101
|
Cavalcanti YVN, de Almeida TM, de Almeida AF, Reis LC, Lucena-Silva N, Pereira VRA. Foxp3 expression and nitric oxide production in peripheral blood mononuclear cells of communicants with pulmonary tuberculosis. Scand J Immunol 2013; 78:79-84. [PMID: 23578109 DOI: 10.1111/sji.12053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/18/2013] [Indexed: 11/29/2022]
Abstract
The understanding of the mechanisms involved in the immune response is of significant relevance to the control of tuberculosis (TB), especially in individuals living with patients with TB. To characterize the nitric oxide (NO) production and the Foxp3 marker expression in this population, peripheral blood mononuclear cells of intradomiciliary contacts of individuals with pulmonary tuberculosis with (CTb, susceptible) and without (STb, resistant) previous history of active infection were stimulated in vitro with Mycobacterium tuberculosis antigen (TbAg) and with the mitogen Concanavalin A for 24 and 48 h. The groups analysed did not present significant difference in the Foxp3 mRNA expression nor in the NO production. Negative correlation (P = 0.09) between NO and Foxp3 after a 48-h stimulation with TbAg was observed in the STb group. In this group, after a 24-h culture stimulated with TbAg (P = 0.03), this same correlation was observed. In comparison with the cytokines previously studied by our group (Cavalcanti et al., 2009), a positive correlation was observed between IL-10 and Foxp3 after a 48-h culture of cells from communicants susceptible to tuberculosis (STb) stimulated with TbAg (P = 0.04). Evaluating the entire population, a positive correlation was observed between the cytokine TNF-α and the Foxp3 marker in the cultures stimulated for 24 (P = 0.03) and 48 (P = 0.02) hours with TbAg. Therefore, considering the similarity in the exposure and the individual capacity of responding to the contact with M. tuberculosis, the present study contributes to the comprehension of the immune regulation in individuals living with patients with TB.
Collapse
Affiliation(s)
- Y V N Cavalcanti
- Departamento de Biologia, Área de Microbiologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| | | | | | | | | | | |
Collapse
|
102
|
Schön T, Lerm M, Stendahl O. Shortening the 'short-course' therapy- insights into host immunity may contribute to new treatment strategies for tuberculosis. J Intern Med 2013; 273:368-82. [PMID: 23331325 DOI: 10.1111/joim.12031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Achieving global control of tuberculosis (TB) is a great challenge considering the current increase in multidrug resistance and mortality rate. Considerable efforts are therefore being made to develop new effective vaccines, more effective and rapid diagnostic tools as well as new drugs. Shortening the duration of TB treatment with revised regimens and modes of delivery of existing drugs, as well as development of new antimicrobial agents and optimization of the host response with adjuvant immunotherapy could have a profound impact on TB cure rates. Recent data show that chronic worm infection and deficiencies in micronutrients such as vitamin D and arginine are potential areas of intervention to optimize host immunity. Nutritional supplementation to enhance nitric oxide production and vitamin D-mediated effector functions as well as the treatment of worm infection to reduce immunosuppressive effects of regulatory T (Treg) lymphocytes may be more suitable and accessible strategies for highly endemic areas than adjuvant cytokine therapy. In this review, we focus mainly on immune control of human TB, and discuss how current treatment strategies, including immunotherapy and nutritional supplementation, could be optimized to enhance the host response leading to more effective treatment.
Collapse
Affiliation(s)
- T Schön
- Department of Infectious Diseases, Kalmar County Hospital, Kalmar, Sweden
| | | | | |
Collapse
|
103
|
de Andrés MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB, Oreffo ROC. Loss of methylation in CpG sites in the NF-κB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. ARTHRITIS AND RHEUMATISM 2013; 65:732-42. [PMID: 23239081 PMCID: PMC3937961 DOI: 10.1002/art.37806] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate whether the abnormal expression of inducible nitric oxide synthase (iNOS) by osteoarthritic (OA) human chondrocytes is associated with changes in the DNA methylation status in the promoter and/or enhancer elements of iNOS. METHODS Expression of iNOS was quantified by quantitative reverse transcriptase-polymerase chain reaction. The DNA methylation status of the iNOS promoter and enhancer regions was determined by bisulfite sequencing or pyrosequencing. The effect of CpG methylation on iNOS promoter and enhancer activities was determined using a CpG-free luciferase vector and a CpG methyltransferase. Cotransfections with expression vectors encoding NF-κB subunits were carried out to analyze iNOS promoter and enhancer activities in response to changes in methylation status. RESULTS The 1,000-bp iNOS promoter has only 7 CpG sites, 6 of which were highly methylated in both control and OA samples. The CpG site at -289 and the sites in the starting coding region were largely unmethylated in both groups. The NF-κB enhancer region at -5.8 kb was significantly demethylated in OA samples compared with control samples. This enhancer element was transactivated by cotransfection with the NF-κB subunit p65, alone or together with p50. Critically, methylation treatment of the iNOS enhancer element significantly decreased its activity in a reporter assay. CONCLUSION These findings demonstrate the association between demethylation of specific NF-κB-responsive enhancer elements and the activation of iNOS transactivation in human OA chondrocytes, consistent with the differences in methylation status observed in vivo in normal and human OA cartilage and, importantly, show association with the OA process.
Collapse
Affiliation(s)
- María C. de Andrés
- University of Southampton Medical School, Southampton, UK, and Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - Kei Imagawa
- University of Southampton Medical School, Southampton, UK
| | - Ko Hashimoto
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York
| | - Antonio Gonzalez
- Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Mary B. Goldring
- Hospital for Special Surgery and Weill Cornell Medical College, New York, New York
| | | |
Collapse
|
104
|
Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, Decker T, Miyairi I, Vogel SN, Salgame P, Rock CO, Murray PJ. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 2013; 12:313-23. [PMID: 22980328 DOI: 10.1016/j.chom.2012.07.012] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/07/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) defends against intracellular pathogens, but its synthesis must be regulated due to cell and tissue toxicity. During infection, macrophages import extracellular arginine to synthesize NO, generating the byproduct citrulline. Accumulated intracellular citrulline is thought to fuel arginine synthesis catalyzed by argininosuccinate synthase (Ass1) and argininosuccinate lyase (Asl), which would lead to abundant NO production. Instead, we find that citrulline is exported from macrophages during early stages of NO production with <2% retained for recycling via the Ass1-Asl pathway. Later, extracellular arginine is depleted, and Ass1 expression allows macrophages to synthesize arginine from imported citrulline to sustain NO output. Ass1-deficient macrophages fail to salvage citrulline in arginine-scarce conditions, leading to their inability to control mycobacteria infection. Thus, extracellular arginine fuels rapid NO production in activated macrophages, and citrulline recycling via Ass1 and Asl is a fail-safe system that sustains optimum NO production.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Lugo-Villarino G, Hudrisier D, Benard A, Neyrolles O. Emerging trends in the formation and function of tuberculosis granulomas. Front Immunol 2013; 3:405. [PMID: 23308074 PMCID: PMC3538282 DOI: 10.3389/fimmu.2012.00405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/15/2012] [Indexed: 11/13/2022] Open
Abstract
The granuloma is an elaborated aggregate of immune cells found in non-infectious as well as infectious diseases. It is a hallmark of tuberculosis (TB). Predominantly thought as a host-driven strategy to constrain the bacilli and prevent dissemination, recent discoveries indicate the granuloma can also be modulated into an efficient tool to promote microbial pathogenesis. The aim of future studies will certainly focus on better characterization of the mechanisms driving the modulation of the granuloma functions. Here, we provide unique perspectives from both the innate and adaptive immune system in the formation and the role of the TB granuloma. As macrophages (Mϕs) comprise the bulk of granulomas, we highlight the emerging concept of Mϕ polarization and its potential impact in the microbicide response, and other activities, that may ultimately shape the fate of granulomas. Alternatively, we shed light on the ability of B-cells to influence inflammatory status within the granuloma.
Collapse
Affiliation(s)
- Geanncarlo Lugo-Villarino
- CNRS, Institut de Pharmacologie et de Biologie Structurale Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Université Paul Sabatier Toulouse, France
| | | | | | | |
Collapse
|
106
|
Abstract
COPD is characterized by lung inflammation, which intensifies with disease progression. Recent studies suggest that COPD has multiple phenotypes, each with a distinct molecular pathway. Proteolytic enzymes may have a prominent role in the emphysematous phenotype, while nitric oxide pathways may be more relevant for pulmonary vessel remodelling in COPD. This article provides a synopsis of the possible role that lung inflammation plays in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Jin Young Oh
- UBC James Hogg Research Center, St. Paul's Hospital Vancouver, BC, Canada ; Division of Pulmonology, Department of Internal Medicine, Dongguk University Ilsan Hospital Goyang, South Korea
| | | |
Collapse
|
107
|
Immune complexes isolated from patients with pulmonary tuberculosis modulate the activation and function of normal granulocytes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1965-71. [PMID: 23100480 DOI: 10.1128/cvi.00437-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Circulating immune complexes (ICs) are associated with the pathogenesis of several diseases. Very little is known about the effect of ICs on the host immune response in patients with tuberculosis (TB). The effects of ICs isolated from patients with TB in modulating the release of calcium, cytokines, and granular proteins were studied in normal granulocytes, as were their chemotactic, phagocytic, and oxidative burst processes. ICs from TB patients induced decreased production of cytokines and platelet-activating factor (PAF) from normal granulocytes. ICs from TB patients also induced enhanced chemotaxis and phagocytosis but caused diminished oxidative burst. This was accompanied by an increased release in intracellular calcium. On the other hand, ICs from TB patients induced increased release of the granular proteins human neutrophil peptides 1 to 3 (HNP1-3). Thus, ICs from patients with TB exhibit a profound effect on granulocyte function with activation of certain effector mechanisms and dampening of others.
Collapse
|
108
|
Bhat SA, Singh N, Trivedi A, Kansal P, Gupta P, Kumar A. The mechanism of redox sensing in Mycobacterium tuberculosis. Free Radic Biol Med 2012; 53:1625-41. [PMID: 22921590 DOI: 10.1016/j.freeradbiomed.2012.08.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/03/2012] [Accepted: 08/03/2012] [Indexed: 12/25/2022]
Abstract
Tuberculosis epidemics have defied constraint despite the availability of effective treatment for the past half-century. Mycobacterium tuberculosis, the causative agent of TB, is continually exposed to a number of redox stressors during its pathogenic cycle. The mechanisms used by Mtb to sense redox stress and to maintain redox homeostasis are central to the success of Mtb as a pathogen. Careful analysis of the Mtb genome has revealed that Mtb lacks classical redox sensors such as FNR, FixL, and OxyR. Recent studies, however, have established that Mtb is equipped with various sophisticated redox sensors that can detect diverse types of redox stress, including hypoxia, nitric oxide, carbon monoxide, and the intracellular redox environment. Some of these sensors, such as heme-based DosS and DosT, are unique to mycobacteria, whereas others, such as the WhiB proteins and anti-σ factor RsrA, are unique to actinobacteria. This article provides a comprehensive review of the literature on these redox-sensory modules in the context of TB pathogenesis.
Collapse
Affiliation(s)
- Shabir Ahmad Bhat
- Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh 160036, India
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Tuberculosis (TB) is a leading cause worldwide of human mortality attributable to a single infectious agent. Recent studies targeting candidate genes and "case-control" association have revealed numerous polymorphisms implicated in host susceptibility to TB. Here, we review current progress in the understanding of causative polymorphisms in host innate immune genes associated with TB pathogenesis. We discuss genes encoding several types of proteins: macrophage receptors, such as the mannose receptor (MR, CD206), dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN, CD209), Dectin-1, Toll-like receptors (TLRs), complement receptor 3 (CR3, CD11b/CD18), nucleotide oligomerization domain 1 (NOD1) and NOD2, CD14, P2X7, and the vitamin D nuclear receptor (VDR); soluble C-type lectins, such as surfactant protein-A (SP-A), SP-D, and mannose-binding lectin (MBL); phagocyte cytokines, such as tumor necrosis factor (TNF), interleukin-1β (IL-1β), IL-6, IL-10, IL-12, and IL-18; chemokines, such as IL-8, monocyte chemoattractant protein 1 (MCP-1), RANTES, and CXCL10; and other important innate immune molecules, such as inducible nitric oxide synthase (iNOS) and solute carrier protein 11A1 (SLC11A1). Polymorphisms in these genes have been variably associated with susceptibility to TB among different populations. This apparent variability is probably accounted for by evolutionary selection pressure as a result of long-term host-pathogen interactions in certain regions or populations and, in part, by lack of proper study design and limited knowledge of molecular and functional effects of the implicated genetic variants. Finally, we discuss genomic technologies that hold promise for resolving questions regarding the evolutionary paths of the human genome, functional effects of polymorphisms, and corollary impacts of adaptation on human health, ultimately leading to novel approaches to controlling TB.
Collapse
Affiliation(s)
- Abul K. Azad
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Wolfgang Sadee
- Department of Pharmacology, Program in Pharmacogenomics, The Ohio State University, Columbus, Ohio, USA
| | - Larry S. Schlesinger
- Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| |
Collapse
|
110
|
Thakur D, Saxena R, Singh V, Haq W, Katti SB, Singh BN, Tripathi RK. Human beta casein fragment (54-59) modulates M. bovis BCG survival and basic transcription factor 3 (BTF3) expression in THP-1 cell line. PLoS One 2012; 7:e45905. [PMID: 23029305 PMCID: PMC3461027 DOI: 10.1371/journal.pone.0045905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 08/27/2012] [Indexed: 12/15/2022] Open
Abstract
Immunostimulatory peptides potentiate the immune system of the host and are being used as a viable adjunct to established therapeutic modalities in treatment of cancer and microbial infections. Several peptides derived from milk protein have been reported to induce immunostimulatory activity. Human β -casein fragment (54–59), natural sequence peptide (NS) carrying the Val-Glu-Pro-Ile-Pro-Tyr amino acid residues, was reported to activate the macrophages and impart potent immunostimulatory activity. In present study, we found that this peptide increases the clearance of M. bovis BCG from THP-1 cell line in vitro. The key biomolecules, involved in the clearance of BCG from macrophage like, nitric oxide, pro-inflammatory cytokines and chemokines, were not found to be significantly altered after peptide treatment in comparison to the untreated control. Using proteomic approach we found that BTF3a, an isoform of the Basic Transcription Factor, BTF3, was down regulated in THP-1 cell line after peptide treatment. This was reconfirmed by real time RT-PCR and western blotting. We report the BTF3a as a novel target of this hexapeptide. Based on the earlier findings and the results from the present studies, we suggest that the down regulation of BTF3a following the peptide treatment may augment the M. bovis BCG mediated apoptosis resulting in enhanced clearance of M. bovis BCG from THP-1 cell line.
Collapse
Affiliation(s)
| | - Reshu Saxena
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
| | - Vandana Singh
- Division of Microbiology, Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
| | - S. B. Katti
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow, India
| | - Bhupendra Narain Singh
- Division of Microbiology, Central Drug Research Institute, Lucknow, India
- * E-mail: (BNS); (RKT)
| | - Raj Kamal Tripathi
- Division of Toxicology, Central Drug Research Institute, Lucknow, India
- * E-mail: (BNS); (RKT)
| |
Collapse
|
111
|
Chun RF, Adams JS, Hewison M. Immunomodulation by vitamin D: implications for TB. Expert Rev Clin Pharmacol 2012; 4:583-91. [PMID: 22046197 DOI: 10.1586/ecp.11.41] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
TB remains a major cause of mortality throughout the world. Low vitamin D status has been linked to increased risk of TB and other immune disorders. These observations suggest a role for vitamin D as a modulator of normal human immune function. This article will detail the cellular and molecular mechanisms by which vitamin D regulates the immune system and how vitamin D insufficiency may lead to immune dysregulation. The importance of vitamin D bioavailability as a mechanism for defining the immunomodulatory actions of vitamin D and its impact on TB will also be discussed. The overall aim will be to provide a fresh perspective on the potential benefits of vitamin D supplementation in the prevention and treatment of TB.
Collapse
Affiliation(s)
- Rene F Chun
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
112
|
Idh J, Mekonnen M, Abate E, Wedajo W, Werngren J, Ängeby K, Lerm M, Elias D, Sundqvist T, Aseffa A, Stendahl O, Schön T. Resistance to first-line anti-TB drugs is associated with reduced nitric oxide susceptibility in Mycobacterium tuberculosis. PLoS One 2012; 7:e39891. [PMID: 22768155 PMCID: PMC3387217 DOI: 10.1371/journal.pone.0039891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
Background and Objective The relative contribution of nitric oxide (NO) to the killing of Mycobacterium tuberculosis in human tuberculosis (TB) is controversial, although this has been firmly established in rodents. Studies have demonstrated that clinical strains of M. tuberculosis differ in susceptibility to NO, but how this correlates to drug susceptibility and clinical outcome is not known. Methods In this study, 50 sputum smear- and culture-positive patients with pulmonary TB in Gondar, Ethiopia were included. Clinical parameters were recorded and drug susceptibility profile and spoligotyping patterns were investigated. NO susceptibility was studied by exposing the strains to the NO donor DETA/NO. Results Clinical isolates of M. tuberculosis showed a dose- and time-dependent response when exposed to NO. The most frequent spoligotypes found were CAS1-Delhi and T3_ETH in a total of nine known spoligotypes and four orphan patterns. There was a significant association between reduced susceptibility to NO (>10% survival after exposure to 1 mM DETA/NO) and resistance against first-line anti-TB drugs, in particular isoniazid (INH). Patients infected with strains of M. tuberculosis with reduced susceptibility to NO showed no difference in cure rate or other clinical parameters but a tendency towards lower rate of weight gain after two months of treatment, independent of antibiotic resistance. Conclusion: There is a correlation between resistance to first-line anti-TB drugs and reduced NO susceptibility in clinical strains of M. tuberculosis. Further studies including the mechanisms of reduced NO susceptibility are warranted and could identify targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Jonna Idh
- Division of Microbiology and Molecular Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Qidwai T, Jamal F, Khan MY. DNA Sequence Variation and Regulation of Genes Involved in Pathogenesis of Pulmonary Tuberculosis. Scand J Immunol 2012; 75:568-87. [DOI: 10.1111/j.1365-3083.2012.02696.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
114
|
Management of the virulent influenza virus infection by oral formulation of nonhydrolized carnosine and isopeptide of carnosine attenuating proinflammatory cytokine-induced nitric oxide production. Am J Ther 2012; 19:e25-47. [PMID: 20841992 DOI: 10.1097/mjt.0b013e3181dcf589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS) plays an important role in mediating inflammation. In our studies, we found that iNOS-derived NO was significantly increased in the serum samples of 150 patients infected with influenza A virus in comparison with samples of 140 healthy individuals. In human lung epithelial cells, infection with influenza A virus or stimulation with poly(I:C) + interferon-gamma resulted in increased mRNA and protein levels of both interleukin-32 and iNOS, with subsequent release of NO. Activated macrophages are also a source of nitric oxide (NO), which is largely produced by iNOS in response to proinflammatory cytokines. In this review article, the presented findings have many important implications for understanding the Influenza A (H1N1) viral pathogenesis, prevention, and treatment. The direct viral cytotoxicity (referred cytopathic effect) is only a fraction of several types of events induced by virus infection. Nitric oxide and oxygen free radicals such as superoxide anion (O₂⁻˙) are generated markedly in influenza A (including H1N1) virus-infected host boosts, and these molecular species are identified as the potent pathogenic agents. The mutual interaction of NO with O₂⁻˙ resulting in formation of peroxynitrite is operative in the pathogenic mechanism of influenza virus pneumonia. The toxicity and reactivity of oxygen radicals, generated in excessive amounts mediate the overreaction of the host's immune response against the organs or tissues in which viruses are replicating, and this may explain the mechanism of tissue injuries observed in influenza virus infection of various types. The authors revealed the protection that carnosine and its bioavailable nonhydrolized forms provide against peroxynitrite damage and other types of viral injuries in which immunologic interactions are usually involved. Carnosine (beta-alanyl-L-histidine) shows the pharmacologic intracellular correction of NO release which might be one of the important factors of natural immunity in controlling the initial stages of influenza A virus infection (inhibition of virus replication) and virus-induced regulation of cytokine gene expression. The protective effects of orally applied nonhydrolized formulated species of carnosine include at least direct interaction with nitric oxide, inhibition of cytotoxic NO-induced proinflammatory condition, and attenuation of the effects of cytokines and chemokines that can exert profound effects on inflammatory cells. These data are consistent with the hypothesis that natural products, such as chicken soup and chicken breast extracts rich in carnosine and its derivative anserine (beta-alanyl-1-methyl-L-histidine) could contribute to the pathogenesis and prevention of influenza virus infections and cold but have a limitation due to susceptibility to enzymatic hydrolysis of dipeptides with serum carnosinase and urine excretion after oral ingestion of a commercial chicken extract. The developed and patented by the authors formulations of nonhydrolized in digestive tract and blood natural carnosine peptide and isopeptide (gamma-glutamyl-carnosine) products have a promise in the Influenza A (H1N1) virus infection disease control and prevention.
Collapse
|
115
|
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33:829-37, 837a-837d. [PMID: 21890489 PMCID: PMC3345541 DOI: 10.1093/eurheartj/ehr304] [Citation(s) in RCA: 2857] [Impact Index Per Article: 219.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 07/14/2011] [Accepted: 07/28/2011] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO), the smallest signalling molecule known, is produced by three isoforms of NO synthase (NOS; EC 1.14.13.39). They all utilize l-arginine and molecular oxygen as substrates and require the cofactors reduced nicotinamide-adenine-dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and (6R-)5,6,7,8-tetrahydrobiopterin (BH(4)). All NOS bind calmodulin and contain haem. Neuronal NOS (nNOS, NOS I) is constitutively expressed in central and peripheral neurons and some other cell types. Its functions include synaptic plasticity in the central nervous system (CNS), central regulation of blood pressure, smooth muscle relaxation, and vasodilatation via peripheral nitrergic nerves. Nitrergic nerves are of particular importance in the relaxation of corpus cavernosum and penile erection. Phosphodiesterase 5 inhibitors (sildenafil, vardenafil, and tadalafil) require at least a residual nNOS activity for their action. Inducible NOS (NOS II) can be expressed in many cell types in response to lipopolysaccharide, cytokines, or other agents. Inducible NOS generates large amounts of NO that have cytostatic effects on parasitic target cells. Inducible NOS contributes to the pathophysiology of inflammatory diseases and septic shock. Endothelial NOS (eNOS, NOS III) is mostly expressed in endothelial cells. It keeps blood vessels dilated, controls blood pressure, and has numerous other vasoprotective and anti-atherosclerotic effects. Many cardiovascular risk factors lead to oxidative stress, eNOS uncoupling, and endothelial dysfunction in the vasculature. Pharmacologically, vascular oxidative stress can be reduced and eNOS functionality restored with renin- and angiotensin-converting enzyme-inhibitors, with angiotensin receptor blockers, and with statins.
Collapse
Affiliation(s)
- Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, 55101 Mainz, Germany.
| | | |
Collapse
|
116
|
Important role for Mycobacterium tuberculosis UvrD1 in pathogenesis and persistence apart from its function in nucleotide excision repair. J Bacteriol 2012; 194:2916-23. [PMID: 22467787 DOI: 10.1128/jb.06654-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mycobacterium tuberculosis survives and replicates in macrophages, where it is exposed to reactive oxygen and nitrogen species that damage DNA. In this study, we investigated the roles of UvrA and UvrD1, thought to be parts of the nucleotide excision repair pathway of M. tuberculosis. Strains in which uvrD1 was inactivated either alone or in conjunction with uvrA were constructed. Inactivation of uvrD1 resulted in a small colony phenotype, although growth in liquid culture was not significantly affected. The sensitivity of the mutant strains to UV irradiation and to mitomycin C highlighted the importance of the targeted genes for nucleotide excision repair. The mutant strains all exhibited heightened susceptibility to representatives of reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI). The uvrD1 and the uvrA uvrD1 mutants showed decreased intracellular multiplication following infection of macrophages. Most importantly, the uvrA uvrD1 mutant was markedly attenuated following infection of mice by either the aerosol or the intravenous route.
Collapse
|
117
|
Uhlin M, Andersson J, Zumla A, Maeurer M. Adjunct Immunotherapies for Tuberculosis. J Infect Dis 2012; 205 Suppl 2:S325-34. [DOI: 10.1093/infdis/jis197] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
118
|
MacHugh DE, Taraktsoglou M, Killick KE, Nalpas NC, Browne JA, DE Park S, Hokamp K, Gormley E, Magee DA. Pan-genomic analysis of bovine monocyte-derived macrophage gene expression in response to in vitro infection with Mycobacterium avium subspecies paratuberculosis. Vet Res 2012; 43:25. [PMID: 22455317 PMCID: PMC3411445 DOI: 10.1186/1297-9716-43-25] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/28/2012] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis is the causative agent of Johne's disease, an intestinal disease of ruminants with major economic consequences. Infectious bacilli are phagocytosed by host macrophages upon exposure where they persist, resulting in lengthy subclinical phases of infection that can lead to immunopathology and disease dissemination. Consequently, analysis of the macrophage transcriptome in response to M. avium subsp. paratuberculosis infection can provide valuable insights into the molecular mechanisms that underlie Johne's disease. Here, we investigate pan-genomic gene expression in bovine monocyte-derived macrophages (MDM) purified from seven age-matched females, in response to in vitro infection with M. avium subsp. paratuberculosis (multiplicity of infection 2:1) at intervals of 2 hours, 6 hours and 24 hours post-infection (hpi). Differentially expressed genes were identified by comparing the transcriptomes of the infected MDM to the non-infected control MDM at each time point (adjusted P-value threshold ≤ 0.10). 1050 differentially expressed unique genes were identified 2 hpi, with 974 and 78 differentially expressed unique genes detected 6 and 24 hpi, respectively. Furthermore, in the infected MDM the number of upregulated genes exceeded the number of downregulated genes at each time point, with the fold-change in expression for the upregulated genes markedly higher than that for the downregulated genes. Inspection and systems biology analysis of the differentially expressed genes revealed an enrichment of genes involved in the inflammatory response, cell signalling pathways and apoptosis. The transcriptional changes associated with cellular signalling and the inflammatory response may reflect different immuno-modulatory mechanisms that underlie host-pathogen interactions during infection.
Collapse
Affiliation(s)
- David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Maria Taraktsoglou
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephen DE Park
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Trinity College, Belfield, Dublin 2, Ireland
| | - Eamonn Gormley
- Tuberculosis Diagnostics and Immunology Research Centre, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
119
|
Abstract
Mycobacterium tuberculosis is an old enemy of the human race, with evidence of infection observed as early as 5000 years ago. Although more host-restricted than Mycobacterium bovis, which can infect all warm-blooded vertebrates, M. tuberculosis can infect, and cause morbidity and mortality in, several veterinary species as well. As M. tuberculosis is one of the earliest described bacterial pathogens, the literature describing this organism is vast and overwhelming. This review strives to distill what is currently known about this bacterium and the disease it causes for the veterinary pathologist.
Collapse
Affiliation(s)
- K Sakamoto
- Department of Pathology, College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Dr, Athens, GA 30602-7388, USA.
| |
Collapse
|
120
|
Trivedi A, Singh N, Bhat SA, Gupta P, Kumar A. Redox biology of tuberculosis pathogenesis. Adv Microb Physiol 2012; 60:263-324. [PMID: 22633061 DOI: 10.1016/b978-0-12-398264-3.00004-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the most successful human pathogens. Mtb is persistently exposed to numerous oxidoreductive stresses during its pathogenic cycle of infection and transmission. The distinctive ability of Mtb, not only to survive the redox stress manifested by the host but also to use it for synchronizing the metabolic pathways and expression of virulence factors, is central to its success as a pathogen. This review describes the paradigmatic redox and hypoxia sensors employed by Mtb to continuously monitor variations in the intracellular redox state and the surrounding microenvironment. Two component proteins, namely, DosS and DosT, are employed by Mtb to sense changes in oxygen, nitric oxide, and carbon monoxide levels, while WhiB3 and anti-sigma factor RsrA are used to monitor changes in intracellular redox state. Using these and other unidentified redox sensors, Mtb orchestrates its metabolic pathways to survive in nutrient-deficient, acidic, oxidative, nitrosative, and hypoxic environments inside granulomas or infectious lesions. A number of these metabolic pathways are unique to mycobacteria and thus represent potential drug targets. In addition, Mtb employs versatile machinery of the mycothiol and thioredoxin systems to ensure a reductive intracellular environment for optimal functioning of its proteins even upon exposure to oxidative stress. Mtb also utilizes a battery of protective enzymes, such as superoxide dismutase (SOD), catalase (KatG), alkyl hydroperoxidase (AhpC), and peroxiredoxins, to neutralize the redox stress generated by the host immune system. This chapter reviews the current understanding of mechanisms employed by Mtb to sense and neutralize redox stress and their importance in TB pathogenesis and drug development.
Collapse
|
121
|
Abstract
Mycobacterium tuberculosis (Mtb) is a metabolically flexible pathogen
that has the extraordinary ability to sense and adapt to the continuously changing host
environment experienced during decades of persistent infection. Mtb is
continually exposed to endogenous reactive oxygen species (ROS) as part of normal aerobic
respiration, as well as exogenous ROS and reactive nitrogen species (RNS) generated by the
host immune system in response to infection. The magnitude of tuberculosis (TB) disease is
further amplified by exposure to xenobiotics from the environment such as cigarette smoke
and air pollution, causing disruption of the intracellular
prooxidant–antioxidant balance. Both oxidative and reductive stresses induce
redox cascades that alter Mtb signal transduction, DNA and RNA synthesis,
protein synthesis and antimycobacterial drug resistance. As reviewed in this article,
Mtb has evolved specific mechanisms to protect itself against
endogenously produced oxidants, as well as defend against host and environmental oxidants
and reductants found specifically within the microenvironments of the lung. Maintaining an
appropriate redox balance is critical to the clinical outcome because several
antimycobacterial prodrugs are only effective upon bioreductive activation. Proper
homeostasis of oxido-reductive systems is essential for Mtb survival,
persistence and subsequent reactivation. The progress and remaining deficiencies in
understanding Mtb redox homeostasis are also discussed.
Collapse
|
122
|
Lamichhane G. Mycobacterium tuberculosis response to stress from reactive oxygen and nitrogen species. Front Microbiol 2011; 2:176. [PMID: 21904537 PMCID: PMC3163289 DOI: 10.3389/fmicb.2011.00176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/09/2011] [Indexed: 11/25/2022] Open
Affiliation(s)
- Gyanu Lamichhane
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
123
|
Abstract
Acute lung injury (ALI) involves the activation of multiple pathways leading to lung injury, resolution, and repair. Exploration of the roles of individual pathways in humans and animal models has led to a greater understanding of the complexity of ALI and the links between ALI and systemic multiorgan failure. However, there is still no integrated understanding of the initiation, the progression, and the repair of ALI. A better understanding is needed of how pathways interact in the human ALI syndrome and how complementary treatments can be used to modify the onset, severity, and outcome of ALI in humans.
Collapse
Affiliation(s)
- Thomas R Martin
- Medical Research Service, Division of Pulmonary and Critical Care Medicine, Department of Medicine, VA Puget Sound Medical Center, University of Washington School of Medicine, Seattle, WA 98108, USA.
| | | |
Collapse
|
124
|
Wroblewska-Seniuk K, Nowicki S, Lebouguénec C, Nowicki B, Yallampalli C. Maternal/fetal mortality and fetal growth restriction: role of nitric oxide and virulence factors in intrauterine infection in rats. Am J Obstet Gynecol 2011; 205:83.e1-7. [PMID: 21481839 PMCID: PMC3143246 DOI: 10.1016/j.ajog.2011.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 01/26/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The mechanism of infection-related deaths of pregnant rats and intrauterine growth restriction are not understood. We assessed whether nitric oxide (NO) has differential effects on infection with Escherichia coli Dr/Afa mutants that lack either AfaE or AfaD invasins. STUDY DESIGN Sprague-Dawley rats were infected intrauterinally with the clinical strain of E coli AfaE(+)D(+) or 1 of its isogenic mutants in the presence or absence of the NO synthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Maternal/fetal mortality rates, fetoplacental weight, and infection rates were evaluated. RESULTS Maternal and/or fetal death was associated with the presence of at least 1 virulence factor (AfaE(+)D(+)>AfaE(+)D(-)>AfaE(-)D(+)) and was increased by L-NAME treatment. The fetal and placental weights were lower than controls and were further reduced by L-NAME treatment. CONCLUSION These results demonstrate that NO enhanced AfaE- and AfaD-mediated virulence and plays an important role in Dr/Afa(+)E coli gestational tropism.
Collapse
Affiliation(s)
- Katarzyna Wroblewska-Seniuk
- Department of neonatal Infectious Diseases, Chair of Neonatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Stella Nowicki
- Departments of Obstetrics & Gynecology and Microbiology & Immunology Meharry Medical College, Nashville, Tennessee, USA
| | - Chantal Lebouguénec
- Institut Pasteur, Unité Pathogénie Bactérienne des Muqueuses, Département de Microbiologie, F-75015 Paris, France
- Institut Pasteur, Unité Biologie des Bactéries Pathogènes à Gram Positif, Département de Microbiologie, F-75015 Paris, France
- CNRS, URA2172, F-75015 Paris, France
| | - Bogdan Nowicki
- Departments of Obstetrics & Gynecology and Microbiology & Immunology Meharry Medical College, Nashville, Tennessee, USA
| | - Chandra Yallampalli
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
125
|
Qu HQ, Li Q, McCormick JB, Fisher-Hoch SP. What did we learn from the genome-wide association study for tuberculosis susceptibility? J Med Genet 2011; 48:217-8. [PMID: 21239447 PMCID: PMC3179256 DOI: 10.1136/jmg.2010.087361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hui-Qi Qu
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville campus, 80 Fort Brown, SPH Bldg, Brownsville, TX 78520, USA.
| | | | | | | |
Collapse
|
126
|
Abstract
Tuberculosis (TB) is a serious health issue in the developing world. Lack of knowledge on the etiological mechanisms of TB hinders the development of effective strategies for the treatment or prevention of TB disease. Human genetic study is an indispensable approach to understand the molecular basis of common diseases. Numerous efforts were made to screen the human genome for TB susceptibility by linkage mapping. A large number of candidate-based association studies of TB were conducted to examine the association of predicted functional DNA variations in candidate genes. Recently, the first genome-wide association study (GWAS) on TB was reported. The GWAS is a proof-of-principle evidence that justifies the genetic approach to understand TB. Further hypothesis-free efforts on TB research may renovate the traditional idea of TB genetic susceptibility as none of the candidate genes with important roles in containing Mycobacterium tuberculosis (MTB) infection was identified of association with active TB, whereas the TB-associated loci in the GWAS harbors no gene with function in MTB infection.
Collapse
Affiliation(s)
- Hui-Qi Qu
- Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston, School of Public Health, Brownsville, Texas 78520, USA.
| | | | | |
Collapse
|
127
|
Farhana A, Guidry L, Srivastava A, Singh A, Hondalus MK, Steyn AJC. Reductive stress in microbes: implications for understanding Mycobacterium tuberculosis disease and persistence. Adv Microb Physiol 2011; 57:43-117. [PMID: 21078441 DOI: 10.1016/b978-0-12-381045-8.00002-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is a remarkably successful pathogen that is capable of persisting in host tissues for decades without causing disease. Years after initial infection, the bacilli may resume growth, the outcome of which is active tuberculosis (TB). In order to establish infection, resist host defences and re-emerge, Mtb must coordinate its metabolism with the in vivo environmental conditions and nutrient availability within the primary site of infection, the lung. Maintaining metabolic homeostasis for an intracellular pathogen such as Mtb requires a carefully orchestrated series of oxidation-reduction reactions, which, if unbalanced, generate oxidative or reductive stress. The importance of oxidative stress in microbial pathogenesis has been appreciated and well studied over the past several decades. However, the role of its counterpart, reductive stress, has been largely ignored. Reductive stress is defined as an aberrant increase in reducing equivalents, the magnitude and identity of which is determined by host carbon source utilisation and influenced by the presence of host-generated gases (e.g. NO, CO, O(2) and CO(2)). This increased reductive power must be dissipated for bacterial survival. To recycle reducing equivalents, microbes have evolved unique electron 'sinks' that are distinct for their particular environmental niche. In this review, we describe the specific mechanisms that some microbes have evolved to dispel reductive stress. The intention of this review is to introduce the concept of reductive stress, in tuberculosis research in particular, in the hope of stimulating new avenues of investigation.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Microbiology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
128
|
Stanford J, Stanford C, Dlugovitzky D, Fiorenza G, Martinel-Lamas D, Selenscig D, Bogue C. Potential for immunotherapy with heat-killed Mycobacterium vaccae in respiratory medicine. Immunotherapy 2011; 1:933-47. [PMID: 20635912 DOI: 10.2217/imt.09.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy with Mycobacterium vaccae has been shown to be beneficial as part of the treatment for a wide range of diseases. In the respiratory system, the late airway response in bronchial asthma is modified by a single dose and bronchial aspects of hayfever are reduced allowing a major reduction in the use of bronchial dilators. In studies of advanced adenocarcinoma of the lung survival is increased by an average of 4 months when up to five doses of M. vaccae are added to the course of chemotherapy. The quality of life of cancer patients receiving immunotherapy with M. vaccae is improved, even if survival is not increased. It is suggested that the mechanism of action of immunotherapy with heat-killed, borate-buffered M. vaccae is likely to be very similar in all these diseases for which human pulmonary tuberculosis provides a model. In this study, additional immunological data are reported from material stored from an earlier study of immunotherapy for pulmonary tuberculosis to help complete the information on the way that treatment with three monthly injections of heat-killed, borate-buffered M. vaccae (SRL172) may act.
Collapse
Affiliation(s)
- John Stanford
- Centre for Infectious Diseases and International Health, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| | | | | | | | | | | | | |
Collapse
|
129
|
Qidwai T, Jamal F. Inducible nitric oxide synthase (iNOS) gene polymorphism and disease prevalence. Scand J Immunol 2011; 72:375-87. [PMID: 21039732 DOI: 10.1111/j.1365-3083.2010.02458.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitric oxide synthase gene is present on chromosome 17 and has been implicated in a wide variety of diseases. The nitric oxide synthase enzyme forms nitric oxide that besides being a signalling molecule plays an important role in host immune response. Inducible nitric oxide synthase expression is regulated at the level of transcription. Single-nucleotide polymorphisms, copy number variation and simple sequence repeat are important variations that have been reported in human genome. The presence of such variations in the regulatory region affects the level of gene product in the cell, while variation in the coding region influences the structure of proteins and its activity. This alteration in the level of gene product and the structure of the protein molecule might be responsible for the final outcome of genetic as well as infectious diseases. In the present manuscript, we review the role of inducible nitric oxide synthase (iNOS) gene polymorphisms in different diseases and populations. The iNOS gene with one pentanucleotide repeat, two single-nucleotide polymorphisms in promoter region and one polymorphism in exon 16 has been implicated in several diseases. We have also predicted several polymorphisms in the promoter region of iNOS computationally, which might affect the transcription factor binding site (TFBS) and hypothesize that these polymorphisms have some putative role in the outcome of disease(s).
Collapse
Affiliation(s)
- T Qidwai
- Department of Biochemistry, Dr. R.M.L. Avadh University, Faizabad, India
| | | |
Collapse
|
130
|
Bassaganya-Riera J, Song R, Roberts PC, Hontecillas R. PPAR-gamma activation as an anti-inflammatory therapy for respiratory virus infections. Viral Immunol 2011; 23:343-52. [PMID: 20712478 DOI: 10.1089/vim.2010.0016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Newly emerged influenza viruses have attracted extensive attention due to their high infectivity, proinflammatory actions, and potential to induce worldwide pandemics. Frequent mutations and gene reassortments between viruses complicate the development of protective vaccines and antiviral therapeutics. In contrast, targeting the host response for the development of novel cost-effective, broad-based prophylactic or therapeutic agents holds greater promise. Since inflammation often parallels the development of productive immune responses, virus-induced pulmonary inflammation and injury represents an additional challenge to the development of broad-based immunotherapeutics. Excessive inflammatory responses to respiratory viruses, also known as "cytokine storm," are largely due to immune dysregulation that manifests as proinflammatory cytokine secretion. In addition to modulating lipid and glucose metabolism, peroxisome proliferator-activated receptors (PPAR) play important roles in antagonizing core inflammatory pathways such as NF-kappaB, AP1, and STAT. Their role in regulating inflammatory responses caused by pulmonary pathogens is receiving increasing attention, setting the stage for the discovery of novel applications for anti-diabetic and lipid-lowering drugs. This review focuses on the potential use of PPAR-gamma agonists to downregulate the inflammatory responses to respiratory virus-related pulmonary inflammation.
Collapse
Affiliation(s)
- Josep Bassaganya-Riera
- Nutritional Immunology and Molecular Medicine Laboratory, Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
131
|
Gideon HP, Wilkinson KA, Rustad TR, Oni T, Guio H, Kozak RA, Sherman DR, Meintjes G, Behr MA, Vordermeier HM, Young DB, Wilkinson RJ. Hypoxia induces an immunodominant target of tuberculosis specific T cells absent from common BCG vaccines. PLoS Pathog 2010; 6:e1001237. [PMID: 21203487 PMCID: PMC3009603 DOI: 10.1371/journal.ppat.1001237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 11/22/2010] [Indexed: 12/15/2022] Open
Abstract
M. tuberculosis (MTB) species-specific antigenic determinants of the human T cell response are important for immunodiagnosis and vaccination. As hypoxia is a stimulus in chronic tuberculosis infection, we analyzed transcriptional profiles of MTB subject to 168 hours of hypoxia to test the hypothesis that upregulation by hypoxia might result in gene products being recognized as antigens. We identified upregulation of two region of difference (RD) 11 (Rv2658C and Rv2659c), and one RD2 (Rv1986) absent from commonly used BCG strains. In MTB infected persons, the IL-2 ELISpot response to Rv1986 peptides was several times greater than the corresponding IFN-γ response to the reference immunodominant ESAT-6 or CFP-10 antigens. The IL-2 response was confined to two epitopic regions containing residues 61-80 and 161-180. The biggest population of IL-2 secreting T cells was single cytokine positive central memory T cells. The IL-2 response to live MTB bacilli lacking Rv1986 was significantly lower than the response to wild type or mutant complemented with Rv1986. In addition, the IL-2 response to Rv1986 was significantly lower in HIV-TB co-infected persons than in HIV uninfected persons, and significantly increased during antiretroviral therapy. These findings demonstrate that Rv1986 is an immunodominant target of memory T cells and is therefore of relevance when considering the partial efficacy of currently used BCG vaccines and provide evidence for a clinical trial comparing BCG strains.
Collapse
Affiliation(s)
| | - Katalin Andrea Wilkinson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Tige R. Rustad
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Tolu Oni
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Division of Medicine and Center for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Heinner Guio
- Division of Medicine and Center for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | | | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Graeme Meintjes
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | | | | | - Douglas Brownlee Young
- MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
- Division of Medicine and Center for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| | - Robert John Wilkinson
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa
- MRC National Institute for Medical Research, Mill Hill, London, United Kingdom
- Division of Medicine and Center for Molecular Microbiology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
132
|
Kuang Z, Lewis RS, Curtis JM, Zhan Y, Saunders BM, Babon JJ, Kolesnik TB, Low A, Masters SL, Willson TA, Kedzierski L, Yao S, Handman E, Norton RS, Nicholson SE. The SPRY domain-containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation. ACTA ACUST UNITED AC 2010; 190:129-41. [PMID: 20603330 PMCID: PMC2911665 DOI: 10.1083/jcb.200912087] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages lacking SPSB2 have increased NO production and enhanced pathogen-killing capabilities due to decreased ubiquitin-mediated destruction of iNOS. Inducible nitric oxide (NO) synthase (iNOS; NOS2) produces NO and related reactive nitrogen species, which are critical effectors of the innate host response and are required for the intracellular killing of pathogens such as Mycobacterium tuberculosis and Leishmania major. We have identified SPRY domain–containing SOCS (suppressor of cytokine signaling) box protein 2 (SPSB2) as a novel negative regulator that recruits an E3 ubiquitin ligase complex to polyubiquitinate iNOS, resulting in its proteasomal degradation. SPSB2 interacts with the N-terminal region of iNOS via a binding interface on SPSB2 that has been mapped by nuclear magnetic resonance spectroscopy and mutational analyses. SPSB2-deficient macrophages showed prolonged iNOS expression, resulting in a corresponding increase in NO production and enhanced killing of L. major parasites. These results lay the foundation for the development of small molecule inhibitors that could disrupt the SPSB–iNOS interaction and thus prolong the intracellular lifetime of iNOS, which may be beneficial in chronic and persistent infections.
Collapse
Affiliation(s)
- Zhihe Kuang
- The Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Stokes RW, Waddell SJ. Adjusting to a new home: Mycobacterium tuberculosis gene expression in response to an intracellular lifestyle. Future Microbiol 2010; 4:1317-35. [PMID: 19995191 DOI: 10.2217/fmb.09.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis remains the most significant single species of bacteria causing disease in mankind. The ability of M. tuberculosis to survive and replicate within host macrophages is a pivotal step in its pathogenesis. Understanding the microenvironments that M. tuberculosis encounters within the macrophage and the adaptations that the bacterium undergoes to facilitate its survival will lead to insights into possible therapeutic targets for improved treatment of tuberculosis. This is urgently needed with the emergence of multi- and extensively drug resistant strains of M. tuberculosis. Significant advances have been made in understanding the macrophage response on encountering M. tuberculosis. Complementary information is also accumulating regarding the counter responses of M. tuberculosis during the various stages of its interactions with the host. As such, a picture is emerging delineating the gene expression of intracellular M. tuberculosis at different stages of the interaction with macrophages.
Collapse
Affiliation(s)
- Richard W Stokes
- Department of Paediatrics, University of British Columbia, British Columbia, Canada.
| | | |
Collapse
|
134
|
|
135
|
Abstract
When Mycobacterium tuberculosis infects humans, about 20% of those infected actually develop tuberculosis (TB). In Japan, the incidence of TB in 2008 was 24,760 cases (19.4/100,000 persons) and the rate has been decreasing gradually, but is still higher than in the USA, Holland, and Belgium, for example. Histologically, tuberculosis displays exudative inflammation, proliferative inflammation and productive inflammation depending on the time course. In productive inflammation, granulomatous lesions with necrotic centers are formed. The typical granulomas consist of epithelioid macrophages, Langhans' multinucleated giant cells, lymphocytes and fibroblasts, and the process of their formation involves many cytokines, chemokines and transcription factors. These findings have been derived primarily from animal experiments utilizing an airborne infection apparatus. The conditions for airborne infection have been described in detail elsewhere. This mini-review focuses on what has been found through animal experiments, and also indicates areas for which data are not currently available.
Collapse
Affiliation(s)
- Isamu Sugawara
- The Research Institute of Tuberculosis, Kiyose, Tokyo, Japan.
| |
Collapse
|
136
|
Lee JS, Yang CS, Shin DM, Yuk JM, Son JW, Jo EK. Nitric Oxide Synthesis is Modulated by 1,25-Dihydroxyvitamin D3 and Interferon-gamma in Human Macrophages after Mycobacterial Infection. Immune Netw 2009; 9:192-202. [PMID: 20157607 PMCID: PMC2816953 DOI: 10.4110/in.2009.9.5.192] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 09/18/2009] [Accepted: 09/19/2009] [Indexed: 01/14/2023] Open
Abstract
Background Little information is available the role of Nitric Oxide (NO) in host defenses during human tuberculosis (TB) infection. We investigated the modulating factor(s) affecting NO synthase (iNOS) induction in human macrophages. Methods Both iNOS mRNA and protein that regulate the growth of mycobacteria were determined using reverase transcriptase-polymerase chain reaction and western blot analysis. The upstream signaling pathways were further investigated using iNOS specific inhibitors. Results Here we show that combined treatment with 1,25-dihydroxyvitamin D3 (1,25-D3) and Interferon (IFN)-γ synergistically enhanced NO synthesis and iNOS expression induced by Mycobacterium tuberculosis (MTB) or by its purified protein derivatives in human monocyte-derived macrophages. Both the nuclear factor-κB and MEK1-ERK1/2 pathways were indispensable in the induction of iNOS expression, as shown in toll like receptor 2 stimulation. Further, the combined treatment with 1,25-D3 and IFN-γ was more potent than either agent alone in the inhibition of intracellular MTB growth. Notably, this enhanced effect was not explained by increased expression of cathelicidin, a known antimycobacterial effector of 1,25-D3. Conclusion These data support a key role of NO in host defenses against TB and identify novel modulating factors for iNOS induction in human macrophages.
Collapse
Affiliation(s)
- Ji-Sook Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | | | | | | | | | | |
Collapse
|
137
|
Abstract
Engagement of surface receptors contributes to the antimicrobial activity of human immune cells. We show here that infection of human monocyte-derived macrophages (MDM) with live Mycobacterium avium induced the expression of CD23 on their membrane. Subsequent cross-linking of surface CD23 by appropriate ligands induced a dose-dependent antibacterial activity of MDM and the elimination of most infected cells. The stimulation of inducible nitric oxide synthase-dependent generation of NO from MDM after CD23 activation played a major role during their anti-M. avium activity. CD23 activation also induced tumor necrosis factor alpha (TNF-alpha) production from MDM. Mycobacteria reduction was partially inhibited by the addition of neutralizing anti-TNF-alpha antibody to cell cultures without affecting NO levels, which suggested the role of this cytokine for optimal antimicrobial activity. Finally, interleukin-10, a Th2 cytokine known to downregulate CD23 pathway, is shown to decrease NO generation and mycobacteria elimination by macrophages. Therefore, (i) infection with M. avium promotes functional surface CD23 expression on human macrophages and (ii) subsequent signaling of this molecule contributes to the antimicrobial activity of these cells through an NO- and TNF-alpha-dependent pathway. This study reveals a new human immune response mechanism to counter mycobacterial infection involving CD23 and its related ligands.
Collapse
|
138
|
Dawson R, Condos R, Tse D, Huie ML, Ress S, Tseng CH, Brauns C, Weiden M, Hoshino Y, Bateman E, Rom WN. Immunomodulation with recombinant interferon-gamma1b in pulmonary tuberculosis. PLoS One 2009; 4:e6984. [PMID: 19753300 PMCID: PMC2737621 DOI: 10.1371/journal.pone.0006984] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Accepted: 08/04/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Current treatment regimens for pulmonary tuberculosis require at least 6 months of therapy. Immune adjuvant therapy with recombinant interferon-gamma1b (rIFN-gammab) may reduce pulmonary inflammation and reduce the period of infectivity by promoting earlier sputum clearance. METHODOLOGY/PRINCIPAL FINDINGS We performed a randomized, controlled clinical trial of directly observed therapy (DOTS) versus DOTS supplemented with nebulized or subcutaneously administered rIFN-gamma1b over 4 months to 89 patients with cavitary pulmonary tuberculosis. Bronchoalveolar lavage (BAL) and blood were sampled at 0 and 4 months. There was a significant decline in levels of inflammatory cytokines IL-1beta, IL-6, IL-8, and IL-10 in 24-hour BAL supernatants only in the nebulized rIFN-gamma1b group from baseline to week 16. Both rIFN-gamma1b groups showed significant 3-fold increases in CD4+ lymphocyte response to PPD at 4 weeks. There was a significant (p = 0.03) difference in the rate of clearance of Mtb from the sputum smear at 4 weeks for the nebulized rIFN-gamma1b adjuvant group compared to DOTS or DOTS with subcutaneous rIFN-gamma1b. In addition, there was significant reduction in the prevalence of fever, wheeze, and night sweats at 4 weeks among patients receiving rFN-gamma1b versus DOTS alone. CONCLUSION Recombinant interferon-gamma1b adjuvant therapy plus DOTS in cavitary pulmonary tuberculosis can reduce inflammatory cytokines at the site of disease, improve clearance of Mtb from the sputum, and improve constitutional symptoms. TRIAL REGISTRATION ClinicalTrials.gov NCT00201123.
Collapse
Affiliation(s)
- Rod Dawson
- Division of Pulmonology, Department of Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Rany Condos
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| | - Doris Tse
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| | - Maryann L. Huie
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| | - Stanley Ress
- Division of Immunology, Department of Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Chi-Hong Tseng
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| | - Clint Brauns
- Division of Immunology, Department of Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - Michael Weiden
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| | - Yoshihiko Hoshino
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| | - Eric Bateman
- Division of Pulmonology, Department of Medicine, Health Sciences Faculty, University of Cape Town, Cape Town, South Africa
| | - William N. Rom
- Departments of Medicine and Environmental Medicine and Bellevue Chest Service, NYU School of Medicine, New York, New York, United States of America
| |
Collapse
|
139
|
Haynes RL, Folkerth RD, Trachtenberg FL, Volpe JJ, Kinney HC. Nitrosative stress and inducible nitric oxide synthase expression in periventricular leukomalacia. Acta Neuropathol 2009; 118:391-9. [PMID: 19415311 PMCID: PMC2909016 DOI: 10.1007/s00401-009-0540-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/14/2009] [Accepted: 04/14/2009] [Indexed: 12/13/2022]
Abstract
Periventricular leukomalacia (PVL) is a lesion of the immature cerebral white matter in the perinatal period and associated predominantly with prematurity and cerebral ischemia/reperfusion as well as inflammation due to maternofetal infection. It consists of focal necrosis in the periventricular region and diffuse gliosis with microglial activation and premyelinating oligodendrocyte (pre-OL) injury in the surrounding white matter. We previously showed nitrotyrosine in pre-OLs in PVL, suggesting involvement of nitrosative stress in this disorder. Here we hypothesize that inducible nitric oxide synthase (iNOS) expression is increased in PVL relative to controls. Using immunocytochemistry in human archival tissue, the density of iNOS-expressing cells was determined in the cerebral white matter of 15 PVL cases [29-51 postconceptional (PC) weeks] and 16 control cases (20-144 PC weeks). Using a standardization score of 0-3, the density of iNOS-positive cells was significantly increased in the diffuse component of PVL (score of 1.8 +/- 0.3) cases compared to controls (score of 0.7 +/- 0.3) (P = 0.01). Intense iNOS expression occurred in reactive astrocytes in acute through chronic stages and in activated microglia primarily in the acute stage, suggesting an early role for microglial iNOS in PVL's pathogenesis. This study supports an important role for iNOS-induced nitrosative stress in the reactive/inflammatory component of PVL.
Collapse
Affiliation(s)
- Robin L Haynes
- Departments of Pathology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
140
|
Leandro ACCS, Rocha MA, Cardoso CSA, Bonecini-Almeida MG. Genetic polymorphisms in vitamin D receptor, vitamin D-binding protein, Toll-like receptor 2, nitric oxide synthase 2, and interferon-gamma genes and its association with susceptibility to tuberculosis. Braz J Med Biol Res 2009; 42:312-22. [PMID: 19330258 DOI: 10.1590/s0100-879x2009000400002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 02/16/2009] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium tuberculosis kills more people than any other single pathogen, with an estimated one-third of the world's population being infected. Among those infected, only 10% will develop the disease. There are several demonstrations that susceptibility to tuberculosis is linked to host genetic factors in twins, family and associated-based case control studies. In the past years, there has been dramatic improvement in our understanding of the role of innate and adaptive immunity in the human host defense to tuberculosis. To date, attention has been paid to the role of genetic host and parasitic factors in tuberculosis pathogenesis mainly regarding innate and adaptive immune responses and their complex interactions. Many studies have focused on the candidate genes for tuberculosis susceptibility ranging from those expressed in several cells from the innate or adaptive immune system such as Toll-like receptors, cytokines (TNF-alpha, TGF-beta, IFN-gamma, IL-1b, IL-1RA, IL-12, IL-10), nitric oxide synthase and vitamin D, both nuclear receptors and their carrier, the vitamin D-binding protein (VDBP). The identification of possible genes that can promote resistance or susceptibility to tuberculosis could be the first step to understanding disease pathogenesis and can help to identify new tools for treatment and vaccine development. Thus, in this mini-review, we summarize the current state of investigation on some of the genetic determinants, such as the candidate polymorphisms of vitamin D, VDBP, Toll-like receptor, nitric oxide synthase 2 and interferon-gamma genes, to generate resistance or susceptibility to M. tuberculosis infection.
Collapse
Affiliation(s)
- A C C S Leandro
- Laboratório de Imunologia e Imunogenética, Instituto de Pesquisa Clínica Evandro Chagas, FIOCRUZ, Rio de Janeiro, RJ, Brasil.
| | | | | | | |
Collapse
|
141
|
Hernandez-Pando R, Orozco H, Aguilar D. Factors that deregulate the protective immune response in tuberculosis. Arch Immunol Ther Exp (Warsz) 2009; 57:355-67. [PMID: 19707720 DOI: 10.1007/s00005-009-0042-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/16/2009] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a chronic infectious disease which essentially affects the lungs and produces profound abnormalities on the immune system. Although most people infected by the tubercle bacillus (90%) do not develop the disease during their lifetime, when there are alterations in the immune system, such as co-infection with HIV, malnutrition, or diabetes, the risk of developing active disease increases considerably. Interestingly, during the course of active disease, even in the absence of immunosuppressive conditions, there is a profound and prolonged suppression of Mycobacterium tuberculosis-specific protective immune responses. Several immune factors can contribute to downregulate the protective immunity, permitting disease progression. In general, many of these factors are potent anti-inflammatory molecules that are probably overproduced with the intention to protect against tissue damage, but the consequence of this response is a decline in protective immunity facilitating bacilli growth and disease progression. Here the most significant participants in protective immunity are reviewed, in particular the factors that deregulate protective immunity in TB. Their manipulation as novel forms of immunotherapy are also briefly commented.
Collapse
Affiliation(s)
- Rogelio Hernandez-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Tlalpan, Mexico City, CP-14000, México.
| | | | | |
Collapse
|
142
|
Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LCO, Santos AR, Nociari M, Zhu H, Perez-Sweeney BM, Bang H, Ni Q, Huang J, Gibson AL, Flores VC, Pecanha LR, Kritski AL, Lapa e Silva JR, Ho JL. Tuberculosis Is Associated with a Down-Modulatory Lung Immune Response That Impairs Th1-Type Immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:718-31. [DOI: 10.4049/jimmunol.0801212] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
143
|
Convergence of IL-1beta and VDR activation pathways in human TLR2/1-induced antimicrobial responses. PLoS One 2009; 4:e5810. [PMID: 19503839 PMCID: PMC2686169 DOI: 10.1371/journal.pone.0005810] [Citation(s) in RCA: 219] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/05/2009] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial effector mechanisms are central to the function of the innate immune response in host defense against microbial pathogens. In humans, activation of Toll-like receptor 2/1 (TLR2/1) on monocytes induces a vitamin D dependent antimicrobial activity against intracellular mycobacteria. Here, we report that TLR activation of monocytes triggers induction of the defensin beta 4 gene (DEFB4), requiring convergence of the IL-1β and vitamin D receptor (VDR) pathways. TLR2/1 activation triggered IL-1β activity, involving the upregulation of both IL-1β and IL-1 receptor, and downregulation of the IL-1 receptor antagonist. TLR2/1L induction of IL-1β was required for upregulation of DEFB4, but not cathelicidin, whereas VDR activation was required for expression of both antimicrobial genes. The differential requirements for induction of DEFB4 and cathelicidin were reflected by differences in their respective promoter regions; the DEFB4 promoter had one vitamin D response element (VDRE) and two NF-κB sites, whereas the cathelicidin promoter had three VDREs and no NF-κB sites. Transfection of NF-κB into primary monocytes synergized with 1,25D3 in the induction of DEFB4 expression. Knockdown of either DEFB4 or cathelicidin in primary monocytes resulted in the loss of TLR2/1-mediated antimicrobial activity against intracellular mycobacteria. Therefore, these data identify a novel mechanism of host defense requiring the induction of IL-1β in synergy with vitamin D activation, for the TLR-induced antimicrobial pathway against an intracellular pathogen.
Collapse
|
144
|
Kobzik L. Translating NO biology into clinical advances: still searching for the right dictionary? Am J Respir Cell Mol Biol 2009; 41:9-13. [PMID: 19448151 DOI: 10.1165/rcmb.2009-0156tr] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Lester Kobzik
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
145
|
Rahman S, Gudetta B, Fink J, Granath A, Ashenafi S, Aseffa A, Derbew M, Svensson M, Andersson J, Brighenti SG. Compartmentalization of immune responses in human tuberculosis: few CD8+ effector T cells but elevated levels of FoxP3+ regulatory t cells in the granulomatous lesions. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2211-24. [PMID: 19435796 DOI: 10.2353/ajpath.2009.080941] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immune responses were assessed at the single-cell level in lymph nodes from children with tuberculous lymphadenitis. Tuberculosis infection was associated with tissue remodeling of lymph nodes as well as altered cellular composition. Granulomas were significantly enriched with CD68+ macrophages expressing the M. tuberculosis complex-specific protein antigen MPT64 and inducible nitric oxide synthase. There was a significant increase in CD8+ cytolytic T cells surrounding the granuloma; however, CD8+ T cells expressed low levels of the cytolytic and antimicrobial effector molecules perforin and granulysin in the granulomatous lesions. Quantitative real-time mRNA analysis revealed that interferon-gamma, tumor necrosis factor-alpha, and interleukin-17 were not up-regulated in infected lymph nodes, but there was a significant induction of both transforming growth factor-beta and interleukin-13. In addition, granulomas contained an increased number of CD4+FoxP3+ T cells co-expressing the immunoregulatory cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumor necrosis factor receptor molecules. Low numbers of CD8+ T cells in the lesions correlated with high levels of transforming growth factor-beta and FoxP3+ regulatory T cells, suggesting active immunosuppression at the local infection site. Compartmentalization and skewing of the immune response toward a regulatory phenotype may result in an uncoordinated effector T-cell response that reduces granule-mediated killing of M. tuberculosis-infected cells and subsequent disease control.
Collapse
Affiliation(s)
- Sayma Rahman
- Center for Infectious Medicine, F-59, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Yang CS, Yuk JM, Jo EK. The role of nitric oxide in mycobacterial infections. Immune Netw 2009; 9:46-52. [PMID: 20107543 PMCID: PMC2803309 DOI: 10.4110/in.2009.9.2.46] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022] Open
Abstract
Although tuberculosis poses a significant health threat to the global population, it is a challenge to develop new and effective therapeutic strategies. Nitric oxide (NO) and inducible NO synthase (iNOS) are important in innate immune responses to various intracellular bacterial infections, including mycobacterial infections. It is generally recognized that reactive nitrogen intermediates play an effective role in host defense mechanisms against tuberculosis. In a murine model of tuberculosis, NO plays a crucial role in antimycobacterial activity; however, it is controversial whether NO is critically involved in host defense against Mycobacterium tuberculosis in humans. Here, we review the roles of NO in host defense against murine and human tuberculosis. We also discuss the specific roles of NO in the central nervous system and lung epithelial cells during mycobacterial infection. A greater understanding of these defense mechanisms in human tuberculosis will aid in the development of new strategies for the treatment of disease.
Collapse
Affiliation(s)
- Chul-Su Yang
- Department of Microbiology and Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, Korea
| | | | | |
Collapse
|
147
|
Bansal K, Narayana Y, Patil SA, Balaji KN. M. bovis BCG induced expression of COX-2 involves nitric oxide-dependent and -independent signaling pathways. J Leukoc Biol 2009; 85:804-16. [PMID: 19228814 DOI: 10.1189/jlb.0908561] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In a multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) by Mycobacterium bovis bacillus Calmette-Guerin (BCG) may act as an important influencing factor for the effective host immunity. We here demonstrate that M. bovis BCG-triggered TLR2-dependent signaling leads to COX-2 and PGE2 expression in vitro in macrophages and in vivo in mice. Further, the presence of PGE2 could be demonstrated in sera or cerebrospinal fluid of tuberculosis patients. The induced COX-2 expression in macrophages is dependent on NF-kappaB activation, which is mediated by inducible NO synthase (iNOS)/NO-dependent participation of the members of Notch1-PI-3K signaling cascades as well as iNOS-independent activation of ERK1/2 and p38 MAPKs. Inhibition of iNOS activity abrogated the M. bovis BCG ability to trigger the generation of Notch1 intracellular domain (NICD), a marker for Notch1 signaling activation, as well as activation of the PI-3K signaling cascade. On the contrary, treatment of macrophages with 3-morpholinosydnonimine, a NO donor, resulted in a rapid increase in generation of NICD, activation of PI-3K pathway, as well as the expression of COX-2. Stable expression of NICD in RAW 264.7 macrophages resulted in augmented expression of COX-2. Further, signaling perturbations suggested the involvement of the cross-talk of Notch1 with members with the PI-3K signaling cascade. These results implicate the dichotomous nature of TLR2 signaling during M. bovis BCG-triggered expression of COX-2. In this perspective, we propose the involvement of iNOS/NO as one of the obligatory, early, proximal signaling events during M. bovis BCG-induced COX-2 expression in macrophages.
Collapse
Affiliation(s)
- Kushagra Bansal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
148
|
Ouellet H, Lang J, Couture M, Ortiz de Montellano PR. Reaction of Mycobacterium tuberculosis cytochrome P450 enzymes with nitric oxide. Biochemistry 2009; 48:863-72. [PMID: 19146393 PMCID: PMC2681326 DOI: 10.1021/bi801595t] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the initial growth infection stage of Mycobacterium tuberculosis (Mtb), (*)NO produced by host macrophages inhibits heme-containing terminal cytochrome oxidases, inactivates iron/sulfur proteins, and promotes entry into latency. Here we evaluate the potential of (*)NO as an inhibitor of Mtb cytochrome P450 enzymes, as represented by CYP130, CYP51, and the two previously uncharacterized enzymes CYP125 and CYP142. Using UV-visible absorption, resonance Raman, and stopped-flow spectroscopy, we investigated the reactions of (*)NO with these heme proteins in their ferric resting form. (*)NO coordinates tightly to CYP125 and CYP142 (submicromolar) and with a lower affinity (micromolar) to CYP130 and CYP51. Anaerobic reduction of the ferric-NO species with sodium dithionite led to the formation of two spectrally distinct classes of five-coordinate ferrous-NO complexes. Exposure of these species to O(2) revealed that the ferrous-NO forms of CYP125 and CYP142 are labile and convert back to the ferric state within a few minutes, whereas ferrous CYP130 and CYP51 bind (*)NO almost irreversibly. This work clearly indicates that, at physiological concentrations (approximately 1 microM), (*)NO would impair the activity of CYP130 and CYP51, whereas CYP125 and CYP142 are more resistant. Selective P450 inhibition may contribute to the inhibitory effects of (*)NO on Mtb growth.
Collapse
|
149
|
Lee WL, Gold B, Darby C, Brot N, Jiang X, de Carvalho LPS, Wellner D, St John G, Jacobs WR, Nathan C. Mycobacterium tuberculosis expresses methionine sulphoxide reductases A and B that protect from killing by nitrite and hypochlorite. Mol Microbiol 2009; 71:583-93. [PMID: 19040639 DOI: 10.1111/j.1365-2958.2008.06548.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Methionine sulphoxide reductases (Msr) reduce methionine sulphoxide to methionine and protect bacteria against reactive oxygen intermediates (ROI) and reactive nitrogen intermediates (RNI). Many organisms express both MsrA, active against methionine-(S)-sulphoxide, and MsrB, active against methionine-(R)-sulphoxide. Mycobacterium tuberculosis (Mtb) expresses MsrA, which protects DeltamsrA-Escherichia coli from ROI and RNI. However, the function of MsrA in Mtb has not been defined, and it is unknown whether Mtb expresses MsrB. We identified MsrB as the protein encoded by Rv2674 in Mtb and confirmed the distinct stereospecificities of recombinant Mtb MsrA and MsrB. We generated strains of Mtb deficient in MsrA, MsrB or both and complemented the mutants. Lysates of singly deficient strains displayed half as much Msr activity as wild type against N-acetyl methionine sulphoxide. However, in contrast to other bacteria, single mutants were no more vulnerable than wild type to killing by ROI/RNI. Only Mtb lacking both MsrA and MsrB was more readily killed by nitrite or hypochlorite. Thus, MsrA and MsrB contribute to the enzymatic defences of Mtb against ROI and RNI.
Collapse
Affiliation(s)
- Warren L Lee
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Free intracellular Ca2+ regulates bacterial lipopolysaccharide induction of iNOS in human macrophages. Immunobiology 2009; 214:143-52. [DOI: 10.1016/j.imbio.2008.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 05/15/2008] [Accepted: 06/06/2008] [Indexed: 11/23/2022]
|