101
|
Zhen Y, Zhao ZZ, Zheng RH, Shi J. Proteomic analysis of early seed development in Pinus massoniana L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 54:97-104. [PMID: 22391127 DOI: 10.1016/j.plaphy.2012.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 02/06/2012] [Indexed: 05/13/2023]
Abstract
Understanding seed development is important for large-scale propagation and germplasm conservation for the Masson pine. We undertook a proteomic analysis of Masson pine seeds during the early stages of embryogenesis. Two-dimensional difference gel electrophoresis (2D DIGE) was used to quantify the differences in protein expression during early seed development. Using electrospray ionization mass spectrometry/mass spectrometry, we identified proteins from 43 gel spots that had been excised from preparative "pick" gels. Proteins involved in carbon metabolism were identified and were predominantly expressed at higher levels during the cleavage polyembryony and columnar embryo stages. Functional annotation of one seed protein revealed it involvement in programmed cell death and translation of selective mRNAs, which may play an important role in subordinate embryo elimination and suspensor degeneration in polyembryonic seed gymnosperms. Other identified proteins were associated with protein folding, nitrogen metabolism, disease/defense response, and protein storage, synthesis and stabilization. The comprehensive protein expression profiles generated by this study will provide new insights into the complex developmental process of seed development in Masson pine.
Collapse
Affiliation(s)
- Yan Zhen
- Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing 210037, People's Republic of China
| | | | | | | |
Collapse
|
102
|
Xu H, Zhang W, Gao Y, Zhao Y, Guo L, Wang J. Proteomic analysis of embryo development in rice (Oryza sativa). PLANTA 2012; 235:687-701. [PMID: 22015996 DOI: 10.1007/s00425-011-1535-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 10/04/2011] [Indexed: 05/26/2023]
Abstract
Although embryo development is a major subject in plant growth and development research, a number of aspects of the mechanism of this development process remain unknown. Rice (Oryza sativa) is an excellent monocot plant model for studying embryogenesis with a known genome sequence. Here, we conducted proteomic analysis of embryo development in rice (O. sativa L. ssp. indica cv. 9311). The aim was to investigate and characterize the changes in the protein expression profile during embryo development. For this purpose, the proteome of developing embryos was characterized by two-dimensional gel electrophoresis and nano liquid chromatography/mass spectrometry/mass spectrometry. Proteomic analyses identified 275 differentially expressed proteins throughout the 5 sequential developmental stages from 5 to 30 days after pollination. Most of these proteins were classified into eight functional categories: metabolism, protein synthesis/destination, disease and defense, transporter, transcription, signal transduction, cell growth/division, and storage proteins, which were involved in different cellular and metabolic processes. Hierarchical clustering analyses of protein expression profiles showed that highly expressed proteins in early stages were involved in metabolism, protein synthesis/destination, and most of the other cellular functions, whereas the proteins highly expressed in later stages functioned in the desiccation and dormancy of the embryo.
Collapse
Affiliation(s)
- Hong Xu
- Key Laboratory of MOE for Plant Development Biology, State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
103
|
Nambara E, Nonogaki H. Seed biology in the 21st century: perspectives and new directions. PLANT & CELL PHYSIOLOGY 2012; 53:1-4. [PMID: 22241887 DOI: 10.1093/pcp/pcr184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
104
|
Galland M, Job D, Rajjou L. The seed proteome web portal. FRONTIERS IN PLANT SCIENCE 2012; 3:98. [PMID: 22701460 PMCID: PMC3371595 DOI: 10.3389/fpls.2012.00098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 04/26/2012] [Indexed: 05/04/2023]
Abstract
The Seed Proteome Web Portal (SPWP; http://www.seed-proteome.com/) gives access to information both on quantitative seed proteomic data and on seed-related protocols. Firstly, the SPWP provides access to the 475 different Arabidopsis seed proteins annotated from two dimensional electrophoresis (2DE) maps. Quantitative data are available for each protein according to their accumulation profile during the germination process. These proteins can be retrieved either in list format or directly on scanned 2DE maps. These proteomic data reveal that 40% of seed proteins maintain a stable abundance over germination, up to radicle protrusion. During sensu stricto germination (24 h upon imbibition) about 50% of the proteins display quantitative variations, exhibiting an increased abundance (35%) or a decreasing abundance (15%). Moreover, during radicle protrusion (24-48 h upon imbibition), 41% proteins display quantitative variations with an increased (23%) or a decreasing abundance (18%). In addition, an analysis of the seed proteome revealed the importance of protein post-translational modifications as demonstrated by the poor correlation (r(2) = 0.29) between the theoretical (predicted from Arabidopsis genome) and the observed protein isoelectric points. Secondly, the SPWP is a relevant technical resource for protocols specifically dedicated to Arabidopsis seed proteome studies. Concerning 2D electrophoresis, the user can find efficient procedures for sample preparation, electrophoresis coupled with gel analysis, and protein identification by mass spectrometry, which we have routinely used during the last 12 years. Particular applications such as the detection of oxidized proteins or de novo synthesized proteins radiolabeled by [(35)S]-methionine are also given in great details. Future developments of this portal will include proteomic data from studies such as dormancy release and protein turnover through de novo protein synthesis analyses during germination.
Collapse
Affiliation(s)
- Marc Galland
- INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS); RD10, F-78026 VersaillesFrance
- AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 ParisFrance
- *Correspondence: Marc Galland and Loïc Rajjou, Laboratory of Excellence “Saclay Plant Sciences”, Institut National de la Recherche Agronomique, Jean-Pierre Bourgin Institute (UMR1318 INRA-AgroParisTech), RD10, F-78026 Versailles, France. e-mail: ;
| | - Dominique Job
- AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 ParisFrance
- CNRS/Bayer CropScience Joint Laboratory (UMR5240), F-69263 LyonFrance
| | - Loïc Rajjou
- INRA, Jean-Pierre Bourgin Institute (IJPB, UMR1318 INRA-AgroParisTech), Laboratory of Excellence “Saclay Plant Sciences” (LabEx SPS); RD10, F-78026 VersaillesFrance
- AgroParisTech, Chair of Plant Physiology, 16 rue Claude Bernard, F-75231 ParisFrance
- *Correspondence: Marc Galland and Loïc Rajjou, Laboratory of Excellence “Saclay Plant Sciences”, Institut National de la Recherche Agronomique, Jean-Pierre Bourgin Institute (UMR1318 INRA-AgroParisTech), RD10, F-78026 Versailles, France. e-mail: ;
| |
Collapse
|
105
|
Wang XD, Song Y, Sheahan MB, Garg ML, Rose RJ. From embryo sac to oil and protein bodies: embryo development in the model legume Medicago truncatula. THE NEW PHYTOLOGIST 2012; 193:327-38. [PMID: 21988647 DOI: 10.1111/j.1469-8137.2011.03925.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
• The cell and developmental biology of zygotic embryogenesis in the model legume Medicago truncatula has received little attention. We studied M. truncatula embryogenesis from embryo sac until cotyledon maturation, including oil and protein body biogenesis. • We characterized embryo development using light and electron microscopy, measurement of protein and lipid fatty acid accumulation and by profiling the expression of key seed storage genes. • Embryo sac development in M. truncatula is of the Polygonum type. A distinctive multicellular hypophysis and suspensor develops before the globular stage and by the early cotyledon stage, the procambium connects the developing apical meristems. In the storage parenchyma of cotyledons, ovoid oil bodies surround protein bodies and the plasma membrane. Four major lipid fatty acids accumulate as cotyledons develop, paralleling the expression of OLEOSIN and the storage protein genes, VICILIN and LEGUMIN. • Zygotic embryogenesis in M. truncatula features the development of a distinctive multicellular hypophysis and an endopolyploid suspensor with basal transfer cell. A clear procambial connection between the apical meristems is evident and there is a characteristic arrangement of oil bodies in the cotyledons and radicle. Our data help link embryogenesis to the genetic regulation of oil and protein body biogenesis in legume seed.
Collapse
Affiliation(s)
- Xin-Ding Wang
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, Australia
| | | | | | | | | |
Collapse
|
106
|
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:507-33. [PMID: 22136565 DOI: 10.1146/annurev-arplant-042811-105550] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Collapse
Affiliation(s)
- Loïc Rajjou
- CNRS-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, Lyon Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
107
|
Rajjou L, Belghazi M, Catusse J, Ogé L, Arc E, Godin B, Chibani K, Ali-Rachidi S, Collet B, Grappin P, Jullien M, Gallardo K, Job C, Job D. Proteomics and posttranslational proteomics of seed dormancy and germination. Methods Mol Biol 2011; 773:215-36. [PMID: 21898259 DOI: 10.1007/978-1-61779-231-1_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops.
Collapse
Affiliation(s)
- Loïc Rajjou
- AgroParisTech, Unité de Formation et de Recherche de Physiologie Végétale, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Liu H, Yang Z, Yang M, Shen S. The differential proteome of endosperm and embryo from mature seed of Jatropha curcas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:660-6. [PMID: 21958708 DOI: 10.1016/j.plantsci.2011.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 01/24/2011] [Accepted: 03/18/2011] [Indexed: 05/23/2023]
Abstract
Jatrpha curcas L., a non-model woody plant belonging to Euphorbiaceae family, is a promising economic plant due to the high oil content in seed and high tolerance to drought and salt stress. The embryo and endosperm of J. curcas seed differ in morphology, function and ploidy. To characterize the protein profiles of these two tissues, we have performed proteomic analysis with the dry mature J. curcas seeds. The data showed that the 2-DE profiles of endosperm and embryo were similar to each other. There are 66 differential proteins between the two seed tissues, in which 28 proteins distributed in 9 distinct functional classes, have been identified successfully in endosperm or embryo. The major groups of differential proteins are associated with metabolism (25%) and disease/defence (18%). Our results demonstrated that in the dry mature J. curcas seeds, the proteins involved in oil mobilization, signal transduction, transcription, protein synthesis, and cell cycle which are essential for the seed germination have occurred in endosperm and embryo, reflecting the fact that proteins required for germination are already present in the dry mature seed.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Research and Development for Resource Plant, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
109
|
Yoon JH, Song P, Jang JH, Kim DK, Choi S, Kim J, Ghim J, Kim D, Park S, Lee H, Kwak D, Yea K, Hwang D, Suh PG, Ryu SH. Proteomic analysis of tumor necrosis factor-alpha (TNF-α)-induced L6 myotube secretome reveals novel TNF-α-dependent myokines in diabetic skeletal muscle. J Proteome Res 2011; 10:5315-25. [PMID: 22023146 DOI: 10.1021/pr200573b] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is a strong possibility that skeletal muscle can respond to irregular metabolic states by secreting specific cytokines. Obesity-related chronic inflammation, mediated by pro-inflammatory cytokines, is believed to be one of the causes of insulin resistance that results in type 2 diabetes. Here, we attempted to identify and characterize the members of the skeletal muscle secretome in response to tumor necrosis factor-alpha (TNF-α)-induced insulin resistance. To conduct this study, we comparatively analyzed the media levels of proteins released from L6 skeletal muscle cells. We found 28 TNF-α modulated secretory proteins by using separate filtering methods: Gene Ontology, SignalP, and SecretomeP, as well as the normalized Spectral Index for label-free quantification. Ten of these secretory proteins were increased and 18 secretory proteins were decreased by TNF-α treatment. Using microarray analysis of Zuker diabetic rat skeletal muscle combined with bioinformatics and Q-PCR, we found a correlation between TNF-α-mediated insulin resistance and type 2 diabetes. This novel approach combining analysis of the conditioned secretome and transcriptome has identified several previously unknown, TNF-α-dependent secretory proteins, which establish a foothold for research on the different causes of insulin resistance and their relationships with each other.
Collapse
Affiliation(s)
- Jong Hyuk Yoon
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, Kyungbuk, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Dean G, Cao Y, Xiang D, Provart NJ, Ramsay L, Ahad A, White R, Selvaraj G, Datla R, Haughn G. Analysis of gene expression patterns during seed coat development in Arabidopsis. MOLECULAR PLANT 2011; 4:1074-91. [PMID: 21653281 DOI: 10.1093/mp/ssr040] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The seed coat is important for embryo protection, seed hydration, and dispersal. Seed coat composition is also of interest to the agricultural sector, since it impacts the nutritional value for humans and livestock alike. Although some seed coat genes have been identified, the developmental pathways controlling seed coat development are not completely elucidated, and a global genetic program associated with seed coat development has not been reported. This study uses a combination of genetic and genomic approaches in Arabidopsis thaliana to begin to address these knowledge gaps. Seed coat development is a complex process whereby the integuments of the ovule differentiate into specialized cell types. In Arabidopsis, the outermost layer of cells secretes mucilage into the apoplast and develops a secondary cell wall known as a columella. The layer beneath the epidermis, the palisade, synthesizes a secondary cell wall on its inner tangential side. The innermost layer (the pigmented layer or endothelium) produces proanthocyanidins that condense into tannins and oxidize, giving a brown color to mature seeds. Genetic separation of these cell layers was achieved using the ap2-7 and tt16-1 mutants, where the epidermis/palisade and the endothelium do not develop respectively. This genetic ablation was exploited to examine the developmental programs of these cell types by isolating and collecting seed coats at key transitions during development and performing global gene expression analysis. The data indicate that the developmental programs of the epidermis and the pigmented layer proceed relatively independently. Global expression datasets that can be used for identification of new gene candidates for seed coat development were generated. These dataset provide a comprehensive expression profile for developing seed coats in Arabidopsis, and should provide a useful resource and reference for other seed systems.
Collapse
Affiliation(s)
- Gillian Dean
- Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Hayden DM, Rolletschek H, Borisjuk L, Corwin J, Kliebenstein DJ, Grimberg A, Stymne S, Dehesh K. Cofactome analyses reveal enhanced flux of carbon into oil for potential biofuel production. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1018-28. [PMID: 21615570 DOI: 10.1111/j.1365-313x.2011.04654.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To identify the underlying molecular basis of carbon partitioning between starch and oil we conducted 454 pyrosequencing, followed by custom microarrays to profile gene expression throughout endosperm development, of two closely related oat cultivars that differ in oil content at the expense of starch as determined by several approaches including non-invasive magnetic resonance imaging. Comparative transcriptome analysis in conjunction with metabolic profiling displays a close coordination between energy metabolism and carbon partitioning pathways, with increased demands for energy and reducing equivalents in kernels with a higher oil content. These studies further expand the repertoire of networks regulating carbon partitioning to those involved in metabolism of cofactors, suggesting that an elevated supply of cofactors, here called cofactomes, contribute to the allocation of higher carbon pools for production of oils and storage proteins. These data highlight a close association between cofactomes and carbon partitioning, thereby providing a biotechnological target for conversion of starch to oil.
Collapse
Affiliation(s)
- Daniel M Hayden
- Department of Plant Biology, University of California Davis, Davis, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Klubicová K, Berčák M, Danchenko M, Skultety L, Rashydov NM, Berezhna VV, Miernyk JA, Hajduch M. Agricultural recovery of a formerly radioactive area: I. Establishment of high-resolution quantitative protein map of mature flax seeds harvested from the remediated Chernobyl area. PHYTOCHEMISTRY 2011; 72:1308-15. [PMID: 21144539 DOI: 10.1016/j.phytochem.2010.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/05/2010] [Accepted: 11/09/2010] [Indexed: 05/11/2023]
Abstract
In recent years there has been an increasing tendency toward remediation of contaminated areas for agriculture purposes. The study described herein is part of a comprehensive, long-term characterization of crop plants grown in the area formerly contaminated with radioactivity. As a first step, we have established a quantitative map of proteins isolated from mature flax (Linum usitatissimum L.) seeds harvested from plants grown in a remediated plot localized directly in Chernobyl town. Flax was selected because it is a crop of economic and historical importance, despite the relative paucity of molecular resources. We used 2-dimensional electrophoresis followed by tandem mass spectrometry to establish a high-resolution seed proteome map. This approach yielded quantitative information for 318 protein spots. Genomic sequence resources for flax are very limited, leaving us with an "unknown function" annotation for 38% of the proteins analyzed including several that comprise very large spots. In addition to the seed storage proteins, we were able to reliably identify 82 proteins many of which are involved with central metabolism.
Collapse
Affiliation(s)
- Katarína Klubicová
- Department of Reproduction and Developmental Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Owiti J, Grossmann J, Gehrig P, Dessimoz C, Laloi C, Hansen MB, Gruissem W, Vanderschuren H. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:145-56. [PMID: 21435052 DOI: 10.1111/j.1365-313x.2011.04582.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration.
Collapse
Affiliation(s)
- Judith Owiti
- Department of Biology, Plant Biotechnology, Eidgenössische Technische Hochschule (ETH) Zurich, Universitätstraβe 2, 8092 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Bourgeois M, Jacquin F, Cassecuelle F, Savois V, Belghazi M, Aubert G, Quillien L, Huart M, Marget P, Burstin J. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition. Proteomics 2011; 11:1581-94. [PMID: 21433288 DOI: 10.1002/pmic.201000687] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 01/10/2011] [Accepted: 01/29/2011] [Indexed: 12/20/2022]
Abstract
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility.
Collapse
|
115
|
Seed proteomics. J Proteomics 2011; 74:389-400. [DOI: 10.1016/j.jprot.2010.12.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/08/2010] [Accepted: 12/10/2010] [Indexed: 12/29/2022]
|
116
|
Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L. Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 2011; 11:1606-18. [DOI: 10.1002/pmic.201000641] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/05/2010] [Accepted: 01/07/2011] [Indexed: 11/12/2022]
|
117
|
Liu TW, Fu B, Niu L, Chen J, Wang WH, He JX, Pei ZM, Zheng HL. Comparative proteomic analysis of proteins in response to simulated acid rain in Arabidopsis. J Proteome Res 2011; 10:2579-89. [PMID: 21375354 DOI: 10.1021/pr200056a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A proteomic study using 2-D gel electrophoresis and MALDI-TOF MS was performed to characterize the responses of Arabidopsis thaliana plants to simulated acid rain (SiAR) stress, which is a global environmental problem and has become a serious issue in China in recent years. The emphasis of the present study was to investigate the overall protein expression changes when exposed to SiAR. Out of over 1000 protein spots reproducibly resolved, 50 of them changed their abundance by at least 2-fold. Analysis of protein expression patterns revealed that a set of proteins associated with energy production, metabolism, cell rescue, cell defense and protein folding, etc., could play important roles in mediating plant response to SiAR. In addition to this, some proteins involved in stress responses and jasmonic acid pathway are also involved in plant response to SiAR. More interestingly, the expression of several ubiquitination-related proteins changed dramatically after 32-h SiAR treatment, suggesting that they may act as a molecular marker for the injury phenotype caused by SiAR. Based on our results, we proposed a schematic model to explain the mechanisms associated with the systematic response of Arabidopsis plants to SiAR.
Collapse
Affiliation(s)
- Ting-Wu Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Klubicová K, Danchenko M, Skultety L, Berezhna VV, Hricová A, Rashydov NM, Hajduch M. Agricultural recovery of a formerly radioactive area: II. Systematic proteomic characterization of flax seed development in the remediated Chernobyl area. J Proteomics 2011; 74:1378-84. [PMID: 21385628 DOI: 10.1016/j.jprot.2011.02.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 01/12/2023]
Abstract
Molecular characterization of crop plants grown in remediated, formerly radioactive, areas could establish a framework for future agricultural use of these areas. Recently, we have established a quantitative reference map for mature flax seed proteins (Linum usitatissimum L.) harvested from a remediated plot in Chernobyl town. Herein we describe results from our ongoing studies of this subject, and provide a proteomics-based characterization of developing flax seeds harvested from same field. A quantitative approach, based on 2-dimensional electrophoresis (2-DE) and tandem mass spectrometry, yielded expression profiles for 379 2-DE spots through seed development. Despite the paucity of genomic resources for flax, the identity for 102 proteins was reliably determined. These proteins were sorted into 11 metabolic functional classes. Proteins of unknown function comprise the largest group, and displayed a pattern of decreased abundance throughout seed development. Analysis of the composite expression profiles for metabolic protein classes revealed specific expression patterns during seed development. For example, there was an overall decrease in abundance of the glycolytic enzymes during seed development.
Collapse
Affiliation(s)
- Katarína Klubicová
- Department of Reproduction and Developmental Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | | | | | | | | | | |
Collapse
|
119
|
De La Fuente M, Borrajo A, Bermúdez J, Lores M, Alonso J, López M, Santalla M, De Ron AM, Zapata C, Alvarez G. 2-DE-based proteomic analysis of common bean (Phaseolus vulgaris L.) seeds. J Proteomics 2011; 74:262-7. [PMID: 20971221 DOI: 10.1016/j.jprot.2010.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/15/2010] [Accepted: 10/15/2010] [Indexed: 12/20/2022]
Affiliation(s)
- M De La Fuente
- Department of Plant Genetic Resources, Misión Biológica de Galicia-CSIC, Pontevedra, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Lan P, Li W, Wen TN, Shiau JY, Wu YC, Lin W, Schmidt W. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. PLANT PHYSIOLOGY 2011; 155:821-34. [PMID: 21173025 PMCID: PMC3032469 DOI: 10.1104/pp.110.169508] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/15/2010] [Indexed: 05/17/2023]
Abstract
Iron (Fe) deficiency is a major constraint for plant growth and affects the quality of edible plant parts. To investigate the mechanisms underlying Fe homeostasis in plants, Fe deficiency-induced changes in the protein profile of Arabidopsis (Arabidopsis thaliana) roots were comprehensively analyzed using iTRAQ (Isobaric Tag for Relative and Absolute Quantification) differential liquid chromatography-tandem mass spectrometry on a LTQ-Orbitrap with high-energy collision dissociation. A total of 4,454 proteins were identified with a false discovery rate of less than 1.1%, and 2,882 were reliably quantified. A subset of 101 proteins was differentially expressed upon Fe deficiency. The changes in protein profiles upon Fe deficiency show low congruency with previously reported alterations in transcript levels, indicating posttranscriptional changes, and provide complementary information on Fe deficiency-induced processes. The abundance of proteins involved in the synthesis/regeneration of S-adenosylmethionine, the phenylpropanoid pathway, the response to oxidative stress, and respiration was highly increased by Fe deficiency. Using Fe-responsive proteins as bait, genome-wide fishing for partners with predictable or confirmed interologs revealed that RNA processing and ribonucleoprotein complex assembly may represent critical processes that contribute to the regulation of root responses to Fe deficiency, possibly by biasing translation efficiency.
Collapse
|
121
|
Valledor L, Jorrín JV, Rodríguez JL, Lenz C, Meijón M, Rodríguez R, Cañal MJ. Combined proteomic and transcriptomic analysis identifies differentially expressed pathways associated to Pinus radiata needle maturation. J Proteome Res 2010; 9:3954-79. [PMID: 20509709 DOI: 10.1021/pr1001669] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Needle differentiation is a very complex process that leads to the formation of a mature photosynthetic organ from pluripotent needle primordia. The proteome and transcriptome of immature and fully developed needles of Pinus radiata D. Don were compared to described changes in mRNA and protein species that characterize the needle maturation developmental process. A total of 856 protein spots were analyzed, defining a total of 280 spots as differential between developmental stages, from which 127 were confidently identified. A suppressive subtractive library (2048 clones, 274 non redundant contigs) was built, and 176 genes showed to be differentially expressed. The Joint data analysis of proteomic and transcriptomic results provided a broad overview of differentially expressed pathways associated with needle maturation and stress-related pathways. Proteins and genes related to energy metabolism pathways, photosynthesis, and oxidative phosphorylation were overexpressed in mature needles. Amino acid metabolism, transcription, and translation pathways were overexpressed in immature needles. Interestingly, stress related proteins were characteristic of immature tissues, a fact that may be linked to defense mechanisms and the higher growth rate and morphogenetic competence exhibited by these needles. Thus, this work provides an overview of the molecular changes affecting proteomes and transcriptomes during P. radiata needle maturation, having an integrative vision of the functioning and physiology of this process.
Collapse
Affiliation(s)
- Luis Valledor
- EPIPHYSAGE Research Group, Area de Fisiología Vegetal, Departamento B.O.S., Instituto Universitario de Biotecnología de Asturias (IUBA), Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | |
Collapse
|
122
|
Tan Q, Zhang L, Grant J, Cooper P, Tegeder M. Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. PLANT PHYSIOLOGY 2010; 154:1886-96. [PMID: 20923886 PMCID: PMC2996030 DOI: 10.1104/pp.110.166389] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/01/2010] [Indexed: 05/18/2023]
Abstract
Seeds of grain legumes are important energy and food sources for humans and animals. However, the yield and quality of legume seeds are limited by the amount of sulfur (S) partitioned to the seeds. The amino acid S-methylmethionine (SMM), a methionine derivative, has been proposed to be an important long-distance transport form of reduced S, and we analyzed whether SMM phloem loading and source-sink translocation are important for the metabolism and growth of pea (Pisum sativum) plants. Transgenic plants were produced in which the expression of a yeast SMM transporter, S-Methylmethionine Permease1 (MMP1, YLL061W), was targeted to the phloem and seeds. Phloem exudate analysis showed that concentrations of SMM are elevated in MMP1 plants, suggesting increased phloem loading. Furthermore, expression studies of genes involved in S transport and metabolism in source organs, as well as xylem sap analyses, support that S uptake and assimilation are positively affected in MMP1 roots. Concomitantly, nitrogen (N) assimilation in root and leaf and xylem amino acid profiles were changed, resulting in increased phloem loading of amino acids. When investigating the effects of increased S and N phloem transport on seed metabolism, we found that protein levels were improved in MMP1 seeds. In addition, changes in SMM phloem loading affected plant growth and seed number, leading to an overall increase in seed S, N, and protein content in MMP1 plants. Together, these results suggest that phloem loading and source-sink partitioning of SMM are important for plant S and N metabolism and transport as well as seed set.
Collapse
Affiliation(s)
| | | | | | | | - Mechthild Tegeder
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164 (Q.T., L.Z., M.T.); New Zealand Institute of Plant and Food Research, Christchurch 8140, New Zealand (J.G., P.C.)
| |
Collapse
|
123
|
Zuber H, Davidian JC, Aubert G, Aimé D, Belghazi M, Lugan R, Heintz D, Wirtz M, Hell R, Thompson R, Gallardo K. The seed composition of Arabidopsis mutants for the group 3 sulfate transporters indicates a role in sulfate translocation within developing seeds. PLANT PHYSIOLOGY 2010; 154:913-26. [PMID: 20702726 PMCID: PMC2949013 DOI: 10.1104/pp.110.162123] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/03/2010] [Indexed: 05/18/2023]
Abstract
Sulfate is required for the synthesis of sulfur-containing amino acids and numerous other compounds essential for the plant life cycle. The delivery of sulfate to seeds and its translocation between seed tissues is likely to require specific transporters. In Arabidopsis (Arabidopsis thaliana), the group 3 plasmalemma-predicted sulfate transporters (SULTR3) comprise five genes, all expressed in developing seeds, especially in the tissues surrounding the embryo. Here, we show that sulfur supply to seeds is unaffected by T-DNA insertions in the SULTR3 genes. However, remarkably, an increased accumulation of sulfate was found in mature seeds of four mutants out of five. In these mutant seeds, the ratio of sulfur in sulfate form versus total sulfur was significantly increased, accompanied by a reduction in free cysteine content, which varied depending on the gene inactivated. These results demonstrate a reduced capacity of the mutant seeds to metabolize sulfate and suggest that these transporters may be involved in sulfate translocation between seed compartments. This was further supported by sulfate measurements of the envelopes separated from the embryo of the sultr3;2 mutant seeds, which showed differences in sulfate partitioning compared with the wild type. A dissection of the seed proteome of the sultr3 mutants revealed protein changes characteristic of a sulfur-stress response, supporting a role for these transporters in providing sulfate to the embryo. The mutants were affected in 12S globulin accumulation, demonstrating the importance of intraseed sulfate transport for the synthesis and maturation of embryo proteins. Metabolic adjustments were also revealed, some of which could release sulfur from glucosinolates.
Collapse
|
124
|
Nautrup-Pedersen G, Dam S, Laursen BS, Siegumfeldt AL, Nielsen K, Goffard N, Stærfeldt HH, Friis C, Sato S, Tabata S, Lorentzen A, Roepstorff P, Stougaard J. Proteome Analysis of Pod and Seed Development in the Model Legume Lotus japonicus. J Proteome Res 2010; 9:5715-26. [DOI: 10.1021/pr100511u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Gitte Nautrup-Pedersen
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Svend Dam
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Brian S. Laursen
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Astrid L. Siegumfeldt
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Kasper Nielsen
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Nicolas Goffard
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Hans Henrik Stærfeldt
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Carsten Friis
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Shusei Sato
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Satoshi Tabata
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Andrea Lorentzen
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Peter Roepstorff
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| | - Jens Stougaard
- Centre for Carbohydrate Recognition and Signaling, and the Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark, Center for Biological Sequence Analysis, Technical University of Denmark, DK-2800 Kgs Lyngby, Denmark, Australian Research Council Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia, Kazusa DNA Research
| |
Collapse
|
125
|
Encinas P, Rodriguez-Milla MA, Novoa B, Estepa A, Figueras A, Coll J. Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. BMC Genomics 2010; 11:518. [PMID: 20875106 PMCID: PMC2997011 DOI: 10.1186/1471-2164-11-518] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/27/2010] [Indexed: 01/05/2023] Open
Abstract
Background Despite rhabdoviral infections being one of the best known fish diseases, the gene expression changes induced at the surface tissues after the natural route of infection (infection-by-immersion) have not been described yet. This work describes the differential infected versus non-infected expression of proteins and immune-related transcripts in fins and organs of zebrafish Danio rerio shortly after infection-by-immersion with viral haemorrhagic septicemia virus (VHSV). Results Two-dimensional differential gel electrophoresis detected variations on the protein levels of the enzymes of the glycolytic pathway and cytoskeleton components but it detected very few immune-related proteins. Differential expression of immune-related gene transcripts estimated by quantitative polymerase chain reaction arrays and hybridization to oligo microarrays showed that while more transcripts increased in fins than in organs (spleen, head kidney and liver), more transcripts decreased in organs than in fins. Increased differential transcript levels in fins detected by both arrays corresponded to previously described infection-related genes such as complement components (c3b, c8 and c9) or class I histocompatibility antigens (mhc1) and to newly described genes such as secreted immunoglobulin domain (sid4), macrophage stimulating factor (mst1) and a cluster differentiation antigen (cd36). Conclusions The genes described would contribute to the knowledge of the earliest molecular events occurring in the fish surfaces at the beginning of natural rhabdoviral infections and/or might be new candidates to be tested as adjuvants for fish vaccines.
Collapse
Affiliation(s)
- Paloma Encinas
- Instituto Nacional Investigaciones Agrarias, Biotecnología, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
126
|
Miernyk JA, Preťová A, Olmedilla A, Klubicová K, Obert B, Hajduch M. Using proteomics to study sexual reproduction in angiosperms. ACTA ACUST UNITED AC 2010; 24:9-22. [PMID: 20830489 DOI: 10.1007/s00497-010-0149-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/21/2010] [Indexed: 12/18/2022]
Abstract
While a relative latecomer to the postgenomics era of functional biology, the application of mass spectrometry-based proteomic analysis has increased exponentially over the past 10 years. Some of this increase is the result of transition of chemists, physicists, and mathematicians to the study of biology, and some is due to improved methods, increased instrument sensitivity, and better techniques of bioinformatics-based data analysis. Proteomic Biological processes are typically studied in isolation, and seldom are efforts made to coordinate results obtained using structural, biochemical, and molecular-genetic strategies. Mass spectrometry-based proteomic analysis can serve as a platform to bridge these disparate results and to additionally incorporate both temporal and anatomical considerations. Recently, proteomic analyses have transcended their initial purely descriptive applications and are being employed extensively in studies of posttranslational protein modifications, protein interactions, and control of metabolic networks. Herein, we provide a brief introduction to sample preparation, comparison of gel-based versus gel-free methods, and explanation of data analysis emphasizing plant reproductive applications. We critically review the results from the relatively small number of extant proteomics-based analyses of angiosperm reproduction, from flowers to seedlings, and speculate on the utility of this strategy for future developments and directions.
Collapse
Affiliation(s)
- Ján A Miernyk
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovak Republic
| | | | | | | | | | | |
Collapse
|
127
|
Parádi I, van Tuinen D, Morandi D, Ochatt S, Robert F, Jacas L, Dumas-Gaudot E. Transcription of two blue copper-binding protein isogenes is highly correlated with arbuscular mycorrhizal development in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1175-1183. [PMID: 20687807 DOI: 10.1094/mpmi-23-9-1175] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Expression profiling of two paralogous arbuscular mycorrhizal (AM)-specific blue copper-binding gene (MtBcp1a and MtBcp1b) isoforms was performed by real-time quantitative polymerase chain reaction in wild-type Medicago truncatula Jemalong 5 (J5) during the mycorrhizal development with Glomus intraradices for up to 7 weeks. Time-course analysis in J5 showed that expression of both MtBcp1 genes increased continuously and correlated strongly with the colonization intensity and arbuscule content. MtPT4, selected as a reference gene of the functional plant-fungus association, showed a weaker correlation to mycorrhizal development. In a second experiment, a range of mycorrhizal mutants of the wild-type J5 was assessed. Strictly AM-penetration-defective TRV25-C and TRV25-D (dmi3, Mtsym13), hypomycorrhizal TR25 and TR89 (dmi2, Mtsym2) mutants, and a hypermycorrhizal mutant TRV17 (sunn, Mtsym12) were compared with J5 3 and 7 weeks after inoculation. No MtBcp1 transcripts were detected in the mutants blocked at the appressoria stage. Conversely, TR25, TR89, and J5 showed a gradual increase of the expression of both MtBcp1 genes in 3- and 7-week-old plants, similar to the increase in colonization intensity and arbuscule abundance. The strong correlation between the expression level of AM-specific blue copper-binding protein-encoding genes and AM colonization may imply a basic role in symbiotic functioning for these genes, which may serve as new molecular markers of arbuscule development in M. truncatula.
Collapse
Affiliation(s)
- István Parádi
- UMR 1088 INRA/5184 CNRS/Université de Bourgogne, Plante-Microbe-Environnement, INRA-CMSE, Dijon BP 86510, 21065 Dijon Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
128
|
Seabra AR, Vieira CP, Cullimore JV, Carvalho HG. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds. BMC PLANT BIOLOGY 2010; 10:183. [PMID: 20723225 PMCID: PMC3095313 DOI: 10.1186/1471-2229-10-183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/19/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS), occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. RESULTS This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2) in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. CONCLUSIONS This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate that this gene duplication represents a functional innovation of plastid located GS related to storage protein accumulation exclusive to legume seed metabolism.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Cristina P Vieira
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Julie V Cullimore
- Laboratoire des Interactions Plantes-Microorganismes, Institut National de la Recherche Agronomique - Centre National de la Recherche Scientifique, Boite Postale 52627, 31326 Castanet-Tolosan Cedex, France
| | - Helena G Carvalho
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| |
Collapse
|
129
|
Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N. Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. PHYTOCHEMISTRY 2010; 71:1223-36. [PMID: 20605176 DOI: 10.1016/j.phytochem.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 05/22/2023]
Abstract
Various supplements (abscisic acid (ABA) or sucrose) were added to the initial embryo culture medium (M3) with the aim of improving the vigour of vitroplants deriving from date palm somatic embryogenesis. ABA (20 and 40 microM) and sucrose (90 g/l) applied for 4 and 2 weeks respectively increased embryo thickness, with no apparent difference in length. ABA (5-40 microM) increased embryo proliferation rate. Somatic embryos maintained in modified M3 (M3 supplemented with ABA and an increased sucrose concentration) contained a higher amount of protein than those maintained in initial M3 (no ABA, 30 g/l of sucrose), with a 1.5-1.7-fold increase depending on the compound and concentration assayed. The 1-D and 2-DE protein profiles showed qualitative and quantitative differences between the somatic embryos cultured in initial M3 (control) and in modified M3. Statistical analysis of spot intensity was performed by principal component analysis, yielding two accurate groups of samples and determining the most discriminating spots. Samples were also clustered using Euclidean distance with an average linkage algorithm. Thirty-four variable spots were identified using mass spectrometry analysis. Identified proteins were classified into the following functional categories: energy metabolism (five proteins); protein translation, folding and degradation (9); redox maintenance (5); cytoskeleton (3); storage protein (2); and with no assigned function as (10). While "up-regulation" of stress-related proteins and "down-regulation" of energy metabolism proteins were observed in somatic embryos matured in M3 supplemented with ABA, storage proteins (legumin) were "up-regulated" in somatic embryos matured in M3 supplemented with increased sucrose.
Collapse
Affiliation(s)
- Besma Sghaier-Hammami
- Laboratoire des Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Sfax, Tunisia.
| | | | | | | |
Collapse
|
130
|
Colditz F, Braun HP. Medicago truncatula proteomics. J Proteomics 2010; 73:1974-85. [PMID: 20621211 DOI: 10.1016/j.jprot.2010.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 06/28/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.
Collapse
Affiliation(s)
- Frank Colditz
- Leibniz University of Hannover, Institute for Plant Genetics, Dept. III, Plant Molecular Biology, Herrenhäuser Str. 2, D-30419 Hannover, Germany.
| | | |
Collapse
|
131
|
Pawłowski TA. Proteomic approach to analyze dormancy breaking of tree seeds. PLANT MOLECULAR BIOLOGY 2010; 73:15-25. [PMID: 20306286 DOI: 10.1007/s11103-010-9623-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
In forest broadleaves from the temperate zone, a large number of species exhibit seed dormancy phenomena. Tree seeds show some of the most pronounced and complicated forms of dormancy in the plant kingdom. Many seeds are deeply physiologically dormant whatever their moisture level and age. However, dormancy can usually be overcome by a cold or warm stratification for several months. The transition from seed dormancy to germination is a multi-step process. In combination with the availability of genome sequence data, proteomics has opened up enormous possibilities for identifying the total set of expressed proteins as well as expression changes during dormancy breaking. The proteomic approach used for analysis of dormancy breaking of tree seeds offers new data allowing better understanding of the mechanism of deep physiological dormancy. The results of proteomic studies on dormancy breaking and the presence of abscisic and gibberellic acids in tree seeds (beech Fagus sylvatica L., Norway maple Acer platanoides L. and sycamore Acer pseudoplatanus L.), help to explain this process better. Most of the changes in protein expression were observed at the end of stratification and in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. The analysis of the proteins' function showed that the mechanism of seed dormancy breaking involves many processes. Energy metabolism, proteasome, transcription, protein synthesis, signal transduction and methionine metabolism proteins have a special importance.
Collapse
|
132
|
Shi J, Zhen Y, Zheng RH. Proteome profiling of early seed development in Cunninghamia lanceolata (Lamb.) Hook. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2367-81. [PMID: 20363864 PMCID: PMC2877891 DOI: 10.1093/jxb/erq066] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/03/2010] [Accepted: 03/03/2010] [Indexed: 05/06/2023]
Abstract
Knowledge of the proteome of the early gymnosperm embryo could provide important information for optimizing plant cloning procedures and for establishing platforms for research into plant development/regulation and in vitro transgenic studies. Compared with angiosperms, it is more difficult to induce somatic embryogenesis in gymnosperms; success in this endeavour could be increased, however, if proteomic information was available on the complex, dynamic, and multistage processes of gymnosperm embryogenesis in vivo. A proteomic analysis of Chinese fir seeds in six developmental stages was carried out during early embryogenesis. Proteins were extracted from seeds dissected from immature cones and separated by two-dimensional difference gel electrophoresis. Analysis with DeCyder 6.5 software revealed 136 spots that differed in kinetics of appearance. Analysis by liquid chromatography coupled to tandem mass spectrometry and MALDI-TOF mass spectrometry identified proteins represented by 71 of the spots. Functional annotation of these seed proteins revealed their involvement in programmed cell death and chromatin modification, indicating that the proteins may play a central role in determining the number of zygotic embryos generated and controlling embryo patterning and shape remodelling. The analysis also revealed other proteins involved in carbon metabolism, methionine metabolism, energy production, protein storage, synthesis and stabilization, disease/defence, the cytoskeleton, and embryo development. The comprehensive protein expression profiles generated by our study provide new insights into the complex developmental processes in the seeds of the Chinese fir.
Collapse
Affiliation(s)
- Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| | | | | |
Collapse
|
133
|
Angelovici R, Galili G, Fernie AR, Fait A. Seed desiccation: a bridge between maturation and germination. TRENDS IN PLANT SCIENCE 2010; 15:211-8. [PMID: 20138563 DOI: 10.1016/j.tplants.2010.01.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 01/04/2010] [Accepted: 01/07/2010] [Indexed: 05/22/2023]
Abstract
The development of orthodox seeds concludes by a desiccation phase. The dry seeds then enter a phase of dormancy, also called the after-ripening phase, and become competent for germination. We discuss physiological processes as well as gene expression and metabolic programs occurring during the desiccation phase in respect to their contribution to the desiccation tolerance, dormancy competence and successful germination of the dry seeds. The transition of developing seeds from the phase of reserve accumulation to desiccation is associated with distinct gene expression and metabolic switches. Interestingly, a significant proportion of the gene expression and metabolic signatures of seed desiccation resemble those characterizing seed germination, implying that the preparation of the seeds for germination begins already during seed desiccation.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Department of Plant Science, the Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
134
|
Bolon YT, Joseph B, Cannon SB, Graham MA, Diers BW, Farmer AD, May GD, Muehlbauer GJ, Specht JE, Tu ZJ, Weeks N, Xu WW, Shoemaker RC, Vance CP. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC PLANT BIOLOGY 2010; 10:41. [PMID: 20199683 PMCID: PMC2848761 DOI: 10.1186/1471-2229-10-41] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/03/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The nutritional and economic value of many crops is effectively a function of seed protein and oil content. Insight into the genetic and molecular control mechanisms involved in the deposition of these constituents in the developing seed is needed to guide crop improvement. A quantitative trait locus (QTL) on Linkage Group I (LG I) of soybean (Glycine max (L.) Merrill) has a striking effect on seed protein content. RESULTS A soybean near-isogenic line (NIL) pair contrasting in seed protein and differing in an introgressed genomic segment containing the LG I protein QTL was used as a resource to demarcate the QTL region and to study variation in transcript abundance in developing seed. The LG I QTL region was delineated to less than 8.4 Mbp of genomic sequence on chromosome 20. Using Affymetrix Soy GeneChip and high-throughput Illumina whole transcriptome sequencing platforms, 13 genes displaying significant seed transcript accumulation differences between NILs were identified that mapped to the 8.4 Mbp LG I protein QTL region. CONCLUSIONS This study identifies gene candidates at the LG I protein QTL for potential involvement in the regulation of protein content in the soybean seed. The results demonstrate the power of complementary approaches to characterize contrasting NILs and provide genome-wide transcriptome insight towards understanding seed biology and the soybean genome.
Collapse
Affiliation(s)
- Yung-Tsi Bolon
- United States Department of Agriculture-Agricultural Research Service, Plant Research Unit, St Paul, MN 55108, USA
| | - Bindu Joseph
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Steven B Cannon
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Michelle A Graham
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Brian W Diers
- Department of Crop Sciences, University of Illinois, 1101 West Peabody Dr, Urbana, IL 61801, USA
| | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Gregory D May
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - James E Specht
- Department of Agronomy, University of Nebraska, Lincoln, NE 68583, USA
| | - Zheng Jin Tu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nathan Weeks
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Randy C Shoemaker
- United States Department of Agriculture-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Carroll P Vance
- United States Department of Agriculture-Agricultural Research Service, Plant Research Unit, St Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
135
|
Bolingue W, Rosnoblet C, Leprince O, Vu BL, Aubry C, Buitink J. The MtSNF4b subunit of the sucrose non-fermenting-related kinase complex connects after-ripening and constitutive defense responses in seeds of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:792-803. [PMID: 20015062 DOI: 10.1111/j.1365-313x.2009.04106.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Dormant seeds are capable of remaining alive in the hydrated state for extended periods of time without losing vigor, until environmental cues or after-ripening result in the release of dormancy. Here, we investigated the possible role of the regulatory subunit of the sucrose non-fermenting-related kinase complex, MtSNF4b, in dormancy of Medicago truncatula seeds. Expression of MtSNF4b and its involvement in a high-molecular-weight complex are found in dormant seeds, whereas imbibition of fully after-ripened, non-dormant seeds leads to dissociation of the complex. MtSNF4b is capable of complementing the yeast Delta snf4 mutant and of interacting with the MtSnRK1 alpha-subunit in a double hybrid system. Transcriptome analyses on freshly harvested and after-ripened RNAi Mtsnf4b and wild-type embryos implicate MtSNF4b in the defense response in hydrated dormant embryonic tissues, affecting the expression of genes encoding enzymes of flavonoid and phenylpropanoid metabolism, WRKY transcription factors and pathogenesis-related proteins. Silencing MtSNF4b also increased the speed of after-ripening during dry storage, an effect that appears to be related to a change in base water potential. No significant difference in ABA content or sensitivity was detected between mutant and wild-type seeds. Pharmacological studies using hexoses and sugar analogs revealed that mannose restored germination behavior and expression of the genes PAL, CHR and IFR in RNAi Mtsnf4b seeds towards that of the wild-type, suggesting that MtSNF4b might act upstream of sugar-sensing pathways. Overall, the results suggest that MtSNF4b participates in regulation of a constitutively activated defense response in hydrated, dormant seeds.
Collapse
Affiliation(s)
- William Bolingue
- Institut National de la Recherche Agronomique, UMR 1191 Physiologie Moléculaire des Semences, IFR 149 QUASAV, 49045 Angers, France
| | | | | | | | | | | |
Collapse
|
136
|
Jones SI, Gonzalez DO, Vodkin LO. Flux of transcript patterns during soybean seed development. BMC Genomics 2010; 11:136. [PMID: 20181280 PMCID: PMC2846912 DOI: 10.1186/1471-2164-11-136] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/24/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To understand gene expression networks leading to functional properties of the soybean seed, we have undertaken a detailed examination of soybean seed development during the stages of major accumulation of oils, proteins, and starches, as well as the desiccating and mature stages, using microarrays consisting of up to 27,000 soybean cDNAs. A subset of these genes on a highly-repetitive 70-mer oligonucleotide microarray was also used to support the results. RESULTS It was discovered that genes related to cell growth and maintenance processes, as well as energy processes like photosynthesis, decreased in expression levels as the cotyledons approached the mature, dry stage. Genes involved with some storage proteins had their highest expression levels at the stage of highest fresh weight. However, genes encoding many transcription factors and DNA binding proteins showed higher expression levels in the desiccating and dry seeds than in most of the green stages. CONCLUSIONS Data on 27,000 cDNAs have been obtained over five stages of soybean development, including the stages of major accumulation of agronomically-important products, using two different types of microarrays. Of particular interest are the genes found to peak in expression at the desiccating and dry seed stages, such as those annotated as transcription factors, which may indicate the preparation of pathways that will be needed later in the early stages of imbibition and germination.
Collapse
Affiliation(s)
- Sarah I Jones
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Delkin O Gonzalez
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
- Current address: Dow AgroSciences, Indianaoplis, IN 46268, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
137
|
Laloo B, Simon D, Veillat V, Lauzel D, Guyonnet-Duperat V, Moreau-Gaudry F, Sagliocco F, Grosset C. Analysis of post-transcriptional regulations by a functional, integrated, and quantitative method. Mol Cell Proteomics 2010; 8:1777-88. [PMID: 19411282 DOI: 10.1074/mcp.m800503-mcp200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the past 10 years, transcriptome and proteome analyses have provided valuable data on global gene expression and cell functional networks. However, when integrated,these analyses revealed partial correlations between mRNA expression levels and protein abundance thus suggesting that post-transcriptional regulations may be in part responsible for this discrepancy. In the present work, we report the development of a functional, integrated, and quantitative method to measure post-transcriptional regulations that we named FunREG. This method enables (i) quantitative measure of post-transcriptional regulations mediated by selected 3-untranslated regions and exogenous small interfering-RNA or micro-RNAs and (ii) comparison of these regulatory processes in physiologically relevant systems (e.g. cancer versus primary untransformed cells). We applied FunREG to the study of liver cancer, and we demonstrate for the first time the differential regulatory mechanisms controlling gene expression at a post-transcriptional level in normal and tumoral hepatic cells. As an example, translation efficiency mediated by heparin-binding epidermal growth factor 3-untranslated region was increased 3-fold in liver cancer cells compared with normal hepatocytes, whereas stability of an mRNA containing a portion of Cyclin D1 3-untranslated region was increased more than 2-fold in HepG2 cells compared with normal hepatocytes. Consequently we believe that the method presented herein may become an important tool in fundamental and medical research. This approach is convenient and easy to perform, accessible to any investigator, and should be adaptable to a large number of cell type, functional and chemical screens, as well as genome scale analyses. Finally FunREG may represent a helpful tool to reconcile transcriptome and proteome data.
Collapse
Affiliation(s)
- Benoît Laloo
- INSERM, U889, Groupe de Recherche pour l'Etude du Foie (GREF), Bordeaux, F-33076 France
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Dias LL, Balbuena TS, Silveira V, Santa-Catarina C, Schevchenko A, Floh EIS. Two-dimensional gel electrophoretic protein profile analysis during seed development of Ocotea catharinensis: a recalcitrant seed species. ACTA ACUST UNITED AC 2010. [DOI: 10.1590/s1677-04202010000100003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.
Collapse
|
139
|
Melkus G, Rolletschek H, Radchuk R, Fuchs J, Rutten T, Wobus U, Altmann T, Jakob P, Borisjuk L. The metabolic role of the legume endosperm: a noninvasive imaging study. PLANT PHYSIOLOGY 2009; 151:1139-54. [PMID: 19748915 PMCID: PMC2773074 DOI: 10.1104/pp.109.143974] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/08/2009] [Indexed: 05/18/2023]
Abstract
Although essential for normal seed development in the legumes, the metabolic role of the endosperm remains uncertain. We designed noninvasive nuclear magnetic resonance tools for the in vivo study of key metabolites in the transient liquid endosperm of intact pea (Pisum sativum) seeds. The steady-state levels of sucrose, glutamine, and alanine could be monitored and their distribution within the embryo sac visualized. Seed structure was digitalized as a three-dimensional model, providing volume information for distinct seed organs. The nuclear magnetic resonance method, combined with laser microdissection, isotope labeling, in situ hybridization, and electron microscopy, was used to contrast the wild-type endosperm with that of a mutant in which embryo growth is retarded. Expression of sequences encoding amino acid and sucrose transporters was up-regulated earlier in the endosperm than in the embryo, and this activity led to the accumulation of soluble metabolites in the endosperm vacuole. The endosperm provides a temporary source of nutrition, permits space for embryo growth, and acts as a buffer between the maternal organism and its offspring. The concentration of sucrose in the endosperm vacuole is developmentally controlled, while the total amount accumulated depends on the growth of the embryo. The endosperm concentration of glutamine is a limiting factor for protein storage. The properties of the endosperm ensure that the young embryo develops within a homeostatic environment, necessary to sustain embryogenesis. We argue for a degree of metabolite-mediated control exerted by the endosperm on the growth of, and assimilate storage by, the embryo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ljudmilla Borisjuk
- University of Würzburg, Institute of Experimental Physics 5, 97074 Wuerzburg, Germany (G.M., J.F., P.J.); and Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (H.R., R.R., T.R., U.W., T.A., L.B.)
| |
Collapse
|
140
|
Ahsan N, Komatsu S. Comparative analyses of the proteomes of leaves and flowers at various stages of development reveal organ-specific functional differentiation of proteins in soybean. Proteomics 2009; 9:4889-907. [PMID: 19862761 DOI: 10.1002/pmic.200900308] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/10/2009] [Indexed: 12/19/2022]
Abstract
The functional differentiation of protein networks in individual organs and tissues of soybean at various developmental stages was investigated by proteomic approach. Protein extraction by Mg/NP-40 buffer followed by alkaline phenol-based method was optimized for proteomic analysis. Proteome analyses of leaves at various developmental stages showed 26 differentially expressed proteins, wherein proteins in translocon at the outer/inner envelope membrane of chloroplast protein-transport machineries increased significantly at the first trifoliate. Immunoblot analysis showed chaperonin-60 expressed abundantly in young leaves, whereas HSP 70 and ATP-synthase beta were constitutively expressed in all tissues. The net photosynthesis rate and chlorophyll content showed an age-dependent correlation in leaves. These results suggest that proteins involved in carbon assimilation, folding and assembly, and energy may work synchronously and show a linear correlation to photosynthesis at developmental stages of leaves. Comparison of flower bud and flower proteome reveals 29 differentially expressed proteins, wherein proteins involved in mitochondrial protein transport and assembly, secondary metabolism, and pollen-tube growth were up-regulated during flower development. Together, these results suggest that during developmental stages, each type of tissue is associated with a specific group of proteins; wherein proteins involved in energy, sugar metabolism, and folding, assembly, and destination may play pivotal roles in the maturation process of each organ or tissue.
Collapse
Affiliation(s)
- Nagib Ahsan
- National Institute of Crop Science, Tsukuba, Japan
| | | |
Collapse
|
141
|
Sghaier-Hammami B, Drira N, Jorrín-Novo JV. Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. J Proteomics 2009; 73:161-77. [DOI: 10.1016/j.jprot.2009.07.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 07/02/2009] [Accepted: 07/09/2009] [Indexed: 11/30/2022]
|
142
|
Thompson R, Burstin J, Gallardo K. Post-genomics studies of developmental processes in legume seeds. PLANT PHYSIOLOGY 2009; 151:1023-9. [PMID: 19675147 PMCID: PMC2773076 DOI: 10.1104/pp.109.143966] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Richard Thompson
- INRA, UMR Genetics and Ecophysiology of Grain Legumes, F-21065 Dijon, France.
| | | | | |
Collapse
|
143
|
Rintala E, Toivari M, Pitkänen JP, Wiebe MG, Ruohonen L, Penttilä M. Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics 2009; 10:461. [PMID: 19804647 PMCID: PMC2767370 DOI: 10.1186/1471-2164-10-461] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 10/05/2009] [Indexed: 12/19/2022] Open
Abstract
Background The industrially important yeast Saccharomyces cerevisiae is able to grow both in the presence and absence of oxygen. However, the regulation of its metabolism in conditions of intermediate oxygen availability is not well characterised. We assessed the effect of oxygen provision on the transcriptome and proteome of S. cerevisiae in glucose-limited chemostat cultivations in anaerobic and aerobic conditions, and with three intermediate (0.5, 1.0 and 2.8% oxygen) levels of oxygen in the feed gas. Results The main differences in the transcriptome were observed in the comparison of fully aerobic, intermediate oxygen and anaerobic conditions, while the transcriptome was generally unchanged in conditions receiving different intermediate levels (0.5, 1.0 or 2.8% O2) of oxygen in the feed gas. Comparison of the transcriptome and proteome data suggested post-transcriptional regulation was important, especially in 0.5% oxygen. In the conditions of intermediate oxygen, the genes encoding enzymes of the respiratory pathway were more highly expressed than in either aerobic or anaerobic conditions. A similar trend was also seen in the proteome and in enzyme activities of the TCA cycle. Further, genes encoding proteins of the mitochondrial translation machinery were present at higher levels in all oxygen-limited and anaerobic conditions, compared to fully aerobic conditions. Conclusion Global upregulation of genes encoding components of the respiratory pathway under conditions of intermediate oxygen suggested a regulatory mechanism to control these genes as a response to the need of more efficient energy production. Further, cells grown in three different intermediate oxygen levels were highly similar at the level of transcription, while they differed at the proteome level, suggesting post-transcriptional mechanisms leading to distinct physiological modes of respiro-fermentative metabolism.
Collapse
Affiliation(s)
- Eija Rintala
- VTT Technical Research Centre of Finland, P,O, Box 1000, FI-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
144
|
Houston NL, Hajduch M, Thelen JJ. Quantitative proteomics of seed filling in castor: comparison with soybean and rapeseed reveals differences between photosynthetic and nonphotosynthetic seed metabolism. PLANT PHYSIOLOGY 2009; 151:857-68. [PMID: 19675154 PMCID: PMC2754632 DOI: 10.1104/pp.109.141622] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Accepted: 08/11/2009] [Indexed: 05/20/2023]
Abstract
Seed maturation or seed filling is a phase of development that plays a major role in the storage reserve composition of a seed. In many plant seeds photosynthesis plays a major role in this process, although oilseeds, such as castor (Ricinus communis), are capable of accumulating oil without the benefit of photophosphorylation to augment energy demands. To characterize seed filling in castor, a systematic quantitative proteomics study was performed. Two-dimensional gel electrophoresis was used to resolve and quantify Cy-dye-labeled proteins expressed at 2, 3, 4, 5, and 6 weeks after flowering in biological triplicate. Expression profiles for 660 protein spot groups were established, and of these, 522 proteins were confidently identified by liquid chromatography-tandem mass spectrometry by mining against the castor genome. Identified proteins were classified according to function, and the most abundant groups of proteins were involved in protein destination and storage (34%), energy (19%), and metabolism (15%). Carbon assimilatory pathways in castor were compared with previous studies of photosynthetic oilseeds, soybean (Glycine max) and rapeseed (Brassica napus). These comparisons revealed differences in abundance and number of protein isoforms at numerous steps in glycolysis. One such difference was the number of enolase isoforms and their sum abundance; castor had approximately six times as many isoforms as soy and rapeseed. Furthermore, Rubisco was 11-fold less prominent in castor compared to rapeseed. These and other differences suggest some aspects of carbon flow, carbon recapture, as well as ATP and NADPH production in castor differs from photosynthetic oilseeds.
Collapse
Affiliation(s)
- Norma L Houston
- Interdisciplinary Plant Group and Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | |
Collapse
|
145
|
Desclos M, Etienne P, Coquet L, Jouenne T, Bonnefoy J, Segura R, Reze S, Ourry A, Avice JC. A combined 15N tracing/proteomics study in Brassica napus reveals the chronology of proteomics events associated with N remobilisation during leaf senescence induced by nitrate limitation or starvation. Proteomics 2009; 9:3580-608. [PMID: 19609964 DOI: 10.1002/pmic.200800984] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Our goal was to identify the leaf proteomic changes which appeared during N remobilisation that were associated or not associated with senescence of oilseed rape in response to contrasting nitrate availability. Remobilisation of N and leaf senescence status were followed using (15)N tracing, patterns of chlorophyll level, total protein content and a molecular indicator based on expression of senescence-associated gene 12/Cab genes. Three phases associated with N remobilisation were distinguished. Proteomics revealed that 55 proteins involved in metabolism, energy, detoxification, stress response, proteolysis and protein folding, were significantly induced during N remobilisation. Four proteases were specifically identified. FtsH, a chloroplastic protease, was induced transiently during the early stages of N remobilisation. Considering the dynamics of N remobilisation, chlorophyll and protein content, the pattern of FtsH expression indicated that this protease could be involved in the degradation of chloroplastic proteins. Aspartic protease increased at the beginning of senescence and was maintained at a high level, implicating this protease in proteolysis during the course of leaf senescence. Two proteases, proteasome beta subunit A1 and senescence-associated gene 12, were induced and continued to increase during the later phase of senescence, suggesting that these proteases are more specifically involved in the proteolysis processes occurring at the final stages of leaf senescence.
Collapse
Affiliation(s)
- Marie Desclos
- INRA, UMR INRA/UCBN 950 Ecophysiologie Végétale, Agronomie et nutritions N C S, IFR 146 ICORE, Institut de Biologie Fondamentale et Appliquée, Université de CAEN Basse-Normandie, Caen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Kersten B, Agrawal GK, Durek P, Neigenfind J, Schulze W, Walther D, Rakwal R. Plant phosphoproteomics: an update. Proteomics 2009; 9:964-88. [PMID: 19212952 DOI: 10.1002/pmic.200800548] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phosphoproteomics involves identification of phosphoproteins, precise mapping, and quantification of phosphorylation sites, and eventually, revealing their biological function. In plants, several systematic phosphoproteomic analyses have recently been performed to optimize in vitro and in vivo technologies to reveal components of the phosphoproteome. The discovery of novel substrates for specific protein kinases is also an important issue. Development of a new tool has enabled rapid identification of potential kinase substrates such as kinase assays using plant protein microarrays. Progress has also been made in quantitative and dynamic analysis of mapped phosphorylation sites. Increased quantity of experimentally verified phosphorylation sites in plants has prompted the creation of dedicated web-resources for plant-specific phosphoproteomics data. This resulted in development of computational prediction methods yielding significantly improved sensitivity and specificity for the detection of phosphorylation sites in plants when compared to methods trained on less plant-specific data. In this review, we present an update on phosphoproteomic studies in plants and summarize the recent progress in the computational prediction of plant phosphorylation sites. The application of the experimental and computed results in understanding the phosphoproteomic networks of cellular and metabolic processes in plants is discussed. This is a continuation of our comprehensive review series on plant phosphoproteomics.
Collapse
Affiliation(s)
- Birgit Kersten
- Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany.
| | | | | | | | | | | | | |
Collapse
|
147
|
Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics 2009; 9:420-33. [PMID: 19072729 DOI: 10.1002/pmic.200800336] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arbuscular mycorrhizal (AM) symbiosis belongs to the strategies plants have developed to cope with adverse environmental conditions including contamination by heavy metals such as cadmium (Cd). In the present work, we report on the protective effect conferred by AM symbiosis to the model legume Medicago truncatula grown in presence of Cd, and on the 2-D-based proteomic approach further used to compare the proteomes of M. truncatula roots either colonised or not with the AM fungus Glomus intraradices in Cd-free and Cd-contaminated substrates. The results indicated that at the proteome level, 9 out of the 15 cadmium-induced changes in nonmycorrhizal roots were absent or inverse in those Cd-treated and colonized by G. intraradices, including the G. intraradices-dependent down-accumulation of Cd stress-responsive proteins. Out of the twenty-six mycorrhiza-related proteins that were identified, only six displayed changes in abundance upon Cd exposure, suggesting that part of the symbiotic program, which displays low sensitivity to Cd, may be recruited to counteract Cd toxicity through the mycorrhiza-dependent synthesis of proteins having functions putatively involved in alleviating oxidative damages, including a cyclophilin, a guanine nucleotide-binding protein, an ubiquitin carboxyl-terminal hydrolase, a thiazole biosynthetic enzyme, an annexin, a glutathione S-transferase (GST)-like protein, and a S-adenosylmethionine (SAM) synthase.
Collapse
Affiliation(s)
- Achref Aloui
- UMR 1088 INRA/CNRS 5184/UB Plante-Microbe-Environnement, INRA-CMSE, Dijon, France
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Pawłowski TA. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC PLANT BIOLOGY 2009; 9:48. [PMID: 19413897 PMCID: PMC2688491 DOI: 10.1186/1471-2229-9-48] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 05/04/2009] [Indexed: 05/07/2023]
Abstract
BACKGROUND Seed dormancy is controlled by the physiological or structural properties of a seed and the external conditions. It is induced as part of the genetic program of seed development and maturation. Seeds with deep physiological embryo dormancy can be stimulated to germinate by a variety of treatments including cold stratification. Hormonal imbalance between germination inhibitors (e.g. abscisic acid) and growth promoters (e.g. gibberellins) is the main cause of seed dormancy breaking. Differences in the status of hormones would affect expression of genes required for germination. Proteomics offers the opportunity to examine simultaneous changes and to classify temporal patterns of protein accumulation occurring during seed dormancy breaking and germination. Analysis of the functions of the identified proteins and the related metabolic pathways, in conjunction with the plant hormones implicated in seed dormancy breaking, would expand our knowledge about this process. RESULTS A proteomic approach was used to analyse the mechanism of dormancy breaking in Norway maple seeds caused by cold stratification, and the participation of the abscisic (ABA) and gibberellic (GA) acids. Forty-four proteins showing significant changes were identified by mass spectrometry. Of these, eight spots were identified as water-responsive, 18 spots were ABA- and nine GA-responsive and nine spots were regulated by both hormones. The classification of proteins showed that most of the proteins associated with dormancy breaking in water were involved in protein destination. Most of the ABA- and GA-responsive proteins were involved in protein destination and energy metabolism. CONCLUSION In this study, ABA was found to mostly down-regulate proteins whereas GA up-regulated proteins abundance. Most of the changes were observed at the end of stratification in the germinated seeds. This is the most active period of dormancy breaking when seeds pass from the quiescent state to germination. Seed dormancy breaking involves proteins of various processes but the proteasome proteins, S-adenosylmethionine synthetase, glycine-rich RNA binding protein, ABI3-interacting protein 1, EF-2 and adenosylhomocysteinase are of particular importance. The effect of exogenously applied hormones was not a determining factor for total inhibition (ABA) or stimulation (GA) of Norway maple seed dormancy breaking and germination but proteomic data has proven these hormones play a role.
Collapse
Affiliation(s)
- Tomasz A Pawłowski
- Seed Biochemistry Laboratory, Institute of Dendrology Polish Academy of Sciences, Kórnik, Poland.
| |
Collapse
|
149
|
Chen M, Mooney BP, Hajduch M, Joshi T, Zhou M, Xu D, Thelen JJ. System analysis of an Arabidopsis mutant altered in de novo fatty acid synthesis reveals diverse changes in seed composition and metabolism. PLANT PHYSIOLOGY 2009; 150:27-41. [PMID: 19279196 PMCID: PMC2675738 DOI: 10.1104/pp.108.134882] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 02/27/2009] [Indexed: 05/18/2023]
Abstract
Embryo-specific overexpression of biotin carboxyl carrier protein 2 (BCCP2) inhibited plastid acetyl-coenzyme A carboxylase (ACCase), resulting in altered oil, protein, and carbohydrate composition in mature Arabidopsis (Arabidopsis thaliana) seed. To characterize gene and protein regulatory consequences of this mutation, global microarray, two-dimensional difference gel electrophoresis, iTRAQ, and quantitative immunoblotting were performed in parallel. These analyses revealed that (1) transgenic overexpression of BCCP2 did not affect the expression of three other ACCase subunits; (2) four subunits to plastid pyruvate dehydrogenase complex were 25% to 70% down-regulated at protein but not transcript levels; (3) key glycolysis and de novo fatty acid/lipid synthesis enzymes were induced; (4) multiple storage proteins, but not cognate transcripts, were up-regulated; and (5) the biotin synthesis pathway was up-regulated at both transcript and protein levels. Biotin production appears closely matched to endogenous BCCP levels, since overexpression of BCCP2 produced mostly apo-BCCP2 and the resulting ACCase-compromised, low-oil phenotype. Differential expression of glycolysis, plastid pyruvate dehydrogenase complex, fatty acid, and lipid synthesis activities indicate multiple, complex regulatory responses including feedback as well as futile "feed-forward" elicitation in the case of fatty acid and lipid biosynthetic enzymes. Induction of storage proteins reveals that oil and protein synthesis share carbon intermediate(s) and that reducing malonyl-coenzyme A flow into fatty acids diverts carbon into amino acid and protein synthesis.
Collapse
Affiliation(s)
- Mingjie Chen
- Interdisciplinary Plant Group and Division of Biochemistry , Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
150
|
Proteomic analysis of the development and germination of date palm (Phoenix dactylifera L.) zygotic embryos. Proteomics 2009; 9:2543-54. [DOI: 10.1002/pmic.200800523] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|