101
|
Ross KE, Arighi CN, Ren J, Huang H, Wu CH. Construction of protein phosphorylation networks by data mining, text mining and ontology integration: analysis of the spindle checkpoint. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat038. [PMID: 23749465 PMCID: PMC3675891 DOI: 10.1093/database/bat038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Knowledge representation of the role of phosphorylation is essential for the meaningful understanding of many biological processes. However, such a representation is challenging because proteins can exist in numerous phosphorylated forms with each one having its own characteristic protein–protein interactions (PPIs), functions and subcellular localization. In this article, we evaluate the current state of phosphorylation event curation and then present a bioinformatics framework for the annotation and representation of phosphorylated proteins and construction of phosphorylation networks that addresses some of the gaps in current curation efforts. The integrated approach involves (i) text mining guided by RLIMS-P, a tool that identifies phosphorylation-related information in scientific literature; (ii) data mining from curated PPI databases; (iii) protein form and complex representation using the Protein Ontology (PRO); (iv) functional annotation using the Gene Ontology (GO); and (v) network visualization and analysis with Cytoscape. We use this framework to study the spindle checkpoint, the process that monitors the assembly of the mitotic spindle and blocks cell cycle progression at metaphase until all chromosomes have made bipolar spindle attachments. The phosphorylation networks we construct, centered on the human checkpoint kinase BUB1B (BubR1) and its yeast counterpart MAD3, offer a unique view of the spindle checkpoint that emphasizes biologically relevant phosphorylated forms, phosphorylation-state–specific PPIs and kinase–substrate relationships. Our approach for constructing protein phosphorylation networks can be applied to any biological process that is affected by phosphorylation. Database URL:http://www.yeastgenome.org/
Collapse
Affiliation(s)
- Karen E Ross
- Center for Bioinformatics and Computational Biology, 15 Innovation Way, Suite 205, University of Delaware, Newark, DE 19711, USA.
| | | | | | | | | |
Collapse
|
102
|
Abstract
During mitosis and meiosis, the spindle assembly checkpoint acts to maintain genome stability by delaying cell division until accurate chromosome segregation can be guaranteed. Accuracy requires that chromosomes become correctly attached to the microtubule spindle apparatus via their kinetochores. When not correctly attached to the spindle, kinetochores activate the spindle assembly checkpoint network, which in turn blocks cell cycle progression. Once all kinetochores become stably attached to the spindle, the checkpoint is inactivated, which alleviates the cell cycle block and thus allows chromosome segregation and cell division to proceed. Here we review recent progress in our understanding of how the checkpoint signal is generated, how it blocks cell cycle progression and how it is extinguished.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
103
|
Morais da Silva S, Moutinho-Santos T, Sunkel CE. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition. ACTA ACUST UNITED AC 2013; 201:385-93. [PMID: 23609535 PMCID: PMC3639401 DOI: 10.1083/jcb.201210018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The loss of the spindle checkpoint protein Bub3 is sufficient to induce aneuploidy and drive tumorigenesis when apoptosis is compromised. Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor.
Collapse
Affiliation(s)
- Sara Morais da Silva
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4099 Porto, Portugal.
| | | | | |
Collapse
|
104
|
Funabiki H, Wynne DJ. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 2013; 122:135-58. [PMID: 23512483 DOI: 10.1007/s00412-013-0401-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 01/23/2023]
Abstract
The kinetochore, the proteinaceous structure on the mitotic centromere, functions as a mechanical latch that hooks onto microtubules to support directional movement of chromosomes. The structure also brings in a number of signaling molecules, such as kinases and phosphatases, which regulate microtubule dynamics and cell cycle progression. Erroneous microtubule attachment is destabilized by Aurora B-mediated phosphorylation of multiple microtubule-binding protein complexes at the kinetochore, such as the KMN network proteins and the Ska/Dam1 complex, while Plk-dependent phosphorylation of BubR1 stabilizes kinetochore-microtubule attachment by recruiting PP2A-B56. Spindle assembly checkpoint (SAC) signaling, which is activated by unattached kinetochores and inhibits the metaphase-to-anaphase transition, depends on kinetochore recruitment of the kinase Bub1 through Mps1-mediated phosphorylation of the kinetochore protein KNL1 (also known as Blinkin in mammals, Spc105 in budding yeast, and Spc7 in fission yeast). Recruitment of protein phosphatase 1 to KNL1 is necessary to silence the SAC upon bioriented microtubule attachment. One of the key unsolved questions in the mitosis field is how a mechanical change at the kinetochore upon microtubule attachment is converted to these and other chemical signals that control microtubule attachment and the SAC. Rapid progress in the field is revealing the existence of an intricate signaling network created right on the kinetochore. Here we review the current understanding of phosphorylation-mediated regulation of kinetochore functions and discuss how this signaling network generates an accurate switch that turns on and off the signaling output in response to kinetochore-microtubule attachment.
Collapse
Affiliation(s)
- Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | | |
Collapse
|
105
|
Meyer C, Sims AH, Morgan K, Harrison B, Muir M, Bai J, Faratian D, Millar RP, Langdon SP. Transcript and protein profiling identifies signaling, growth arrest, apoptosis, and NF-κB survival signatures following GNRH receptor activation. Endocr Relat Cancer 2013; 20. [PMID: 23202794 PMCID: PMC3573841 DOI: 10.1530/erc-12-0192] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GNRH significantly inhibits proliferation of a proportion of cancer cell lines by activating GNRH receptor (GNRHR)-G protein signaling. Therefore, manipulation of GNRHR signaling may have an under-utilized role in treating certain breast and ovarian cancers. However, the precise signaling pathways necessary for the effect and the features of cellular responses remain poorly defined. We used transcriptomic and proteomic profiling approaches to characterize the effects of GNRHR activation in sensitive cells (HEK293-GNRHR, SCL60) in vitro and in vivo, compared to unresponsive HEK293. Analyses of gene expression demonstrated a dynamic response to the GNRH superagonist Triptorelin. Early and mid-phase changes (0.5-1.0 h) comprised mainly transcription factors. Later changes (8-24 h) included a GNRH target gene, CGA, and up- or downregulation of transcripts encoding signaling and cell division machinery. Pathway analysis identified altered MAPK and cell cycle pathways, consistent with occurrence of G(2)/M arrest and apoptosis. Nuclear factor kappa B (NF-κB) pathway gene transcripts were differentially expressed between control and Triptorelin-treated SCL60 cultures. Reverse-phase protein and phospho-proteomic array analyses profiled responses in cultured cells and SCL60 xenografts in vivo during Triptorelin anti-proliferation. Increased phosphorylated NF-κB (p65) occurred in SCL60 in vitro, and p-NF-κB and IκBε were higher in treated xenografts than controls after 4 days Triptorelin. NF-κB inhibition enhanced the anti-proliferative effect of Triptorelin in SCL60 cultures. This study reveals details of pathways interacting with intense GNRHR signaling, identifies potential anti-proliferative target genes, and implicates the NF-κB survival pathway as a node for enhancing GNRH agonist-induced anti-proliferation.
Collapse
Affiliation(s)
| | | | - Kevin Morgan
- Medical Research Council Human Reproductive Sciences UnitQueen's Medical Research Institute47 Little France Crescent, Edinburgh, EH16 4TJUK
| | | | | | | | | | - Robert P Millar
- Centre for Integrative PhysiologyUniversity of EdinburghEdinburgh, EH8 9XDUK
- Mammal Research InstituteUniversity Pretoria and UCT/MRC Receptor Biology Unit, University of Cape TownCape TownSouth Africa
| | | |
Collapse
|
106
|
Lidsky PV, Sprenger F, Lehner CF. Distinct modes of centromere protein dynamics during cell cycle progression in Drosophila S2R+ cells. J Cell Sci 2013; 126:4782-93. [DOI: 10.1242/jcs.134122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres are specified epigenetically in animal cells. Therefore, faithful chromosome inheritance depends critically on the accurate maintenance of epigenetic centromere marks during progression through the cell cycle. Clarification of the mechanisms that control centromere protein behavior during the cell cycle should profit from the relative simplicity of the protein cast at Drosophila centromeres. Thus we have analyzed the dynamics of the three key players Cid/Cenp-A, Cenp-C and Cal1 in S2R+ cells using quantitative microscopy and fluorescence recovery after photobleaching in combination with novel fluorescent cell cycle markers. As revealed by the observed protein abundances and mobilities, centromeres proceed through at least five distinct states during the cell cycle, distinguished in part by unexpected Cid behavior. In addition to the predominant Cid loading onto centromeres during G1, a considerable but transient increase was detected during early mitosis. Low level of Cid loading was detected in late S and G2, starting at the reported time of centromere DNA replication. Our results disclose the complexities of Drosophila centromere protein dynamics and its intricate coordination with cell cycle progression.
Collapse
|
107
|
Zhang G, Lischetti T, Nilsson J. A minimal number of MELT repeats supports all functions of KNL1 in chromosome segregation. J Cell Sci 2013; 127:871-84. [DOI: 10.1242/jcs.139725] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Bub1-Bub3 and BubR1-Bub3 checkpoint complexes, or the Bubs, contribute to the accurate segregation of chromosomes during mitosis by promoting chromosome bi-orientation and halting exit from mitosis if this fails. The complexes associate with kinetochores during mitosis, which is required for proper chromosome segregation. The outer kinetochore protein KNL1 (also known as CASC5/Blinkin/AF15Q14) is the receptor for Bub proteins but the exact nature of the functional binding sites on KNL1 are yet to be determined. Here, we show that KNL1 contains multiple binding sites for the Bub proteins, with the Mps1-phosphorylated MELT repeats constituting individual functional docking sites for direct binding of Bub3. Surprisingly, chromosome congression and the Spindle Assembly Checkpoint (SAC) are still functional when KNL1 is deleted of all but four of its twelve MELT repeats. Systematically reducing the number of MELT repeats to less than four reduced KNL1 functionality. Furthermore, we show that Protein Phosphatase 1 (PP1) binding to KNL1 in prometaphase reduces the levels of Bub proteins at kinetochores to approximately the level recruited by four active MELT repeats.
Collapse
|
108
|
Karess RE, Wassmann K, Rahmani Z. New insights into the role of BubR1 in mitosis and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:223-73. [PMID: 24016527 DOI: 10.1016/b978-0-12-407694-5.00006-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BubR1 is a critical component of the spindle assembly checkpoint, the surveillance mechanism that helps maintain the high fidelity of mitotic chromosome segregation by preventing cells from initiating anaphase if one or more kinetochores are not attached to the spindle. BubR1 also helps promote the establishment of stable kinetochore-microtubule attachments during prometaphase. In this chapter, we review the structure, functions, and regulation of BubR1 in these "classical roles" at the kinetochore. We discuss its recruitment to kinetochores, its assembly into the inhibitor of anaphase progression, and the importance of its posttranslational modifications. We also consider the evidence for its participation in other roles beyond mitosis, such as the meiosis-specific processes of recombination and prophase arrest of the first meiotic division, the cellular response to DNA damage, and in the regulation of centrosome and basal body function. Finally, studies are presented linking BubR1 dysfunction or misregulation to aging and human disease, particularly cancer.
Collapse
Affiliation(s)
- Roger E Karess
- Institut Jacques Monod, UMR 7592 CNRS, Université Paris Diderot-Paris 7, Paris, France.
| | | | | |
Collapse
|
109
|
Ricke RM, Jeganathan KB, Malureanu L, Harrison AM, van Deursen JM. Bub1 kinase activity drives error correction and mitotic checkpoint control but not tumor suppression. ACTA ACUST UNITED AC 2012; 199:931-49. [PMID: 23209306 PMCID: PMC3518220 DOI: 10.1083/jcb.201205115] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice expressing a version of Bub1 that lacks kinase activity have increased chromosome segregation errors and aneuploidy but not increased susceptibility to tumors. The mitotic checkpoint protein Bub1 is essential for embryogenesis and survival of proliferating cells, and bidirectional deviations from its normal level of expression cause chromosome missegregation, aneuploidy, and cancer predisposition in mice. To provide insight into the physiological significance of this critical mitotic regulator at a modular level, we generated Bub1 mutant mice that lack kinase activity using a knockin gene-targeting approach that preserves normal protein abundance. In this paper, we uncover that Bub1 kinase activity integrates attachment error correction and mitotic checkpoint signaling by controlling the localization and activity of Aurora B kinase through phosphorylation of histone H2A at threonine 121. Strikingly, despite substantial chromosome segregation errors and aneuploidization, mice deficient for Bub1 kinase activity do not exhibit increased susceptibility to spontaneous or carcinogen-induced tumorigenesis. These findings provide a unique example of a modular mitotic activity orchestrating two distinct networks that safeguard against whole chromosome instability and reveal the differential importance of distinct aneuploidy-causing Bub1 defects in tumor suppression.
Collapse
Affiliation(s)
- Robin M Ricke
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
110
|
Centelles JJ. General aspects of colorectal cancer. ISRN ONCOLOGY 2012; 2012:139268. [PMID: 23209942 PMCID: PMC3504424 DOI: 10.5402/2012/139268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/11/2012] [Indexed: 12/14/2022]
Abstract
Colorectal cancer (CRC) is one of the main causes of death. Cancer is initiated by several DNA damages, affecting proto-oncogenes, tumour suppressor genes, and DNA repairing genes. The molecular origins of CRC are chromosome instability (CIN), microsatellite instability (MSI), and CpG island methylator phenotype (CIMP). A brief description of types of CRC cancer is presented, including sporadic CRC, hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndromes, familiar adenomatous polyposis (FAP), MYH-associated polyposis (MAP), Peutz-Jeghers syndrome (PJS), and juvenile polyposis syndrome (JPS). Some signalling systems for CRC are also described, including Wnt-β-catenin pathway, tyrosine kinase receptors pathway, TGF-β pathway, and Hedgehog pathway. Finally, this paper describes also some CRC treatments.
Collapse
Affiliation(s)
- Josep J. Centelles
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avenida Diagonal 643, Catalunya, 08028 Barcelona, Spain
| |
Collapse
|
111
|
Wan X, Yeung C, Kim SY, Dolan JG, Ngo VN, Burkett S, Khan J, Staudt LM, Helman LJ. Identification of FoxM1/Bub1b signaling pathway as a required component for growth and survival of rhabdomyosarcoma. Cancer Res 2012; 72:5889-99. [PMID: 23002205 DOI: 10.1158/0008-5472.can-12-1991] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We identified Bub1b as an essential element for the growth and survival of rhabdomyosarcoma (RMS) cells using a bar-coded, tetracycline-inducible short hairpin RNA (shRNA) library screen. Knockdown of Bub1b resulted in suppression of tumor growth in vivo, including the regression of established tumors. The mechanism by which this occurs is via postmitotic endoreduplication checkpoint and mitotic catastrophe. Furthermore, using a chromatin immunoprecipitation assay, we found that Bub1b is a direct transcriptional target of Forkhead Box M1 (FoxM1). Suppression of FoxM1 either by shRNA or the inhibitor siomycin A resulted in reduction of Bub1b expression and inhibition of cell growth and survival. These results show the important role of the Bub1b/FoxM1 pathway in RMS and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaolin Wan
- Molecular Oncology Section, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Connecting up and clearing out: how kinetochore attachment silences the spindle assembly checkpoint. Chromosoma 2012; 121:509-25. [DOI: 10.1007/s00412-012-0378-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 02/06/2023]
|
113
|
MPS1/Mph1 phosphorylates the kinetochore protein KNL1/Spc7 to recruit SAC components. Nat Cell Biol 2012; 14:746-52. [DOI: 10.1038/ncb2515] [Citation(s) in RCA: 260] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 05/08/2012] [Indexed: 12/13/2022]
|
114
|
Suijkerbuijk S, van Dam T, Karagöz G, von Castelmur E, Hubner N, Duarte A, Vleugel M, Perrakis A, Rüdiger S, Snel B, Kops G. The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase. Dev Cell 2012; 22:1321-9. [DOI: 10.1016/j.devcel.2012.03.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/17/2012] [Accepted: 03/18/2012] [Indexed: 10/28/2022]
|
115
|
Shepperd LA, Meadows JC, Sochaj AM, Lancaster TC, Zou J, Buttrick GJ, Rappsilber J, Hardwick KG, Millar JB. Phosphodependent recruitment of Bub1 and Bub3 to Spc7/KNL1 by Mph1 kinase maintains the spindle checkpoint. Curr Biol 2012; 22:891-9. [PMID: 22521786 PMCID: PMC3780767 DOI: 10.1016/j.cub.2012.03.051] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 03/12/2012] [Indexed: 11/21/2022]
Abstract
The spindle assembly checkpoint (SAC) is the major surveillance system that ensures that sister chromatids do not separate until all chromosomes are correctly bioriented during mitosis. Components of the checkpoint include Mad1, Mad2, Mad3 (BubR1), Bub3, and the kinases Bub1, Mph1 (Mps1), and Aurora B. Checkpoint proteins are recruited to kinetochores when individual kinetochores are not bound to spindle microtubules or not under tension. Kinetochore association of Mad2 causes it to undergo a conformational change, which promotes its association to Mad3 and Cdc20 to form the mitotic checkpoint complex (MCC). The MCC inhibits the anaphase-promoting complex/cyclosome (APC/C) until the checkpoint is satisfied. SAC silencing derepresses Cdc20-APC/C activity. This triggers the polyubiquitination of securin and cyclin, which promotes the dissolution of sister chromatid cohesion and mitotic progression. We, and others, recently showed that association of PP1 to the Spc7/Spc105/KNL1 family of kinetochore proteins is necessary to stabilize microtubule-kinetochore attachments and silence the SAC. We now report that phosphorylation of the conserved MELT motifs in Spc7 by Mph1 (Mps1) recruits Bub1 and Bub3 to the kinetochore and that this is required to maintain the SAC signal.
Collapse
Affiliation(s)
- Lindsey A. Shepperd
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - John C. Meadows
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Alicja M. Sochaj
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Theresa C. Lancaster
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Graham J. Buttrick
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Kevin G. Hardwick
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jonathan B.A. Millar
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| |
Collapse
|
116
|
Matson DR, Demirel PB, Stukenberg PT, Burke DJ. A conserved role for COMA/CENP-H/I/N kinetochore proteins in the spindle checkpoint. Genes Dev 2012; 26:542-7. [PMID: 22426531 DOI: 10.1101/gad.184184.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The COMA/CENP-H/I kinetochore complex regulates microtubule dynamics at kinetochores. The complex is also required to generate spindle checkpoint signals in both yeast and human cells under conditions where Aurora B activity is compromised. Our data explain why mammalian cells treated with Aurora inhibitors still have a functional spindle assembly checkpoint (SAC), since the checkpoint signals through CENP-H/I/N. The SAC effect from depleting the CENP-H/I/N complex cannot be explained by a weakened SAC signal, and the complex has no role in the SAC response to paclitaxel. We propose a model to explain the differential response of human cells to nocodazole and paclitaxel.
Collapse
Affiliation(s)
- Daniel R Matson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
117
|
London N, Ceto S, Ranish JA, Biggins S. Phosphoregulation of Spc105 by Mps1 and PP1 regulates Bub1 localization to kinetochores. Curr Biol 2012; 22:900-6. [PMID: 22521787 DOI: 10.1016/j.cub.2012.03.052] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 12/13/2022]
Abstract
Kinetochores are the macromolecular complexes that interact with microtubules to mediate chromosome segregation. Accurate segregation requires that kinetochores make bioriented attachments to microtubules from opposite poles. Attachments between kinetochores and microtubules are monitored by the spindle checkpoint, a surveillance system that prevents anaphase until every pair of chromosomes makes proper bioriented attachments. Checkpoint activity is correlated with the recruitment of checkpoint proteins to the kinetochore. Mps1 is a conserved protein kinase that regulates segregation and the spindle checkpoint, but few of the targets that mediate its functions have been identified. Here, we show that Mps1 is the major kinase activity that copurifies with budding yeast kinetochore particles and identify the conserved Spc105/KNL-1/blinkin kinetochore protein as a substrate. Phosphorylation of conserved MELT motifs within Spc105 recruits the Bub1 protein to kinetochores, and this is reversed by protein phosphatase I (PP1). Spc105 mutants lacking Mps1 phosphorylation sites are defective in the spindle checkpoint and exhibit growth defects. Together, these data identify Spc105 as a key target of the Mps1 kinase and show that the opposing activities of Mps1 and PP1 regulate the kinetochore localization of the Bub1 protein.
Collapse
Affiliation(s)
- Nitobe London
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
118
|
Park SJ, Kim HH, Jung YS, Kang SJ, Cheong HK, Song HK, Lee BJ. Backbone resonances assignment of 19 kDa CD1 domain of human mitotic checkpoint serine/threonine-protein kinase, Bub1. BIOMOLECULAR NMR ASSIGNMENTS 2012; 6:109-113. [PMID: 21904986 DOI: 10.1007/s12104-011-9336-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
Bub1 is an evolutionarily conserved mitotic checkpoint control protein that is present in diverse organisms including yeast and humans. Bub1 is a serine/threonine protein kinase and is required for recruitment of Mad1, Mad2, Bub3, and CENP-E to kinetochores (Sharp-Baker and Chen in J Cell Biol 153:1239-1250, 2001). The evolutionarily conserved amino acid region in the N-terminus has been called as the CD1 domain. To clarify the action mechanism of Bub1 in controlling check point signals, we initiated an NMR structure determination of the Bub1 CD1 domain. Here, we report the sequence-specific backbone resonance assignments of CD1 domain of human Bub1 (hBub1CD1).
Collapse
Affiliation(s)
- Sung Jean Park
- College of Pharmacy, Gachon University of Medicine and Science, 534-2 Yeonsu 3-dong, Yeonsu-gu, Incheon 406-799, Korea
| | | | | | | | | | | | | |
Collapse
|
119
|
Leslie M. Knl1 shows another face. J Biophys Biochem Cytol 2012. [PMCID: PMC3283989 DOI: 10.1083/jcb.1964if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kinetochore protein might not recruit key parts of spindle assembly checkpoint and instead might help silence the checkpoint.
Collapse
|
120
|
Krenn V, Wehenkel A, Li X, Santaguida S, Musacchio A. Structural analysis reveals features of the spindle checkpoint kinase Bub1-kinetochore subunit Knl1 interaction. ACTA ACUST UNITED AC 2012; 196:451-67. [PMID: 22331848 PMCID: PMC3283998 DOI: 10.1083/jcb.201110013] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The function of the essential checkpoint kinases Bub1 and BubR1 requires their recruitment to mitotic kinetochores. Kinetochore recruitment of Bub1 and BubR1 is proposed to rely on the interaction of the tetratricopeptide repeats (TPRs) of Bub1 and BubR1 with two KI motifs in the outer kinetochore protein Knl1. We determined the crystal structure of the Bub1 TPRs in complex with the cognate Knl1 KI motif and compared it with the structure of the equivalent BubR1TPR-KI motif complex. The interaction developed along the convex surface of the TPR assembly. Point mutations on this surface impaired the interaction of Bub1 and BubR1 with Knl1 in vitro and in vivo but did not cause significant displacement of Bub1 and BubR1 from kinetochores. Conversely, a 62-residue segment of Bub1 that includes a binding domain for the checkpoint protein Bub3 and is C terminal to the TPRs was necessary and largely sufficient for kinetochore recruitment of Bub1. These results shed light on the determinants of kinetochore recruitment of Bub1.
Collapse
Affiliation(s)
- Veronica Krenn
- Department of Experimental Oncology, European Institute of Oncology, 20139 Milan, Italy
| | | | | | | | | |
Collapse
|
121
|
Bolanos-Garcia VM, Nilsson J, Blundell TL. The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication. BIOARCHITECTURE 2012; 2:23-27. [PMID: 22754625 PMCID: PMC3383715 DOI: 10.4161/bioa.19932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The accurate and timely transmission of the genetic material to progeny during successive rounds of cell division is sine qua non for the maintenance of genome stability. Eukaryotic cells have evolved a surveillance mechanism, the mitotic spindle assembly checkpoint (SAC), to prevent premature advance to anaphase before every chromosome is properly attached to microtubules of the mitotic spindle. The architecture of the KNL1-BubR1 complex reveals important features of the molecular recognition between SAC components and the kinetochore. The interaction is important for a functional SAC as substitution of BubR1 residues engaged in KNL1 binding impaired the SAC and BubR1 recruitment into checkpoint complexes in stable cell lines. Here we discuss the implications of the disorder-to-order transition of KNL1 upon BubR1 binding for SAC signaling and propose a mechanistic model of how BUBs binding may affect the recognition of KNL1 by its other interacting partners.
Collapse
|
122
|
Lara-Gonzalez P, Scott MIF, Diez M, Sen O, Taylor SS. BubR1 blocks substrate recruitment to the APC/C in a KEN-box-dependent manner. J Cell Sci 2011; 124:4332-45. [PMID: 22193957 DOI: 10.1242/jcs.094763] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a signalling network that delays anaphase onset until all the chromosomes are attached to the mitotic spindle through their kinetochores. The downstream target of the spindle checkpoint is the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that targets several anaphase inhibitors for proteolysis, including securin and cyclin B1. In the presence of unattached kinetochores, the APC/C is inhibited by the mitotic checkpoint complex (MCC), a tetrameric complex composed of three SAC components, namely BubR1, Bub3 and Mad2, and the APC/C co-activator Cdc20. The molecular mechanisms underlying exactly how unattached kinetochores catalyse MCC formation and how the MCC then inhibits the APC/C remain obscure. Here, using RNAi complementation and in vitro ubiquitylation assays, we investigate the domains in BubR1 required for APC/C inhibition. We observe that kinetochore localisation of BubR1 is required for efficient MCC assembly and SAC response. Furthermore, in contrast to previous studies, we show that the N-terminal domain of BubR1 is the only domain involved in binding to Cdc20-Mad2 and the APC/C. Within this region, an N-terminal KEN box (KEN1) is essential for these interactions. By contrast, mutation of the second KEN box (KEN2) of BubR1 does not interfere with MCC assembly or APC/C binding. However, both in cells and in vitro, the KEN2 box is required for inhibition of APC/C when activated by Cdc20 (APC/C(Cdc20)). Indeed, we show that this second KEN box promotes SAC function by blocking the recruitment of substrates to the APC/C. Thus, we propose a model in which the BubR1 KEN boxes play two very different roles, the first to promote MCC assembly and the second to block substrate recruitment to APC/C(Cdc20).
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
123
|
hZwint-1 bridges the inner and outer kinetochore: identification of the kinetochore localization domain and the hZw10-interaction domain. Biochem J 2011; 436:157-68. [PMID: 21345172 DOI: 10.1042/bj20110137] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Accurate chromosome segregation in mitosis is required to maintain genetic stability. hZwint-1 [human Zw10 (Zeste white 10)-interacting protein 1] is a kinetochore protein known to interact with the kinetochore checkpoint protein hZw10. hZw10, along with its partners Rod (Roughdeal) and hZwilch, form a complex which recruits dynein-dynactin and Mad1-Mad2 complexes to the kinetochore and are essential components of the mitotic checkpoint. hZwint-1 localizes to the kinetochore in prophase, before hZw10 localization, and remains at the kinetochore until anaphase, after hZw10 has dissociated. This difference in localization timing may reflect a role for hZwint-1 as a structural kinetochore protein. In addition to hZw10, we have found that hZwint-1 interacts with components of the conserved Ndc80 and Mis12 complexes in yeast two-hybrid and GST (glutathione transferase) pull-down assays. Furthermore, hZwint-1 was found to have stable FRAP (fluorescence recovery after photobleaching) dynamics similar to hHec1, hSpc24 and hMis12. As such, we proposed that hZwint-1 is a structural protein, part of the inner kinetochore scaffold and recruits hZw10 to the kinetochore. To test this, we performed mutagenesis-based domain mapping to determine which regions of hZwint-1 are necessary for kinetochore localization and which are required for interaction with hZw10. hZwint-1 localizes to the kinetochore through the N-terminal region and interacts with hZw10 through the C-terminal coiled-coil domain. The two domains are at opposite ends of the protein as expected for a protein that bridges the inner and outer kinetochore.
Collapse
|
124
|
Yu VM, Marion CM, Austria TM, Yeh J, Schönthal AH, Dubeau L. Role of BRCA1 in controlling mitotic arrest in ovarian cystadenoma cells. Int J Cancer 2011; 130:2495-504. [PMID: 21792894 DOI: 10.1002/ijc.26309] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 07/04/2011] [Indexed: 01/10/2023]
Abstract
Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy and subsequent aneuploidy. We used an in vitro system mimicking premalignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content, as they age in culture and approach the phenomenon of in vitro crisis. Here, we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes.
Collapse
Affiliation(s)
- Vanessa M Yu
- Department of Pathology, USC/Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | | | | | | | | | | |
Collapse
|
125
|
Cdk1-phosphorylated CUEDC2 promotes spindle checkpoint inactivation and chromosomal instability. Nat Cell Biol 2011; 13:924-33. [DOI: 10.1038/ncb2287] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/01/2011] [Indexed: 12/17/2022]
|
126
|
polo Is Identified as a Suppressor of bubR1 Nondisjunction in a Deficiency Screen of the Third Chromosome in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2011; 1:161-9. [PMID: 22384328 PMCID: PMC3276128 DOI: 10.1534/g3.111.000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 05/17/2011] [Indexed: 12/15/2022]
Abstract
We have previously characterized an EMS-induced allele of the bubR1 gene (bubR1D1326N) that separates the two functions of BubR1, causing meiotic nondisjunction but retaining spindle assembly checkpoint activity during somatic cell division in Drosophila melanogaster. Using this allele, we demonstrate that bubR1 meiotic nondisjunction is dosage sensitive, occurs for both exchange and nonexchange homologous chromosomes, and is associated with decreased maintenance of sister chromatid cohesion and of the synaptonemal complex during prophase I progression. We took advantage of these features to perform a genetic screen designed to identify third chromosome deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes. We tested 65 deficiencies covering 60% of the third chromosome euchromatin. Among them, we characterized 24 deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes that we classified in two groups: (1) suppressor of nondisjunction and (2) enhancer of nondisjunction. Among these 24 deficiencies, our results show that deficiencies uncovering the polo locus act as suppressor of bubR1 nondisjunction by delaying meiotic prophase I progression and restoring chiasmata formation as observed by the loading of the condensin subunit SMC2. Furthermore, we identified two deficiencies inducing a lethal phenotype during embryonic development and thus affecting BubR1 kinase activity in somatic cells and one deficiency causing female sterility. Overall, our genetic screening strategy proved to be highly sensitive for the identification of modifiers of BubR1 kinase activity in both meiosis and mitosis.
Collapse
|
127
|
Chatel G, Fahrenkrog B. Nucleoporins: leaving the nuclear pore complex for a successful mitosis. Cell Signal 2011; 23:1555-62. [PMID: 21683138 DOI: 10.1016/j.cellsig.2011.05.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/31/2011] [Indexed: 12/01/2022]
Abstract
The nuclear envelope (NE) separates the cytoplasm and the cell nucleus of interphase eukaryotic cells and nuclear pore complexes (NPCs) mediate the macromolecular exchange between these two compartments. The NE and the NPCs of vertebrate cells disassemble during prophase and the nuclear pore proteins (nucleoporins) are distributed within the mitotic cytoplasm. For an increasing number of them active mitotic functions have been assigned over the past few years. Nucleoporins are participating in spindle assembly, kinetochore organisation, and the spindle assembly checkpoint, all processes that control chromosome segregation and are important for maintenance of genome integrity. But nucleoporins are also engaged in early and late mitotic events, such as centrosome positioning and cytokinesis. Here we will highlight recent progress in deciphering the roles for nucleoporins in the distinct steps of mitosis.
Collapse
Affiliation(s)
- Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Belgium
| | | |
Collapse
|
128
|
Bub1 and BubR1: at the interface between chromosome attachment and the spindle checkpoint. Mol Cell Biol 2011; 31:3085-93. [PMID: 21628528 DOI: 10.1128/mcb.05326-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle checkpoint ensures genome fidelity by temporarily halting chromosome segregation and the ensuing mitotic exit until the last kinetochore is productively attached to the mitotic spindle. At the interface between proper chromosome attachment and the metaphase-to-anaphase transition are the mammalian spindle checkpoint kinases. Compelling evidence indicates that the checkpoint kinases Bub1 and BubR1 have the added task of regulating kinetochore-microtubule attachments. However, the debate on the requirement of kinase activity is in full swing. This minireview summarizes recent advances in our understanding of the core spindle checkpoint kinases Bub1 and BubR1 and considers evidence that supports and opposes the role of kinase activity in regulating their functions during mitosis.
Collapse
|
129
|
Abba MC, Lacunza E, Butti M, Aldaz CM. Breast cancer biomarker discovery in the functional genomic age: a systematic review of 42 gene expression signatures. Biomark Insights 2010; 5:103-18. [PMID: 21082037 PMCID: PMC2978930 DOI: 10.4137/bmi.s5740] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In this review we provide a systematic analysis of transcriptomic signatures derived from 42 breast cancer gene expression studies, in an effort to identify the most relevant breast cancer biomarkers using a meta-analysis method. Meta-data revealed a set of 117 genes that were the most commonly affected ranging from 12% to 36% of overlap among breast cancer gene expression studies. Data mining analysis of transcripts and protein-protein interactions of these commonly modulated genes indicate three functional modules significantly affected among signatures, one module related with the response to steroid hormone stimulus, and two modules related to the cell cycle. Analysis of a publicly available gene expression data showed that the obtained meta-signature is capable of predicting overall survival (P < 0.0001) and relapse-free survival (P < 0.0001) in patients with early-stage breast carcinomas. In addition, the identified meta-signature improves breast cancer patient stratification independently of traditional prognostic factors in a multivariate Cox proportional-hazards analysis.
Collapse
Affiliation(s)
- M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| | | | | | | |
Collapse
|
130
|
Shimogawa MM, Wargacki MM, Muller EG, Davis TN. Laterally attached kinetochores recruit the checkpoint protein Bub1, but satisfy the spindle checkpoint. Cell Cycle 2010; 9:3619-28. [PMID: 20928940 PMCID: PMC2963445 DOI: 10.4161/cc.9.17.12907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Accepted: 07/04/2010] [Indexed: 01/06/2023] Open
Abstract
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8, and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientation-deficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. The spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. Progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.
Collapse
|
131
|
Barr AR, Kilmartin JV, Gergely F. CDK5RAP2 functions in centrosome to spindle pole attachment and DNA damage response. ACTA ACUST UNITED AC 2010; 189:23-39. [PMID: 20368616 PMCID: PMC2854379 DOI: 10.1083/jcb.200912163] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two domains of centrosomal protein CDK5RAP2, CNN1 and CNN2, link centrosomes to mitotic spindle poles. CNN1 lacking centrosomes are unable to recruit pericentriolar matrix components that mediate attachment to spindle poles. The centrosomal protein, CDK5RAP2, is mutated in primary microcephaly, a neurodevelopmental disorder characterized by reduced brain size. The Drosophila melanogaster homologue of CDK5RAP2, centrosomin (Cnn), maintains the pericentriolar matrix (PCM) around centrioles during mitosis. In this study, we demonstrate a similar role for CDK5RAP2 in vertebrate cells. By disrupting two evolutionarily conserved domains of CDK5RAP2, CNN1 and CNN2, in the avian B cell line DT40, we find that both domains are essential for linking centrosomes to mitotic spindle poles. Although structurally intact, centrosomes lacking the CNN1 domain fail to recruit specific PCM components that mediate attachment to spindle poles. Furthermore, we show that the CNN1 domain enforces cohesion between parental centrioles during interphase and promotes efficient DNA damage–induced G2 cell cycle arrest. Because mitotic spindle positioning, asymmetric centrosome inheritance, and DNA damage signaling have all been implicated in cell fate determination during neurogenesis, our findings provide novel insight into how impaired CDK5RAP2 function could cause premature depletion of neural stem cells and thereby microcephaly.
Collapse
Affiliation(s)
- Alexis R Barr
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, England, UK
| | | | | |
Collapse
|
132
|
Suijkerbuijk SJE, van Osch MHJ, Bos FL, Hanks S, Rahman N, Kops GJPL. Molecular causes for BUBR1 dysfunction in the human cancer predisposition syndrome mosaic variegated aneuploidy. Cancer Res 2010; 70:4891-900. [PMID: 20516114 DOI: 10.1158/0008-5472.can-09-4319] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic mutations in the mitotic regulatory kinase BUBR1 are associated with the cancer-susceptible disorder mosaic variegated aneuploidy (MVA). In patients with biallelic mutations, a missense mutation pairs with a truncating mutation. Here, we show that cell lines derived from MVA patients with biallelic mutations have an impaired mitotic checkpoint, chromosome alignment defects, and low overall BUBR1 abundance. Ectopic expression of BUBR1 restored mitotic checkpoint activity, proving that BUBR1 dysfunction causes chromosome segregation errors in the patients. Combined analysis of patient cells and functional protein replacement shows that all MVA mutations fall in two distinct classes: those that impose specific defects in checkpoint activity or microtubule attachment and those that lower BUBR1 protein abundance. Low protein abundance is the direct result of the absence of transcripts from truncating mutants combined with high protein turnover of missense mutants. In this group of missense mutants, the amino acid change consistently occurs in or near the BUBR1 kinase domain. Our findings provide a molecular explanation for chromosomal instability in patients with biallelic genetic mutations in BUBR1.
Collapse
Affiliation(s)
- Saskia J E Suijkerbuijk
- Department of Physiological Chemistry and Cancer Genomics Centre, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | |
Collapse
|
133
|
Structural and functional analysis of the interaction between the nucleoporin Nup98 and the mRNA export factor Rae1. Proc Natl Acad Sci U S A 2010; 107:10406-11. [PMID: 20498086 DOI: 10.1073/pnas.1005389107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The export of mRNAs is a multistep process, involving the packaging of mRNAs into messenger ribonucleoprotein particles (mRNPs), their transport through nuclear pore complexes, and mRNP remodeling events prior to translation. Ribonucleic acid export 1 (Rae1) and Nup98 are evolutionarily conserved mRNA export factors that are targeted by the vesicular stomatitis virus matrix protein to inhibit host cell nuclear export. Here, we present the crystal structure of human Rae1 in complex with the Gle2-binding sequence (GLEBS) of Nup98 at 1.65 A resolution. Rae1 forms a seven-bladed beta-propeller with several extensive surface loops. The Nup98 GLEBS motif forms an approximately 50-A-long hairpin that binds with its C-terminal arm to an essentially invariant hydrophobic surface that extends over the entire top face of the Rae1 beta-propeller. The C-terminal arm of the GLEBS hairpin is necessary and sufficient for Rae1 binding, and we identify a tandem glutamate element in this arm as critical for complex formation. The Rae1*Nup98(GLEBS) surface features an additional conserved patch with a positive electrostatic potential, and we demonstrate that the complex possesses single-stranded RNA-binding capability. Together, these data suggest that the Rae1*Nup98 complex directly binds to the mRNP at several stages of the mRNA export pathway.
Collapse
|
134
|
Lee J, Lee CG, Lee KW, Lee CW. Cross-talk between BubR1 expression and the commitment to differentiate in adipose-derived mesenchymal stem cells. Exp Mol Med 2010; 41:873-9. [PMID: 19745606 DOI: 10.3858/emm.2009.41.12.093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BubR1 mitotic checkpoint kinase monitors attachment of microtubules to kinetochores and links regulation of the chromosome-spindle attachment to mitotic checkpoint signaling. Defects in BubR1-mediated signaling severely perturb checkpoint control and are linked to diseases such as cancer. Studies using BubR1 mouse models suggest that BubR1 activities prevent premature aging and infertility. In this study, we show that BubR1 depletion in human adipose-derived mesenchymal stem cells (ASCs) precedes loss of the differentiation potential and induction of replicative senescence. These effects occur independently of p16(INK4A) expression and may involve DNA methylation. Our results reveal a new and unsuspected feature of BubR1 expression in regulation of adult stem cell differentiation.
Collapse
Affiliation(s)
- Janet Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Korea
| | | | | | | |
Collapse
|
135
|
Perera D, Taylor SS. Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J Cell Sci 2010; 123:653-9. [PMID: 20124418 DOI: 10.1242/jcs.059501] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bub1 was one of the first protein kinases identified as a component of the spindle-assembly checkpoint, a surveillance mechanism that delays anaphase onset until all chromosomes are stably attached to spindle microtubules. Whereas the kinase activity of Bub1 is not required for checkpoint function in yeast, its requirement in mammalian cells is still unclear. Using a complementation assay with bona fide BUB1-null mouse embryonic fibroblasts, we show that the kinase activity of Bub1 is not required for checkpoint function or chromosome alignment. Its activity is, however, required for centromeric localisation of Sgo1, a known protector of centromeric cohesion. Despite the absence of Sgo1 from mitotic centromeres in cells devoid of Bub1 activity, centromeric cohesion is still maintained until anaphase. An explanation for this comes from observations showing that Sgo1 is first recruited to centromeric heterochromatin in G2, but then becomes diffusely localised throughout the nucleus in early prophase, before returning to centromeres later in prophase. Importantly, whereas centromeric localisation of Sgo1 in prophase is dependent on the kinase activity of Bub1, its recruitment to centromeric heterochromatin in G2 is not. Rather, the localisation of Sgo1 in G2 is abolished when heterochromatin protein 1 is not bound to centromeric heterochromatin. Thus, it seems that Sgo1 sets up the centromeric protection mechanism in G2, but that its Bub1-dependent localisation to centromeres during mitosis is not required to maintain cohesion.
Collapse
Affiliation(s)
- David Perera
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
136
|
Expression of BUBR1 in human oral potentially malignant disorders and squamous cell carcinoma. ACTA ACUST UNITED AC 2010; 109:257-67. [DOI: 10.1016/j.tripleo.2009.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/15/2009] [Accepted: 08/06/2009] [Indexed: 11/23/2022]
|
137
|
Sánchez-Pérez I, García Alonso P, Belda Iniesta C. Clinical impact of aneuploidy on gastric cancer patients. Clin Transl Oncol 2010; 11:493-8. [PMID: 19661021 DOI: 10.1007/s12094-009-0393-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gastric cancer is a leading cause of death worldwide. Nowadays, complete surgical resection and TNM at diagnosis are the main prognostic factors. In spite of this, many patients will have a recurrence after surgery and die within a few months or years. That means that we need more accurate prognostic factors to design specific approaches for individual patients. Chromosome instability is a feature of gastric cancer commonly associated to chromosomal aberrations that leads to major modifications of DNA content globally termed as aneuploidy. In this regard, many authors' opinions diverge regarding the clinical impact of aneuploidy. This review will summarise data on the clinical impact of aneuploidy on clinical practice, the biological mechanisms that underlie chromosomal instability that induces aneuploidy and the relevance of specific chromosomal aneuploidy to cancer biology.
Collapse
Affiliation(s)
- Isabel Sánchez-Pérez
- Translational Oncology Unit CSIC/UAM, Instituto de Investigaciones Biomédicas CSIC/UAM, Madrid, Spain.
| | | | | |
Collapse
|
138
|
Niikura Y, Ogi H, Kikuchi K, Kitagawa K. BUB3 that dissociates from BUB1 activates caspase-independent mitotic death (CIMD). Cell Death Differ 2010; 17:1011-24. [PMID: 20057499 DOI: 10.1038/cdd.2009.207] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The cell death mechanism that prevents aneuploidy caused by a failure of the spindle checkpoint has recently emerged as an important regulatory paradigm. We previously identified a new type of mitotic cell death, termed caspase-independent mitotic death (CIMD), which is induced during early mitosis by partial BUB1 (a spindle checkpoint protein) depletion and defects in kinetochore-microtubule attachment. In this study, we have shown that survived cells that escape CIMD have abnormal nuclei, and we have determined the molecular mechanism by which BUB1 depletion activates CIMD. The BUB3 protein (a BUB1 interactor and a spindle checkpoint protein) interacts with p73 (a homolog of p53), specifically in cells wherein CIMD occurs. The BUB3 protein that is freed from BUB1 associates with p73 on which Y99 is phosphorylated by c-Abl tyrosine kinase, resulting in the activation of CIMD. These results strongly support the hypothesis that CIMD is the cell death mechanism protecting cells from aneuploidy by inducing the death of cells prone to substantial chromosome missegregation.
Collapse
Affiliation(s)
- Y Niikura
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
139
|
Dividing the goods: co-ordination of chromosome biorientation and mitotic checkpoint signalling by mitotic kinases. Biochem Soc Trans 2009; 37:971-5. [PMID: 19754434 DOI: 10.1042/bst0370971] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Error-free chromosome segregation during cell division relies on chromosome biorientation and mitotic checkpoint activity. A group of unrelated kinases controls various aspects of both processes. The present short review outlines our current understanding of the roles of these kinases in maintaining chromosomal stability.
Collapse
|
140
|
Li M, Li S, Yuan J, Wang ZB, Sun SC, Schatten H, Sun QY. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis. PLoS One 2009; 4:e7701. [PMID: 19888327 PMCID: PMC2765619 DOI: 10.1371/journal.pone.0007701] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 10/12/2009] [Indexed: 02/07/2023] Open
Abstract
In mitosis, the spindle assembly checkpoint (SAC) prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad)1–3, budding uninhibited by benzimidazole (Bub)1, Bub3, and monopolar spindle 1(Mps1). During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi) approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.
Collapse
Affiliation(s)
- Mo Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Sen Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Ju Yuan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School, Chinese Academy of Sciences, Beijing, China
| | - Shao-Chen Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri-Columbia, Columbia, Missouri, United States of America
| | - Qing-Yuan Sun
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
141
|
Tilston V, Taylor SS, Perera D. Inactivating the spindle checkpoint kinase Bub1 during embryonic development results in a global shutdown of proliferation. BMC Res Notes 2009; 2:190. [PMID: 19772675 PMCID: PMC2754486 DOI: 10.1186/1756-0500-2-190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 09/23/2009] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Bub1 is a component of the spindle assembly checkpoint, a surveillance mechanism that maintains chromosome stability during M-phase. Bub1 is essential during the early stages of embryogenesis, with homozygous BUB1-null mice dying shortly after day E3.5. Bub1 is also required later during embryogenesis; inactivation of BUB1 on day E10.5 appears to rapidly block all further development. However, the mechanism(s) responsible for this phenotype remain unclear. FINDINGS Here we show that inactivating BUB1 on day E10.5 stalls embryogenesis within 48 hours. This is accompanied by a global shutdown of proliferation, widespread apoptosis and haemorrhaging. CONCLUSION Our results suggest that Bub1 is required throughout the developing embryo for cellular proliferation. Therefore, Bub1 has been shown to be essential in all scenarios analyzed thus far in mice: proliferation of cultured fibroblasts, spermatogenesis, oogenesis and both early and late embryonic development. This likely reflects the fact that Bub1 has dual functions during mitosis, being required for both SAC function and chromosome alignment.
Collapse
Affiliation(s)
- Valerie Tilston
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
- MRC Centre for Drug Safety Science, Department of Pharmacology & Therapeutics, The University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, UK
| | - Stephen S Taylor
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David Perera
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
142
|
Medendorp K, van Groningen JJM, Vreede L, Hetterschijt L, van den Hurk WH, de Bruijn DRH, Brugmans L, Geurts van Kessel A. The mitotic arrest deficient protein MAD2B interacts with the small GTPase RAN throughout the cell cycle. PLoS One 2009; 4:e7020. [PMID: 19753112 PMCID: PMC2737141 DOI: 10.1371/journal.pone.0007020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 08/17/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previously, we identified the mitotic arrest deficient protein MAD2B (MAD2L2) as a bona fide interactor of the renal cell carcinoma (RCC)-associated protein PRCC. In addition, we found that fusion of PRCC with the transcription factor TFE3 in t(X;1)(p11;q21)-positive RCCs results in an impairment of this interaction and, concomitantly, an abrogation of cell cycle progression. Although MAD2B is thought to inhibit the anaphase promoting complex (APC) by binding to CDC20 and/or CDH1(FZR1), its exact role in cell cycle control still remains to be established. METHODOLOGY/PRINCIPAL FINDINGS Using a yeast two-hybrid interaction trap we identified the small GTPase RAN, a well-known cell cycle regulator, as a novel MAD2B binding protein. Endogenous interaction was established in mammalian cells via co-localization and co-immunoprecipitation of the respective proteins. The interaction domain of RAN could be assigned to a C-terminal moiety of 60 amino acids, whereas MAD2B had to be present in its full-length conformation. The MAD2B-RAN interaction was found to persist throughout the cell cycle. During mitosis, co-localization at the spindle was observed. CONCLUSIONS/SIGNIFICANCE The small GTPase RAN is a novel MAD2B binding protein. This novel protein-protein interaction may play a role in (i) the control over the spindle checkpoint during mitosis and (ii) the regulation of nucleocytoplasmic trafficking during interphase.
Collapse
Affiliation(s)
- Klaas Medendorp
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan J. M. van Groningen
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lilian Vreede
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Lisette Hetterschijt
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Wilhelmina H. van den Hurk
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Diederik R. H. de Bruijn
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Linda Brugmans
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Ad Geurts van Kessel
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
143
|
Caillaud MC, Paganelli L, Lecomte P, Deslandes L, Quentin M, Pecrix Y, Le Bris M, Marfaing N, Abad P, Favery B. Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS One 2009; 4:e6757. [PMID: 19710914 PMCID: PMC2728542 DOI: 10.1371/journal.pone.0006757] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/27/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND In eukaryotes, the spindle assembly checkpoint (SAC) ensures that chromosomes undergoing mitosis do not segregate until they are properly attached to the microtubules of the spindle. METHODOLOGY/PRINCIPAL FINDINGS We investigated the mechanism underlying this surveillance mechanism in plants, by characterising the orthogolous SAC proteins BUBR1, BUB3 and MAD2 from Arabidopsis. We showed that the cell cycle-regulated BUBR1, BUB3.1 and MAD2 proteins interacted physically with each other. Furthermore, BUBR1 and MAD2 interacted specifically at chromocenters. Following SAC activation by global defects in spindle assembly, these three interacting partners localised to unattached kinetochores. In addition, in cases of 'wait anaphase', plant SAC proteins were associated with both kinetochores and kinetochore microtubules. Unexpectedly, BUB3.1 was also found in the phragmoplast midline during the final step of cell division in plants. CONCLUSIONS/SIGNIFICANCE We conclude that plant BUBR1, BUB3.1 and MAD2 proteins may have the SAC protein functions conserved from yeast to humans. The association of BUB3.1 with both unattached kinetochore and phragmoplast suggests that in plant, BUB3.1 may have other roles beyond the spindle assembly checkpoint itself. Finally, this study of the SAC dynamics pinpoints uncharacterised roles of this surveillance mechanism in plant cell division.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Laetitia Paganelli
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Philippe Lecomte
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Laurent Deslandes
- Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2594, Castanet-Tolosan, France
| | - Michaël Quentin
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Yann Pecrix
- Institut Méditerranéen d'Ecologie et de Paléoécologie IMEP, Unité Mixte de Recherche- Centre National de la Recherche Scientifique –Institut de Recherche pour le Développement 6116, Université Paul Cézanne, Marseille, France
| | - Manuel Le Bris
- Institut Méditerranéen d'Ecologie et de Paléoécologie IMEP, Unité Mixte de Recherche- Centre National de la Recherche Scientifique –Institut de Recherche pour le Développement 6116, Université Paul Cézanne, Marseille, France
| | - Nicolas Marfaing
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Pierre Abad
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
| | - Bruno Favery
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- Centre Nationale de la Recherche Scientifique, Unité Mixte de Recherche 6243, Sophia-Antipolis, France
- Université de Nice Sophia-Antipolis, Unité Mixte de Recherche 1301, Sophia-Antipolis, France
- * E-mail:
| |
Collapse
|
144
|
Chen TC, Lee SA, Chan CH, Juang YL, Hong YR, Huang YH, Lai JM, Kao CY, Huang CYF. Cliques in mitotic spindle network bring kinetochore-associated complexes to form dependence pathway. Proteomics 2009; 9:4048-62. [DOI: 10.1002/pmic.200900231] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
145
|
Klebig C, Korinth D, Meraldi P. Bub1 regulates chromosome segregation in a kinetochore-independent manner. ACTA ACUST UNITED AC 2009; 185:841-58. [PMID: 19487456 PMCID: PMC2711590 DOI: 10.1083/jcb.200902128] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The kinetochore-bound protein kinase Bub1 performs two crucial functions during mitosis: it is essential for spindle checkpoint signaling and for correct chromosome alignment. Interestingly, Bub1 mutations are found in cancer tissues and cancer cell lines. Using an isogenic RNA interference complementation system in transformed HeLa cells and untransformed RPE1 cells, we investigate the effect of structural Bub1 mutants on chromosome segregation. We demonstrate that Bub1 regulates mitosis through the same mechanisms in both cell lines, suggesting a common regulatory network. Surprisingly, Bub1 can regulate chromosome segregation in a kinetochore-independent manner, albeit at lower efficiency. Its kinase activity is crucial for chromosome alignment but plays only a minor role in spindle checkpoint signaling. We also identify a novel conserved motif within Bub1 (amino acids 458–476) that is essential for spindle checkpoint signaling but does not regulate chromosome alignment, and we show that several cancer-related Bub1 mutants impair chromosome segregation, suggesting a possible link to tumorigenesis.
Collapse
Affiliation(s)
- Christiane Klebig
- Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zurich, 8093 Zurich, Switzerland
| | | | | |
Collapse
|
146
|
Lu Y, Wang Z, Ge L, Chen N, Liu H. The RZZ complex and the spindle assembly checkpoint. Cell Struct Funct 2009; 34:31-45. [PMID: 19420794 DOI: 10.1247/csf.08040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The conserved protein Rod is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. Rod is required for proper chromosome segregation during both mitosis and meiosis. The effects of rod mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. Recent studies have shown that Rod is a significant component of the mitotic checkpoint. It can form the RZZ complex with Zw10 and Zwilch, which plays an important role in maintaining a functional spindle assembly checkpoint.
Collapse
Affiliation(s)
- Yujian Lu
- MOE Key Laboratory of Arid and Grassland Ecology, Institute of Cell Biology, Life Science School, Lanzhou University, Lanzhou, PR China
| | | | | | | | | |
Collapse
|
147
|
Wang L, Yin F, Du Y, Du W, Chen B, Zhang Y, Wu K, Ding J, Liu J, Fan D. MAD2 as a key component of mitotic checkpoint: A probable prognostic factor for gastric cancer. Am J Clin Pathol 2009; 131:793-801. [PMID: 19461085 DOI: 10.1309/ajcpbmhhd0hfcy8w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We studied the subcellular localization of MAD2 in normal human tissues and gastric cancers. MAD2 showed nuclear and cytoplasmic localization in normal tissues such as muscle, testis, thyroid gland, cerebrum, trachea, and skin; blood vessels in some organs were also MAD2+. In normal stomach, MAD2 was expressed mainly in cytoplasm but showed nuclear staining in the majority of gastric cancers. MAD2 was significantly overexpressed in gastric cancer compared with matched adjacent tissues (P < .001), and expression was related to differentiation and other clinical parameters of cancer (P < .001). The cancer/adjacent normal tissue (C/N) ratio of MAD2 expression was higher than 2 and more frequently observed in patients with lymph gland metastasis (P < .05) and related to cancer differentiation. Our findings suggest that the steady-state amount of MAD2 inside cells may serve as a molecular switch in mitotic checkpoint control and that the subcellular localizations of this spindle protein undergo a shift during malignant transformation. The change of MAD2 expression may be involved mainly in gastric carcinogenesis and associated with the prognosis of gastric cancer; a C/N of more than 2 may be associated with the worse prognosis for survival in gastric carcinoma.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Fang Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Yulei Du
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Wenqi Du
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Bei Chen
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Yongguo Zhang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Jie Ding
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Jie Liu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases; The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
148
|
Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 2009; 10:178-91. [PMID: 19234477 DOI: 10.1038/nrm2641] [Citation(s) in RCA: 366] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell division in eukaryotes requires extensive architectural changes of the nuclear envelope (NE) to ensure that segregated DNA is finally enclosed in a single cell nucleus in each daughter cell. Higher eukaryotic cells have evolved 'open' mitosis, the most extreme mechanism to solve the problem of nuclear division, in which the NE is initially completely disassembled and then reassembled in coordination with DNA segregation. Recent progress in the field has now started to uncover mechanistic and molecular details that underlie the changes in NE reorganization during open mitosis. These studies reveal a tight interplay between NE components and the mitotic machinery.
Collapse
|
149
|
Sivaram MVS, Wadzinski TL, Redick SD, Manna T, Doxsey SJ. Dynein light intermediate chain 1 is required for progress through the spindle assembly checkpoint. EMBO J 2009; 28:902-14. [PMID: 19229290 DOI: 10.1038/emboj.2009.38] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 01/26/2009] [Indexed: 12/23/2022] Open
Abstract
The spindle assembly checkpoint monitors microtubule attachment to kinetochores and tension across sister kinetochores to ensure accurate division of chromosomes between daughter cells. Cytoplasmic dynein functions in the checkpoint, apparently by moving critical checkpoint components off kinetochores. The dynein subunit required for this function is unknown. Here we show that human cells depleted of dynein light intermediate chain 1 (LIC1) delay in metaphase with increased interkinetochore distances; dynein remains intact, localised and functional. The checkpoint proteins Mad1/2 and Zw10 localise to kinetochores under full tension, whereas BubR1 is diminished at kinetochores. Metaphase delay and increased interkinetochore distances are suppressed by depletion of Mad1, Mad2 or BubR1 or by re-expression of wtLIC1 or a Cdk1 site phosphomimetic LIC1 mutant, but not Cdk1-phosphorylation-deficient LIC1. When the checkpoint is activated by microtubule depolymerisation, Mad1/2 and BubR1 localise to kinetochores. We conclude that a Cdk1 phosphorylated form of LIC1 is required to remove Mad1/2 and Zw10 but not BubR1 from kinetochores during spindle assembly checkpoint silencing.
Collapse
Affiliation(s)
- Mylavarapu V S Sivaram
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | |
Collapse
|
150
|
Cordon-Cardo C. Molecular alterations associated with bladder cancer initiation and progression. ACTA ACUST UNITED AC 2009:154-65. [PMID: 18815930 DOI: 10.1080/03008880802291915] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bladder cancer is the fifth most commonly diagnosed non-cutaneous solid malignancy, and the second most commonly diagnosed genitourinary malignancy amongst people living in the United States, where it is estimated that more than 61,000 new cases of bladder cancer will be diagnosed in the year 2008. Approximately 90% of malignant tumors arising in the urinary bladder are of epithelial origin, the majority being transitional cell carcinomas. Early stage bladder tumors have been classified into two groups with distinct behavior and unique molecular profiles: low grade tumors (always papillary and usually superficial), and high-grade tumors (either papillary or non-papillary, and often invasive). Clinically, superficial bladder tumors (stages Ta and Tis) account for 75% to 85% of neoplasms, while the remaining 15% to 25% are invasive (T1, T2-T4) or metastatic lesions at the time of initial presentation. Studies from the author's group and others have revealed that distinct genotypic and phenotypic patterns are associated with early versus late stages of bladder cancer. Most importantly, early superficial diseases appear to segregate into two main pathways. Superficial papillary bladder tumors are characterized by gain-of-function mutations, mainly affecting classical oncogenes such as RAS and FGFR3. Deletions of chromosome 9, mainly allelic losses on the long arm (9q) are also frequent events in these tumors. Such genetic alterations are observed in most if not all superficial papillary non-invasive tumors (Ta), but only in a small subset of invasive bladder neoplasms. Flat carcinoma in situ (Tis) and invasive tumors are characterized by loss-of-function mutations, affecting the prototype tumor suppressor genes, including p53, RB and PTEN. These alterations are absent or very rare in the Ta tumors analyzed, but have been frequently identified in invasive bladder carcinomas. Based on these data, a novel model for bladder tumor progression has been proposed in which two separate genetic pathways characterize the evolution of superficial bladder neoplasms. Numerous individual molecular markers have been identified in the tissue specimens that correlate to some extent with tumor stage, and possibly with prognosis in bladder cancer. However, these molecular prognosticators do not play a role in the clinical routine management of patients with bladder tumors, mainly due to lack of large prospective validation studies. Thus, the need for development of specific tissue and serum tumor markers for prognostic stratification remains. The advent of high-throughput microarrays technologies allows comprehensive discovery of targets relevant in bladder cancer progression, which could be translated into new approaches for drug and biomarker development. Further investigation is warranted to define novel biomarkers specific for bladder cancer patients based on the molecular alterations of tumor progression, and multiplexed strategies for clinical management.
Collapse
Affiliation(s)
- Carlos Cordon-Cardo
- Departments of Pathology and Urology, Herbert Irving Comprehensive Cancer Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|