger-Le Meuth
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), UFR SMBH, Université Paris 13-Sorbonne Paris Cité, 93017 Bobigny Cedex, France
| | - Laurent Metzinger
- HEMATIM EA4666, C.U.R.S, Université de Picardie Jules Verne, 80025 Amiens Cedex 1, France
| |
Collapse
|
129
|
Morley-Bunker A, Pearson J, Currie MJ, Morrin H, Whitehead MR, Eglinton T, Walker LC. Assessment of intra-tumoural colorectal cancer prognostic biomarkers using RNA in situ hybridisation. Oncotarget 2019; 10:1425-1439. [PMID: 30858927 PMCID: PMC6402718 DOI: 10.18632/oncotarget.26675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/01/2019] [Indexed: 01/01/2023] Open
Abstract
Genome-wide expression studies using microarrays and RNAseq have increased our understanding of colorectal cancer development. Translating potential gene biomarkers from these studies for clinical utility has typically relied on PCR-based technology and immunohistochemistry. Results from these techniques are limited by tumour sample heterogeneity and the lack of correlation between mRNA transcript abundance and corresponding protein levels. The aim of this research was to investigate the clinical utility of the RNA in situ hybridisation technique, RNAscope®, for measuring intra-tumoural gene expression of potential prognostic markers in a colorectal cancer cohort. Two candidate gene markers (GFI1 and TNFRSF11A) assessed in this study were identified from a previous study led by the The Cancer Genome Atlas (TCGA) Network, and analysis was performed on 112 consecutively collected, archival FFPE colorectal cancer tumour samples. Consistent with the TCGA Network study, we found reduced GFI1 expression was associated with high-grade and left-sided tumours, and reduced TNFRSF11A expression was associated with metastasis and high nodal involvement. RNAscope® combined with image analysis also enabled quantification of GFI1 and TNFRSF11A mRNA expression levels at the single cell level, allowing cell-type determination. These data showed that reduced mRNA transcript abundance measured in patients with poorer prognosis occurred in carcinoma cells, and not lymphocytes, stromal cells or normal epithelial cells. To our knowledge, this is the first study to assess the intra-tumoural expression patterns of GFI1 and TNFRSF11A and to validate their microarray expression profiles using RNAscope. We also demonstrate the utility of RNAscope® technology to show that expression differences are derived from carcinoma cells rather than from cells located in the tumour microenvironment.
Collapse
Affiliation(s)
- Arthur Morley-Bunker
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago, Christchurch, New Zealand
| | - Margaret J Currie
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Helen Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.,Cancer Society Tissue Bank, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Martin R Whitehead
- Canterbury Health Laboratories, Christchurch Hospital, Christchurch, New Zealand
| | - Tim Eglinton
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Logan C Walker
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
130
|
ITRAQ-Based Quantitative Proteomics Reveals the Proteome Profiles of Primary Duck Embryo Fibroblast Cells Infected with Duck Tembusu Virus. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1582709. [PMID: 30809531 PMCID: PMC6369498 DOI: 10.1155/2019/1582709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022]
Abstract
Outbreaks of duck Tembusu virus (DTMUV) have caused substantial economic losses in the major duck-producing regions of China since 2010. To improve our understanding of the host cellular responses to virus infection and the pathogenesis of DTMUV infection, we applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with multidimensional liquid chromatography-tandem mass spectrometry to detect the protein changes in duck embryo fibroblast cells (DEFs) infected and mock-infected with DTMUV. In total, 434 cellular proteins were differentially expressed, among which 116, 76, and 339 proteins were differentially expressed in the DTMUV-infected DEFs at 12, 24, and 42 hours postinfection, respectively. The Gene Ontology analysis indicated that the biological processes of the differentially expressed proteins were primarily related to cellular processes, metabolic processes, biological regulation, response to stimulus, and cellular organismal processes and that the molecular functions in which the differentially expressed proteins were mainly involved were binding and catalytic activity. Some selected proteins that were found to be differentially expressed in DTMUV-infected DEFs were further confirmed by real-time PCR. The results of this study provide valuable insight into DTMUV-host interactions. This could lead to a better understanding of DTMUV infection mechanisms.
Collapse
|
131
|
Activation of the Nuclear Factor-kappa B Signaling Pathway Damages the Epithelial Barrier in the Human Pancreatic Ductal Adenocarcinoma Cell Line HPAF-II. Pancreas 2019; 48:1380-1385. [PMID: 31688605 PMCID: PMC6867665 DOI: 10.1097/mpa.0000000000001441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Injury of the pancreatic duct epithelial barrier plays a critical role in the development of acute pancreatitis. The activity of the nuclear factor-kappa B (NF-κB) pathway is involved in the disruption of the pancreatic duct epithelial barrier. This study investigated how NF-κB impacts the dysfunction of the pancreatic duct epithelial barrier. METHODS A human pancreatic ductal adenocarcinoma cell line was treated with tumor necrosis factor-alpha (TNF-α) and pyrrolidine dithiocarbamate. The expression levels of p65 and p-p65 were detected to evaluate NF-κB activity. Tricellulin (TRIC) expression levels were measured to assess the change in tight junction (TJ)-related proteins. The expression and localization of myosin light chain kinase (MLCK) were investigated. The structure of TJs and monolayer permeability were also examined. RESULTS NF-κB was activated by TNF-α and suppressed by pyrrolidine dithiocarbamate. Activation of NF-κB upregulated the expression levels of TRIC and MLCK. Broadened TJs were observed after NF-κB was activated. Lower monolayer permeability was observed when NF-κB was suppressed. CONCLUSIONS Activation of the NF-κB pathway induced by TNF-α leads to increased TRIC and MLCK expression, resulting in broadened TJs and high permeability, which contribute to damage to the pancreatic duct epithelial barrier.
Collapse
|
132
|
Kumar P, Panigrahi P, Johnson J, Weber WJ, Mehta S, Sajulga R, Easterly C, Crooker BA, Heydarian M, Anamika K, Griffin TJ, Jagtap PD. QuanTP: A Software Resource for Quantitative Proteo-Transcriptomic Comparative Data Analysis and Informatics. J Proteome Res 2018; 18:782-790. [DOI: 10.1021/acs.jproteome.8b00727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Praveen Kumar
- Bioinformatics and Computational Biology Program, University of Minnesota-Rochester, Rochester, Minnesota 55904, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - James Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Wanda J. Weber
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ray Sajulga
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Caleb Easterly
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brian A. Crooker
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Mohammad Heydarian
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Krishanpal Anamika
- LABS, Persistent Systems, Aryabhata-Pingala, Erandwane, Pune 411004, India
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
133
|
Shen K, Kenche H, Zhao H, Li J, Stone J. The role of extracellular matrix stiffness in regulating cytoskeletal remodeling via vinculin in synthetic smooth muscle cells. Biochem Biophys Res Commun 2018; 508:302-307. [PMID: 30502091 DOI: 10.1016/j.bbrc.2018.11.142] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023]
Abstract
Vinculin is a key player in sensing and responding to external mechanical cues such as extracellular matrix stiffness. Increased matrix stiffness is often associated with certain pathological conditions including hypertension induced cellular cytoskeleton changes in vascular smooth muscle (VSM) cells. However, little is known on how stiffness affects cytoskeletal remodeling via vinculin in VSM cells. Thus, we utilized matrices with elastic moduli that simulate vascular stiffness in different stages of hypertension to investigate how matrix stiffness regulates cell cytoskeleton via vinculin in synthetic VSM cells. Through selecting a suitable reference gene, we found that an increase in physiologically relevant extracellular matrix stiffness (2-50 kPa) downregulates vinculin gene expression but upregulates vinculin protein expression. This discrepancy, which was not observed previously for non-muscle cells, suggests that the vinculin-mediated mecahnotransduction mechanism in synthetic VSM cells may be more complex than those proposed for non-muscle cells. Also adding to previous findings, we found that VSM cell growth may be impeded by substrates that are either too soft or too rigid.
Collapse
Affiliation(s)
- Kai Shen
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, 31404, USA.
| | - Harshavardhan Kenche
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, 31404, USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry, University of Northern Colorado, Greeley, CO, 80639, USA
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, GA, 31404, USA
| | - Jasimine Stone
- Department of Chemistry and Forensic Science, Savannah State University, Savannah, GA, 31404, USA
| |
Collapse
|
134
|
Lemée JM, Clavreul A, Aubry M, Com E, de Tayrac M, Mosser J, Menei P. Integration of transcriptome and proteome profiles in glioblastoma: looking for the missing link. BMC Mol Biol 2018; 19:13. [PMID: 30463513 PMCID: PMC6249855 DOI: 10.1186/s12867-018-0115-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background Glioblastoma (GB) is the most common and aggressive tumor of the brain. Genotype-based approaches and independent analyses of the transcriptome or the proteome have led to progress in understanding the underlying biology of GB. Joint transcriptome and proteome profiling may reveal new biological insights, and identify pathogenic mechanisms or therapeutic targets for GB therapy. We present a comparison of transcriptome and proteome data from five GB biopsies (TZ) vs their corresponding peritumoral brain zone (PBZ). Omic analyses were performed using RNA microarray chips and the isotope-coded protein label method (ICPL). Results As described in other cancers, we found a poor correlation between transcriptome and proteome data in GB. We observed only two commonly deregulated mRNAs/proteins (neurofilament light polypeptide and synapsin 1) and 12 altered biological processes; they are related to cell communication, synaptic transmission and nervous system processes. This poor correlation may be a consequence of the techniques used to produce the omic profiles, the intrinsic properties of mRNA and proteins and/or of cancer- or GB-specific phenomena. Of interest, the analysis of the transcription factor binding sites present upstream from the open reading frames of all altered proteins identified by ICPL method shows a common binding site for the topoisomerase I and p53-binding protein TOPORS. Its expression was observed in 7/11 TZ samples and not in PBZ. Some findings suggest that TOPORS may function as a tumor suppressor; its implication in gliomagenesis should be examined in future studies. Conclusions In this study, we showed a low correlation between transcriptome and proteome data for GB samples as described in other cancer tissues. We observed that NEFL, SYN1 and 12 biological processes were deregulated in both the transcriptome and proteome data. It will be important to analyze more specifically these processes and these two proteins to allow the identification of new theranostic markers or potential therapeutic targets for GB. Electronic supplementary material The online version of this article (10.1186/s12867-018-0115-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-Michel Lemée
- Department of Neurosurgery, CHU Angers, University Hospital of Angers, 4, Rue Larrey, 49933, Angers Cedex 09, France. .,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.
| | - Anne Clavreul
- Department of Neurosurgery, CHU Angers, University Hospital of Angers, 4, Rue Larrey, 49933, Angers Cedex 09, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Marc Aubry
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes 1, Rennes, France
| | - Emmanuelle Com
- Inserm U1085 IRSET, Université de Rennes 1, Rennes, France.,Protim, Université de Rennes 1, Rennes, France
| | - Marie de Tayrac
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France
| | - Jean Mosser
- UEB, UMS 3480 Biosit, Faculté de Médecine, Université Rennes 1, Rennes, France.,Plate-forme Génomique Santé Biosit, Université Rennes 1, Rennes, France.,Service de Génétique Moléculaire et Génomique, CHU Rennes, Rennes, France.,CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGdR), Rennes, France
| | - Philippe Menei
- Department of Neurosurgery, CHU Angers, University Hospital of Angers, 4, Rue Larrey, 49933, Angers Cedex 09, France.,CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| |
Collapse
|
135
|
Wu WS, Jiang YX, Chang JW, Chu YH, Chiu YH, Tsao YH, Nordling TEM, Tseng YY, Tseng JT. HRPDviewer: human ribosome profiling data viewer. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:5052387. [PMID: 30010738 PMCID: PMC6041748 DOI: 10.1093/database/bay074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/19/2018] [Indexed: 12/04/2022]
Abstract
Translational regulation plays an important role in protein synthesis. Dysregulation of translation causes abnormal cell physiology and leads to diseases such as inflammatory disorders and cancers. An emerging technique, called ribosome profiling (ribo-seq), was developed to capture a snapshot of translation. It is based on deep sequencing of ribosome-protected mRNA fragments. A lot of ribo-seq data have been generated in various studies, so databases are needed for depositing and visualizing the published ribo-seq data. Nowadays, GWIPS-viz, RPFdb and TranslatomeDB are the three largest databases developed for this purpose. However, two challenges remain to be addressed. First, GWIPS-viz and RPFdb databases align the published ribo-seq data to the genome. Since ribo-seq data aim to reveal the actively translated mRNA transcripts, there are advantages of aligning ribo-req data to the transcriptome over the genome. Second, TranslatomeDB does not provide any visualization and the other two databases only provide visualization of the ribo-seq data around a specific genomic location, while simultaneous visualization of the ribo-seq data on multiple mRNA transcripts produced from the same gene or different genes is desired. To address these two challenges, we developed the Human Ribosome Profiling Data viewer (HRPDviewer). HRPDviewer (i) contains 610 published human ribo-seq datasets from Gene Expression Omnibus, (ii) aligns the ribo-seq data to the transcriptome and (iii) provides visualization of the ribo-seq data on the selected mRNA transcripts. Using HRPDviewer, researchers can compare the ribosome binding patterns of multiple mRNA transcripts from the same gene or different genes to gain an accurate understanding of protein synthesis in human cells. We believe that HRPDviewer is a useful resource for researchers to study translational regulation in human. Database URL: http://cosbi4.ee.ncku.edu.tw/HRPDviewer/ or http://cosbi5.ee.ncku.edu.tw/HRPDviewer/
Collapse
Affiliation(s)
- Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yu-Xuan Jiang
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Jer-Wei Chang
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yu-Han Chu
- Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yi-Hao Chiu
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yi-Hong Tsao
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| | - Yan-Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Joseph T Tseng
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, No.1, University Road, Tainan City, Taiwan
| |
Collapse
|
136
|
Duarte PM, Lorenzo Abreu L, Vilela A, Feres M, Giro G, Miranda TS. Protein and
mRNA
detection of classic cytokines in corresponding samples of serum, gingival tissue and gingival crevicular fluid from subjects with periodontitis. J Periodontal Res 2018; 54:174-179. [DOI: 10.1111/jre.12617] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Poliana Mendes Duarte
- Department of PeriodontologyDental Research DivisionGuarulhos University Guarulhos Brazil
| | - Letícia Lorenzo Abreu
- Department of PeriodontologyDental Research DivisionGuarulhos University Guarulhos Brazil
| | - André Vilela
- Department of PeriodontologyDental Research DivisionGuarulhos University Guarulhos Brazil
| | - Magda Feres
- Department of PeriodontologyDental Research DivisionGuarulhos University Guarulhos Brazil
| | - Gabriela Giro
- Department of PeriodontologyDental Research DivisionGuarulhos University Guarulhos Brazil
| | | |
Collapse
|
137
|
Tammaro A, Florquin S, Brok M, Claessen N, Butter LM, Teske GJD, de Boer OJ, Vogl T, Leemans JC, Dessing MC. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy. Clin Exp Immunol 2018; 193:361-375. [PMID: 29746703 PMCID: PMC6150262 DOI: 10.1111/cei.13154] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Despite advances in our understanding of the mechanisms underlying the progression of chronic kidney disease and the development of fibrosis, only limited efficacious therapies exist. The calcium binding protein S100A8/A9 is a damage-associated molecular pattern which can activate Toll-like receptor (TLR)-4 or receptor for advanced glycation end-products (RAGE). Activation of these receptors is involved in the progression of renal fibrosis; however, the role of S100A8/A9 herein remains unknown. Therefore, we analysed S100A8/A9 expression in patients and mice with obstructive nephropathy and subjected wild-type and S100A9 knock-out mice lacking the heterodimer S100A8/A9 to unilateral ureteral obstruction (UUO). We found profound S100A8/A9 expression in granulocytes that infiltrated human and murine kidney, together with enhanced renal expression over time, following UUO. S100A9 KO mice were protected from UUO-induced renal fibrosis, independently of leucocyte infiltration and inflammation. Loss of S100A8/A9 protected tubular epithelial cells from UUO-induced apoptosis and critical epithelial-mesenchymal transition steps. In-vitro studies revealed S100A8/A9 as a novel mediator of epithelial cell injury through loss of cell polarity, cell cycle arrest and subsequent cell death. In conclusion, we demonstrate that S100A8/A9 mediates renal damage and fibrosis, presumably through loss of tubular epithelial cell contacts and irreversible damage. Suppression of S100A8/A9 could be a therapeutic strategy to halt renal fibrosis in patients with chronic kidney disease.
Collapse
Affiliation(s)
- A. Tammaro
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - S. Florquin
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - M. Brok
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - N. Claessen
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - L. M. Butter
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - G. J. D. Teske
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - O. J. de Boer
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - T. Vogl
- Institute of ImmunologyUniversity of MünsterMünsterGermany
| | - J. C. Leemans
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| | - M. C. Dessing
- Department of PathologyAmsterdam UMC, Univ(ersity) of AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
138
|
Taylor ES, McCall JL, Shen S, Girardin A, Munro FM, Black MA, Ward-Hartstonge KA, Kemp RA. Prognostic roles for IL-2-producing and CD69 + T cell subsets in colorectal cancer patients. Int J Cancer 2018; 143:2008-2016. [PMID: 29752720 DOI: 10.1002/ijc.31598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 03/08/2018] [Accepted: 04/17/2018] [Indexed: 01/30/2023]
Abstract
Tumor infiltrating T cells are a predictor of patient outcome in patients with colorectal cancer (CRC). However, many T cell populations have been associated with both poor and positive patient prognoses, indicating a need to further understand the role of different T cell subsets in CRC. In this study, the T cell infiltrate from the tumor and nontumor bowel (NTB) was examined in 95 CRC patients using flow cytometry and associations with cancer stage and disease recurrence made. Our findings showed that IFN-γ-producing T cells were associated with positive patient outcomes, and CD69+ T cells were associated with disease recurrence. Inflammatory (IL-17) and regulatory T cells were not associated with disease recurrence. Surprisingly, in a second cohort of 32 patients with long-term clinical follow up data, tumor infiltrating IL-2-producing T cells correlated negatively with disease free survival (DFS) and a higher frequency of IL-2-producing T cells was found in the NTB of patients with poorly differentiated tumors. These results point toward the possibility of a negative impact of IL-2 in tumor immune responses, which may influence future immunotherapy treatments in CRC patients.
Collapse
Affiliation(s)
- Edward S Taylor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John L McCall
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Shirley Shen
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Adam Girardin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Fran M Munro
- Department of Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Michael A Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | - Roslyn A Kemp
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
139
|
Iglesias-Gato D, Thysell E, Tyanova S, Crnalic S, Santos A, Lima TS, Geiger T, Cox J, Widmark A, Bergh A, Mann M, Flores-Morales A, Wikström P. The Proteome of Prostate Cancer Bone Metastasis Reveals Heterogeneity with Prognostic Implications. Clin Cancer Res 2018; 24:5433-5444. [DOI: 10.1158/1078-0432.ccr-18-1229] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022]
|
140
|
Sharpnack MF, Ranbaduge N, Srivastava A, Cerciello F, Codreanu SG, Liebler DC, Mascaux C, Miles WO, Morris R, McDermott JE, Sharpnack JL, Amann J, Maher CA, Machiraju R, Wysocki VH, Govindan R, Mallick P, Coombes KR, Huang K, Carbone DP. Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. J Thorac Oncol 2018; 13:1519-1529. [PMID: 30017829 DOI: 10.1016/j.jtho.2018.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite apparently complete surgical resection, approximately half of resected early-stage lung cancer patients relapse and die of their disease. Adjuvant chemotherapy reduces this risk by only 5% to 8%. Thus, there is a need for better identifying who benefits from adjuvant therapy, the drivers of relapse, and novel targets in this setting. METHODS RNA sequencing and liquid chromatography/liquid chromatography-mass spectrometry proteomics data were generated from 51 surgically resected non-small cell lung tumors with known recurrence status. RESULTS We present a rationale and framework for the incorporation of high-content RNA and protein measurements into integrative biomarkers and show the potential of this approach for predicting risk of recurrence in a group of lung adenocarcinomas. In addition, we characterize the relationship between mRNA and protein measurements in lung adenocarcinoma and show that it is outcome specific. CONCLUSIONS Our results suggest that mRNA and protein data possess independent biological and clinical importance, which can be leveraged to create higher-powered expression biomarkers.
Collapse
Affiliation(s)
- Michael F Sharpnack
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Nilini Ranbaduge
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Arunima Srivastava
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | | | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Celine Mascaux
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille, France; Aix-Marseille University, Marseille, France
| | - Wayne O Miles
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert Morris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - James L Sharpnack
- Department of Statistics, University of California, Davis, California
| | - Joseph Amann
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher A Maher
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Raghu Machiraju
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | - Vicki H Wysocki
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Ramaswami Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Parag Mallick
- Department of Radiology, Stanford University, Palo Alto, California
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
141
|
Dermit M, Dodel M, Mardakheh FK. Methods for monitoring and measurement of protein translation in time and space. MOLECULAR BIOSYSTEMS 2018; 13:2477-2488. [PMID: 29051942 PMCID: PMC5795484 DOI: 10.1039/c7mb00476a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Regulation of protein translation constitutes a crucial step in control of gene expression. Here we review recent methods for system-wide monitoring and measurement of protein translation.
Regulation of protein translation constitutes a crucial step in control of gene expression. In comparison to transcriptional regulation, however, translational control has remained a significantly under-studied layer of gene expression. This trend is now beginning to shift thanks to recent advances in next-generation sequencing, proteomics, and microscopy based methodologies which allow accurate monitoring of protein translation rates, from single target messenger RNA molecules to genome-wide scale studies. In this review, we summarize these recent advances, and discuss how they are enabling researchers to study translational regulation in a wide variety of in vitro and in vivo biological systems, with unprecedented depth and spatiotemporal resolution.
Collapse
Affiliation(s)
- Maria Dermit
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Martin Dodel
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | - Faraz K Mardakheh
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
142
|
Chen J, Cao S, Situ B, Zhong J, Hu Y, Li S, Huang J, Xu J, Wu S, Lin J, Zhao Q, Cai Z, Zheng L, Wang Q. Metabolic reprogramming-based characterization of circulating tumor cells in prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:127. [PMID: 29954422 PMCID: PMC6025832 DOI: 10.1186/s13046-018-0789-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Circulating tumor cells (CTCs), an advantageous target of liquid biopsy, is an important biomarker for the prognosis and monitoring of cancer. Currently, detection techniques for CTCs are mainly based on the physical and/or epithelial characteristics of tumor cells. However, biofunctional activity markers that can indicate the high metastatic capacity of CTCs are lacking. METHODS Functional microarray, quantitative real-time polymerase chain reaction, and Western blot were used on five prostate cancer cell lines with different metastatic capacities to identify the metastasis-related metabolic genes. The identified genes were detected in the CTCs of 64 clinical samples using the RNA in situ hybridization. A multi-criteria weighted model was used to determine the optimal metabolic markers for the CTCs test. Based on five fluorescent signals targeting DAPI, CD45, metabolic, epithelial (EpCAM/CKs), and mesenchymal (Vimentin/Twist) markers, the filtration-enriched CTCs were classified as GM+CTCs/GM-CTCs (metabolic types) or E-CTCs/H-CTCs/M-CTCs (EMT types). Correlation analysis and ROC curve were conducted on 54 prostate cancer samples to evaluate the clinical significance of CTCs subtypes. RESULTS Eight metastasis-related metabolic genes were identified, including HK2, PDP2, G6PD, PGK1, PHKA1, PYGL, PDK1, and PKM2. Among them, PGK1 and G6PD were determined as optimal glucose metabolic (GM) markers for CTCs. GM+CTCs (marked by PGK1/G6PD) were detectable in 64.8% (35/54) of prostate cancer patients, accounting for 46.5% (134/288) of total CTCs. An increased GM+CTCs level was associated with advanced tumor stage and metastasis (P < 0.05). In the discrimination of cancer metastasis from non-metastasis, GM+CTCs presented a higher AUC of the ROC curve (0.780) compared with the EMT CTCs subtypes (E-CTCs 0.729, H-CTCs 0.741, and M-CTCs 0.648). A triple tPSA-Gleason-GM+CTCs marker increased the AUC to 0.904, which was better than that of the tPSA-Gleason-H-CTCs marker (0.874). CONCLUSIONS The metabolic marker (PGK1/G6PD) is determined as the indicator for the biofunctional activity analysis of CTCs, compared with the existing morphological (EMT) classification on CTCs. The metabolic characterization of CTCs demonstrates that hypermetabolic GM+CTCs are promising biomarkers for prostate cancer metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shunwang Cao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Bo Situ
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Juan Zhong
- Department of Traditional Chinese Medicine, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yanwei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Shufen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Jinlan Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Jiasen Xu
- SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, Guangzhou, Guangdong, China
| | - Shiyang Wu
- SurExam Bio-Tech, Guangzhou Technology Innovation Base, Science City, Guangzhou, Guangdong, China
| | - Jinduan Lin
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Qianwen Zhao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China
| | - Zhen Cai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China.
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China. .,Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, 1838 North of Guangzhou Avenue, Guangzhou, 510515, Guangdong, China. .,Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
143
|
Crespo A, García-Suárez O, Fernández-Vega I, Solis-Hernandez MP, García B, Castañón S, Quirós LM. Heparan sulfate proteoglycans undergo differential expression alterations in left sided colorectal cancer, depending on their metastatic character. BMC Cancer 2018; 18:687. [PMID: 29940912 PMCID: PMC6019305 DOI: 10.1186/s12885-018-4597-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPGs) are complex molecules which play a role in the invasion and growth and metastatic properties of cancerous cells. In this work we analyze changes in the patterns of expression of HSPGs in left sided colorectal cancer (LSCRC), both metastatic and non-metastatic, and the results are also compared with those previously obtained for right sided tumors (RSCRCs). METHODS Eighteen LSCRCs were studied using qPCR to analyze the expression of both the proteoglycan core proteins and the enzymes involved in heparan sulfate chain biosynthesis. Certain HSPGs also carry chondroitin sulfate chains and so we also studied the genes involved in its biosynthesis. The expression of certain genes that showed significant expression differences were also analysed using immunohistochemical techniques. RESULTS Changes in proteoglycan core proteins were dependent on their location, and the main differences between metastatic and non-metastatic tumors affected cell-surface glypicans, while other molecules were quite similar. Glypicans were also responsible for the main differences between RS- and LS- malignances. Regarding the biosynthesis of heparan sulfate chains, differential alterations in transcription depending on the presence or not of metastasis affected genes involved in the modification of uronic acid (epimerization and 2-O sulfation), and some isoforms responsible for sulfation of glucosamine (NDST1, HS6ST1). Moreover, in RSCRCs differences were preferentially found in the expression of genes involved in C6 and C3 sulfation of glucosamine, but not in NDSTs or SULFs. Finally, synthesis of chondroitin sulfate showed some alterations, which affected various steps, including polimerization and the modification of chains, but the main variations dependent on the presence of metastases were epimerization and 6C sulfation; however, when compared with RSCRCs, the essential divergences affected polymerization of the chains and the 6C sulfation of the galactosamine residue. CONCLUSIONS We evidenced alterations in the expression of HSPGs, including the expression of cell surface core proteins, many glycosiltransferases and some enzymes that modify the GAG chains in LSCRCs, but this was dependent on the metastatic nature of the tumor. Some of these alterations are shared with RSCRCs, while others, focused on specific gene groups, are dependent on tumor localization.
Collapse
Affiliation(s)
- Ainara Crespo
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080 Vitoria-Gasteiz, Spain
| | - Olivia García-Suárez
- Instituto Universitario Fernández-Vega, and Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Iván Fernández-Vega
- Instituto Universitario Fernández-Vega, and Department of Pathology, Hospital Universitario Central de Asturias, Oviedo, 33006 Spain
- Department of Surgery and Medical-surgical Specialties, University of Oviedo, 33006 Oviedo, Spain
| | | | - Beatriz García
- Instituto Universitario Fernández-Vega, and Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Sonia Castañón
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080 Vitoria-Gasteiz, Spain
| | - Luis M. Quirós
- Instituto Universitario Fernández-Vega, and Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
144
|
Comparative Assessment on the Expression Level of Recombinant Human Follicle-Stimulating Hormone (FSH) in Serum-Containing Versus Protein-Free Culture Media. Mol Biotechnol 2018; 59:490-498. [PMID: 28993982 DOI: 10.1007/s12033-017-0037-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Production of recombinant pharmaceutical proteins has made a great contribution to modern biotechnology. At present, quick advances in protein expression lead to the enhancement of product quantity and quality as well as reduction in timescale processing. In the current study, we assessed the expression level of recombinant human follicle-stimulating hormone (rhFSH) in adherent and suspension Chinese hamster ovary (CHO) cell lines by cultivation in serum-containing and chemically defined, protein-free media. The expression cassette entailing FSH subunits was transfected to CHO/dhfr- and CHO DG44 cell lines, and gene amplification was achieved using dihydrofolate reductase (DHFR)/methotrexate (MTX) system. Afterward, the expression level of rhFSH was studied using real-time PCR, Western blotting and ELISA. Our achievements revealed that stepwise increase in MTX [up to 2000 nano-molar (nM)] leads to boost the expression level of rhFSH mRNA in both cell lines, although DG44 have better results, as mRNA expression level reached 124.8- and 168.3-fold in alpha and beta subunits, respectively. DG44 cells have also the best protein production in 2000 nM MTX, which reached 1.7-fold in comparison with that of the mock group. According to the above results and many advantages of protein-free media, DG44 is preferable cell line for future steps.
Collapse
|
145
|
Na+,HCO3–-cotransporter NBCn1 (Slc4a7) accelerates ErbB2-induced breast cancer development and tumor growth in mice. Oncogene 2018; 37:5569-5584. [DOI: 10.1038/s41388-018-0353-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/07/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022]
|
146
|
Singh U, Cui Y, Dimaano N, Mehta S, Pruitt SK, Yearley J, Laterza OF, Juco JW, Dogdas B. Analytical validation of quantitative immunohistochemical assays of tumor infiltrating lymphocyte biomarkers. Biotech Histochem 2018; 93:411-423. [PMID: 29863904 DOI: 10.1080/10520295.2018.1445290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tumor infiltrating lymphocytes (TIL), especially T-cells, have both prognostic and therapeutic applications. The presence of CD8+ effector T-cells and the ratio of CD8+ cells to FOXP3+ regulatory T-cells have been used as biomarkers of disease prognosis to predict response to various immunotherapies. Blocking the interaction between inhibitory receptors on T-cells and their ligands with therapeutic antibodies including atezolizumab, nivolumab, pembrolizumab and tremelimumab increases the immune response against cancer cells and has shown significant improvement in clinical benefits and survival in several different tumor types. The improved clinical outcome is presumed to be associated with a higher tumor infiltration; therefore, it is thought that more accurate methods for measuring the amount of TIL could assist prognosis and predict treatment response. We have developed and validated quantitative immunohistochemistry (IHC) assays for CD3, CD8 and FOXP3 for immunophenotyping T-lymphocytes in tumor tissue. Various types of formalin fixed, paraffin embedded (FFPE) tumor tissues were immunolabeled with anti-CD3, anti-CD8 and anti-FOXP3 antibodies using an IHC autostainer. The tumor area of stained tissues, including the invasive margin of the tumor, was scored by a pathologist (visual scoring) and by computer-based quantitative image analysis. Two image analysis scores were obtained for the staining of each biomarker: the percent positive cells in the tumor area and positive cells/mm2 tumor area. Comparison of visual vs. image analysis scoring methods using regression analysis showed high correlation and indicated that quantitative image analysis can be used to score the number of positive cells in IHC stained slides. To demonstrate that the IHC assays produce consistent results in normal daily testing, we evaluated the specificity, sensitivity and reproducibility of the IHC assays using both visual and image analysis scoring methods. We found that CD3, CD8 and FOXP3 IHC assays met the fit-for-purpose analytical acceptance validation criteria and that they can be used to support clinical studies.
Collapse
Affiliation(s)
- U Singh
- a Translational Medicine , Merck & Co., Inc ., Kenilworth
| | - Y Cui
- a Translational Medicine , Merck & Co., Inc ., Kenilworth
| | - N Dimaano
- a Translational Medicine , Merck & Co., Inc ., Kenilworth
| | - S Mehta
- b Applied Mathematics and Modeling, Data Science , Merck & Co. Inc ., Rahway , New Jersey
| | - S K Pruitt
- a Translational Medicine , Merck & Co., Inc ., Kenilworth
| | - J Yearley
- c Anatomic Pathology , Merck & Co., Inc , Palo Alto , California
| | - O F Laterza
- a Translational Medicine , Merck & Co., Inc ., Kenilworth
| | - J W Juco
- a Translational Medicine , Merck & Co., Inc ., Kenilworth
| | - B Dogdas
- b Applied Mathematics and Modeling, Data Science , Merck & Co. Inc ., Rahway , New Jersey
| |
Collapse
|
147
|
A multi-omics analysis of the regulatory changes induced by miR-223 in a monocyte/macrophage cell line. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2664-2678. [PMID: 29778662 DOI: 10.1016/j.bbadis.2018.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
|
148
|
Mai SZ, Li CJ, Xie XY, Xiong H, Xu M, Zeng FQ, Guo Q, Han YF. Increased serum IL-36α and IL-36γ levels in patients with systemic lupus erythematosus: Association with disease activity and arthritis. Int Immunopharmacol 2018; 58:103-108. [DOI: 10.1016/j.intimp.2018.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
|
149
|
Mairinger FD, Schmeller J, Borchert S, Wessolly M, Mairinger E, Kollmeier J, Hager T, Mairinger T, Christoph DC, Walter RFH, Eberhardt WEE, Plönes T, Wohlschlaeger J, Jasani B, Schmid KW, Bankfalvi A. Immunohistochemically detectable metallothionein expression in malignant pleural mesotheliomas is strongly associated with early failure to platin-based chemotherapy. Oncotarget 2018; 9:22254-22268. [PMID: 29854276 PMCID: PMC5976462 DOI: 10.18632/oncotarget.24962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a biologically highly aggressive tumor arising from the pleura with a dismal prognosis. Cisplatin is the drug of choice for the treatment of MPM, and carboplatin seems to have comparable efficacy. Nevertheless, cisplatin treatment results in a response rate of merely 14% and a median survival of less than seven months. Due to their role in many cellular processes, methallothioneins (MTs) have been widely studied in various cancers. The known heavy metal detoxifying effect of MT-I and MT-II may be the reason for heavy metal drug resistance of various cancers including MPM. Methods 105 patients were retrospectively analyzed immunohistochemically for their MT expression levels. Survival analysis was done by Cox-regression, and statistical significance determined using likelihood ratio, Wald test and Score (logrank) tests. Results Cox-regression analyses were done in a linear and logarithmic scale revealing a significant association between expression of MT and shortened overall survival (OS) in a linear (p=0.0009) and logarithmic scale (p=0.0003). Reduced progression free survival (PFS) was also observed for MT expressing tumors (linear: p=0.0134, log: p=0.0152). Conclusion Since both, overall survival and progression-free survival are negatively correlated with detectable MT expression in MPM, our results indicate a possible resistance to platin-based chemotherapy associated with MT expression upregulation, found exclusively in progressive MPM samples. Initial cell culture studies suggest promoter DNA hypomethylation and expression of miRNA-566 a direct regulator of copper transporter SLC31A1 and a putative regulator of MT1A and MT2A gene expression, to be responsible for the drug resistance.
Collapse
Affiliation(s)
- Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel C Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Internistic Oncology, Kliniken Essen Mitte, Essen, Germany
| | - Robert F H Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Till Plönes
- Department of Thoracic Surgery and Thoracical Endoscopy, Ruhrlandklinik, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Pathology, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Bharat Jasani
- Department of Pathology, Targos Molecular Pathology GmbH, Kassel, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
150
|
Detection of Metallothionein in Javanese Medaka (Oryzias javanicus), Using a scFv-Immobilized Protein Chip. SENSORS 2018; 18:s18041069. [PMID: 29614840 PMCID: PMC5948571 DOI: 10.3390/s18041069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/16/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
Abstract
Environmental pollution by various industrial chemicals and biological agents poses serious risks to human health. Especially, marine contamination by potentially toxic elements (PTEs) has become a global concern in recent years. Many efforts have been undertaken to monitor the PTE contamination of the aquatic environment. However, there are few approaches available to assess the PTE exposure of aquatic organisms. In this research, we developed a strategy to evaluate the heavy metal exposure of marine organisms, by measuring the expression levels of metallothionein protein derived from Oryzias javanicus (OjaMT). OjaMT is a biomarker of heavy metal exposure because the expression level increases upon heavy metal exposure. The developed assay is based on a real-time, label-free surface plasmon resonance (SPR) measurement. Anti-OjaMT antibody and anti-OjaMT single-chain fragment of variable region (scFv) were used as detection probes. Two types of SPR sensor chips were fabricated, by immobilizing antibody or Cys3-tagged scFv (scFv-Cys3) in a controlled orientation and were tested for in situ label-free OjaMT detection. Compared to the antibody-presenting sensor chips, the scFv-presenting sensor chips showed improved performance, displaying enhanced sensitivity and enabling semi-quantitative detection. The portable SPR system combined with scFv-immobilized sensor chips is expected to provide an excellent point-of-care testing system that can monitor target biomarkers in real time.
Collapse
|