101
|
Perez GI, Broadbent D, Zarea AA, Dolgikh B, Bernard MP, Withrow A, McGill A, Toomajian V, Thampy LK, Harkema J, Walker JR, Kirkland TA, Bachmann MH, Schmidt J, Kanada M. In Vitro and In Vivo Analysis of Extracellular Vesicle-Mediated Metastasis Using a Bright, Red-Shifted Bioluminescent Reporter Protein. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100055. [PMID: 36619349 PMCID: PMC9744575 DOI: 10.1002/ggn2.202100055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Indexed: 01/11/2023]
Abstract
Cancer cells produce heterogeneous extracellular vesicles (EVs) as mediators of intercellular communication. This study focuses on a novel method to image EV subtypes and their biodistribution in vivo. A red-shifted bioluminescence resonance energy transfer (BRET) EV reporter is developed, called PalmReNL, which allows for highly sensitive EV tracking in vitro and in vivo. PalmReNL enables the authors to study the common surface molecules across EV subtypes that determine EV organotropism and their functional differences in cancer progression. Regardless of injection routes, whether retro-orbital or intraperitoneal, PalmReNL positive EVs, isolated from murine mammary carcinoma cells, localized to the lungs. The early appearance of metastatic foci in the lungs of mammary tumor-bearing mice following multiple intraperitoneal injections of the medium and large EV (m/lEV)-enriched fraction derived from mammary carcinoma cells is demonstrated. In addition, the results presented here show that tumor cell-derived m/lEVs act on distant tissues through upregulating LC3 expression within the lung.
Collapse
Affiliation(s)
- Gloria I. Perez
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,College of Osteopathic MedicineMichigan State UniversityEast LansingMI48824USA
| | - David Broadbent
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,College of Osteopathic MedicineMichigan State UniversityEast LansingMI48824USA
| | - Ahmed A. Zarea
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
| | - Benedikt Dolgikh
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,College of Natural ScienceMichigan State UniversityEast LansingMI48824USA
| | - Matthew P. Bernard
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| | - Alicia Withrow
- Center for Advanced MicroscopyMichigan State UniversityEast LansingMI48824USA
| | - Amelia McGill
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA
| | - Victoria Toomajian
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Lukose K. Thampy
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,College of Osteopathic MedicineMichigan State UniversityEast LansingMI48824USA
| | - Jack Harkema
- Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| | - Joel R. Walker
- Promega Biosciences LLC227 Granada DrSan Luis ObispoCA93401USA
| | | | - Michael H. Bachmann
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMI48824USA
| | - Jens Schmidt
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,Department of Obstetrics and GynecologyCollege of Human MedicineMichigan State UniversityEast LansingMI48824USA
| | - Masamitsu Kanada
- Institute for Quantitative Health Science and Engineering (IQ)Michigan State UniversityEast LansingMichigan48824USA,Department of Pharmacology and ToxicologyMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
102
|
Rufino-Ramos D, Lule S, Mahjoum S, Ughetto S, Cristopher Bragg D, Pereira de Almeida L, Breakefield XO, Breyne K. Using genetically modified extracellular vesicles as a non-invasive strategy to evaluate brain-specific cargo. Biomaterials 2022; 281:121366. [PMID: 35033904 PMCID: PMC8886823 DOI: 10.1016/j.biomaterials.2022.121366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/25/2021] [Accepted: 01/04/2022] [Indexed: 12/18/2022]
Abstract
The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.
Collapse
Affiliation(s)
- David Rufino-Ramos
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sevda Lule
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Shadi Mahjoum
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Stefano Ughetto
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - D Cristopher Bragg
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Luís Pereira de Almeida
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Coimbra, 3004-504, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal; CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Xandra O Breakefield
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA
| | - Koen Breyne
- Neurology and Radiology Department, Massachusetts General Hospital, Harvard Medical School, 13(th)Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
103
|
Hikita T, Oneyama C. Quantification and Imaging of Exosomes via Luciferase-Fused Exosome Marker Proteins: ExoLuc System. Methods Mol Biol 2022; 2524:281-290. [PMID: 35821479 DOI: 10.1007/978-1-0716-2453-1_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioluminescence (BL) has been widely used to quantitatively monitor various biological phenomena. Here, we describe a protocol for preparing and using cells expressing exosomes labeled with luciferase. The BL of the culture medium of these cells is proportional to the number of secreted exosome particles obtained by well-established nanoparticle tracking analysis, allowing easy, rapid, and sensitive quantification of exosomes in vitro and in vivo. This method, designated the ExoLuc system, is a powerful tool for analyzing the molecular mechanisms of exosome biosynthesis, secretion, uptake, and biodistribution.
Collapse
Affiliation(s)
- Tomoya Hikita
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan
| | - Chitose Oneyama
- Division of Cancer Cell Regulation, Aichi Cancer Center Research Institute, Chikusa-ku, Nagoya, Japan.
- Department of Target and Drug Discovery, Nagoya University, Graduate School of Medicine, Showa-ku, Nagoya, Japan.
- Department of Oncology, Nagoya City University, Graduate School of Pharmaceutical Sciences, Mizuho-ku, Nagoya, Japan.
- JST, PRESTO/CREST, Nagoya, Japan.
| |
Collapse
|
104
|
Quadri Z, Elsherbini A, Bieberich E. Extracellular vesicles in pharmacology: Novel approaches in diagnostics and therapy. Pharmacol Res 2022; 175:105980. [PMID: 34863822 PMCID: PMC8760625 DOI: 10.1016/j.phrs.2021.105980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
Exosomes are nano-sized lipid vesicles that are produced by all eukaryotic cells, and they typically range in size from 30 to 150 nm. Exosomes were discovered almost 40 years ago; however, the last two decades have attracted considerable attention due to exosomes' inherent abilities to shuttle nucleic acids, lipids and proteins between cells, along with their natural affinity to exosome target cells. From a pharmaceutical perspective, exosomes are regarded as naturally produced nanoparticle drug delivery vehicles. The application of exosomes as a means of drug delivery offers critical advantages compared to other nanoparticulate drug delivery systems, such as liposomes and polymeric nanoparticles. These advantages are due to the exosomes' intrinsic features, such as low immunogenicity, biocompatibility, stability, and their ability to overcome biological barriers. Herein, we outline the structure and origin of exosomes, as well as their biological functions. We also touch upon recent advances in exosome labeling, imaging and drug loading. Finally, we discuss exosomes in targeted drug delivery and clinical trial development.
Collapse
Affiliation(s)
- Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Ahmed Elsherbini
- Veterans Affairs Medical Center, Lexington, KY 40502, United States
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, United States; Veterans Affairs Medical Center, Lexington, KY 40502, United States.
| |
Collapse
|
105
|
Ciullo A, Li C, Li L, Ungerleider KC, Peck K, Marbán E, Ibrahim AG. Biodistribution of unmodified cardiosphere-derived cell extracellular vesicles using single RNA tracing. J Extracell Vesicles 2022; 11:e12178. [PMID: 35005847 PMCID: PMC8743874 DOI: 10.1002/jev2.12178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) are potent signalling mediators. Although interest in EV translation is ever-increasing, development efforts are hampered by the inability to reliably assess the uptake of EVs and their RNA cargo. Here, we establish a novel qPCR-based method for the detection of unmodified EVS using an RNA Tracer (DUST). In this proof-of-concept study we use a human-specific Y RNA-derived small RNA (YsRNA) we dub "NT4" that is enriched in cardiosphere-derived cell small EVs (CDC-sEVs). The assay is robust, sensitive, and reproducible. Intravenously administered CDC-sEVs accumulated primarily in the heart on a per mg basis. Cardiac injury enhanced EV uptake in the heart, liver, and brain. Inhibition of EV docking by heparin suppressed uptake variably, while inhibition of endocytosis attenuated uptake in all organs. In vitro, EVs were uptaken more efficiently by macrophages, endothelial cells, and cardiac fibroblasts compared to cardiomyocytes. These findings demonstrate the utility of DUST to assess uptake of EVs in vivo and in vitro.
Collapse
Affiliation(s)
- Alessandra Ciullo
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Chang Li
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Liang Li
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | - Kiel Peck
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Eduardo Marbán
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ahmed G.E. Ibrahim
- Smidt Heart InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| |
Collapse
|
106
|
Hercher D, Nguyen MQ, Dworak H. Extracellular vesicles and their role in peripheral nerve regeneration. Exp Neurol 2021; 350:113968. [PMID: 34973963 DOI: 10.1016/j.expneurol.2021.113968] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/04/2021] [Accepted: 12/25/2021] [Indexed: 12/18/2022]
Abstract
Peripheral nerve injuries often result in sensory and motor dysfunction in respective parts of the body. Regeneration after peripheral nerve injuries is a complex process including the differentiation of Schwann cells, recruiting of macrophages, blood vessel growth and axonal regrowth. Extracellular vesicles (EVs) are considered to play a pivotal role in intercellular communication and transfer of biological information. Specifically, their bioactivity and ability to deliver cargos of various types of nucleic acids and proteins have made them a potential vehicle for neurotherapeutics. However, production, characterization, dosage and targeted delivery of EVs still pose challenges for the clinical translation of EV therapeutics. This review summarizes the current knowledge of EVs in the context of the healthy and injured peripheral nerve and addresses novel concepts for modification of EVs as therapeutic agents for peripheral nerve regeneration.
Collapse
Affiliation(s)
- David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Mai Quyen Nguyen
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helene Dworak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Ludwig Boltzmann Research Group Senescence and Healing of Wounds, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
107
|
Lennaárd AJ, Mamand DR, Wiklander RJ, El Andaloussi S, Wiklander OPB. Optimised Electroporation for Loading of Extracellular Vesicles with Doxorubicin. Pharmaceutics 2021; 14:38. [PMID: 35056933 PMCID: PMC8780628 DOI: 10.3390/pharmaceutics14010038] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/28/2022] Open
Abstract
The clinical use of chemotherapeutics is limited by several factors, including low cellular uptake, short circulation time, and severe adverse effects. Extracellular vesicles (EVs) have been suggested as a drug delivery platform with the potential to overcome these limitations. EVs are cell-derived, lipid bilayer nanoparticles, important for intercellular communication. They can transport bioactive cargo throughout the body, surmount biological barriers, and target a variety of tissues. Several small molecule drugs have been successfully incorporated into the lumen of EVs, permitting efficient transport to tumour tissue, increasing therapeutic potency, and reducing adverse effects. However, the cargo loading is often inadequate and refined methods are a prerequisite for successful utilisation of the platform. By systematically evaluating the effect of altered loading parameters for electroporation, such as total number of EVs, drug to EV ratio, buffers, pulse capacitance, and field strength, we were able to distinguish tendencies and correlations. This allowed us to design an optimised electroporation protocol for loading EVs with the chemotherapeutic drug doxorubicin. The loading technique demonstrated improved cargo loading and EV recovery, as well as drug potency, with a 190-fold increased response compared to naked doxorubicin.
Collapse
Affiliation(s)
- Angus J Lennaárd
- Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Huddinge, Sweden
| | - Doste R Mamand
- Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Huddinge, Sweden
- Department of Biomedical Sciences, Faculty of Science, Cihan University-Erbil, Kurdistan Region, Erbil 44001, Iraq
| | - Rim Jawad Wiklander
- Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Huddinge, Sweden
| | - Samir El Andaloussi
- Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Huddinge, Sweden
| | - Oscar P B Wiklander
- Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14157 Huddinge, Sweden
| |
Collapse
|
108
|
Chen M, Ren C, Ren B, Fang Y, Li Q, Zeng Y, Li Y, Chen F, Bian B, Liu Y. Human Retinal Progenitor Cells Derived Small Extracellular Vesicles Delay Retinal Degeneration: A Paradigm for Cell-free Therapy. Front Pharmacol 2021; 12:748956. [PMID: 34912217 PMCID: PMC8667779 DOI: 10.3389/fphar.2021.748956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023] Open
Abstract
Retinal degeneration is a leading cause of irreversible vision impairment and blindness worldwide. Previous studies indicate that subretinal injection of human retinal progenitor cells (hRPCs) can delay the progression of retinal degeneration, preserve retinal function, and protect photoreceptor cells from death, albeit the mechanism is not well understood. In this study, small extracellular vesicles derived from hRPCs (hRPC-sEVs) were injected into the subretinal space of retinal dystrophic RCS rats. We find that hRPC-sEVs significantly preserve the function of retina and thickness of the outer nuclear layer (ONL), reduce the apoptosis of photoreceptors in the ONL, and suppress the inflammatory response in the retina of RCS rats. In vitro, we have shown that hRPC-sEV treatment could significantly reserve the low-glucose preconditioned apoptosis of photoreceptors and reduce the expression of pro-inflammatory cytokines in microglia. Pathway analysis predicted the target genes of hRPC-sEV microRNAs involved in inflammation related biological processes and significantly enriched in processes autophagy, signal release, regulation of neuron death, and cell cycle. Collectively, our study suggests that hRPC-sEVs might be a favorable agent to delay retinal degeneration and highlights as a new paradigm for cell-free therapy.
Collapse
Affiliation(s)
- Min Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Chunge Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yajie Fang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yuxiao Zeng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| | - Fang Chen
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Baishijiao Bian
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China.,Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Chongqing, China
| |
Collapse
|
109
|
Mast MP, Modh H, Champanhac C, Wang JW, Storm G, Krämer J, Mailänder V, Pastorin G, Wacker MG. Nanomedicine at the crossroads - A quick guide for IVIVC. Adv Drug Deliv Rev 2021; 179:113829. [PMID: 34174332 DOI: 10.1016/j.addr.2021.113829] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
For many years, nanomedicine is pushing the boundaries of drug delivery. When applying these novel therapeutics, safety considerations are not only a key concern when entering clinical trials but also an important decision point in product development. Standing at the crossroads, nanomedicine may be able to escape the niche markets and achieve wider acceptance by the pharmaceutical industry. While there is a new generation of drug delivery systems, the extracellular vesicles, standing on the starting line, unresolved issues and new challenges emerge from their translation from bench to bedside. Some key features of injectable nanomedicines contribute to the predictability of the pharmacological and toxicological effects. So far, only a few of the physicochemical attributes of nanomedicines can be justified by a direct mathematical relationship between the in vitro and the in vivo responses. To further develop extracellular vesicles as drug carriers, we have to learn from more than 40 years of clinical experience in liposomal delivery and pass on this knowledge to the next generation. Our quick guide discusses relationships between physicochemical characteristics and the in vivo response, commonly referred to as in vitro-in vivo correlation. Further, we highlight the key role of computational methods, lay open current knowledge gaps, and question the established design strategies. Has the recent progress improved the predictability of targeted delivery or do we need another change in perspective?
Collapse
|
110
|
Lu CH, Chen YA, Ke CC, Liu RS. Mesenchymal Stem Cell-Derived Extracellular Vesicle: A Promising Alternative Therapy for Osteoporosis. Int J Mol Sci 2021; 22:12750. [PMID: 34884554 PMCID: PMC8657894 DOI: 10.3390/ijms222312750] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis is the chronic metabolic bone disease caused by the disturbance of bone remodeling due to the imbalance of osteogenesis and osteoclastogenesis. A large population suffers from osteoporosis, and most of them are postmenopausal women or older people. To date, bisphosphonates are the main therapeutic agents in the treatment of osteoporosis. However, limited therapeutic effects with diverse side effects caused by bisphosphonates hindered the therapeutic applications and decreased the quality of life. Therefore, an alternative therapy for osteoporosis is still needed. Stem cells, especially mesenchymal stem cells, have been shown as a promising medication for numerous human diseases including many refractory diseases. Recently, researchers found that the extracellular vesicles derived from these stem cells possessed the similar therapeutic potential to that of parental cells. To date, a number of studies demonstrated the therapeutic applications of exogenous MSC-EVs for the treatment of osteoporosis. In this article, we reviewed the basic back ground of EVs, the cargo and therapeutic potential of MSC-EVs, and strategies of engineering of MSC-EVs for osteoporosis treatment.
Collapse
Affiliation(s)
- Cheng-Hsiu Lu
- Core Laboratory for Phenomics and Diagnostics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-An Chen
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chien-Chih Ke
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ren-Shyan Liu
- Molecular and Genetic Imaging Core/Taiwan Mouse Clinic, National Comprehensive Mouse Phenotyping and Drug Testing Center, Taipei 112, Taiwan;
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- PET Center, Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|
111
|
Ghoroghi S, Mary B, Asokan N, Goetz JG, Hyenne V. Tumor extracellular vesicles drive metastasis (it's a long way from home). FASEB Bioadv 2021; 3:930-943. [PMID: 34761175 PMCID: PMC8565230 DOI: 10.1096/fba.2021-00079] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among a plethora of functions, extracellular vesicles released by primary tumors spread in the organism and reach distant organs where they can induce the formation of a premetastatic niche. This constitutes a favorable microenvironment for circulating tumor cells which facilitates their seeding and colonization. In this review, we describe the journey of extracellular vesicles (EVs) from the primary tumor to the future metastatic organ, with a focus on the mechanisms used by EVs to target organs with a specific tropism (i.e., organotropism). We then highlight important tumor EV cargos in the context of premetastatic niche formation and summarize their known effects on extracellular matrix remodeling, angiogenesis, vessel permeabilization, resident cell activation, recruitment of foreign cells, and ultimately the formation of a pro-inflammatory and immuno-tolerant microenvironment. Finally, we discuss current experimental limitations and remaining opened questions in light of metastatic diagnosis and potential therapies targeting PMN formation.
Collapse
Affiliation(s)
- Shima Ghoroghi
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Benjamin Mary
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Nandini Asokan
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Jacky G Goetz
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
| | - Vincent Hyenne
- Tumor Biomechanics INSERM UMR_S1109 Strasbourg France
- Université de Strasbourg Strasbourg France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS) Strasbourg France
- Equipe Labellisée Ligue Contre le Cancer Strasbourg France
- CNRS SNC5055 Strasbourg France
| |
Collapse
|
112
|
Dosing extracellular vesicles. Adv Drug Deliv Rev 2021; 178:113961. [PMID: 34481030 DOI: 10.1016/j.addr.2021.113961] [Citation(s) in RCA: 198] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are natural nanoparticles containing biologically active molecules. They are important mediators of intercellular communication and can be exploited therapeutically by various bioengineering approaches. To accurately determine the therapeutic potential of EVs in pre-clinical and clinical settings, dependable dosing strategies are of utmost importance. However, the field suffers from inconsistencies comprising all areas of EV production and characterisation. Therefore, a standardised and well-defined process in EV quantification, key to reliable therapeutic EV dosing, remains to be established. Here, we examined 64 pre-clinical studies for EV-based therapeutics with respect to their applied EV dosing strategies. We identified variations in effective dosing strategies irrespective of the applied EV purification method and cell source. Moreover, we found dose discrepancies depending on the disease model, where EV doses were selected without accounting for published EV pharmacokinetics or biodistribution patterns. We therefore propose to focus on qualitative aspects when dosing EV-based therapeutics, such as the potency of the therapeutic cargo entity. This will ensure batch-to-batch reliability and enhance reproducibility between applications. Furthermore, it will allow for the successful benchmarking of EV-based therapeutics compared to other nanoparticle drug delivery systems, such as viral vector-based or lipid-based nanoparticle approaches.
Collapse
|
113
|
Designer Exosomes: Smart Nano-Communication Tools for Translational Medicine. Bioengineering (Basel) 2021; 8:bioengineering8110158. [PMID: 34821724 PMCID: PMC8615258 DOI: 10.3390/bioengineering8110158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023] Open
Abstract
Exosomes are the master transporters of genes, RNAs, microRNAs, proteins, and lipids. They have applications in major diseases, including cancer, cardiovascular diseases, neurological disorders, and diabetes mellitus. Delivery of the exosomes to recipient cells is governed by the functional heterogenicity of the tissues. Engineered exosomes are promising tools in tissue regeneration. In addition to their role as intracellular communication cargos, exosomes are increasingly primed as standard biomarkers in the progression of diseases, thereby solving the diagnostic dilemma. Futuristic empowerment of exosomes with OMICS strategy can undoubtedly be a bio-tool in translational medicine. This review discusses the advent transformation of exosomes in regenerative medicine and limitations that are caveats to broader applications in clinical use.
Collapse
|
114
|
Zhuo Z, Wang J, Luo Y, Zeng R, Zhang C, Zhou W, Guo K, Wu H, Sha W, Chen H. Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater 2021; 134:13-31. [PMID: 34284151 DOI: 10.1016/j.actbio.2021.07.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/05/2023]
Abstract
In the past decade, the study of extracellular vesicles (EVs), especially exosomes (50-150 nm) have attracted growing interest in numerous areas of cancer and tissue regeneration due to their unique biological features. A low isolation yield and insufficient targeting abilities limit their therapeutic applicability. Recently, superparamagnetic iron oxide nanoparticles (SPIONs) with magnetic navigation have been exploited to enhance the targeting ability of EVs. To construct targeted EV delivery systems engineered by SPIONs, several groups have pioneered the use of different techniques, such as electroporation, natural incubation, and cell extrusion, to directly internalize SPIONs into EVs. Furthermore, some endogenous ligands, such as transferrins, antibodies, aptamers, and streptavidin, were shown to enable modification of SPIONs, which increases binding with EVs. In this review, we summarized recent advances in targeted EV delivery systems engineered by SPIONs and focused on the key methodological approaches and the current applications of magnetic EVs. This report aims to address the existing challenges and provide comprehensive insights into targeted EV delivery systems. STATEMENT OF SIGNIFICANCE: Targeted extracellular vesicle (EV) delivery systems engineered by superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention and research interest in recent years. Such strategies employ external magnet fields to manipulate SPION-functionalized EVs remotely, aiming to enhance their accumulation and penetration in vivo. Although iron oxide nanoparticle laden EVs are interesting, they are controversial at present, hampering the progress in their clinical application. A thorough integration of these studies is needed for an advanced insight and rational design of targeted EV delivery systems. In this review, we summarize the latest advances in the design strategies of targeted EV delivery systems engineered by SPIONs with a focus on their key methodological approaches, current applications, limitation and future perspectives, which may facilitate the development of natural theranostic nanoplatforms.
Collapse
Affiliation(s)
- Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China; Shantou University Medical College, Shantou 515041, China
| | - Chen Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weijie Zhou
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Kehang Guo
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Huihuan Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China.
| |
Collapse
|
115
|
Bost JP, Barriga H, Holme MN, Gallud A, Maugeri M, Gupta D, Lehto T, Valadi H, Esbjörner EK, Stevens MM, El-Andaloussi S. Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS NANO 2021; 15:13993-14021. [PMID: 34505766 PMCID: PMC8482762 DOI: 10.1021/acsnano.1c05099] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 05/04/2023]
Abstract
Oligonucleotides (ONs) comprise a rapidly growing class of therapeutics. In recent years, the list of FDA-approved ON therapies has rapidly expanded. ONs are small (15-30 bp) nucleotide-based therapeutics which are capable of targeting DNA and RNA as well as other biomolecules. ONs can be subdivided into several classes based on their chemical modifications and on the mechanisms of their target interactions. Historically, the largest hindrance to the widespread usage of ON therapeutics has been their inability to effectively internalize into cells and escape from endosomes to reach their molecular targets in the cytosol or nucleus. While cell uptake has been improved, "endosomal escape" remains a significant problem. There are a range of approaches to overcome this, and in this review, we focus on three: altering the chemical structure of the ONs, formulating synthetic, lipid-based nanoparticles to encapsulate the ONs, or biologically loading the ONs into extracellular vesicles. This review provides a background to the design and mode of action of existing FDA-approved ONs. It presents the most common ON classifications and chemical modifications from a fundamental scientific perspective and provides a roadmap of the cellular uptake pathways by which ONs are trafficked. Finally, this review delves into each of the above-mentioned approaches to ON delivery, highlighting the scientific principles behind each and covering recent advances.
Collapse
Affiliation(s)
- Jeremy P. Bost
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Hanna Barriga
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Margaret N. Holme
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Audrey Gallud
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 43150, Sweden
| | - Marco Maugeri
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Dhanu Gupta
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| | - Taavi Lehto
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
- Institute
of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Hadi Valadi
- Department
of Rheumatology and Inflammation Research, Institute of Medicine,
Sahlgrenska Academy, University of Gothenburg, Gothenburg 41390, Sweden
| | - Elin K. Esbjörner
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg 41296, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
- Department
of Materials, Department of Bioengineering, Institute of Biomedical
Engineering, Imperial College London, London SW7 2BU, United Kingdom
| | - Samir El-Andaloussi
- Department
of Laboratory Medicine, Karolinska Institutet, Huddinge 14152, Sweden
| |
Collapse
|
116
|
Claridge B, Lozano J, Poh QH, Greening DW. Development of Extracellular Vesicle Therapeutics: Challenges, Considerations, and Opportunities. Front Cell Dev Biol 2021; 9:734720. [PMID: 34616741 PMCID: PMC8488228 DOI: 10.3389/fcell.2021.734720] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.
Collapse
Affiliation(s)
- Bethany Claridge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jonathan Lozano
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Qi Hui Poh
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - David W. Greening
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
117
|
Yan Y, Gu T, Christensen SDK, Su J, Lassen TR, Hjortbak MV, Lo IJ, Venø ST, Tóth AE, Song P, Nielsen MS, Bøtker HE, Blagoev B, Drasbek KR, Kjems J. Cyclic Hypoxia Conditioning Alters the Content of Myoblast-Derived Extracellular Vesicles and Enhances Their Cell-Protective Functions. Biomedicines 2021; 9:biomedicines9091211. [PMID: 34572398 PMCID: PMC8471008 DOI: 10.3390/biomedicines9091211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Remote ischemic conditioning (RIC) is a procedure that can attenuate ischemic-reperfusion injury by conducting brief cycles of ischemia and reperfusion in the arm or leg. Extracellular vesicles (EVs) circulating in the bloodstream can release their content into recipient cells to confer protective function on ischemia-reperfusion injured (IRI) organs. Skeletal muscle cells are potential candidates to release EVs as a protective signal during RIC. In this study, we used C2C12 cells as a model system and performed cyclic hypoxia-reoxygenation (HR) to mimic RIC. EVs were collected and subjected to small RNA profiling and proteomics. HR induced a distinct shift in the miRNA profile and protein content in EVs. HR EV treatment restored cell viability, dampened inflammation, and enhanced tube formation in in vitro assays. In vivo, HR EVs showed increased accumulation in the ischemic brain compared to EVs secreted from normoxic culture (N EVs) in a mouse undergoing transient middle cerebral artery occlusion (tMCAO). We conclude that HR conditioning changes the miRNA and protein profile in EVs released by C2C12 cells and enhances the protective signal in the EVs to recipient cells in vitro.
Collapse
Affiliation(s)
- Yan Yan
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
- Omiics ApS, 8200 Aarhus, Denmark;
| | - Tingting Gu
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (T.G.); (K.R.D.)
| | - Stine Duelund Kaas Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (S.D.K.C.); (B.B.)
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | - Thomas Ravn Lassen
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - Marie Vognstoft Hjortbak
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - IJu Lo
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | | | - Andrea Erzsebet Tóth
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (A.E.T.); (M.S.N.)
| | - Ping Song
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
| | | | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (T.R.L.); (M.V.H.); (H.E.B.)
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark; (S.D.K.C.); (B.B.)
| | - Kim Ryun Drasbek
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark; (T.G.); (K.R.D.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (J.S.); (I.L.); (P.S.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Correspondence: ; Tel.: +45-289-920-86
| |
Collapse
|
118
|
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D'Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, Krämer-Albers EM, Lai CP, Loyer X, Marki A, Momma S, Nolte-'t Hoen ENM, Pegtel DM, Peinado H, Raposo G, Rilla K, Tahara H, Théry C, van Royen ME, Vandenbroucke RE, Wehman AM, Witwer K, Wu Z, Wubbolts R, van Niel G. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021; 18:1013-1026. [PMID: 34446922 PMCID: PMC8796660 DOI: 10.1038/s41592-021-01206-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.
Collapse
Affiliation(s)
- Frederik J Verweij
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David R F Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Samir El Andaloussi
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
| | | | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
- CNRS SNC5055, Strasbourg, France
| | - Eva-Maria Krämer-Albers
- Johannes Gutenberg-Universität Mainz, Institute of Developmental Biology and Neurobiology, Mainz, Germany
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Xavier Loyer
- Université de Paris, PARCC, INSERM, Paris, France
| | - Alex Marki
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Goethe-University, Frankfurt am Main, Germany
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Immunity and Cancer, Paris, France
| | | | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology and Neurology and the Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Richard Wubbolts
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
119
|
Gupta D, Wiklander OPB, Görgens A, Conceição M, Corso G, Liang X, Seow Y, Balusu S, Feldin U, Bostancioglu B, Jawad R, Mamand DR, Lee YXF, Hean J, Mäger I, Roberts TC, Gustafsson M, Mohammad DK, Sork H, Backlund A, Lundin P, de Fougerolles A, Smith CIE, Wood MJA, Vandenbroucke RE, Nordin JZ, El-Andaloussi S. Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles. Nat Biomed Eng 2021; 5:1084-1098. [PMID: 34616047 DOI: 10.1038/s41551-021-00792-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/07/2021] [Indexed: 02/01/2023]
Abstract
Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-α) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-α and IL-6 pathways.
Collapse
Affiliation(s)
- Dhanu Gupta
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Oscar P B Wiklander
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - André Görgens
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Giulia Corso
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiuming Liang
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiqi Seow
- Molecular Engineering Laboratory, Institute for Bioengineering and Nanotechnology, A*STAR, Singapore, Singapore
| | - Sriram Balusu
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ulrika Feldin
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Beklem Bostancioglu
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rim Jawad
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Doste R Mamand
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Biology Department, Cihan University-Erbil, Erbil, Iraq
| | - Yi Xin Fiona Lee
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Genome Institute of Singapore, Agency for Science, Technology and Research, A*STAR, Singapore, Singapore
| | | | - Imre Mäger
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Thomas C Roberts
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Manuela Gustafsson
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dara K Mohammad
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil, Iraq
| | - Helena Sork
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Backlund
- Cardiovascular Medicine Unit, Department of Medicine, Solna, Karolinska Institute, Stockholm, Sweden
| | | | | | - C I Edvard Smith
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joel Z Nordin
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Samir El-Andaloussi
- Biomolecular Medicine, Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
120
|
Hermann DM, Doeppner TR, Giebel B. New Light on the Horizon: Extracellular Vesicles as Diagnostic Tool in Transient Ischemic Attack and Ischemic Stroke. Stroke 2021; 52:3348-3350. [PMID: 34344164 DOI: 10.1161/strokeaha.121.036150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany (D.M.H.)
| | - Thorsten R Doeppner
- Department of Neurology, University Medicine Göttingen, University of Göttingen, Germany (T.R.D.)
| | - Bernd Giebel
- Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Germany (B.G.)
| |
Collapse
|
121
|
Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov 2021; 20:629-651. [PMID: 34145432 PMCID: PMC8212082 DOI: 10.1038/s41573-021-00219-z] [Citation(s) in RCA: 960] [Impact Index Per Article: 240.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
Therapeutic targeting of noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), represents an attractive approach for the treatment of cancers, as well as many other diseases. Over the past decade, substantial effort has been made towards the clinical application of RNA-based therapeutics, employing mostly antisense oligonucleotides and small interfering RNAs, with several gaining FDA approval. However, trial results have so far been ambivalent, with some studies reporting potent effects whereas others demonstrated limited efficacy or toxicity. Alternative entities such as antimiRNAs are undergoing clinical testing, and lncRNA-based therapeutics are gaining interest. In this Perspective, we discuss key challenges facing ncRNA therapeutics - including issues associated with specificity, delivery and tolerability - and focus on promising emerging approaches that aim to boost their success.
Collapse
Affiliation(s)
- Melanie Winkle
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research Division - Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences - National Research Centre, Cairo, Egypt
| | - Muller Fabbri
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - George A Calin
- Translational Molecular Pathology, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
- The RNA Interference and Non-codingRNA Center, MD Anderson Cancer Center, Texas State University, Houston, TX, USA.
| |
Collapse
|
122
|
Nagelkerke A, Ojansivu M, van der Koog L, Whittaker TE, Cunnane EM, Silva AM, Dekker N, Stevens MM. Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Adv Drug Deliv Rev 2021; 175:113775. [PMID: 33872693 DOI: 10.1016/j.addr.2021.04.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles naturally secreted by cells, acting as delivery vehicles for molecular messages. During the last decade, EVs have been assigned multiple functions that have established their potential as therapeutic mediators for a variety of diseases and conditions. In this review paper, we report on the potential of EVs in tissue repair and regeneration. The regenerative properties that have been associated with EVs are explored, detailing the molecular cargo they carry that is capable of mediating such effects, the signaling cascades triggered in target cells and the functional outcome achieved. EV interactions and biodistribution in vivo that influence their regenerative effects are also described, particularly upon administration in combination with biomaterials. Finally, we review the progress that has been made for the successful implementation of EV regenerative therapies in a clinical setting.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB20, 9700 AD Groningen, the Netherlands.
| | - Miina Ojansivu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Luke van der Koog
- Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, P.O. Box 196, XB10, 9700 AD Groningen, the Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Thomas E Whittaker
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Eoghan M Cunnane
- Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| | - Andreia M Silva
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Niek Dekker
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| | - Molly M Stevens
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Department of Materials, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK; Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
123
|
Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics 2021; 21:e2000118. [PMID: 33857352 PMCID: PMC8365743 DOI: 10.1002/pmic.202000118] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/22/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of membrane-enclosed nanoparticles released by cells. They play a role in intercellular communication and are involved in numerous physiological and pathological processes. Cells release subpopulations of EVs with distinct composition and inherent biological function which overlap in size. Current size-based isolation methods are, therefore, not optimal to discriminate between functional EV subpopulations. In addition, EVs overlap in size with several other biological nanoparticles, such as lipoproteins and viruses. Proteomic analysis has allowed for more detailed study of EV composition, and EV isolation approaches based on this could provide a promising alternative for purification based on size. Elucidating EV heterogeneity and the characteristics and role of EV subpopulations will advance our understanding of EV biology and the role of EVs in health and disease. Here, we discuss current knowledge of EV composition, EV heterogeneity and advances in affinity based EV isolation tools.
Collapse
Affiliation(s)
- William Phillips
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Eduard Willms
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Andrew F. Hill
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| |
Collapse
|
124
|
Zhang Y, Thangam R, You SH, Sultonova RD, Venu A, Min JJ, Hong Y. Engineering Calreticulin-Targeting Monobodies to Detect Immunogenic Cell Death in Cancer Chemotherapy. Cancers (Basel) 2021; 13:2801. [PMID: 34199835 PMCID: PMC8200062 DOI: 10.3390/cancers13112801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Surface-exposed calreticulin (ecto-CRT) plays a crucial role in the phagocytic removal of apoptotic cells during immunotherapy. Ecto-CRT is an immunogenic signal induced in response to treatment with chemotherapeutic agents such as doxorubicin (DOX) and mitoxantrone (MTX), and two peptides (KLGFFKR (Integrin-α) and GQPMYGQPMY (CRT binding peptide 1, Hep-I)) are known to specifically bind CRT. To engineer CRT-specific monobodies as agents to detect immunogenic cell death (ICD), we fused these peptide sequences at the binding loops (BC and FG) of human fibronectin domain III (FN3). CRT-specific monobodies were purified from E. coli by affinity chromatography. Using these monobodies, ecto-CRT was evaluated in vitro, in cultured cancer cell lines (CT-26, MC-38, HeLa, and MDA-MB-231), or in mice after anticancer drug treatment. Monobodies with both peptide sequences (CRT3 and CRT4) showed higher binding to ecto-CRT than those with a single peptide sequence. The binding affinity of the Rluc8 fusion protein-engineered monobodies (CRT3-Rluc8 and CRT4-Rluc8) to CRT was about 8 nM, and the half-life in serum and tumor tissue was about 12 h. By flow cytometry and confocal immunofluorescence of cancer cell lines, and by in vivo optical bioluminescence imaging of tumor-bearing mice, CRT3-Rluc8 and CRT4-Rluc8 bound specifically to ecto-CRT and effectively detected pre-apoptotic cells after treatment with ICD-inducing agents (DOX and MTX) but not a non-ICD-inducing agent (gemcitabine). Using CRT-specific monobodies, it is possible to detect ecto-CRT induction in cancer cells in response to drug exposure. This technique may be used to predict the therapeutic efficiency of chemo- and immuno-therapeutics early during anticancer treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Ramar Thangam
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
- Department of Materials Science & Engineering, Korea University, Seoul 02841, Korea
| | - Sung-Hwan You
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Rukhsora D. Sultonova
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Akhil Venu
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Yeongjin Hong
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Hwasun Hospital, Chonnam National University Medical School, Hwasun 58128, Korea; (Y.Z.); (R.T.); (S.-H.Y.); (R.D.S.); (A.V.)
- Department of Microbiology, Chonnam National University Medical School, Hwasun 58128, Korea
| |
Collapse
|
125
|
Exploring interactions between extracellular vesicles and cells for innovative drug delivery system design. Adv Drug Deliv Rev 2021; 173:252-278. [PMID: 33798644 DOI: 10.1016/j.addr.2021.03.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are submicron cell-secreted structures containing proteins, nucleic acids and lipids. EVs can functionally transfer these cargoes from one cell to another to modulate physiological and pathological processes. Due to their presumed biocompatibility and capacity to circumvent canonical delivery barriers encountered by synthetic drug delivery systems, EVs have attracted considerable interest as drug delivery vehicles. However, it is unclear which mechanisms and molecules orchestrate EV-mediated cargo delivery to recipient cells. Here, we review how EV properties have been exploited to improve the efficacy of small molecule drugs. Furthermore, we explore which EV surface molecules could be directly or indirectly involved in EV-mediated cargo transfer to recipient cells and discuss the cellular reporter systems with which such transfer can be studied. Finally, we elaborate on currently identified cellular processes involved in EV cargo delivery. Through these topics, we provide insights in critical effectors in the EV-cell interface which may be exploited in nature-inspired drug delivery strategies.
Collapse
|
126
|
Roerig J, Schiller L, Kalwa H, Hause G, Vissiennon C, Hacker MC, Wölk C, Schulz-Siegmund M. A focus on critical aspects of uptake and transport of milk-derived extracellular vesicles across the Caco-2 intestinal barrier model. Eur J Pharm Biopharm 2021; 166:61-74. [PMID: 34077790 DOI: 10.1016/j.ejpb.2021.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
Bovine milk-derived extracellular vesicles (EVs) hold promises as oral drug delivery systems. Since EV bioavailability studies are difficult to compare, key factors regarding EV uptake and intestinal permeability remain little understood. This work aims to critically study uptake and transport properties of milk-derived EVs across the intestinal barrier in vitro by standardization approaches. Therefore, uptake properties were directly compared to liposomes in intestinal Caco-2 cells. Reliable staining results were obtained by the choice of three distinct EV labeling sites, while non-specific dye transfer and excess dye removal were carefully controlled. A novel fluorescence correction factor was implemented to account for different labeling efficiencies. Both EV and liposome uptake occurred mainly energy dependent with the neonatal Fc receptor (FcRn) providing an exclusive active pathway for EVs. Confocal microscopy revealed higher internalization of EVs whereas liposomes rather remained attached to the cell surface. Internalization could be improved when changing the liposomal formulation to resemble the EV lipid composition. In a Caco-2/HT29-MTX co-culture liposomes and EVs showed partial mucus penetration. For transport studies across Caco-2 monolayers we further established a standardized protocol considering the distinct requirements for EVs. Especially insert pore sizes were systematically compared with 3 µm inserts found obligatory. Obtained apparent permeability coefficients (Papp) reflecting the transport rate will allow for better comparison of future bioavailability testing.
Collapse
Affiliation(s)
- Josepha Roerig
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, Germany.
| | - Laura Schiller
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Germany
| | - Hermann Kalwa
- Rudolf-Boehm-Institute of Pharmacology and Toxicology, Medical Faculty, Leipzig University, Germany
| | - Gerd Hause
- Biocenter, Martin-Luther University Halle-Wittenberg, Germany
| | - Cica Vissiennon
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Germany
| | - Michael C Hacker
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, Germany; Institute of Pharmaceutics and Biopharmaceutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Christian Wölk
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, Germany
| | | |
Collapse
|
127
|
Karbasiafshar C, Sellke FW, Abid MR. Mesenchymal stem cell-derived extracellular vesicles in the failing heart: past, present, and future. Am J Physiol Heart Circ Physiol 2021; 320:H1999-H2010. [PMID: 33861149 PMCID: PMC8163643 DOI: 10.1152/ajpheart.00951.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/29/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. Current treatment options include lifestyle changes, medication, and surgical intervention. However, many patients are unsuitable candidates for surgeries due to comorbidities, diffuse coronary artery disease, or advanced stages of heart failure. The search for new treatment options has recently transitioned from cell-based therapies to stem-cell-derived extracellular vesicles (EVs). A number of challenges remain in the EV field, including the effect of comorbidities, characterization, and delivery. However, recent revolutionary developments and insight into the potential of personalizing EV contents by bioengineering methods to alter specific signaling pathways in the ischemic myocardium hold promise. Here, we discuss the past limitations of cell-based therapies and recent EV studies involving in vivo, in vitro, and omics, and future challenges and opportunities in EV-based treatments in CVD.
Collapse
Affiliation(s)
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
128
|
Visualizing Extracellular Vesicles and Their Function in 3D Tumor Microenvironment Models. Int J Mol Sci 2021; 22:ijms22094784. [PMID: 33946403 PMCID: PMC8125158 DOI: 10.3390/ijms22094784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived nanostructures that mediate intercellular communication by delivering complex signals in normal tissues and cancer. The cellular coordination required for tumor development and maintenance is mediated, in part, through EV transport of molecular cargo to resident and distant cells. Most studies on EV-mediated signaling have been performed in two-dimensional (2D) monolayer cell cultures, largely because of their simplicity and high-throughput screening capacity. Three-dimensional (3D) cell cultures can be used to study cell-to-cell and cell-to-matrix interactions, enabling the study of EV-mediated cellular communication. 3D cultures may best model the role of EVs in formation of the tumor microenvironment (TME) and cancer cell-stromal interactions that sustain tumor growth. In this review, we discuss EV biology in 3D culture correlates of the TME. This includes EV communication between cell types of the TME, differences in EV biogenesis and signaling associated with differing scaffold choices and in scaffold-free 3D cultures and cultivation of the premetastatic niche. An understanding of EV biogenesis and signaling within a 3D TME will improve culture correlates of oncogenesis, enable molecular control of the TME and aid development of drug delivery tools based on EV-mediated signaling.
Collapse
|
129
|
Shpigelman J, Lao FS, Yao S, Li C, Saito T, Sato-Kaneko F, Nolan JP, Shukla NM, Pu M, Messer K, Cottam HB, Carson DA, Corr M, Hayashi T. Generation and Application of a Reporter Cell Line for the Quantitative Screen of Extracellular Vesicle Release. Front Pharmacol 2021; 12:668609. [PMID: 33935791 PMCID: PMC8085554 DOI: 10.3389/fphar.2021.668609] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are identified as mediators of intercellular communication and cellular regulation. In the immune system, EVs play a role in antigen presentation as a part of cellular communication. To enable drug discovery and characterization of compounds that affect EV biogenesis, function, and release in immune cells, we developed and characterized a reporter cell line that allows the quantitation of EVs shed into culture media in phenotypic high-throughput screen (HTS) format. Tetraspanins CD63 and CD9 were previously reported to be enriched in EVs; hence, a construct with dual reporters consisting of CD63-Turbo-luciferase (Tluc) and CD9-Emerald green fluorescent protein (EmGFP) was engineered. This construct was transduced into the human monocytic leukemia cell line, THP-1. Cells expressing the highest EmGFP were sorted by flow cytometry as single cell, and clonal pools were expanded under antibiotic selection pressure. After four passages, the green fluorescence dimmed, and EV biogenesis was then tracked by luciferase activity in culture supernatants. The Tluc activities of EVs shed from CD63Tluc-CD9EmGFP reporter cells in the culture supernatant positively correlated with the concentrations of released EVs measured by nanoparticle tracking analysis. To examine the potential for use in HTS, we first miniaturized the assay into a robotic 384-well plate format. A 2210 commercial compound library (Maybridge) was then screened twice on separate days, for the induction of extracellular luciferase activity. The screening data showed high reproducibility on days 1 and 2 (78.6%), a wide signal window, and an excellent Z′ factor (average of 2-day screen, 0.54). One hundred eighty-seven compounds showed a response ratio that was 3SD above the negative controls in both day 1 and 2 screens and were considered as hit candidates (approximately 10%). Twenty-two out of 40 re-tested compounds were validated. These results indicate that the performance of CD63Tluc-CD9EmGFP reporter cells is reliable, reproducible, robust, and feasible for HTS of compounds that regulate EV release by the immune cells.
Collapse
Affiliation(s)
- Jonathan Shpigelman
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Fitzgerald S Lao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Shiyin Yao
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Chenyang Li
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tetsuya Saito
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States.,Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumi Sato-Kaneko
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - John P Nolan
- Scintillon Institute, San Diego, CA, United States
| | - Nikunj M Shukla
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Minya Pu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States.,Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Karen Messer
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States.,Division of Biostatistics and Bioinformatics, Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, United States
| | - Howard B Cottam
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Dennis A Carson
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| | - Maripat Corr
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Tomoko Hayashi
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
130
|
Saito-Moriya R, Nakayama J, Kamiya G, Kitada N, Obata R, Maki SA, Aoyama H. How to Select Firefly Luciferin Analogues for In Vivo Imaging. Int J Mol Sci 2021; 22:1848. [PMID: 33673331 PMCID: PMC7918177 DOI: 10.3390/ijms22041848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Bioluminescence reactions are widely applied in optical in vivo imaging in the life science and medical fields. Such reactions produce light upon the oxidation of a luciferin (substrate) catalyzed by a luciferase (enzyme), and this bioluminescence enables the quantification of tumor cells and gene expression in animal models. Many researchers have developed single-color or multicolor bioluminescence systems based on artificial luciferin analogues and/or luciferase mutants, for application in vivo bioluminescence imaging (BLI). In the current review, we focus on the characteristics of firefly BLI technology and discuss the development of luciferin analogues for high-resolution in vivo BLI. In addition, we discuss the novel luciferin analogues TokeOni and seMpai, which show potential as high-sensitivity in vivo BLI reagents.
Collapse
Affiliation(s)
- Ryohei Saito-Moriya
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Jun Nakayama
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Genta Kamiya
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Nobuo Kitada
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Rika Obata
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Shojiro A Maki
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo 182-8585, Japan
| | - Hiroshi Aoyama
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| |
Collapse
|
131
|
Ibrahim A, Ibrahim A, Parimon T. Diagnostic and Therapeutic Applications of Extracellular Vesicles in Interstitial Lung Diseases. Diagnostics (Basel) 2021; 11:diagnostics11010087. [PMID: 33430301 PMCID: PMC7825759 DOI: 10.3390/diagnostics11010087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/01/2021] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial lung diseases (ILDs) are chronic irreversible pulmonary conditions with significant morbidity and mortality. Diagnostic approaches to ILDs are complex and multifactorial. Effective therapeutic interventions are continuously investigated and explored with substantial progress, thanks to advances in basic understanding and translational efforts. Extracellular vesicles (EVs) offer a new paradigm in diagnosis and treatment. This leads to two significant implications: new disease biomarker discovery that enables reliable diagnosis and disease assessment and the development of regenerative medicine therapeutics that target fibroproliferative processes in diseased lung tissue. In this review, we discuss the current understanding of the role of diseased tissue-derived EVs in the development of interstitial lung diseases, the utility of these EVs as diagnostic and prognostic tools, and the existing therapeutic utility of EVs. Furthermore, we review the potential therapeutic application of EVs derived from various cellular sources.
Collapse
Affiliation(s)
- Abdulrahman Ibrahim
- Faculty of Medicine, University of Queensland/Ochsner Clinical School, New Orleans, LA 70121, USA;
| | - Ahmed Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Tanyalak Parimon
- Pulmonary and Critical Care Division, Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-310-248-8069
| |
Collapse
|
132
|
Kodam SP, Ullah M. Diagnostic and Therapeutic Potential of Extracellular Vesicles. Technol Cancer Res Treat 2021; 20:15330338211041203. [PMID: 34632862 PMCID: PMC8504225 DOI: 10.1177/15330338211041203] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally phospholipid enclosed nanovesicles released by many cells in the body. They are stable in circulation, have low immunogenicity, and act as carriers for functionally active biological molecules. They interact with target organs and bind to the receptors. Their target specificity is important to use EVs as noninvasive diagnostic and prognostic tools. EVs play a vital role in normal physiology and cellular communication. They are known to protect their cargo from degradation, which makes them important drug carriers for targeted drug delivery. Using EVs with markers and tracking their path in systemic circulation can be revolutionary in using them as diagnostic tools. We will discuss the scope of this in this paper. Although there are limitations in EVs isolation and storage, their high biocompatibility will fuel more innovations to overcome these challenges.
Collapse
Affiliation(s)
- Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
- School of Medicine, Stanford University, Palo Alto, California, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
- School of Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
133
|
Warnecke A, Harre J, Staecker H, Prenzler N, Strunk D, Couillard‐Despres S, Romanelli P, Hollerweger J, Lassacher T, Auer D, Pachler K, Wietzorrek G, Köhl U, Lenarz T, Schallmoser K, Laner‐Plamberger S, Falk CS, Rohde E, Gimona M. Extracellular vesicles from human multipotent stromal cells protect against hearing loss after noise trauma in vivo. Clin Transl Med 2020; 10:e262. [PMID: 33377658 PMCID: PMC7752163 DOI: 10.1002/ctm2.262] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
The lack of approved anti-inflammatory and neuroprotective therapies in otology has been acknowledged in the last decades and recent approaches are heralding a new era in the field. Extracellular vesicles (EVs) derived from human multipotent (mesenchymal) stromal cells (MSC) can be enriched in vesicular secretome fractions, which have been shown to exert effects (eg, neuroprotection and immunomodulation) of their parental cells. Hence, MSC-derived EVs may serve as novel drug candidates for several inner ear diseases. Here, we provide first evidence of a strong neuroprotective potential of human stromal cell-derived EVs on inner ear physiology. In vitro, MSC-EV preparations exerted immunomodulatory activity on T cells and microglial cells. Moreover, local application of MSC-EVs to the inner ear significantly attenuated hearing loss and protected auditory hair cells from noise-induced trauma in vivo. Thus, EVs derived from the vesicular secretome of human MSC may represent a next-generation biological drug that can exert protective therapeutic effects in a complex and nonregenerating organ like the inner ear.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Jennifer Harre
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck SurgeryUniversity of Kansas School of MedicineKansas CityKansas
| | - Nils Prenzler
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Dirk Strunk
- Institute of Experimental and Clinical Cell TherapySpinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Sebastien Couillard‐Despres
- Institute of Experimental NeuroregenerationSpinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Pasquale Romanelli
- Institute of Experimental NeuroregenerationSpinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical UniversitySalzburgAustria
| | - Julia Hollerweger
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Teresa Lassacher
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Daniela Auer
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
| | - Karin Pachler
- Research Program “Nanovesicular Therapies,”Paracelsus Medical University (PMU)SalzburgAustria
| | - Georg Wietzorrek
- Institute of Molecular and Cellular PharmacologyMedical University of InnsbruckInnsbruckAustria
| | - Ulrike Köhl
- Institute of Cellular TherapeuticsHannover Medical School and Clinical ImmunologyUniversity Leipzig, Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigGermany
| | - Thomas Lenarz
- Department of OtorhinolaryngologyHead and Neck SurgeryHannover Medical SchoolHannoverGermany
| | - Katharina Schallmoser
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
- Department of Transfusion MedicineUniversity HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Sandra Laner‐Plamberger
- Department of Transfusion MedicineUniversity HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Christine S. Falk
- Institute of Transplant ImmunologyHannover Medical SchoolHannoverGermany
| | - Eva Rohde
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
- Department of Transfusion MedicineUniversity HospitalSalzburger Landeskliniken GesmbH (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Mario Gimona
- GMP Unit, Spinal Cord Injury and Tissue Regeneration Centre Salzburg (SCI‐TReCS)Paracelsus Medical University (PMU)SalzburgAustria
- Research Program “Nanovesicular Therapies,”Paracelsus Medical University (PMU)SalzburgAustria
| |
Collapse
|