101
|
Liu S, Mukadam Z, Scott SB, Sarma SC, Titirici MM, Chan K, Govindarajan N, Stephens IEL, Kastlunger G. Unraveling the reaction mechanisms for furfural electroreduction on copper. EES CATALYSIS 2023; 1:539-551. [PMID: 37426696 PMCID: PMC10323714 DOI: 10.1039/d3ey00040k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/27/2023] [Indexed: 07/11/2023]
Abstract
Electrochemical routes for the valorization of biomass-derived feedstock molecules offer sustainable pathways to produce chemicals and fuels. However, the underlying reaction mechanisms for their electrochemical conversion remain elusive. In particular, the exact role of proton-electron coupled transfer and electrocatalytic hydrogenation in the reaction mechanisms for biomass electroreduction are disputed. In this work, we study the reaction mechanism underlying the electroreduction of furfural, an important biomass-derived platform chemical, combining grand-canonical (constant-potential) density functional theory-based microkinetic simulations and pH dependent experiments on Cu under acidic conditions. Our simulations indicate the second PCET step in the reaction pathway to be the rate- and selectivity-determining step for the production of the two main products of furfural electroreduction on Cu, i.e., furfuryl alcohol and 2-methyl furan, at moderate overpotentials. We further identify the source of Cu's ability to produce both products with comparable activity in their nearly equal activation energies. Furthermore, our microkinetic simulations suggest that surface hydrogenation steps play a minor role in determining the overall activity of furfural electroreduction compared to PCET steps due to the low steady-state hydrogen coverage predicted under reaction conditions, the high activation barriers for surface hydrogenation and the observed pH dependence of the reaction. As a theoretical guideline, low pH (<1.5) and moderate potential (ca. -0.5 V vs. SHE) conditions are suggested for selective 2-MF production.
Collapse
Affiliation(s)
- Sihang Liu
- Department of Physics, Catalysis Theory Center, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Zamaan Mukadam
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Soren B Scott
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Saurav Ch Sarma
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
| | - Maria-Magdalena Titirici
- Department of Chemical Engineering, Imperial College London London SW7 2AZ England UK
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University Sendai Miyagi 980-8577 Japan
| | - Karen Chan
- Department of Physics, Catalysis Theory Center, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| | - Nitish Govindarajan
- Department of Physics, Catalysis Theory Center, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
- Materials Science Division, Lawrence Livermore National Laboratory Livermore California 94550 USA
| | - Ifan E L Stephens
- Department of Materials, Royal School of Mines, Imperial College London London SW27 AZ England UK
| | - Georg Kastlunger
- Department of Physics, Catalysis Theory Center, Technical University of Denmark (DTU) 2800 Kgs. Lyngby Denmark
| |
Collapse
|
102
|
Roller D, Rappe AM, Kronik L, Hellman O. Finite Difference Interpolation for Reduction of Grid-Related Errors in Real-Space Pseudopotential Density Functional Theory. J Chem Theory Comput 2023. [PMID: 37384777 DOI: 10.1021/acs.jctc.3c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The real-space pseudopotential approach is a well-known method for large-scale density functional theory (DFT) calculations. One of its main limitations, however, is the introduction of errors associated with the positioning of the underlying real-space grid, a phenomenon usually known as the "egg-box" effect. The effect can be controlled by using a finer grid, but this raises the cost of the calculations or even undermines their feasibility altogether. Therefore, there is ongoing interest in the reduction of the effect per a given real-space grid. Here, we present a finite difference interpolation of electron orbitals as a means of exploiting the high resolution of the pseudopotential to reduce egg-box effects systematically. We implement the method in PARSEC, a finite difference real-space pseudopotential DFT code, and demonstrate error mitigation and improved convergence at a low additional computational cost.
Collapse
Affiliation(s)
- Deena Roller
- Weizmann Institute of Science, Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Leeor Kronik
- Weizmann Institute of Science, Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Olle Hellman
- Weizmann Institute of Science, Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 76100, Israel
| |
Collapse
|
103
|
Cao C, Xue S, Liu F, Wu Q, Wu J, Zhang Z, Guan C, Cong WY, Lu YB. Studies on the Light-Induced Phase Transition of CsPbBr 3 Metal Halide Perovskite Materials. ACS OMEGA 2023; 8:20096-20101. [PMID: 37305233 PMCID: PMC10249393 DOI: 10.1021/acsomega.3c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
We investigate the internal mechanism of the light-induced phase transition of CsPbBr3 perovskite materials via density functional theory simulations. Although CsPbBr3 tends to appear in the orthorhombic structure, it can be changed easily by external stimulus. We find that the transition of photogenerated carriers plays the decisive role in this process. When the photogenerated carriers transit from the valence band maximum to conduction band minimum in the reciprocal space, they actually transit from Br ions to Pb ions in the real space, which are taken away by the Br atoms with higher electronegativity from Pb atoms during the initial formation of the CsPbBr3 lattice. The reverse transition of valence electrons leads to the weakening of bond strength, which is proved by our calculated Bader charge, electron localization function, and integral value of COHP results. This charge transition releases the distortion of the Pb-Br octahedral framework and expands the CsPbBr3 lattice, providing possibilities to the phase transition from the orthorhombic structure to tetragonal structure. This phase transition is a self-accelerating positive feedback process, increasing the light absorption efficiency of the CsPbBr3 material, which is of great significance for the widespread promotion and application of the photostriction effect. Our results are helpful to understand the performance of CsPbBr3 perovskite under a light irradiation environment.
Collapse
Affiliation(s)
- Chenyu Cao
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Shaoming Xue
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Fangchao Liu
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Qiaoqian Wu
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Jialin Wu
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Zhenkui Zhang
- School
of Science, Langfang Normal University, Langfang 065000, China
| | - ChengBo Guan
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Wei-Yan Cong
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| | - Ying-Bo Lu
- School
of Space Science and Physics, Shandong University, Weihai 264209, China
| |
Collapse
|
104
|
Schörner M, Bethkenhagen M, Döppner T, Kraus D, Fletcher LB, Glenzer SH, Redmer R. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Phys Rev E 2023; 107:065207. [PMID: 37464593 DOI: 10.1103/physreve.107.065207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 07/20/2023]
Abstract
We study ab initio approaches for calculating x-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula that expresses the inelastic contribution in terms of the dielectric function. We study the electronic dynamic structure factor computed from the Mermin dielectric function using an ab initio electron-ion collision frequency in comparison to computations using a linear-response time-dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate treatment of these contributions, where only the free-free part follows the Mermin dispersion, shows good agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with traditional analytic models at small scattering angles.
Collapse
Affiliation(s)
| | - Mandy Bethkenhagen
- École Normale Supérieure de Lyon, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon, Cedex 07, France
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Tilo Döppner
- Lawrence Livermore National Laboratory, Livermore, California 94551, USA
| | - Dominik Kraus
- University of Rostock, Institute of Physics, 18051 Rostock, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Luke B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - Ronald Redmer
- University of Rostock, Institute of Physics, 18051 Rostock, Germany
| |
Collapse
|
105
|
Kahk JM, Lischner J. Combining the Δ-Self-Consistent-Field and GW Methods for Predicting Core Electron Binding Energies in Periodic Solids. J Chem Theory Comput 2023. [PMID: 37163299 DOI: 10.1021/acs.jctc.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For the computational prediction of core electron binding energies in solids, two distinct kinds of modeling strategies have been pursued: the Δ-Self-Consistent-Field method based on density functional theory (DFT), and the GW method. In this study, we examine the formal relationship between these two approaches and establish a link between them. The link arises from the equivalence, in DFT, between the total energy difference result for the first ionization energy, and the eigenvalue of the highest occupied state, in the limit of infinite supercell size. This link allows us to introduce a new formalism, which highlights how in DFT─even if the total energy difference method is used to calculate core electron binding energies─the accuracy of the results still implicitly depends on the accuracy of the eigenvalue at the valence band maximum in insulators, or at the Fermi level in metals. We examine whether incorporating a quasiparticle correction for this eigenvalue from GW theory improves the accuracy of the calculated core electron binding energies, and find that the inclusion of vertex corrections is required for achieving quantitative agreement with experiment.
Collapse
Affiliation(s)
- J Matthias Kahk
- Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Johannes Lischner
- Department of Physics, Department of Materials, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
106
|
Gonzàlez-Rosell A, Malola S, Guha R, Arevalos NR, Matus MF, Goulet ME, Haapaniemi E, Katz BB, Vosch T, Kondo J, Häkkinen H, Copp SM. Chloride Ligands on DNA-Stabilized Silver Nanoclusters. J Am Chem Soc 2023; 145:10721-10729. [PMID: 37155337 DOI: 10.1021/jacs.3c01366] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) are known to have one or two DNA oligomer ligands per nanocluster. Here, we present the first evidence that AgN-DNA species can possess additional chloride ligands that lead to increased stability in biologically relevant concentrations of chloride. Mass spectrometry of five chromatographically isolated near-infrared (NIR)-emissive AgN-DNA species with previously reported X-ray crystal structures determines their molecular formulas to be (DNA)2[Ag16Cl2]8+. Chloride ligands can be exchanged for bromides, which red-shift the optical spectra of these emitters. Density functional theory (DFT) calculations of the 6-electron nanocluster show that the two newly identified chloride ligands were previously assigned as low-occupancy silvers by X-ray crystallography. DFT also confirms the stability of chloride in the crystallographic structure, yields qualitative agreement between computed and measured UV-vis absorption spectra, and provides interpretation of the 35Cl-nuclear magnetic resonance spectrum of (DNA)2[Ag16Cl2]8+. A reanalysis of the X-ray crystal structure confirms that the two previously assigned low-occupancy silvers are, in fact, chlorides, yielding (DNA)2[Ag16Cl2]8+. Using the unusual stability of (DNA)2[Ag16Cl2]8+ in biologically relevant saline solutions as a possible indicator of other chloride-containing AgN-DNAs, we identified an additional AgN-DNA with a chloride ligand by high-throughput screening. Inclusion of chlorides on AgN-DNAs presents a promising new route to expand the diversity of AgN-DNA structure-property relationships and to imbue these emitters with favorable stability for biophotonics applications.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Rweetuparna Guha
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - Nery R Arevalos
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
| | - María Francisca Matus
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Meghen E Goulet
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Esa Haapaniemi
- Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Benjamin B Katz
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen 2100, Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
107
|
Woo J, Kim S, Kim WY. Gaussian-Approximated Poisson Preconditioner for Iterative Diagonalization in Real-Space Density Functional Theory. J Phys Chem A 2023; 127:3883-3893. [PMID: 37094552 DOI: 10.1021/acs.jpca.2c09111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various real-space methods optimized on massive parallel computers have been developed for efficient large-scale density functional theory (DFT) calculations of materials and biomolecules. The iterative diagonalization of the Hamiltonian matrix is a computational bottleneck in real-space DFT calculations. Despite the development of various iterative eigensolvers, the absence of efficient real-space preconditioners has hindered their overall efficiency. An efficient preconditioner must satisfy two conditions: appropriate acceleration of the convergence of the iterative process and inexpensive computation. This study proposed a Gaussian-approximated Poisson preconditioner (GAPP) that satisfied both conditions and was suitable for real-space methods. A low computational cost was realized through the Gaussian approximation of a Poisson Green's function. Fast convergence was achieved through the proper determination of Gaussian coefficients to fit the Coulomb energies. The performance of GAPP was evaluated for several molecular and extended systems, and it showed the highest efficiency among the existing preconditioners adopted in real-space codes.
Collapse
Affiliation(s)
- Jeheon Woo
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seonghwan Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woo Youn Kim
- Department of Chemistry, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
108
|
Domínguez-Flores F, Melander MM. Approximating constant potential DFT with canonical DFT and electrostatic corrections. J Chem Phys 2023; 158:144701. [PMID: 37061493 DOI: 10.1063/5.0138197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The complexity of electrochemical interfaces has led to the development of several approximate density functional theory (DFT)-based schemes to study reaction thermodynamics and kinetics as a function of electrode potential. While fixed electrode potential conditions can be simulated with grand canonical ensemble DFT (GCE-DFT), various electrostatic corrections on canonical, constant charge DFT are often applied instead. In this work, we present a systematic derivation and analysis of the different electrostatic corrections on canonical DFT to understand their physical validity, implicit assumptions, and scope of applicability. Our work highlights the need to carefully address the suitability of a given model for the problem under study, especially if physical or chemical insight in addition to reaction energetics is sought. In particular, we analytically show that the different corrections cannot differentiate between electrostatic interactions and covalent or charge-transfer interactions. By numerically testing different models for CO2 adsorption on a single-atom catalyst as a function of the electrode potential, we further show that computed capacitances, dipole moments, and the obtained physical insight depend sensitively on the chosen approximation. These features limit the scope, generality, and physical insight of these corrective schemes despite their proven practicality for specific systems and energetics. Finally, we suggest guidelines for choosing different electrostatic corrections and propose the use of conceptual DFT to develop more general approximations for electrochemical interfaces and reactions using canonical DFT.
Collapse
Affiliation(s)
- Fabiola Domínguez-Flores
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
109
|
Sarwono YP, Zhang RQ. Higher-order Rayleigh-quotient gradient effect on electron correlations. J Chem Phys 2023; 158:134102. [PMID: 37031124 DOI: 10.1063/5.0143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The incomplete understanding of electron correlation is still profound due to the lack of exact solutions of the Schrödinger equation of many electron systems. In this work, we present the correlation-induced changes in the calculated many-electron systems beyond the standard residual. To locate the minimum of the Rayleigh quotient, each iteration is to seek the lowest eigenpairs in a subspace spanned by the current wave function and its gradient of the Rayleigh-quotient as well as the upcoming higher-order residual. Consequently, as the upcoming errors can be introduced and circumvented with the search in the higher-order residual, a concomitant improved performance in terms of number of iterations, convergence rate, and total elapsed time is very significant. The correlation energy components obtained with the original residual are corrected with the higher-order residual application, satisfying the correlation virial theorem with much improved accuracy. The comparison with the original residual, the higher-order residual significantly improves the electron binding, favoring the localization of electrons’ distribution, revealed with the increasing peak of the distribution and correlation function and the reduced interelectron distance and its angle.
Collapse
Affiliation(s)
- Yanoar Pribadi Sarwono
- Department of Physics, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, People’s Republic of China
| | - Rui-Qin Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR, People’s Republic of China
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, People’s Republic of China
- Beijing Computational Science Research Center, Beijing 100193, People’s Republic of China
| |
Collapse
|
110
|
Lakshmi KM, Rival JV, Sreeraj P, Nambiar SR, Jeyabharathi C, Shibu ES. Precision Nanocluster-Based Toroidal and Supertoroidal Frameworks Using Photocycloaddition-Assisted Dynamic Covalent Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207119. [PMID: 36683222 DOI: 10.1002/smll.202207119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Atomically precise nanoclusters (NCs) have recently emerged as ideal building blocks for constructing self-assembled multifunctional superstructures. The existing structures are based on various non-covalent interactions of the ligands on the NC surface, resulting in inter-NC interactions. Despite recent demonstrations on light-induced reversible self-assembly, long-range reversible self-assembly based on dynamic covalent chemistry on the NC surface has yet to be investigated. Here, it is shown that Au25 NCs containing thiolated umbelliferone (7-hydroxycoumarin) ligands allow [2+2] photocycloaddition reaction-induced self-assembly into colloidal-level toroids. The toroids upon further irradiation undergo inter-toroidal reaction resulting in macroscopic supertoroidal honey-comb frameworks. Systematic investigation using electron microscopy, atomic force microscopy (AFM), and electron tomography (ET) suggest that the NCs initially form spherical aggregates. The spherical structures further undergo fusion resulting in toroid formation. Finally, the toroids fuse into macroscopic honeycomb frameworks. As a proof-of-concept, a cross-photocycloaddition reaction between coumarin-tethered NCs and an anticancer drug (5-fluorouracil) is demonstrated as a model photo-controlled drug release system. The model system allows systematic loading and unloading of the drug during the assembly and disassembly under two different wavelengths. The results suggest that the dynamic covalent chemistry on the NC surface offers a facile route for hierarchical multifunctional frameworks and photocontrolled drug release.
Collapse
Affiliation(s)
- Kavalloor Murali Lakshmi
- Electroplating and Metal Finishing Division (EMFD), Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jose V Rival
- Smart Materials Lab (SML), Department of Nanoscience and Technology (DNST), University of Calicut (UoC), Malappuram, Kerala, 673635, India
| | - Pakath Sreeraj
- Smart Materials Lab (SML), Department of Nanoscience and Technology (DNST), University of Calicut (UoC), Malappuram, Kerala, 673635, India
| | - Sindhu R Nambiar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Food Safety and Analytical Quality Control Laboratory, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru, Karnataka, 570020, India
| | - Chinnaiah Jeyabharathi
- Electroplating and Metal Finishing Division (EMFD), Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab (SML), Department of Nanoscience and Technology (DNST), University of Calicut (UoC), Malappuram, Kerala, 673635, India
| |
Collapse
|
111
|
Kluczyk-Korch K, Antosiewicz TJ. Hot carrier generation in a strongly coupled molecule-plasmonic nanoparticle system. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1711-1722. [PMID: 39634110 PMCID: PMC11501517 DOI: 10.1515/nanoph-2022-0700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/06/2023] [Indexed: 12/07/2024]
Abstract
In strongly coupled light matter systems electronic energy levels become inextricably linked to local electromagnetic field modes. Hybridization of these states opens new relaxation pathways in the system, particularly important for plasmon decay into single electron states, known as hot carriers. We investigate the influence of the coupling strength between a plasmonic resonator and a molecule on hot carrier generation using first principles calculations. An atomistic approach allows the capture of changes in the electronic structure of the system. We show that hot carriers are not only preferably generated at excitation frequencies matching the new polaritonic resonances, but their energy distribution strongly deviates from the one corresponding to the non-interacting system. This indicates existence of new plasmon decay paths due to appearance of hybridized nanoparticle-molecule states. We observe also direct electron transfer between the plasmonic nanoparticle and the molecule. Therefore, we may conclude, that bringing plasmonic nanostructures in strong interaction with molecules gives the ability to manipulate the energy distribution of the generated hot carriers and opens possibility for charge transfer in the system.
Collapse
|
112
|
Haldar S, Bhauriyal P, Ramuglia AR, Khan AH, De Kock S, Hazra A, Bon V, Pastoetter DL, Kirchhoff S, Shupletsov L, De A, Isaacs MA, Feng X, Walter M, Brunner E, Weidinger IM, Heine T, Schneemann A, Kaskel S. Sulfide-Bridged Covalent Quinoxaline Frameworks for Lithium-Organosulfide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210151. [PMID: 36719245 DOI: 10.1002/adma.202210151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox-mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organosulfide interactions. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Anthony R Ramuglia
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sunel De Kock
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dominik L Pastoetter
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sebastian Kirchhoff
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, UK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Inez M Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas Heine
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
113
|
Oviedo MB, Fernandez F, Otero M, Leiva EPM, Paz SA. Density Functional Tight-Binding Model for Lithium-Silicon Alloys. J Phys Chem A 2023; 127:2637-2645. [PMID: 36898002 DOI: 10.1021/acs.jpca.3c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The predictive power of molecular dynamic simulations is mainly restricted by the time scale and model accuracy. Many systems of current relevance are of such complexity that they require addressing both issues simultaneously. This is the case of silicon electrodes in Li-ion batteries, where different LixSi alloys are formed during charge/discharge cycles. While first-principles treatments for this system are seriously limited by the computational cost of exploring its large conformational space, classical force fields are not transferable enough to represent it accurately. Density Functional Tight Binding (DFTB) is an intermediate complexity approach capable of capturing the electronic nature of different environments with a relatively low computational cost. In this work, we present a new set of DFTB parameters suited to model amorphous LixSi alloys. LixSi is the usual finding upon cycling the Si electrodes in the presence of Li ions. The model parameters are constructed with a particular emphasis on their transferability for the entire LixSi composition range. This is achieved by introducing a new optimization procedure that weights stoichiometries differently to improve the prediction of their formation energies. The resulting model is shown to be robust for predicting crystal and amorphous structures for the different compositions, giving excellent agreement with DFT calculations and outperforming state-of-the-art ReaxFF potentials.
Collapse
Affiliation(s)
- María Belén Oviedo
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, X5000HUA, Argentina
- INFIQC, CONICET, Córdoba, X5000HUA, Argentina
| | | | | | - Ezequiel P M Leiva
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, X5000HUA, Argentina
- INFIQC, CONICET, Córdoba, X5000HUA, Argentina
| | - Sergio Alexis Paz
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Teórica y Computacional, Córdoba, X5000HUA, Argentina
- INFIQC, CONICET, Córdoba, X5000HUA, Argentina
| |
Collapse
|
114
|
Deng G, Lee K, Deng H, Malola S, Bootharaju MS, Häkkinen H, Zheng N, Hyeon T. Alkynyl-Protected Chiral Bimetallic Ag 22 Cu 7 Superatom with Multiple Chirality Origins. Angew Chem Int Ed Engl 2023; 62:e202217483. [PMID: 36581588 DOI: 10.1002/anie.202217483] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Understanding the origin of chirality in the nanostructured materials is essential for chiroptical and catalytic applications. Here we report a chiral AgCu superatomic cluster, [Ag22 Cu7 (C≡CR)16 (PPh3 )5 Cl6 ](PPh4 ), Ag22 Cu7 , protected by an achiral alkynyl ligand (HC≡CR: 3,5-bis(trifluoromethyl)phenylacetylene). Its crystal structure comprises a rare interpenetrating biicosahedral Ag17 Cu2 core, which is stabilized by four different types of motifs: one Cu(C≡CR)2 , four -C≡CR, two chlorides and one helical Ag5 Cu4 (C≡CR)10 (PPh3 )5 Cl4 . Structural analysis reveals that Ag22 Cu7 exhibits multiple chirality origins, including the metal core, the metal-ligand interface and the ligand layer. Furthermore, the circular dichroism spectra of R/S-Ag22 Cu7 are obtained by employing appropriate chiral molecules as optical enrichment agents. DFT calculations show that Ag22 Cu7 is an eight-electron superatom, confirm that the cluster is chirally active, and help to analyze the origins of the circular dichroism.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongwen Deng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sami Malola
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nanfeng Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
115
|
Pérez Paz A. Cold Oxidative Demetalation of Aryl Organometallics: A Novel Route to Demetalate Ullmann Intermediates without Heating. ChemistrySelect 2023. [DOI: 10.1002/slct.202203973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Alejandro Pérez Paz
- Department of Chemistry and Biochemistry College of Science (COS) United Arab Emirates University (UAEU) P.O. Box 15551 Al Ain, Abu Dhabi United Arab Emirates
| |
Collapse
|
116
|
Humayun M, Ullah H, Hu C, Tian M, Pi W, Zhang Y, Luo W, Wang C. Enhanced Photocatalytic H 2 Evolution Performance of the Type-II FeTPPCl/Porous g-C 3N 4 Heterojunction: Experimental and Density Functional Theory Studies. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36892209 DOI: 10.1021/acsami.3c01683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is of great significance to improve the photocatalytic performance of g-C3N4 by promoting its surface-active sites and engineering more suitable and stable redox couples. Herein, first of all, we fabricated porous g-C3N4 (PCN) via the sulfuric acid-assisted chemical exfoliation method. Then, we modified the porous g-C3N4 with iron(III) meso-tetraphenylporphine chloride (FeTPPCl) porphyrin via the wet-chemical method. The as-fabricated FeTPPCl-PCN composite revealed exceptional performance for photocatalytic water reduction by evolving 253.36 and 8301 μmol g-1 of H2 after visible and UV-visible irradiation for 4 h, respectively. The performance of the FeTPPCl-PCN composite is ∼2.45 and 4.75-fold improved compared to that of the pristine PCN photocatalyst under the same experimental conditions. The calculated quantum efficiencies of the FeTPPCl-PCN composite for H2 evolution at 365 and 420 nm wavelengths are 4.81 and 2.68%, respectively. This exceptional H2 evolution performance is because of improved surface-active sites due to porous architecture and remarkably improved charge carrier separation via the well-aligned type-II band heterostructure. Besides, we also reported the correct theoretical model of our catalyst through density functional theory (DFT) simulations. It is found that the hydrogen evolution reaction (HER) activity of FeTPPCl-PCN arises from the electron transfer from PCN via Cl atom(s) to Fe of the FeTPPCl, which forms a strong electrostatic interaction, leading to a decreased local work function on the surface of the catalyst. We suggest that the resultant composite would be a perfect model for the design and fabrication of high-efficiency heterostructure photocatalysts for energy applications.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Habib Ullah
- Department of Renewable Energy, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Chao Hu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Mi Tian
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Wenbo Pi
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yi Zhang
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430073, China
| | - Wei Luo
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Engineering Research Center for Functional Ceramics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
117
|
Nilsson F, Kuisma M, Pakdel S, Thygesen KS. Excitonic Insulators and Superfluidity in Two-Dimensional Bilayers without External Fields. J Phys Chem Lett 2023; 14:2277-2283. [PMID: 36825819 DOI: 10.1021/acs.jpclett.3c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We explore a new platform for realizing excitonic insulators, namely van der Waals (vdW) bilayers comprising two-dimensional Janus materials. In previous studies, type II heterobilayers have been brought to the excitonic insulating regime by tuning the band alignment using external gates. In contrast, the Janus bilayers presented here represent intrinsic excitonic insulators. We first conduct ab initio calculations to obtain the quasiparticle band structures, screened Coulomb interaction, and interlayer exciton binding energies of the bilayers. These ab initio-derived quantities are then used to construct a BCS-like Hamiltonian of the exciton condensate. By solving the mean-field gap equation, we identify 16 vdW Janus bilayers with insulating ground states and superfluid properties. Our calculations expose a new class of advanced materials that are likely to exhibit novel excitonic phases at low temperatures and highlight the subtle competition between interlayer hybridization, spin-orbit coupling, and dielectric screening that governs their properties.
Collapse
Affiliation(s)
- F Nilsson
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris (l'X), F-91128 Palaiseau, France
| | - M Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - S Pakdel
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - K S Thygesen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
118
|
Šić E, Rohrer J, Ricohermoso EI, Albe K, Ionescu E, Riedel R, Breitzke H, Gutmann T, Buntkowsky G. SiCO Ceramics as Storage Materials for Alkali Metals/Ions: Insights on Structure Moieties from Solid-State NMR and DFT Calculations. CHEMSUSCHEM 2023:e202202241. [PMID: 36892993 DOI: 10.1002/cssc.202202241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Polymer-derived silicon oxycarbide ceramics (SiCO) have been considered as potential anode materials for lithium- and sodium-ion batteries. To understand their electrochemical storage behavior, detailed insights into structural sites present in SiCO are required. In this work, the study of local structures in SiCO ceramics containing different amounts of carbon is presented. 13 C and 29 Si solid-state MAS NMR spectroscopy combined with DFT calculations, atomistic modeling, and EPR investigations, suggest significant changes in the local structures of SiCO ceramics even by small changes in the material composition. The provided findings on SiCO structures will contribute to the research field of polymer-derived ceramics, especially to understand electrochemical storage processes of alkali metal/ions such as Na/Na+ inside such networks in the future.
Collapse
Affiliation(s)
- Edina Šić
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Jochen Rohrer
- Department of Materials and Earth Sciences, Materials Modelling Division, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Emmanuel Iii Ricohermoso
- Department of Materials and Earth Sciences, Group of Dispersive Solids, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Karsten Albe
- Department of Materials and Earth Sciences, Materials Modelling Division, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Emmanuel Ionescu
- Department of Materials and Earth Sciences, Group of Dispersive Solids, Technical University of Darmstadt, 64287, Darmstadt, Germany
- Fraunhofer IWKS, Department of Digitalization of Resources, Brentanostr. 2a, 63755, Alzenau, Germany
| | - Ralf Riedel
- Department of Materials and Earth Sciences, Group of Dispersive Solids, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Hergen Breitzke
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Torsten Gutmann
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard Zintl Institute for Inorganic and Physical Chemistry, Technical University of Darmstadt, 64287, Darmstadt, Germany
| |
Collapse
|
119
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
120
|
Kløve M, Sommer S, Iversen BB, Hammer B, Dononelli W. A Machine-Learning-Based Approach for Solving Atomic Structures of Nanomaterials Combining Pair Distribution Functions with Density Functional Theory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208220. [PMID: 36630711 DOI: 10.1002/adma.202208220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Determination of crystal structures of nanocrystalline or amorphous compounds is a great challenge in solid-state chemistry and physics. Pair distribution function (PDF) analysis of X-ray or neutron total scattering data has proven to be a key element in tackling this challenge. However, in most cases, a reliable structural motif is needed as a starting configuration for structure refinements. Here, an algorithm that is able to determine the crystal structure of an unknown compound by means of an on-the-fly trained machine learning model, which combines density functional theory calculations with comparison of calculated and measured PDFs for global optimization in an artificial landscape, is presented. Due to the nature of this landscape, even metastable configurations and stacking disorders can be identified.
Collapse
Affiliation(s)
- Magnus Kløve
- Center for Integrated Materials Research, Department of Chemistry and iNano, Aarhus University, Aarhus, 8000, Denmark
| | - Sanna Sommer
- Center for Integrated Materials Research, Department of Chemistry and iNano, Aarhus University, Aarhus, 8000, Denmark
| | - Bo B Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNano, Aarhus University, Aarhus, 8000, Denmark
| | - Bjørk Hammer
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus, C 8000, Denmark
| | - Wilke Dononelli
- MAPEX Center for Materials and Processes, Bremen Center for Computational Materials Science and Hybrid Materials Interfaces Group, Bremen University, 28359, Bremen, Germany
| |
Collapse
|
121
|
Gedam SP, Chiriki S, Padmavathi D. Advanced machine learning based global optimizations for Pt nanoclusters. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
122
|
Moldabekov Z, Böhme M, Vorberger J, Blaschke D, Dornheim T. Ab Initio Static Exchange-Correlation Kernel across Jacob's Ladder without Functional Derivatives. J Chem Theory Comput 2023; 19:1286-1299. [PMID: 36724889 PMCID: PMC9979610 DOI: 10.1021/acs.jctc.2c01180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Indexed: 02/03/2023]
Abstract
The electronic exchange─correlation (XC) kernel constitutes a fundamental input for the estimation of a gamut of properties such as the dielectric characteristics, the thermal and electrical conductivity, or the response to an external perturbation. In this work, we present a formally exact methodology for the computation of the system specific static XC kernel exclusively within the framework of density functional theory (DFT) and without employing functional derivatives─no external input apart from the usual XC-functional is required. We compare our new results with exact quantum Monte Carlo (QMC) data for the archetypical uniform electron gas model under both ambient and warm dense matter conditions. This gives us unprecedented insights into the performance of different XC functionals, and it has important implications for the development of new functionals that are designed for the application at extreme temperatures. In addition, we obtain new DFT results for the XC kernel of warm dense hydrogen as it occurs in fusion applications and astrophysical objects. The observed excellent agreement to the QMC reference data demonstrates that presented framework is capable to capture nontrivial effects such as XC-induced isotropy breaking in the density response of hydrogen at large wave numbers.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center
for Advanced Systems Understanding (CASUS), D-02826Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Maximilian Böhme
- Center
for Advanced Systems Understanding (CASUS), D-02826Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - David Blaschke
- Institute
of Theoretical Physics, University of Wroclaw, 50-204Wroclaw, Poland
| | - Tobias Dornheim
- Center
for Advanced Systems Understanding (CASUS), D-02826Görlitz, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| |
Collapse
|
123
|
Walter M, Linsler D, König T, Gäbert C, Reinicke S, Moseler M, Mayrhofer L. Mechanochemical Activation of Anthracene [4+4] Cycloadducts. J Phys Chem Lett 2023; 14:1445-1451. [PMID: 36734822 DOI: 10.1021/acs.jpclett.2c03493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Controlled formation and breaking of weak chemical bonds is a versatile method for modifying the properties of materials. Anthracene [4+4] cycloadducts are a prime example that can be formed by light and opened by external forces. We address the theoretical description of mechanochemistry of these cycloadducts, where the standard constraint geometry simulates forces approach fails due to the lack of consideration of temperature. Explicit inclusion of external forces reveals the corresponding transition barriers that are clearly dominated by rupture of the [4+4] inter-anthracene bonds. Other bonds come into play at extremely large forces only, which cannot be expected to be reached under ambient conditions. The theoretical results are in line with the experimental rheology of [4+4]-linked anthracene polymers, which indicates reversible re-formation of [4+4] cycloaddition bonds with ultraviolet light after mechanochemical bond breaking due to applied shear stress.
Collapse
Affiliation(s)
- Michael Walter
- Fraunhofer IWM, MikroTribologie Centrum μTC, 76131Karlsruhe, Germany
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79085Freiburg, Germany
- Cluster of Excellence livMatS@FIT, 79110Freiburg, Germany
| | - Dominic Linsler
- Fraunhofer IWM, MikroTribologie Centrum μTC, 76131Karlsruhe, Germany
| | - Tobias König
- Fraunhofer IWM, MikroTribologie Centrum μTC, 76131Karlsruhe, Germany
| | | | | | - Michael Moseler
- Fraunhofer IWM, MikroTribologie Centrum μTC, 76131Karlsruhe, Germany
- Cluster of Excellence livMatS@FIT, 79110Freiburg, Germany
| | | |
Collapse
|
124
|
Crovetto A, Unold T, Zakutayev A. Is Cu 3-x P a Semiconductor, a Metal, or a Semimetal? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1259-1272. [PMID: 36818593 PMCID: PMC9933438 DOI: 10.1021/acs.chemmater.2c03283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Despite the recent surge in interest in Cu3-x P for catalysis, batteries, and plasmonics, the electronic nature of Cu3-x P remains unclear. Some studies have shown evidence of semiconducting behavior, whereas others have argued that Cu3-x P is a metallic compound. Here, we attempt to resolve this dilemma on the basis of combinatorial thin-film experiments, electronic structure calculations, and semiclassical Boltzmann transport theory. We find strong evidence that stoichiometric, defect-free Cu3P is an intrinsic semimetal, i.e., a material with a small overlap between the valence and the conduction band. On the other hand, experimentally realizable Cu3-x P films are always p-type semimetals natively doped by copper vacancies regardless of x. It is not implausible that Cu3-x P samples with very small characteristic sizes (such as small nanoparticles) are semiconductors due to quantum confinement effects that result in the opening of a band gap. We observe high hole mobilities (276 cm2/(V s)) in Cu3-x P films at low temperatures, pointing to low ionized impurity scattering rates in spite of a high doping density. We report an optical effect equivalent to the Burstein-Moss shift, and we assign an infrared absorption peak to bulk interband transitions rather than to a surface plasmon resonance. From a materials processing perspective, this study demonstrates the suitability of reactive sputter deposition for detailed high-throughput studies of emerging metal phosphides.
Collapse
Affiliation(s)
- Andrea Crovetto
- Materials
Science Center, National Renewable Energy
Laboratory, Golden, Colorado80401, United States
- Department
of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109Berlin, Germany
- National
Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Thomas Unold
- Department
of Structure and Dynamics of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109Berlin, Germany
| | - Andriy Zakutayev
- Materials
Science Center, National Renewable Energy
Laboratory, Golden, Colorado80401, United States
| |
Collapse
|
125
|
Kim MS, Zhang Z, Wang J, Oyakhire ST, Kim SC, Yu Z, Chen Y, Boyle DT, Ye Y, Huang Z, Zhang W, Xu R, Sayavong P, Bent SF, Qin J, Bao Z, Cui Y. Revealing the Multifunctions of Li 3N in the Suspension Electrolyte for Lithium Metal Batteries. ACS NANO 2023; 17:3168-3180. [PMID: 36700841 DOI: 10.1021/acsnano.2c12470] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inorganic-rich solid-electrolyte interphases (SEIs) on Li metal anodes improve the electrochemical performance of Li metal batteries (LMBs). Therefore, a fundamental understanding of the roles played by essential inorganic compounds in SEIs is critical to realizing and developing high-performance LMBs. Among the prevalent SEI inorganic compounds observed for Li metal anodes, Li3N is often found in the SEIs of high-performance LMBs. Herein, we elucidate new features of Li3N by utilizing a suspension electrolyte design that contributes to the improved electrochemical performance of the Li metal anode. Through empirical and computational studies, we show that Li3N guides Li electrodeposition along its surface, creates a weakly solvating environment by decreasing Li+-solvent coordination, induces organic-poor SEI on the Li metal anode, and facilitates Li+ transport in the electrolyte. Importantly, recognizing specific roles of SEI inorganics for Li metal anodes can serve as one of the rational guidelines to design and optimize SEIs through electrolyte engineering for LMBs.
Collapse
Affiliation(s)
- Mun Sek Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zewen Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jingyang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, United States
| | - Solomon T Oyakhire
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sang Cheol Kim
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhiao Yu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yuelang Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - David T Boyle
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Yusheng Ye
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhuojun Huang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Wenbo Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Philaphon Sayavong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stacey F Bent
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Energy Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
126
|
Liang ML, Lacroix M, Tao C, Waters MJ, Rondinelli JM, Halasyamani PS. Noncentrosymmetric γ -Cs 2I 4O 11 Obtained from IO 4 Polyhedral Rearrangements in the Centrosymmetric β -Phase. Inorg Chem 2023; 62:2942-2950. [PMID: 36716235 DOI: 10.1021/acs.inorgchem.2c04450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We report the synthesis and optical properties of noncentrosymmetric (NCS) γ-Cs2I4O11 that was obtained through IO4 polyhedral rearrangements from centrosymmetric (CS) β-Cs2I4O11. Trifluoroacetic acid (TFA) acts as a structure-directing agent and plays a key role in the synthesis. It is suggested that the function of TFA is to promote rearrangement reactions found in the organic synthesis of stereoisomers. γ-Cs2I4O11 crystallizes in the NCS monoclinic space group P21 (No. 4) and exhibits a strong second-harmonic-generation (SHG) response of 5.0 × KDP (KH2PO4) under 1064 nm laser radiation. Additional SHG experiments indicate that the material is type I phase matchable. First-principles calculations show that SHG intensity mainly comes from its d34, d21, and d23 SHG tensor components. The synthetic strategy of discovering γ-Cs2I4O11 provides a new way for designing novel NCS SHG materials.
Collapse
Affiliation(s)
- Ming-Li Liang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Matthew Lacroix
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ce Tao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Michael J Waters
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - James M Rondinelli
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - P Shiv Halasyamani
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
127
|
Yang YQ, Ji SJ, Suen NT. Dual Function of Hypo-d-electronic Transition Metals in the Brewer Intermetallic Phase for the Highly Efficient Electrocatalytic Hydrogen Evolution Reaction in Alkaline Electrolytes. Inorg Chem 2023; 62:2188-2196. [PMID: 36689680 DOI: 10.1021/acs.inorgchem.2c03891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reported are the synthesis, material characterization, and electrocatalytic hydrogen evolution reaction (HER) in acid and alkaline electrolytes for the Brewer intermetallic phase, Nb6Co7 and Mo6Co7. It was realized that the overpotential at a current density of 10 mA/cm2 (η10) for Nb6Co7 (η10 = 62 mV) and Mo6Co7 (η10 = 143 mV) are both much lower than that of using a single Co metal (η10 = 253 mV) in alkaline electrolytes. The enhancement of electrocatalytic HER activity of Nb6Co7 and Mo6Co7 can be attributed to the hypo-hyper-d-electronic interaction between Nb/Mo and Co elements. Based on the result of density functional theory calculation, alloying between Nb/Mo and Co elements will increase the antibonding state population of the Co-Co bond near the Fermi level (EF), which induces the synergistic effect to influence the adsorption energy of the H atom (ΔGH) on the surface of Nb6Co7 and Mo6Co7. Moreover, the role of the Nb element is not only a simple electron donor but is also an anchor position for the OH molecule (i.e., dual function) due to the bonding character of the Nb-Co bond near EF. It can reduce the OH position effect as well as the activation energy for water dissociation, which rationalizes the high and robust HER performance of Nb6Co7 to that of commercial Pt/C (η10 = 67 mV) in alkaline electrolytes.
Collapse
Affiliation(s)
- Yu-Qing Yang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Shen-Jing Ji
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou225002, China
| | - Nian-Tzu Suen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou225002, China
| |
Collapse
|
128
|
Hu Z, Zhou L, Meng D, Zhao L, Wang W, Li Y, Huang Y, Wu Y, Yang S, Li L, Hong Z. Surface Engineering for Ultrathin Metal Anodes Enabling High-Performance Zn-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5161-5171. [PMID: 36648156 DOI: 10.1021/acsami.2c18836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Zn-ion batteries with low cost and high safety have been regarded as a promising energy storage technology for grid storage. It is well-known that the metal anode surface orientation is vital to its reversibility. Herein, we demonstrate a facile route to control the Zn metal anode surface orientation through electrodeposition with electrolyte additives. An ultrathin (101)-inclined Zn metal anode (down to 2 μm) is obtained by adding a small amount of dimethyl sulfoxide (DMSO) in the ZnSO4 aqueous electrolyte. Scanning electron microscopy indicates the formation of flat terrace-like surfaces, while in situ optical observations demonstrate the reversible plating and stripping. DFT calculations reveal that the large reconstruction of the Zn-(101) surface with DMSO and H2O adsorption to lower the interface energy is the main driving force for surface preference. Raman, XPS, and ToF-SIMS characterizations are performed to unveil the surface SEI components. Exceptional electrochemical performance is demonstrated for the (101)-inclined Zn metal anode in a half cell, which could cycle for 200 h with a low overpotential (<50 mV). The Zn||V2O full cells are assembled, showing much better cycle performance for the 5 μm (101)-inclined Zn metal anode as compared to the commercialized 10 μm Zn metal foil, with a maximum specific capacity of 359 mAh/g and >170 mAh/g after over 300 cycles. We hope this study will spur further interest in the control of surface crystallographic orientation for a stable ultrathin Zn metal anode.
Collapse
Affiliation(s)
- Ziyi Hu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linming Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dechao Meng
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liyan Zhao
- Lab of Composite Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Weina Wang
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yihua Li
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuhui Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yongjun Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Lab of Composite Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Linsen Li
- Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
129
|
Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat Chem 2023; 15:230-239. [PMID: 36357788 DOI: 10.1038/s41557-022-01079-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au25(SR)18]- NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise. Experimental characterization supported by theoretical modelling shows that the rod-like crystals consist of polymeric chains in which Au25 NPs are held together by a linear SR-[Au(I)-SR]4 interparticle linker. This linker is formed by conjugation of two dynamically detached SR-[Au(I)-SR]2 protecting motifs from adjacent Au25 particles, and is stabilized by a combination of CH⋯π and ion-pairing interactions between tetraethylammonium cations and SR ligands. The symmetry, morphology and size of the resulting supercrystals can be systematically tuned by changing the concentration and type of the tetraalkylammonium cations.
Collapse
|
130
|
Zheng X, Gao X, Vilá RA, Jiang Y, Wang J, Xu R, Zhang R, Xiao X, Zhang P, Greenburg LC, Yang Y, Xin HL, Zheng X, Cui Y. Hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis of metastable nanomaterials. NATURE NANOTECHNOLOGY 2023; 18:153-159. [PMID: 36585516 DOI: 10.1038/s41565-022-01272-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Metastable nanomaterials, such as single-atom and high-entropy systems, with exciting physical and chemical properties are increasingly important for next-generation technologies. Here, we developed a hydrogen-substituted graphdiyne-assisted ultrafast sparking synthesis (GAUSS) platform for the preparation of metastable nanomaterials. The GAUSS platform can reach an ultra-high reaction temperature of 3,286 K within 8 ms, a rate exceeding 105 K s-1. Controlling the composition and chemistry of the hydrogen-substituted graphdiyne aerogel framework, the reaction temperature can be tuned from 1,640 K to 3,286 K. We demonstrate the versatility of the GAUSS platform with the successful synthesis of single atoms, high-entropy alloys and high-entropy oxides. Electrochemical measurements and density functional theory show that single atoms synthesized by GAUSS enhance the lithium-sulfur redox reaction kinetics in all-solid-state lithium-sulfur batteries. Our design of the GAUSS platform offers a powerful way to synthesize a variety of metastable nanomaterials.
Collapse
Affiliation(s)
- Xueli Zheng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Xin Gao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Rafael A Vilá
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yue Jiang
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Jingyang Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Rong Xu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Pu Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Louisa C Greenburg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Yufei Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, USA
| | - Xiaolin Zheng
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yi Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
131
|
Shankar Naik S, Theerthagiri J, Nogueira FS, Lee SJ, Min A, Kim GA, Maia G, Pinto LM, Choi MY. Dual-Cation-Coordinated CoFe-Layered Double-Hydroxide Nanosheets Using the Pulsed Laser Ablation Technique for Efficient Electrochemical Water Splitting: Mechanistic Screening by In Situ/Operando Raman and Density Functional Theory Calculations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shreyanka Shankar Naik
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Fabio Sobral Nogueira
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Seung Jun Lee
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Ahreum Min
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gyeong-Ah Kim
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| | - Gilberto Maia
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Leandro M.C. Pinto
- Institute of Chemistry, Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande79074-460, Mato Grosso do Sul, Brazil
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry & Nanomaterials, Department of Chemistry (BK21 FOUR) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju52828, South Korea
| |
Collapse
|
132
|
Gonzalez M, Groves MN. A Systematic Search for the Adsorption Motif of All Stereoisomers of Propylene Glycol on a Palladium(111) Surface for Fuel Cell Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:119-128. [PMID: 36583559 PMCID: PMC9835992 DOI: 10.1021/acs.langmuir.2c02281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Small organic molecules have been shown to produce sufficient power densities allowing them to be environmentally friendly renewable fuel sources and an important part of fuel cell research. Affiliated experimental work found propylene glycol, as a source of renewable fuel, produces viable power densities when utilized with an alkaline-acid fuel cell and a Pd(111) catalyst. There is limited theoretical work on propylene glycol's energy reaction pathway. Thus, the first step in understanding how propylene glycol reacts with the Pd(111) slab is understanding its adsorption. In this paper, we present the investigation of adsorption potential energies (APE) of propylene glycol stereoisomers (S)-propane-1,2-diol (1,2PGS), (R)-propane-1,2-diol (1,2PGR), and propane-1,3-diol (1,3PG) on Pd(111). The isomers are systematically scanned through different configurations to analyze the preferred stable orientation and positional motifs. Density functional theory (DFT) is used to optimize the molecular geometries and surface relaxations. The most stable configuration of the 1,2PG stereoisomers resulted in an APE of -0.97 eV. The most stable configuration of the 1,3PG resulted in an APE of -1.19 eV. Both the 1,2PG(S/R) and 1,3PG isomers favor a motif in which at least one hydroxyl oxygen atom interacts with the surface of the Pd(111) catalyst. The 1,2PG carbon backbone prefers to have the center carbon positioned away from the slab, while the 1,3PG prefers to have the center carbon positioned closer to the slab. The most stable 1,3PG differs from other reported 1,3PG and 1,2PG relaxed configurations in that both of the hydroxyl oxygen atoms interact with the Pd(111) surface. These results show more favorable APEs than previously reported calculations. This paper will discuss in detail the differences between the hydroxyl group motifs and their role in affecting adsorption.
Collapse
|
133
|
Wang K, Paulus B. Cluster Formation Effect of Water on Pristine and Defective MoS 2 Monolayers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:229. [PMID: 36677982 PMCID: PMC9864297 DOI: 10.3390/nano13020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The structure and electronic properties of the molybdenum disulfide (MoS2) monolayer upon water cluster adsorption are studied using density functional theory and the optical properties are further analyzed with the Bethe-Salpeter equation (BSE). Our results reveal that the water clusters are electron acceptors, and the acceptor tendency tends to increase with the size of the water cluster. The electronic band gap of both pristine and defective MoS2 is rather insensitive to water cluster adsorbates, as all the clusters are weakly bound to the MoS2 surface. However, our calculations on the BSE level show that the adsorption of the water cluster can dramatically redshift the optical absorption for both pristine and defective MoS2 monolayers. The binding energy of the excitons of MoS2 is greatly enhanced with the increasing size of the water cluster and finally converges to a value of approximately 1.16 eV and 1.09 eV for the pristine and defective MoS2 monolayers, respectively. This illustrates that the presence of the water cluster could localize the excitons of MoS2, thereby greatly enhance the excitonic binding energy.
Collapse
|
134
|
Durhuus FL, Skovhus T, Olsen T. Plane wave implementation of the magnetic force theorem for magnetic exchange constants: application to bulk Fe, Co and Ni. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:105802. [PMID: 36595249 DOI: 10.1088/1361-648x/acab4b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
We present a plane wave implementation of the magnetic force theorem, which provides a first principles framework for extracting exchange constants parameterizing a classical Heisenberg model description of magnetic materials. It is shown that the full microscopic exchange tensor may be expressed in terms of the static Kohn-Sham susceptibility tensor and the exchange-correlation magnetic field. This formulation allows one to define arbitrary magnetic sites localized to predefined spatial regions, hence rendering the problem of finding Heisenberg parameters independent of any orbital decomposition of the problem. The susceptibility is calculated in a plane wave basis, which allows for systematic convergence with respect to unoccupied bands and spatial representation. We then apply the method to the well-studied problem of calculating adiabatic spin wave spectra for bulk Fe, Co and Ni, finding good agreement with previous calculations. In particular, we utilize the freedom of defining magnetic sites to show that the calculated Heisenberg parameters are robust towards changes in the definition of magnetic sites. This demonstrates that the magnetic sites can be regarded as well-defined and thus asserts the relevance of the Heisenberg model description despite the itinerant nature of the magnetic state.
Collapse
Affiliation(s)
- Frederik L Durhuus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
135
|
Schreck S, Diesen E, Dell'Angela M, Liu C, Weston M, Capotondi F, Ogasawara H, LaRue J, Costantini R, Beye M, Miedema PS, Halldin Stenlid J, Gladh J, Liu B, Wang HY, Perakis F, Cavalca F, Koroidov S, Amann P, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Abild-Pedersen F, Heinz TF, Voss J, Luntz AC, Nilsson A. Atom-Specific Probing of Electron Dynamics in an Atomic Adsorbate by Time-Resolved X-Ray Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 129:276001. [PMID: 36638285 DOI: 10.1103/physrevlett.129.276001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.
Collapse
Affiliation(s)
- Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Elias Diesen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Chang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Flavio Capotondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Roberto Costantini
- CNR-IOM, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Martin Beye
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Piter S Miedema
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, Hamburg 22607, Germany
| | - Joakim Halldin Stenlid
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jörgen Gladh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Boyang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hsin-Yi Wang
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Sergey Koroidov
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Peter Amann
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Emanuele Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denys Naumenko
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ivaylo Nikolov
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan C Luntz
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
136
|
Synthesis, Structure and Mg2+ Ionic Conductivity of Isopropylamine Magnesium Borohydride. INORGANICS 2022. [DOI: 10.3390/inorganics11010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The discovery of new inorganic magnesium electrolytes may act as a foundation for the rational design of novel types of solid-state batteries. Here we investigated a new type of organic-inorganic metal hydride, isopropylamine magnesium borohydride, Mg(BH4)2∙(CH3)2CHNH2, with hydrophobic domains in the solid state, which appear to promote fast Mg2+ ionic conductivity. A new synthetic strategy was designed by combination of solvent-based methods and mechanochemistry. The orthorhombic structure of Mg(BH4)2∙(CH3)2CHNH2 was solved ab initio by the Rietveld refinement of synchrotron X-ray powder diffraction data and density functional theory (DFT) structural optimization in space group I212121 (unit cell, a = 9.8019(1) Å, b = 12.1799(2) Å and c = 17.3386(2) Å). The DFT calculations reveal that the three-dimensional structure may be stabilized by weak dispersive interactions between apolar moieties and that these may be disordered. Nanoparticles and heat treatment (at T > 56 °C) produce a highly conductive composite, σ(Mg2+) = 2.86 × 10−7, and 2.85 × 10−5 S cm−1 at −10 and 40 °C, respectively, with a low activation energy, Ea = 0.65 eV. Nanoparticles stabilize the partially eutectic molten state and prevent recrystallization even at low temperatures and provide a high mechanical stability of the composite.
Collapse
|
137
|
Stanton R, Trivedi DJ. Atomistic Description of the Impact of Spacer Selection on Two-Dimensional (2D) Perovskites: A Case Study of 2D Ruddlesden-Popper CsPbI 3 Analogues. J Phys Chem Lett 2022; 13:12090-12098. [PMID: 36546657 DOI: 10.1021/acs.jpclett.2c03463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Inorganic CsPbI3 perovskites have become desirable for use in photovoltaic devices due to their excellent optoelectronic properties and increased resilience to thermal degradation compared to organic-inorganic perovskites. An effective strategy for improving both the performance and the phase stability of CsPbI3-based perovskites is through introducing a diverse set of spacing cations separating inorganic layers in their two-dimensional (2D) analogues. In this work, CsPbI3-based 2D Ruddlesden-Popper perovskites were investigated using three aromatic spacers, 2-thiophenemethylamine (ThMA), 2-thiopheneformamidine (ThFA), and benzylammonium, fluorinated through para substitution (pFBA). Our findings highlight the importance of the local bonding environment between organic spacers and the PbI6 octahedra. Additionally, we demonstrated the importance of energetic alignment between electronic states on spacing cations and inorganic layers for optoelectronic applications. Furthermore, thermoelectric performance was investigated revealing a preference for p-type ThFA and n-type ThMA and pFBA configurations.
Collapse
Affiliation(s)
- Robert Stanton
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
138
|
Ukpong AM. Inhibiting the Laydown of Polymeric Carbon and Simultaneously Promoting Its Facile Burn-Off during the Industrial-Scale Production of Hydrogen with Nickel-Based Catalysts: Insights from Ab Initio Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:40. [PMID: 36615950 PMCID: PMC9823633 DOI: 10.3390/nano13010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This paper presents a computational study of the mechanistic models for the laydown of carbon species on nickel surface facets and the burn-off models for their gasification mechanism in methane steam reforming based on density functional theory. Insights into catalyst design strategies for achieving the simultaneous inhibition of the laydown of polymeric carbon and the promotion of its burn-off are obtained by investigating the influence of single atom dopants on nickel surfaces. The effects of single atom dopants on adsorption energies are determined at both low and high carbon coverages on nickel and used to introduce appropriate thermodynamic descriptors of the associated surface reactions. It is found that the critical size of the nucleating polymeric carbon adatom contains three atoms, i.e., C3. The results show that the burn-off reaction of a polymeric carbon species is thermodynamically limited and hard to promote when the deposited carbon cluster grows beyond a critical size, C4. The introduction of single atom dopants into nickel surfaces is found to modify the structural stability and adsorption energies of carbon adatom species, as well as the free energy profiles of surface reactions for the burn-off reactions when CH4, H2O, H2, and CO species react to form hydrogen. The results reveal that materials development strategies that modify the sub-surface of the catalyst with potassium, strontium, or barium will inhibit carbon nucleation and promote burn-off, while surface doping with niobium, tungsten, or molybdenum will promote the laydown of polymeric carbon. This study provides underpinning insights into the reaction mechanisms for the coking of a nickel catalyst and the gasification routes that are possible for the recovery of a nickel catalyst during the steam reforming of methane for large-scale production of hydrogen.
Collapse
Affiliation(s)
- Aniekan Magnus Ukpong
- Theoretical and Computational Condensed Matter and Materials Physics Group (TCCMMP), School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg 3201, South Africa; ; Tel.: +27-033-260-5875; Fax: +27-031-260-3091
- National Institute for Theoretical and Computational Sciences (NITheCS), KwaZulu-Natal Node, Pietermaritzburg 3201, South Africa
| |
Collapse
|
139
|
Kumar P, Monder DS. Electronic structure and catalytic activity of exsolved Ni on Pd core-shell nanoparticles. Phys Chem Chem Phys 2022; 24:29801-29816. [PMID: 36468269 DOI: 10.1039/d2cp04133b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study reports first principles calculations performed to study the electronic structure and catalytic activity of exsolved Ni on Pd core-shell catalysts reported in recent experimental literature. The modification in the electronic and geometric properties of the Ni/Pd bimetallic system as successive layers of Ni are added on top of Pd is systematically investigated using the d-band model as well as the adsorption of O and CO on the surface of these core-shell structures. The results show that the adsorption of O and CO is more favourable on Ni/Pd core-shell catalysts compared to the pure Ni surface. As the dissociation of the O2 molecule into atomic oxygen and CO oxidation are key steps in metal-catalysed oxidation reactions, we have examined the energetics of O2 dissociation and CO oxidation reaction over the (111) faces of Ni as well as Ni/Pd structures. Our results suggest that both adsorption and dissociation are easier on Ni/Pd surfaces compared to a simple Ni surface. Unlike O2 dissociation, we find that CO oxidation is unfavourable on Ni/Pd in comparison to Ni. The energetics of both reactions follow Brønsted-Evans-Polanyi relationships where the activation energy is linearly related to the reaction energy for all surfaces studied here. We found that a single monolayer of Ni on Pd, due to the synergistic effect of geometric and electronic factors, is the most active among the surfaces studied here towards the adsorption and dissociation of O2. Both adsorption and dissociation become less favourable with an increase in the thickness of the Ni shell in these core-shell catalysts. A close analysis of the results indicates that both strain and ligand effects are active in the improved catalytic activity seen in Ni on Pd catalysts. Quite understandably, the ligand effect is only seen for the single monolayer of Ni on Pd and fades off as we go to two monolayers of Ni. The results reported here help us understand the connections between the electronic structure and catalytic activity of Ni/Pd core-shell nanoparticles, and these insights are expected to be useful in the development of core-shell catalysts.
Collapse
Affiliation(s)
- Punit Kumar
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Dayadeep S Monder
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
140
|
Sharma S, White AF, Beylkin G. Fast Exchange with Gaussian Basis Set Using Robust Pseudospectral Method. J Chem Theory Comput 2022; 18:7306-7320. [PMID: 36417710 DOI: 10.1021/acs.jctc.2c00720] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this article, we present an algorithm to efficiently evaluate the exchange matrix in periodic systems when a Gaussian basis set with pseudopotentials is used. The usual algorithm for evaluating exchange matrix scales cubically with the system size because one has to perform O(N2) fast Fourier transform (FFT). Here, we introduce an algorithm that retains the cubic scaling but reduces the prefactor significantly by eliminating the need to do FFTs during each exchange build. This is accomplished by representing the products of Gaussian basis function using a linear combination of an auxiliary basis the number of which scales linearly with the size of the system. We store the potential due to these auxiliary functions in memory, which allows us to obtain the exchange matrix without the need to do FFT, albeit at the cost of additional memory requirement. Although the basic idea of using auxiliary functions is not new, our algorithm is cheaper due to a combination of three ingredients: (a) we use a robust pseudospectral method that allows us to use a relatively small number of auxiliary basis to obtain high accuracy; (b) we use occ-RI exchange, which eliminates the need to construct the full exchange matrix; and (c) we use the (interpolative separable density fitting) ISDF algorithm to construct these auxiliary basis sets that are used in the robust pseudospectral method. The resulting algorithm is accurate, and we note that the error in the final energy decreases exponentially rapidly with the number of auxiliary functions.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Alec F White
- Quantum Simulation Technologies, Inc., Boston, Massachusetts02135, United States
| | - Gregory Beylkin
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
141
|
Hertel R, Maftuhin W, Walter M, Sommer M. Conformer Ring Flip Enhances Mechanochromic Performance of ansa-Donor-Acceptor-Donor Mechanochromic Torsional Springs. J Am Chem Soc 2022; 144:21897-21907. [PMID: 36414534 DOI: 10.1021/jacs.2c06712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mechanochromophores based on conformational changes of donor-acceptor-donor (DAD) springs allow sensing of forces acting on polymer chains by monotonic changes of absorbance or photoluminescence (PL) wavelength. Here, we identify a series of thiophene (D)-flanked quinoxalines (A) as molecular torsional springs for force sensing in bulk polymers at room temperature. The mode of DAD linkage to the polymer matrix and linker rigidity are key parameters that influence the efficacy of force transduction to the DAD spring and thus mechanochromic response, as probed by in situ PL spectroscopy of bulk films during stress-strain experiments. The largest shift of the PL maximum, and thus the highest sensitivity, is obtained from an ansa-DAD spring exhibiting bridged D units and a stiff A linker. Using detailed spectroscopy and density functional theory calculations, we reveal conformer redistribution in the form of a thiophene ring flip as the major part of the overall mechanochromic response. At forces as low as 27 pN at early stages of deformation, the ring flip precedes mechanically induced planarization of the ansa-DAD spring, the latter process producing a PL shift of 21 nm nN-1. Within the stress-strain diagram, the thiophene ring flip and DAD planarization are thus two separated processes that also cause irreversible and reversible mechanochromic responses, respectively, upon sample failure. As the thiophene ring flip requires much smaller forces than planarization of the DAD spring, such micromechanical motion gives access to sensing of tiny forces and expands both sensitivity and the force range of conformational mechanochromophores.
Collapse
Affiliation(s)
- Raphael Hertel
- Institute for Chemistry, Chemnitz University of Technology, Chemnitz09111, Germany
| | - Wafa Maftuhin
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg79110, Germany.,Cluster of Excellence livMatS @ FIT, Freiburg79110, Germany
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg79110, Germany.,Cluster of Excellence livMatS @ FIT, Freiburg79110, Germany.,Fraunhofer IWM, MikroTribologie Centrum μTC, Freiburg79108, Germany
| | - Michael Sommer
- Institute for Chemistry, Chemnitz University of Technology, Chemnitz09111, Germany
| |
Collapse
|
142
|
Christensen O, Zhao S, Sun Z, Bagger A, Lauritsen JV, Pedersen SU, Daasbjerg K, Rossmeisl J. Can the CO 2 Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oliver Christensen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| | - Siqi Zhao
- Novo Nordisk Foundation CO2 Research Center, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, Aarhus8000, Denmark
| | - Zhaozong Sun
- iNano, Aarhus University, Gustav Wieds Vej 14, Aarhus8000, Denmark
| | - Alexander Bagger
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| | | | | | - Kim Daasbjerg
- Novo Nordisk Foundation CO2 Research Center, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, Aarhus8000, Denmark
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen2100, Denmark
| |
Collapse
|
143
|
Molina L, Arranz-Simón C, Alonso J. Mechanistic insight into the CO oxidation reaction at pure, Nb-doped and Mo-doped medium size Pt clusters. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
144
|
Wyrick J, Wang X, Namboodiri P, Kashid RV, Fei F, Fox J, Silver R. Enhanced Atomic Precision Fabrication by Adsorption of Phosphine into Engineered Dangling Bonds on H-Si Using STM and DFT. ACS NANO 2022; 16:19114-19123. [PMID: 36317737 DOI: 10.1021/acsnano.2c08162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The doping of Si using the scanning probe hydrogen depassivation lithography technique has been shown to enable placing and positioning small numbers of P atoms with nanometer accuracy. Several groups have now used this capability to build devices that exhibit desired quantum behavior determined by their atomistic details. What remains elusive, however, is the ability to control the precise number of atoms placed at a chosen site with 100% yield, thereby limiting the complexity and degree of perfection achievable. As an important step toward precise control of dopant number, we explore the adsorption of the P precursor molecule, phosphine, into atomically perfect dangling bond patches of intentionally varied size consisting of three adjacent Si dimers along a dimer row, two adjacent dimers, and one single dimer. Using low temperature scanning tunneling microscopy, we identify the adsorption products by generating and comparing to a catalog of simulated images, explore atomic manipulation after adsorption in select cases, and follow up with incorporation of P into the substrate. For one-dimer patches, we demonstrate that manipulation of the adsorbed species leads to single P incorporation in 12 out of 12 attempts. Based on the observations made in this study, we propose this one-dimer patch method as a robust approach that can be used to fabricate devices where it is ensured that each site of interest has exactly one P atom.
Collapse
Affiliation(s)
- Jonathan Wyrick
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiqiao Wang
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20740, United States
| | - Pradeep Namboodiri
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Ranjit Vilas Kashid
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Fan Fei
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, University of Maryland, College Park, Maryland 20740, United States
| | - Joseph Fox
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, University of Maryland, College Park, Maryland 20740, United States
| | - Richard Silver
- Atom Scale Device Group, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
145
|
Jones AJH, Gammelgaard L, Sauer MO, Biswas D, Koch RJ, Jozwiak C, Rotenberg E, Bostwick A, Watanabe K, Taniguchi T, Dean CR, Jauho AP, Bøggild P, Pedersen TG, Jessen BS, Ulstrup S. Nanoscale View of Engineered Massive Dirac Quasiparticles in Lithographic Superstructures. ACS NANO 2022; 16:19354-19362. [PMID: 36321616 DOI: 10.1021/acsnano.2c08929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Massive Dirac fermions are low-energy electronic excitations characterized by a hyperbolic band dispersion. They play a central role in several emerging physical phenomena such as topological phase transitions, anomalous Hall effects, and superconductivity. This work demonstrates that massive Dirac fermions can be controllably induced by lithographically patterning superstructures of nanoscale holes in a graphene device. Their band dispersion is systematically visualized using angle-resolved photoemission spectroscopy with nanoscale spatial resolution. A linear scaling of effective mass with feature sizes is reported, underlining the Dirac nature of the superstructures. In situ electrostatic doping dramatically enhances the effective hole mass and leads to the direct observation of an electronic band gap that results in a peak-to-peak band separation of 0.64 ± 0.03 eV, which is shown via first-principles calculations to be strongly renormalized by carrier-induced screening. The methodology demonstrates band structure engineering guided by directly viewing structurally and electrically tunable massive Dirac quasiparticles in lithographic superstructures at the nanoscale.
Collapse
Affiliation(s)
- Alfred J H Jones
- Department of Physics and Astronomy, Aarhus University, 8000Aarhus C, Denmark
| | - Lene Gammelgaard
- DTU Physics, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Mikkel O Sauer
- Department of Materials and Production, Aalborg University, 9220Aalborg Øst, Denmark
- Department of Mathematical Science, Aalborg University, 9220Aalborg Øst, Denmark
- Center for Nanostructured Graphene (CNG), 9220Aalborg Øst, Denmark
| | - Deepnarayan Biswas
- Department of Physics and Astronomy, Aarhus University, 8000Aarhus C, Denmark
| | - Roland J Koch
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Chris Jozwiak
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Eli Rotenberg
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Aaron Bostwick
- Advanced Light Source, E. O. Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba305-0044, Japan
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York10027, United States
| | - Antti-Pekka Jauho
- DTU Physics, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Peter Bøggild
- DTU Physics, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800Kgs. Lyngby, Denmark
| | - Thomas G Pedersen
- Department of Materials and Production, Aalborg University, 9220Aalborg Øst, Denmark
- Center for Nanostructured Graphene (CNG), 9220Aalborg Øst, Denmark
| | - Bjarke S Jessen
- Department of Physics, Columbia University, New York, New York10027, United States
| | - Søren Ulstrup
- Department of Physics and Astronomy, Aarhus University, 8000Aarhus C, Denmark
| |
Collapse
|
146
|
Jenness GR, Koval AM, Etz BD, Shukla MK. Atomistic insights into the hydrodefluorination of PFAS using silylium catalysts. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2085-2099. [PMID: 36165287 DOI: 10.1039/d2em00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Fluorochemicals are a persistent environmental contaminant that require specialized techniques for degradation and capture. In particular, recent attention on per- and poly-fluoroalkyl substances (PFAS) has led to numerous explorations of different techniques for degrading the super-strong C-F bonds found in these fluorochemicals. In this study, we investigated the hydrodefluorination mechanism using silylium-carborane salts for the degradation of PFAS at the density functional theory (DFT) level. We find that the degradation process involves both a cationic silylium (Et3Si+) and a hydridic silylium (Et3SiH) to facilitate the defluorination and hydride-addition events. Additionally, the role of carborane ([HCB11H5F6]-) is to force unoccupied anti-bonding orbitals to be partially occupied, weakening the C-F bond. We also show that changing the substituents on carborane from fluorine to other halogens weakens the C-F bond even further, with iodic carborane ([HCB11H5I6]-) having the greatest weakening effect. Moreover, our calculations reveal why the C-F bonds are resistant to degradation, and how the silylium-carborane chemistry is able to chemically transform these bonds into C-H bonds. We believe that our results are further applicable to other halocarbons, and can be used to treat either our existing stocks of these chemicals or to treat concentrated solutions following filtration and capture.
Collapse
Affiliation(s)
- Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg 39180, Mississippi, USA.
| | - Ashlyn M Koval
- Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge 37830, Tennessee, USA
| | - Brian D Etz
- Oak Ridge Institute for Science and Education (ORISE), 1299 Bethel Valley Rd, Oak Ridge 37830, Tennessee, USA
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg 39180, Mississippi, USA.
| |
Collapse
|
147
|
Lindgren P, Kastlunger G, Peterson AA. Electrochemistry from the atomic scale, in the electronically grand-canonical ensemble. J Chem Phys 2022; 157:180902. [DOI: 10.1063/5.0123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ability to simulate electrochemical reactions from first-principles has advanced significantly in recent years. Here, we discuss the atomistic interpretation of electrochemistry at three scales: from the electronic structure to elementary processes to constant-potential reactions. At each scale, we highlight the importance of the grand-canonical nature of the process and show that the grand-canonical energy is the natural thermodynamic state variable, which has the additional benefit of simplifying calculations. We show that atomic forces are the derivative of the grand-potential energy when the potential is fixed. We further examine the meaning of potential at the atomic scale and its link to the chemical potential and discuss the link between charge transfer and potential in several situations.
Collapse
Affiliation(s)
- Per Lindgren
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Georg Kastlunger
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Andrew A. Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
148
|
Fojt J, Rossi TP, Kuisma M, Erhart P. Hot-Carrier Transfer across a Nanoparticle-Molecule Junction: The Importance of Orbital Hybridization and Level Alignment. NANO LETTERS 2022; 22:8786-8792. [PMID: 36200744 PMCID: PMC9650767 DOI: 10.1021/acs.nanolett.2c02327] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/03/2022] [Indexed: 05/31/2023]
Abstract
While direct hot-carrier transfer can increase photocatalytic activity, it is difficult to discern experimentally and competes with several other mechanisms. To shed light on these aspects, here, we model from first-principles hot-carrier generation across the interface between plasmonic nanoparticles and a CO molecule. The hot-electron transfer probability depends nonmonotonically on the nanoparticle-molecule distance and can be effective at long distances, even before a strong chemical bond can form; hot-hole transfer on the other hand is limited to shorter distances. These observations can be explained by the energetic alignment between molecular and nanoparticle states as well as the excitation frequency. The hybridization of the molecular orbitals is the key predictor for hot-carrier transfer in these systems, emphasizing the necessity of ground state hybridization for accurate predictions. Finally, we show a nontrivial dependence of the hot-carrier distribution on the excitation energy, which could be exploited when optimizing photocatalytic systems.
Collapse
Affiliation(s)
- Jakub Fojt
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tuomas P. Rossi
- Department
of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Mikael Kuisma
- Department
of Physics, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
149
|
Naturally-meaningful and efficient descriptors: machine learning of material properties based on robust one-shot ab initio descriptors. J Cheminform 2022; 14:78. [PMID: 36348412 PMCID: PMC9644534 DOI: 10.1186/s13321-022-00658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022] Open
Abstract
Establishing a data-driven pipeline for the discovery of novel materials requires the engineering of material features that can be feasibly calculated and can be applied to predict a material’s target properties. Here we propose a new class of descriptors for describing crystal structures, which we term Robust One-Shot Ab initio (ROSA) descriptors. ROSA is computationally cheap and is shown to accurately predict a range of material properties. These simple and intuitive class of descriptors are generated from the energetics of a material at a low level of theory using an incomplete ab initio calculation. We demonstrate how the incorporation of ROSA descriptors in ML-based property prediction leads to accurate predictions over a wide range of crystals, amorphized crystals, metal–organic frameworks and molecules. We believe that the low computational cost and ease of use of these descriptors will significantly improve ML-based predictions.
Collapse
|
150
|
Pisani WA, Jenness GR, Schutt TC, Larson SL, Shukla MK. Preferential Adsorption of Prominent Amino Acids in the Urease Enzyme of Sporosarcina pasteurii on Arid Soil Components: A Periodic DFT Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:13414-13428. [PMID: 36279412 DOI: 10.1021/acs.langmuir.2c01854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The urease enzyme is commonly used in microbially induced carbonate precipitation (MICP) and enzyme-induced carbonate precipitation (EICP) to heal and strengthen soil. Improving our understanding of the adsorption of the urease enzyme with various soil surfaces can lead to advancements in the MICP and EICP engineering methods as well as other areas of soil science. In this work, we use density functional theory (DFT) to investigate the urease enzyme's binding ability with four common arid soil components: quartz, corundum, albite, and hematite. As the urease enzyme cannot directly be simulated with DFT due to its size, the amino acids comprising at least 5% of the urease enzyme were simulated instead. An adsorption model incorporating the Gibbs free energy was used to determine the existence of amino acid-mineral binding modes. It was found that the nine simulated amino acids bind preferentially to the different soil components. Alanine favors corundum, glycine and threonine favor hematite, and aspartic acid favors albite. It was found that, under the standard environmental conditions considered here, amino acid binding to quartz is unfavorable. In the polymeric form where the side chains would dominate the binding interactions, hematite favors aspartic acid through its R-OH group and corundum favors glutamic acid through its R-Ket group. Overall, our model predicts that the urease enzyme produced by Sporosarcina pasteurii can bind to various oxides found in arid soil through its alanine, glycine, aspartic/glutamic acid, or threonine residues.
Collapse
Affiliation(s)
- William A Pisani
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee37830, United States
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Timothy C Schutt
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Steven L Larson
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, Mississippi39180, United States
| |
Collapse
|