101
|
Didonna A. Prion protein and its role in signal transduction. Cell Mol Biol Lett 2013; 18:209-30. [PMID: 23479001 PMCID: PMC6275729 DOI: 10.2478/s11658-013-0085-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/18/2013] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are a class of fatal neurodegenerative disorders that can be sporadic, genetic or iatrogenic. They are characterized by the unique nature of their etiologic agent: prions (PrP(Sc)). A prion is an infectious protein with the ability to convert the host-encoded cellular prion protein (PrP(C)) into new prion molecules by acting as a template. Since Stanley B. Prusiner proposed the "protein-only" hypothesis for the first time, considerable effort has been put into defining the role played by PrP(C) in neurons. However, its physiological function remains unclear. This review summarizes the major findings that support the involvement of PrP(C) in signal transduction.
Collapse
Affiliation(s)
- Alessandro Didonna
- Davee Department of Neurology, Feinberg School of Medicine Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
102
|
Llorens F, Carulla P, Villa A, Torres JM, Fortes P, Ferrer I, del Río JA. PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells. J Neurochem 2013; 127:124-38. [PMID: 23638794 DOI: 10.1111/jnc.12283] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 01/28/2023]
Abstract
The prion protein (PrP) plays a key role in prion disease pathogenesis. Although the misfolded and pathologic variant of this protein (PrP(SC)) has been studied in depth, the physiological role of PrP(C) remains elusive and controversial. PrP(C) is a cell-surface glycoprotein involved in multiple cellular functions at the plasma membrane, where it interacts with a myriad of partners and regulates several intracellular signal transduction cascades. However, little is known about the gene expression changes modulated by PrP(C) in animals and in cellular models. In this article, we present PrP(C)-dependent gene expression signature in N2a cells and its implication in the most overrepresented functions: cell cycle, cell growth and proliferation, and maintenance of cell shape. PrP(C) over-expression enhances cell proliferation and cell cycle re-entrance after serum stimulation, while PrP(C) silencing slows down cell cycle progression. In addition, MAP kinase and protein kinase B (AKT) pathway activation are under the regulation of PrP(C) in asynchronous cells and following mitogenic stimulation. These effects are due in part to the modulation of epidermal growth factor receptor (EGFR) by PrP(C) in the plasma membrane, where the two proteins interact in a multimeric complex. We also describe how PrP(C) over-expression modulates filopodia formation by Rho GTPase regulation mainly in an AKT-Cdc42-N-WASP-dependent pathway.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Science Park, Barcelona, Spain; Department of Cell Biology, University of Barcelona (UB), Barcelona, Spain; Center for Networker Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neuropathology, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | | | | | | | | | | | | |
Collapse
|
103
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
104
|
Abstract
Mutations within the central region of prion protein (PrP) have been shown to be associated with severe neurotoxic activity similar to that observed with Dpl, a PrP-like protein. To further investigate this neurotoxic effect, we generated lines of transgenic (Tg) mice expressing three different chimeric PrP-Dpl proteins. Chi1 (amino acids 1-57 of Dpl replaced by amino acids 1-125 of PrP) and Chi2 (amino acids 1-66 of Dpl replaced by amino acids 1-134 of PrP) abrogated the pathogenicity of Dpl indicating that the presence of a N-terminal domain of PrP (23-134) reduced the toxicity of Dpl, as reported. However, when the amino acids 1-24 of Dpl were replaced by amino acids 1-124 of PrP, Chi3 Tg mice, which express the chimeric protein at a very low level, start developing ataxia at the age of 5-7 weeks. This phenotype was not counteracted by a single copy of full-length-PrP(c) but rather by its overexpression, indicating the strong toxicity of the chimeric protein Chi3. Chi3 Tg mice exhibit severe cerebellar atrophy with a significant loss of granule cells. We concluded that aa25 to aa57 of Dpl, which are not present in Chi1 and Chi2 constructs, confer toxicity to the protein. We tested this possibility by using the 25-57 Dpl peptide in primary culture of mouse embryo cortical neurons and found a significant neurotoxic effect. This finding identifies a protein domain that plays a role in mediating Dpl-related toxicity.
Collapse
|
105
|
Rushworth JV, Griffiths HH, Watt NT, Hooper NM. Prion protein-mediated toxicity of amyloid-β oligomers requires lipid rafts and the transmembrane LRP1. J Biol Chem 2013; 288:8935-51. [PMID: 23386614 PMCID: PMC3610967 DOI: 10.1074/jbc.m112.400358] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Soluble oligomers of the amyloid-β (Aβ) peptide cause neurotoxicity, synaptic dysfunction, and memory impairments that underlie Alzheimer disease (AD). The cellular prion protein (PrPC) was recently identified as a high affinity neuronal receptor for Aβ oligomers. We report that fibrillar Aβ oligomers recognized by the OC antibody, which have been shown to correlate with the onset and severity of AD, bind preferentially to cells and neurons expressing PrPC. The binding of Aβ oligomers to cell surface PrPC, as well as their downstream activation of Fyn kinase, was dependent on the integrity of cholesterol-rich lipid rafts. In SH-SY5Y cells, fluorescence microscopy and co-localization with subcellular markers revealed that the Aβ oligomers co-internalized with PrPC, accumulated in endosomes, and subsequently trafficked to lysosomes. The cell surface binding, internalization, and downstream toxicity of Aβ oligomers was dependent on the transmembrane low density lipoprotein receptor-related protein-1 (LRP1). The binding of Aβ oligomers to cell surface PrPC impaired its ability to inhibit the activity of the β-secretase BACE1, which cleaves the amyloid precursor protein to produce Aβ. The green tea polyphenol (−)-epigallocatechin gallate and the red wine extract resveratrol both remodeled the fibrillar conformation of Aβ oligomers. The resulting nonfibrillar oligomers displayed significantly reduced binding to PrPC-expressing cells and were no longer cytotoxic. These data indicate that soluble, fibrillar Aβ oligomers bind to PrPC in a conformation-dependent manner and require the integrity of lipid rafts and the transmembrane LRP1 for their cytotoxicity, thus revealing potential targets to alleviate the neurotoxic properties of Aβ oligomers in AD.
Collapse
Affiliation(s)
- Jo V Rushworth
- School of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | |
Collapse
|
106
|
Cellular aspects of prion replication in vitro. Viruses 2013; 5:374-405. [PMID: 23340381 PMCID: PMC3564126 DOI: 10.3390/v5010374] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation.
Collapse
|
107
|
PrP octarepeats region determined the interaction with caveolin-1 and phosphorylation of caveolin-1 and Fyn. Med Microbiol Immunol 2013; 202:215-27. [PMID: 23283514 DOI: 10.1007/s00430-012-0284-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/12/2012] [Indexed: 01/15/2023]
Abstract
Caveolin-1 is one of the major constituents of caveolae. Both Cav-1 and PrP are plasma membrane proteins, which show active capacities for molecular interactions with many other proteins or agents, including themselves. Using yeast two-hybrid system and immunoprecipitation, we reconfirmed the molecular interaction between human Cav-1 and PrP. With co-immunoprecipitation tests, PrP(C)-Cav-1 and PrP(Sc)-Cav-1 complexes were identified in the brain homogenates of normal and scrapie agent 263K-infected hamsters, respectively. Transient expression of wild-type PrP (PrP-PG5) in HEK293 cells did not change the situation of Cav-1 and subsequent signal transduction pathways, while cross-linking of the expressed PrP with specific antibody induced remarkable colocalization of PrP and Cav-1 on the plasma membrane and significant increases of phosphorylated Cav-1 and phosphorylated Fyn. With deleted and inserted PrP mutants within octarepeat region, we observed obvious octarepeat-associated phenomena, including lower binding capacity with Cav-1 in vitro, unable to co-localize with Cav-1 in the cells and to induce up-regulation of p-Cav-1 and p-Fyn when removal of octarepeats in the context of full-length PrP. Moreover, we found that treatment on HEK293 cells with fibrous form of recombinant PrP protein led to up-regulating the levels of p-Cav-1 and p-Fyn. Our data here provide strong evidence that octarepeats of PrP are critical for the interaction between PrP and Cav-1. Significant alterations in the cultured cells, either the distributions of PrP and Cav-1 morphologically or the up-regulations of p-Cav-1 and p-Fyn, induced by antibody-mediated cross-linking or fibrous forms of PrP may suggest a possible internalization process of PrP(Sc).
Collapse
|
108
|
Yamaguchi T, Uno T, Uekusa Y, Yagi-Utsumi M, Kato K. Ganglioside-embedding small bicelles for probing membrane-landing processes of intrinsically disordered proteins. Chem Commun (Camb) 2013; 49:1235-7. [DOI: 10.1039/c2cc38016a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
109
|
Zhan L, Liang LJ, Zhen SJ, Li CM, Huang CZ. Aptamer-based spectrofluorometry for cellular prion protein using N,N'-bis[3,3'-(dimethylamino)propylamine]-3,4,9,10-perylenetetracarboxylic diimide. Analyst 2012; 138:825-30. [PMID: 23240131 DOI: 10.1039/c2an36322d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new spectrofluorometric method for cellular prion protein (PrP(C)) was developed based on the regulation of N,N'-bis[3,3'-(dimethylamino)propylamine]-3,4,9,10-perylenetetracarboxylic diimide (DAPER) fluorescence. As a perylene derivative, DAPER emits strong fluorescence in the form of free monomer in aqueous medium, but not in the form of aggregates. In this contribution, we found that the aptamer of PrP(C) could induce the aggregation of DAPER, and the bright fluorescence of DAPER was completely quenched. The quenched fluorescence, however, was recovered if PrP(C) was further added, which was ascribed to the specific binding of PrP(C) to its aptamer and the releasing of free DAPER monomers. This signalling mechanism makes it possible to detect PrP(C) by fluorescence spectroscopy. The assay allows the selective determination of PrP(C) in aqueous solution with high sensitivity and exhibits a good linear range from 0.4 to 1.6 nmol L(-1). Moreover, this probe can be applied to monitor the level of PrP(C) in human urine samples with satisfactory results.
Collapse
Affiliation(s)
- Lei Zhan
- Education Ministry Key Laboratory on Luminescence and Real-Time Analysis, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | | | | | | | | |
Collapse
|
110
|
Cytochalasin D enhances the accumulation of a protease-resistant form of prion protein in ScN2a cells: involvement of PI3 kinase/Akt signalling pathway. Cell Biol Int 2012; 36:1223-31. [PMID: 22985412 DOI: 10.1042/cbi20120329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The conversion of a host-encoded PrPsen (protease-sensitive cellular prion protein) into a PrPres (protease-resistant pathogenic form) is a key process in the pathogenesis of prion diseases, but the intracellular mechanisms underlying PrPres amplification in prion-infected cells remain elusive. To assess the role of cytoskeletal proteins in the regulation of PrPres amplification, the effects of cytoskeletal disruptors on PrPres accumulation in ScN2a cells that were persistently infected with the scrapie Chandler strain have been examined. Actin microfilament disruption with cytochalasin D enhanced PrPres accumulation in ScN2a cells. In contrast, the microtubule-disrupting agents, colchicine, nocodazole and paclitaxel, had no effect on PrPres accumulation. In addition, a PI3K (phosphoinositide 3-kinase) inhibitor, wortmannin and an Akt kinase inhibitor prevented the cytochalasin D-induced enhancement of PrPres accumulation. Cytochalasin D-induced extension of neurite-like processes might correlate with enhanced accumulation of PrPres. The results suggest that the actin cytoskeleton and PI3K/Akt pathway are involved in the regulation of PrPres accumulation in prion-infected cells.
Collapse
|
111
|
Biljan I, Ilc G, Giachin G, Plavec J, Legname G. Structural Rearrangements at Physiological pH: Nuclear Magnetic Resonance Insights from the V210I Human Prion Protein Mutant. Biochemistry 2012; 51:7465-74. [DOI: 10.1021/bi3009856] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivana Biljan
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000
Ljubljana, Slovenia
| | - Gregor Ilc
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000
Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1001 Ljubljana,
Slovenia
| | - Gabriele Giachin
- Laboratory of Prion
Biology, Department
of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste, Italy
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1000
Ljubljana, Slovenia
- EN→FIST Centre of Excellence, Dunajska 156, SI-1001 Ljubljana,
Slovenia
- Faculty of Chemistry and Chemical
Technology, University of Ljubljana, Aškerčeva
cesta 5, SI-1000 Ljubljana, Slovenia
| | - Giuseppe Legname
- Laboratory of Prion
Biology, Department
of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), via Bonomea 265, Trieste, Italy
- ELETTRA Laboratory, Sincrotrone Trieste S.C.p.A., I-34149 Basovizza, Trieste,
Italy
| |
Collapse
|
112
|
The N-terminal, polybasic region of PrP(C) dictates the efficiency of prion propagation by binding to PrP(Sc). J Neurosci 2012; 32:8817-30. [PMID: 22745483 DOI: 10.1523/jneurosci.1103-12.2012] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prion propagation involves a templating reaction in which the infectious form of the prion protein (PrP(Sc)) binds to the cellular form (PrP(C)), generating additional molecules of PrP(Sc). While several regions of the PrP(C) molecule have been suggested to play a role in PrP(Sc) formation based on in vitro studies, the contribution of these regions in vivo is unclear. Here, we report that mice expressing PrP deleted for a short, polybasic region at the N terminus (residues 23-31) display a dramatically reduced susceptibility to prion infection and accumulate greatly reduced levels of PrP(Sc). These results, in combination with biochemical data, demonstrate that residues 23-31 represent a critical site on PrP(C) that binds to PrP(Sc) and is essential for efficient prion propagation. It may be possible to specifically target this region for treatment of prion diseases as well as other neurodegenerative disorders due to β-sheet-rich oligomers that bind to PrP(C).
Collapse
|
113
|
Poli G, Corda E, Lucchini B, Puricelli M, Martino PA, Dall'ara P, Villetti G, Bareggi SR, Corona C, Vallino Costassa E, Gazzuola P, Iulini B, Mazza M, Acutis P, Mantegazza P, Casalone C, Imbimbo BP. Therapeutic effect of CHF5074, a new γ-secretase modulator, in a mouse model of scrapie. Prion 2012; 6:62-72. [PMID: 22453180 DOI: 10.4161/pri.6.1.18317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Transmissible Spongiform Encephalopathies (TSEs) and Alzheimer disease (AD) both misfolding and aggregation of specific proteins represent key features. Recently, it was observed that PrP (c) is a mediator of a synaptic dysfunction induced by Aβ oligomers. We tested a novel γ secretase modulator (CHF5074) in a murine model of prion disease. Groups of female mice were intracerebrally or intraperitoneally infected with the mouse-adapted Rocky Mountain Laboratory prions. Two weeks prior infection, the animals were provided with a CHF5074-medicated diet (375 ppm) or a standard diet (vehicle) until they showed neurological signs and eventually died. In intracerebrally infected mice, oral administration of CHF5074 did not prolong survival of the animals. In intraperitoneally-infected mice, CHF5074-treated animals showed a median survival time of 21 days longer than vehicle-treated mice (p < 0.001). In these animals, immunohistochemistry analyses showed that deposition of PrP (Sc) in the cerebellum, hippocampus and parietal cortex in CHF5074-treated mice was significantly lower than in vehicle-treated animals. Immunostaining of glial fibrillary acidic protein (GFAP) in parietal cortex revealed a significantly higher reactive gliosis in CHF5074-treated mice compared to the control group of infected animals. Although the mechanism underlying the beneficial effects of CHF5074 in this murine model of human prion disease is unclear, it could be hypothesized that the drug counteracts PrP (Sc ) toxicity through astrocyte-mediated neuroprotection. CHF5074 shows a pharmacological potential in murine models of both AD and TSEs thus suggesting a link between these degenerative pathologies.
Collapse
Affiliation(s)
- Giorgio Poli
- Microbiology and Immunology Unit, Department of Veterinary Pathology, Hygiene and Public Health, School of Veterinary Medicine, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Coleman BM, Hanssen E, Lawson VA, Hill AF. Prion‐infected cells regulate the release of exosomes with distinct ultrastructural features. FASEB J 2012; 26:4160-73. [DOI: 10.1096/fj.11-202077] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bradley M. Coleman
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Department of PathologyThe University of MelbourneParkvilleVictoriaAustralia
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Eric Hanssen
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- Bio21 Electron Microscopy UnitThe University of MelbourneParkvilleVictoriaAustralia
| | - Victoria A. Lawson
- Department of PathologyThe University of MelbourneParkvilleVictoriaAustralia
- The Mental Health Research InstituteThe University of MelbourneParkvilleVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and Molecular BiologyThe University of MelbourneParkvilleVictoriaAustralia
- Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVictoriaAustralia
- The Mental Health Research InstituteThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
115
|
Llorens F, Del Río JA. Unraveling the neuroprotective mechanisms of PrP (C) in excitotoxicity. Prion 2012; 6:245-51. [PMID: 22437735 DOI: 10.4161/pri.19639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Knowledge of the natural roles of cellular prion protein (PrP (C) ) is essential to an understanding of the molecular basis of prion pathologies. This GPI-anchored protein has been described in synaptic contacts, and loss of its synaptic function in complex systems may contribute to the synaptic loss and neuronal degeneration observed in prionopathy. In addition, Prnp knockout mice show enhanced susceptibility to several excitotoxic insults, GABAA receptor-mediated fast inhibition was weakened, LTP was modified and cellular stress increased. Although little is known about how PrP (C) exerts its function at the synapse or the downstream events leading to PrP (C) -mediated neuroprotection against excitotoxic insults, PrP (C) has recently been reported to interact with two glutamate receptor subunits (NR2D and GluR6/7). In both cases the presence of PrP (C) blocks the neurotoxicity induced by NMDA and Kainate respectively. Furthermore, signals for seizure and neuronal cell death in response to Kainate in Prnp knockout mouse are associated with JNK3 activity, through enhancing the interaction of GluR6 with PSD-95. In combination with previous data, these results shed light on the molecular mechanisms behind the role of PrP (C) in excitotoxicity. Future experimental approaches are suggested and discussed.
Collapse
Affiliation(s)
- Franc Llorens
- Molecular and Cellular Neurobiotechnology Group, Institut de Bioenginyeria de Catalunya (IBEC), Parc Científic de Barcelona, Barcelona, Spain.
| | | |
Collapse
|
116
|
Bellingham SA, Guo BB, Coleman BM, Hill AF. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 2012; 3:124. [PMID: 22563321 PMCID: PMC3342525 DOI: 10.3389/fphys.2012.00124] [Citation(s) in RCA: 307] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/13/2012] [Indexed: 12/31/2022] Open
Abstract
Exosomes are small membranous vesicles secreted by a number of cell types including neurons and can be isolated from conditioned cell media or bodily fluids such as urine and plasma. Exosome biogenesis involves the inward budding of endosomes to form multivesicular bodies (MVB). When fused with the plasma membrane, the MVB releases the vesicles into the extracellular environment as exosomes. Proposed functions of these vesicles include roles in cell–cell signaling, removal of unwanted proteins, and the transfer of pathogens between cells. One such pathogen which exploits this pathway is the prion, the infectious particle responsible for the transmissible neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD) of humans or bovine spongiform encephalopathy (BSE) of cattle. Similarly, exosomes are also involved in the processing of the amyloid precursor protein (APP) which is associated with Alzheimer’s disease. Exosomes have been shown to contain full-length APP and several distinct proteolytically cleaved products of APP, including Aβ. In addition, these fragments can be modulated using inhibitors of the proteases involved in APP cleavage. These observations provide further evidence for a novel pathway in which PrP and APP fragments are released from cells. Other proteins such as superoxide dismutase I and alpha-synuclein (involved in amyotrophic lateral sclerosis and Parkinson’s disease, respectively) are also found associated with exosomes. This review will focus on the role of exosomes in neurodegenerative disorders and discuss the potential of these vesicles for the spread of neurotoxicity, therapeutics, and diagnostics for these diseases.
Collapse
Affiliation(s)
- Shayne A Bellingham
- Department of Biochemistry and Molecular Biology, The University of Melbourne Melbourne, VIC 3010, Australia
| | | | | | | |
Collapse
|
117
|
Cai M, Zhao W, Shang X, Jiang J, Ji H, Tang Z, Wang H. Direct evidence of lipid rafts by in situ atomic force microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:1243-50. [PMID: 22351491 DOI: 10.1002/smll.201102183] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Indexed: 05/11/2023]
Abstract
Lipid rafts are membrane microdomains enriched with cholesterol, glycosphingolipids, and proteins. Although they are broadly presumed to play a pivotal role in various cellular functions, there are still fierce debates about the composition, functions, and even existence of lipid rafts. Here high-resolution and time-lapse in situ atomic force microscopy is used to directly confirm the existence of lipid rafts in native erythrocyte membranes. The results indicate some important aspects of lipid rafts: most of the lipid rafts are in the size range of 100-300 nm and have irregular shape; the detergent-resistant membranes consist of cholesterol microdomains and are not likely the same as the lipid rafts; cholesterol contributes significantly to the formation and stability of the protein domains; and Band III is an important protein of lipid rafts in the inner leaflet of erythrocyte membranes, indicating that lipid rafts are exactly the functional domains in plasma membrane. This work provides direct evidence of the presence, size, and main constitutive protein of lipid rafts at a resolution of a few nanometers, which will pave the way for studying their structure and functions in detail.
Collapse
Affiliation(s)
- Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, PR China
| | | | | | | | | | | | | |
Collapse
|
118
|
Linden R, Cordeiro Y, Lima LMTR. Allosteric function and dysfunction of the prion protein. Cell Mol Life Sci 2012; 69:1105-24. [PMID: 21984610 PMCID: PMC11114699 DOI: 10.1007/s00018-011-0847-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are neurodegenerative diseases associated with progressive oligo- and multimerization of the prion protein (PrP(C)), its conformational conversion, aggregation and precipitation. We recently proposed that PrP(C) serves as a cell surface scaffold protein for a variety of signaling modules, the effects of which translate into wide-range functional consequences. Here we review evidence for allosteric functions of PrP(C), which constitute a common property of scaffold proteins. The available data suggest that allosteric effects among PrP(C) and its partners are involved in the assembly of multi-component signaling modules at the cell surface, impose upon both physiological and pathological conformational responses of PrP(C), and that allosteric dysfunction of PrP(C) has the potential to entail progressive signal corruption. These properties may be germane both to physiological roles of PrP(C), as well as to the pathogenesis of the TSEs and other degenerative/non-communicable diseases.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica Carlos Chagas Filho, UFRJ, CCS, Cidade Universitária, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
119
|
Mishra S, Nussenzweig RS, Nussenzweig V. Antibodies to Plasmodium circumsporozoite protein (CSP) inhibit sporozoite's cell traversal activity. J Immunol Methods 2012; 377:47-52. [PMID: 22306356 DOI: 10.1016/j.jim.2012.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/18/2022]
Abstract
Plasmodium sporozoites are deposited in the skin of the mammalian host by Anopheles mosquitoes. To continue the life cycle, the sporozoites have to invade the host's hepatocytes, where they transform into exoerythrocytic forms (EEFs) inside a parasitophorous vacuole. During their route from the skin to the liver, the parasites traverse the capillary epithelium in the dermis to enter the blood circulation, and cross the endothelium of liver sinusoids to enter the parenchyma. Cell traversal by sporozoites is usually measured by quantifying dyes that enter or are released from cells during incubation with salivary gland sporozoites. These methods do not distinguish cell traversal from cell wounding. Here we validate an assay that quantifies cell traversal of sporozoites through monolayers of MDCK cells that form tight junctions. We compared cell traversal of wt sporozoites and of parasites lacking the Type I membrane protein TLP (TRAP-like protein) previously implicated in cell traversal. We provide direct evidence that TLP ko sporozoites are defective in cell traversal and that they are retained inside the MDCK cytoplasm. We then used the MDCK assay to study the effect of a monoclonal antibody (3D11) to the circumsporozoite protein (CSP) on the parasite's cell traversal. We show that 3D11 inhibits cell traversal at nanomolar concentrations. We conclude that antibodies elicited by CSP-based vaccines are likely to inhibit the migration of sporozoites from the skin to the liver.
Collapse
Affiliation(s)
- Satish Mishra
- Michael Heidelberger Division of Immunology, Department of Pathology, New York University School of Medicine, NY 10016, USA.
| | | | | |
Collapse
|
120
|
Du Y, Pattnaik AK, Song C, Yoo D, Li G. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology 2012; 424:18-32. [PMID: 22222209 PMCID: PMC7111931 DOI: 10.1016/j.virol.2011.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/22/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.
Collapse
Affiliation(s)
- Yijun Du
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
121
|
Biljan I, Ilc G, Giachin G, Raspadori A, Zhukov I, Plavec J, Legname G. Toward the Molecular Basis of Inherited Prion Diseases: NMR Structure of the Human Prion Protein with V210I Mutation. J Mol Biol 2011; 412:660-73. [PMID: 21839748 DOI: 10.1016/j.jmb.2011.07.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 10/17/2022]
|
122
|
Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR, Schiavo G, Jat P, Collinge J, Tabrizi SJ. Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2011; 2:281. [PMID: 21505437 PMCID: PMC3104518 DOI: 10.1038/ncomms1282] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/17/2011] [Indexed: 11/09/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrP(C)). Here we develop a unique cell system in which epitope-tagged PrP(C) is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrP(C), when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrP(Sc)). Using this epitope-tagged PrP(Sc), we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion.
Collapse
Affiliation(s)
- R Goold
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Aranko AS, Volkmann G. Protein trans-splicing as a protein ligation tool to study protein structure and function. Biomol Concepts 2011; 2:183-98. [DOI: 10.1515/bmc.2011.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 03/10/2011] [Indexed: 01/21/2023] Open
Abstract
AbstractProtein trans-splicing (PTS) exerted by split inteins is a protein ligation reaction which enables overcoming the barriers of conventional heterologous protein production. We provide an overview of the current state-of-the-art in split intein engineering, as well as the achievements of PTS technology in the realm of protein structure-function analyses, including incorporation of natural and artificial protein modifications, controllable protein reconstitution, segmental isotope labeling and protein cyclization. We further discuss factors crucial for the successful implementation of PTS in these protein engineering approaches, and speculate on necessary future endeavours to make PTS a universally applicable protein ligation tool.
Collapse
Affiliation(s)
- A. Sesilja Aranko
- 1Research Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
124
|
Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 2011; 50:411-24. [PMID: 21658410 DOI: 10.1016/j.plipres.2011.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid that is covalently attached to proteins as a post-translational modification. Such modification leads to the anchoring of the protein to the outer leaflet of the plasma membrane. Proteins that are decorated with GPIs have unique properties in terms of their physical nature. In particular, these proteins tend to accumulate in lipid rafts, which are critical for the functions and trafficking of GPI-anchored proteins (GPI-APs). Recent studies mainly using mutant cells revealed that various structural remodeling reactions occur to GPIs present in GPI-APs as they are transported from the endoplasmic reticulum to the cell surface. This review examines the recent progress describing the mechanisms of structural remodeling of mammalian GPI-anchors, such as inositol deacylation, glycan remodeling and fatty acid remodeling, with particular focus on their trafficking and functions, as well as the pathogenesis involving GPI-APs and their deficiency.
Collapse
|
125
|
|
126
|
Malchiodi-Albedi F, Paradisi S, Matteucci A, Frank C, Diociaiuti M. Amyloid oligomer neurotoxicity, calcium dysregulation, and lipid rafts. Int J Alzheimers Dis 2011; 2011:906964. [PMID: 21331330 PMCID: PMC3038657 DOI: 10.4061/2011/906964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
Amyloid proteins constitute a chemically heterogeneous group of proteins, which share some biophysical and biological characteristics, the principal of which are the high propensity to acquire an incorrect folding and the tendency to aggregate. A number of diseases are associated with misfolding and aggregation of proteins, although only in some of them—most notably Alzheimer's disease (AD) and transmissible spongiform encephalopathies (TSEs)—a pathogenetic link with misfolded proteins is now widely recognized. Lipid rafts (LRs) have been involved in the pathophysiology of diseases associated with protein misfolding at several levels, including aggregation of misfolded proteins, amyloidogenic processing, and neurotoxicity. Among the pathogenic misfolded proteins, the AD-related protein amyloid β (Aβ) is by far the most studied protein, and a large body of evidence has been gathered on the role played by LRs in Aβ pathogenicity. However, significant amount of data has also been collected for several other amyloid proteins, so that their ability to interact with LRs can be considered an additional, shared feature characterizing the amyloid protein family. In this paper, we will review the evidence on the role of LRs in the neurotoxicity of huntingtin, α-synuclein, prion protein, and calcitonin.
Collapse
Affiliation(s)
- Fiorella Malchiodi-Albedi
- Dipartimento di Biologia Cellulare e Neuroscienze, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
127
|
Butterfield SM, Lashuel HA. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem Int Ed Engl 2011; 49:5628-54. [PMID: 20623810 DOI: 10.1002/anie.200906670] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The toxicity of amyloid-forming proteins is correlated with their interactions with cell membranes. Binding events between amyloidogenic proteins and membranes result in mutually disruptive structural perturbations, which are associated with toxicity. Membrane surfaces promote the conversion of amyloid-forming proteins into toxic aggregates, and amyloidogenic proteins, in turn, compromise the structural integrity of the cell membrane. Recent studies with artificial model membranes have highlighted the striking resemblance of the mechanisms of membrane permeabilization of amyloid-forming proteins to those of pore-forming toxins and antimicrobial peptides.
Collapse
Affiliation(s)
- Sara M Butterfield
- Laboratory of Molecular Neurobiology and Neuroproteomics, Swiss Federal Institute of Technology Lausanne (EPFL), SV-BMI-LMNN AI2351, 1015 Lausanne, Switzerland
| | | |
Collapse
|
128
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
129
|
Park KW, Li L. Prion protein in Caenorhabditis elegans: Distinct models of anti-BAX and neuropathology. Prion 2011; 5:28-38. [PMID: 21084837 DOI: 10.4161/pri.5.1.14026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The infectious agent of prion diseases is believed to be nucleic acid-free particles composed of misfolded conformational isomers of a host protein known as prion protein (PrP). Although this "protein-only" concept is generally accepted, decades of extensive research have not been able to elucidate the mechanisms by which PrP misfolding leads to neurodegeneration and infectivity. The challenges in studying prion diseases relate in part to the limitations of mammalian prion models, which include the long incubation period post-infection until symptoms develop, the high expense of maintaining mammals for extended periods, as well as safety issues. In order to develop prion models incorporating a genetically tractable simple system with a well-defined neuronal system, we generated transgenic C. elegans expressing the mouse PrP behind the pan-neuronal ric-19 promoter (Pric-19). We show here that high expression of Pric-19::PrP in C. elegans can result in altered morphology, defective mobility, and shortened lifespan. Low expression of Pric-19::PrP, however, does not cause any detectable harm. Using the dopamine neuron specific promoter Pdat-1, we also show that expression of the murine BAX, a pro-apoptotic member of the Bcl-2 family, causes dopamine neuron destruction in the nematode. However, co-expression of PrP inhibits BAX-mediated dopamine neuron degeneration, demonstrating for the first time that PrP has anti-BAX activity in living animals. Thus, these distinct PrP-transgenic C. elegans lines recapitulate a number of functional and neuropathological features of mammalian prion models, and provide an opportunity for facile identification of genetic and environmental contributors to prion-associated pathology.
Collapse
Affiliation(s)
- Kyung-Won Park
- Department of Molecular Pharmacology and Biological Chemistry, The Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | |
Collapse
|
130
|
Zhong J. From simple to complex: investigating the effects of lipid composition and phase on the membrane interactions of biomolecules using in situ atomic force microscopy. Integr Biol (Camb) 2011; 3:632-44. [DOI: 10.1039/c0ib00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
131
|
van der Kamp MW, Daggett V. Molecular dynamics as an approach to study prion protein misfolding and the effect of pathogenic mutations. Top Curr Chem (Cham) 2011; 305:169-97. [PMID: 21526434 DOI: 10.1007/128_2011_158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Computer simulation of protein dynamics offers unique high-resolution information that complements experiment. Using experimentally derived structures of the natively folded prion protein (PrP), physically realistic dynamics and conformational changes can be simulated, including the initial steps of misfolding. By introducing mutations in silico, the effect of pathogenic mutations on PrP conformation and dynamics can be assessed. Here, we briefly introduce molecular dynamics methods and review the application of molecular dynamics simulations to obtain insight into various aspects of the PrP, including the mechanism of misfolding, the response to changes in the environment, and the influence of disease-related mutations.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5013, USA
| | | |
Collapse
|
132
|
Rushworth JV, Hooper NM. Lipid Rafts: Linking Alzheimer's Amyloid-β Production, Aggregation, and Toxicity at Neuronal Membranes. Int J Alzheimers Dis 2010; 2011:603052. [PMID: 21234417 PMCID: PMC3014710 DOI: 10.4061/2011/603052] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/03/2010] [Indexed: 01/03/2023] Open
Abstract
Lipid rafts are membrane microdomains, enriched in cholesterol and sphingolipids, into which specific subsets of proteins and lipids partition, creating cell-signalling platforms that are vital for neuronal functions. Lipid rafts play at least three crucial roles in Alzheimer's Disease (AD), namely, in promoting the generation of the amyloid-β (Aβ) peptide, facilitating its aggregation upon neuronal membranes to form toxic oligomers and hosting specific neuronal receptors through which the AD-related neurotoxicity and memory impairments of the Aβ oligomers are transduced. Recent evidence suggests that Aβ oligomers may exert their deleterious effects through binding to, and causing the aberrant clustering of, lipid raft proteins including the cellular prion protein and glutamate receptors. The formation of these pathogenic lipid raft-based platforms may be critical for the toxic signalling mechanisms that underlie synaptic dysfunction and neuropathology in AD.
Collapse
Affiliation(s)
- Jo V. Rushworth
- Institute of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Nigel M. Hooper
- Institute of Molecular and Cellular Biology, Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, LIGHT Laboratories, Clarendon Way, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
133
|
Swanwick CC, Shapiro ME, Vicini S, Wenthold RJ. Flotillin-1 mediates neurite branching induced by synaptic adhesion-like molecule 4 in hippocampal neurons. Mol Cell Neurosci 2010; 45:213-25. [DOI: 10.1016/j.mcn.2010.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 06/15/2010] [Indexed: 11/25/2022] Open
|
134
|
Wagner W, Ajuh P, Löwer J, Wessler S. Quantitative phosphoproteomic analysis of prion-infected neuronal cells. Cell Commun Signal 2010; 8:28. [PMID: 20920157 PMCID: PMC2955621 DOI: 10.1186/1478-811x-8-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 09/28/2010] [Indexed: 11/10/2022] Open
Abstract
Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal diseases associated with the conversion of the cellular prion protein (PrPC) to the abnormal prion protein (PrPSc). Since the molecular mechanisms in pathogenesis are widely unclear, we analyzed the global phospho-proteome and detected a differential pattern of tyrosine- and threonine phosphorylated proteins in PrPSc-replicating and pentosan polysulfate (PPS)-rescued N2a cells in two-dimensional gel electrophoresis. To quantify phosphorylated proteins, we performed a SILAC (stable isotope labeling by amino acids in cell culture) analysis and identified 105 proteins, which showed a regulated phosphorylation upon PrPSc infection. Among those proteins, we validated the dephosphorylation of stathmin and Cdc2 and the induced phosphorylation of cofilin in PrPSc-infected N2a cells in Western blot analyses. Our analysis showed for the first time a differentially regulated phospho-proteome in PrPSc infection, which could contribute to the establishment of novel protein markers and to the development of novel therapeutic intervention strategies in targeting prion-associated disease.
Collapse
Affiliation(s)
- Wibke Wagner
- Paul Ehrlich Institute, Paul Ehrlich-Straße 51-59, D-63225 Langen, Germany.
| | | | | | | |
Collapse
|
135
|
Zhang C, Jackson AP, Zhang ZR, Han Y, Yu S, He RQ, Perrett S. Amyloid-like aggregates of the yeast prion protein ure2 enter vertebrate cells by specific endocytotic pathways and induce apoptosis. PLoS One 2010; 5. [PMID: 20824085 PMCID: PMC2932714 DOI: 10.1371/journal.pone.0012529] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 07/08/2010] [Indexed: 11/23/2022] Open
Abstract
Background A number of amyloid diseases involve deposition of extracellular protein aggregates, which are implicated in mechanisms of cell damage and death. However, the mechanisms involved remain poorly understood. Methodology/Principal Findings Here we use the yeast prion protein Ure2 as a generic model to investigate how amyloid-like protein aggregates can enter mammalian cells and convey cytotoxicity. The effect of three different states of Ure2 protein (native dimer, protofibrils and mature fibrils) was tested on four mammalian cell lines (SH-SY5Y, MES23.5, HEK-293 and HeLa) when added extracellularly to the medium. Immunofluorescence using a polyclonal antibody against Ure2 showed that all three protein states could enter the four cell lines. In each case, protofibrils significantly inhibited the growth of the cells in a dose-dependent manner, fibrils showed less toxicity than protofibrils, while the native state had no effect on cell growth. This suggests that the structural differences between the three protein states lead to their different effects upon cells. Protofibrils of Ure2 increased membrane conductivity, altered calcium homeostasis, and ultimately induced apoptosis. The use of standard inhibitors suggested uptake into mammalian cells might occur via receptor-mediated endocytosis. In order to investigate this further, we used the chicken DT40 B cell line DKOR, which allows conditional expression of clathrin. Uptake into the DKOR cell-line was reduced when clathrin expression was repressed suggesting similarities between the mechanism of PrP uptake and the mechanism observed here for Ure2. Conclusions/Significance The results provide insight into the mechanisms by which amyloid aggregates may cause pathological effects in prion and amyloid diseases.
Collapse
Affiliation(s)
- Chen Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Zai-Rong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yan Han
- Department of Neurobiology and the Sino-Japan Joint Laboratory of Neurodegenerative Diseases, Beijing Institute of Geriatrics, Xuanwu Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Shun Yu
- Department of Neurobiology and the Sino-Japan Joint Laboratory of Neurodegenerative Diseases, Beijing Institute of Geriatrics, Xuanwu Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Rong-Qiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
136
|
Li C, Xin W, Sy MS. Binding of pro-prion to filamin A: by design or an unfortunate blunder. Oncogene 2010; 29:5329-45. [PMID: 20697352 DOI: 10.1038/onc.2010.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes. Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the mammalian genome encodes for proteins that are tethered on the cell membrane via a glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only normal protein that when misfolded can cause and transmit a deadly disease. Though widely expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein, and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis, and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.
Collapse
Affiliation(s)
- C Li
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | | | | |
Collapse
|
137
|
Butterfield S, Lashuel H. Wechselwirkungen zwischen amyloidogenen Proteinen und Membranen: Modellsysteme liefern mechanistische Einblicke. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200906670] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
138
|
Bate C, Tayebi M, Williams A. Glycosylphosphatidylinositol anchor analogues sequester cholesterol and reduce prion formation. J Biol Chem 2010; 285:22017-26. [PMID: 20427265 DOI: 10.1074/jbc.m110.108548] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A hallmark of prion diseases is the conversion of the host-encoded prion protein (PrP(C) where C is cellular) into an alternatively folded, disease-related isoform (PrP(Sc), where Sc is scrapie), the accumulation of which is associated with synapse degeneration and ultimately neuronal death. The formation of PrP(Sc) is dependent upon the presence of PrP(C) in specific, cholesterol-sensitive membrane microdomains, commonly called lipid rafts. PrP(C) is targeted to these lipid rafts because it is attached to membranes via a glycosylphosphatidylinositol anchor. Here, we show that treatment of prion-infected neuronal cell lines (ScN2a, ScGT1, or SMB cells) with synthetic glycosylphosphatidylinositol analogues, glucosamine-phosphatidylinositol (glucosamine-PI) or glucosamine 2-O-methyl inositol octadecyl phosphate, reduced the PrP(Sc) content of these cells in a dose-dependent manner. In addition, ScGT1 cells treated with glucosamine-PI did not transmit infection following intracerebral injection to mice. Treatment with glucosamine-PI increased the cholesterol content of ScGT1 cell membranes and reduced activation of cytoplasmic phospholipase A(2) (PLA(2)), consistent with the hypothesis that the composition of cell membranes affects key PLA(2)-dependent signaling pathways involved in PrP(Sc) formation. The effect of glucosamine-PI on PrP(Sc) formation was also reversed by the addition of platelet-activating factor. Glucosamine-PI caused the displacement of PrP(C) from lipid rafts and reduced expression of PrP(C) at the cell surface, putative sites for PrP(Sc) formation. We propose that treatment with glucosamine-PI modifies local micro-environments that control PrP(C) expression and activation of PLA(2) and subsequently inhibits PrP(Sc) formation.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, United Kingdom.
| | | | | |
Collapse
|
139
|
Kozlowski H, Luczkowski M, Remelli M. Prion proteins and copper ions. Biological and chemical controversies. Dalton Trans 2010; 39:6371-85. [PMID: 20422067 DOI: 10.1039/c001267j] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Prion protein (PrP(c)) involvement in some neurodegenerative diseases is well assessed although its "normal" biological role is not completely understood. It is known that PrP(C) can bind Cu(II) ions with high specificity but the order of magnitude of the corresponding affinity constant(s) is still highly debated. This perspective is an attempt to collect the current knowledge on these topics and to build up a bridge between the biological and the chemical points of view.
Collapse
Affiliation(s)
- Henryk Kozlowski
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | | | | |
Collapse
|
140
|
El Kirat K, Morandat S, Dufrêne YF. Nanoscale analysis of supported lipid bilayers using atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:750-65. [DOI: 10.1016/j.bbamem.2009.07.026] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 07/17/2009] [Accepted: 07/23/2009] [Indexed: 12/11/2022]
|
141
|
Zampagni M, Evangelisti E, Cascella R, Liguri G, Becatti M, Pensalfini A, Uberti D, Cenini G, Memo M, Bagnoli S, Nacmias B, Sorbi S, Cecchi C. Lipid rafts are primary mediators of amyloid oxidative attack on plasma membrane. J Mol Med (Berl) 2010; 88:597-608. [DOI: 10.1007/s00109-010-0603-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 02/10/2010] [Accepted: 02/17/2010] [Indexed: 12/14/2022]
|
142
|
Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Angeletti M, Eleuteri AM. The relationship between the 20S proteasomes and prion-mediated neurodegenerations: potential therapeutic opportunities. Apoptosis 2010; 15:1322-35. [DOI: 10.1007/s10495-010-0480-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
143
|
Luo K, Li S, Xie M, Wu D, Wang W, Chen R, Huang L, Huang T, Pang D, Xiao G. Real-time visualization of prion transport in single live cells using quantum dots. Biochem Biophys Res Commun 2010; 394:493-7. [PMID: 20193663 DOI: 10.1016/j.bbrc.2010.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP(C) to the infectious scrapie isoform PrP(Sc). It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP(C) to the cell membrane and in initiating PrP(C) endocytosis.
Collapse
Affiliation(s)
- Kan Luo
- State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Perez MJ, Ortiz EH, Roffé M, Soto EF, Pasquini JM. Fyn kinase is involved in oligodendroglial cell differentiation induced by apotransferrin. J Neurosci Res 2010; 87:3378-89. [PMID: 19115405 DOI: 10.1002/jnr.21962] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mechanisms that regulate oligodendroglial cell (OLGc) differentiation are the focus of intensive research in the field of cellular and molecular neurobiology. We have previously shown that the addition of apotransferrin (aTf) to primary OLGc cultures accelerates their differentiation and induces an increase in the expression of different components of the myelin cytoskeleton (CSK) such as actin, tubulin, and some of the microtubule-associated proteins, particularly the stable tubulin only peptide (STOP). Fyn protein-tyrosine kinase (Fyn kinase), a member of the Src family, participates in signalling pathways that regulate OLGs/myelin cytoskeletal reorganization. It is essential for myelin development in the central nervous system (CNS), and its absence results in hypomyelination. In the present study, we used both primary cell and N19 cell line cultures to investigate further the mechanisms of action involved in the accelerated differentiation of OLGcs induced by aTf. In particular, we were interested in studying the participation of Fyn kinase in the different pathways involved in the reorganization of the OLGc/myelin cytoskeleton. In agreement with results already published, we found that in OLGcs, Fyn kinase is associated with Tau and tubulin. Using a dominant-negative of Tau in which the Fyn-Tau-microtubules (MTs) interaction is blocked, we found that aTf was unable to induce OLGc morphological differentiation. It was also observed that aTf decreases the activated RhoA content in coincidence with a redistribution of actin immunoreactivity. These results give support to our hypothesis that Fyn kinase plays a key role in the differentiation process of OLGcs promoted by aTf.
Collapse
Affiliation(s)
- M J Perez
- Department of Biological Chemistry, Institute of Biological and Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
145
|
Dearmond SJ, Bajsarowicz K. PrPSc accumulation in neuronal plasma membranes links Notch-1 activation to dendritic degeneration in prion diseases. Mol Neurodegener 2010; 5:6. [PMID: 20205843 PMCID: PMC2825502 DOI: 10.1186/1750-1326-5-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 01/21/2010] [Indexed: 11/25/2022] Open
Abstract
Prion diseases are disorders of protein conformation in which PrPC, the normal cellular conformer, is converted to an abnormal, protease-resistant conformer rPrPSc. Approximately 80% of rPrPSc accumulates in neuronal plasma membranes where it changes their physical properties and profoundly affects membrane functions. In this review we explain how rPrPSc is transported along axons to presynaptic boutons and how we envision the conversion of PrPC to rPrPSc in the postsynaptic membrane. This information is a prerequisite to the second half of this review in which we present evidence that rPrPSc accumulation in synaptic regions links Notch-1 signaling with the dendritic degeneration. The hypothesis that the Notch-1 intracellular domain, NICD, is involved in prion disease was tested by treating prion-infected mice with the γ-secretase inhibitor (GSI) LY411575, with quinacrine (Qa), and with the combination of GSI + Qa. Surprisingly, treatment with GSI alone markedly decreased NICD but did not prevent dendritic degeneration. Qa alone produced near normal dendritic trees. The combined GSI + Qa treatment resulted in a richer dendritic tree than in controls. We speculate that treatment with GSI alone inhibited both stimulators and inhibitors of dendritic growth. With the combined GSI + Qa treatment, Qa modulated the effect of GSI perhaps by destabilizing membrane rafts. GSI + Qa decreased PrPSc in the neocortex and the hippocampus by 95%, but only by 50% in the thalamus where disease was begun by intrathalamic inoculation of prions. The results of this study indicate that GSI + Qa work synergistically to prevent dendrite degeneration and to block formation of PrPSc.
Collapse
Affiliation(s)
- Stephen J Dearmond
- Department of Pathology, University of California San Francisco, 1855 Folsom Street MCB 269, San Francisco, CA 94143-0803, USA.
| | | |
Collapse
|
146
|
Sonnino S, Prinetti A. Gangliosides as regulators of cell membrane organization and functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 688:165-84. [PMID: 20919654 DOI: 10.1007/978-1-4419-6741-1_12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gangliosides, characteristic complex lipids present in the external layer of plasma membranes, deeply influence the organization of the membrane as a whole and the function of specific membrane associated proteins due to lipid-lipid and lipid-protein lateral interaction. Here we discuss the basis for the membrane-organizing potential of gangliosides, examples of ganglioside-regulated membrane protein complexes and the mechanisms for the regulation of ganglioside membrane composition.
Collapse
Affiliation(s)
- Sandro Sonnino
- Center of Excellence on Neurodegenerative Diseases, Department of Medical Chemistry, University of Milan, Segrate, Italy
| | | |
Collapse
|
147
|
Hizume M, Kobayashi A, Mizusawa H, Kitamoto T. Amino acid conditions near the GPI anchor attachment site of prion protein for the conversion and the GPI anchoring. Biochem Biophys Res Commun 2010; 391:1681-6. [DOI: 10.1016/j.bbrc.2009.12.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 12/22/2009] [Indexed: 12/30/2022]
|
148
|
Povlsen GK, Ditlevsen DK. The neural cell adhesion molecule NCAM and lipid rafts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 663:183-98. [PMID: 20017023 DOI: 10.1007/978-1-4419-1170-4_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
149
|
Doppel and PrPC co-immunoprecipitate in detergent-resistant membrane domains of epithelial FRT cells. Biochem J 2009; 425:341-51. [PMID: 19888917 PMCID: PMC2825736 DOI: 10.1042/bj20091050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dpl (doppel) is a paralogue of the PrPC (cellular prion protein), whose misfolded conformer (the scrapie prion protein, PrPSc) is responsible for the onset of TSEs (transmissible spongiform encephalopathies) or prion diseases. It has been shown that the ectopic expression of Dpl in the brains of some lines of PrP-knockout mice provokes cerebellar ataxia, which can be rescued by the reintroduction of the PrP gene, suggesting a functional interaction between the two proteins. It is, however, still unclear where, and under which conditions, this event may occur. In the present study we addressed this issue by analysing the intracellular localization and the interaction between Dpl and PrPC in FRT (Fischer rat thyroid) cells stably expressing the two proteins separately or together. We show that both proteins localize prevalently on the basolateral surface of FRT cells, in both singly and doubly transfected clones. Interestingly we found that they associate with DRMs (detergent-resistant membranes) or lipid rafts, from where they can be co-immunoprecipitated in a cholesterol-dependent fashion. Although the interaction between Dpl and PrPC has been suggested before, our results provide the first clear evidence that this interaction occurs in rafts and is dependent on the integrity of these membrane microdomains. Furthermore, both Dpl and PrPC could be immunoprecipitated with flotillin-2, a raft protein involved in endocytosis and cell signalling events, suggesting that they share the same lipid environment.
Collapse
|
150
|
Urso E, Rizzello A, Acierno R, Lionetto MG, Salvato B, Storelli C, Maffia M. Fluorimetric Analysis of Copper Transport Mechanisms in the B104 Neuroblastoma Cell Model: A Contribution from Cellular Prion Protein to Copper Supplying. J Membr Biol 2009; 233:13-21. [DOI: 10.1007/s00232-009-9219-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 11/05/2009] [Indexed: 12/15/2022]
|