101
|
Analysis of Gene Expression Signatures for Osteogenic 3D Perfusion-Bioreactor Cell Cultures Based on a Multifactorial DoE Approach. Processes (Basel) 2014. [DOI: 10.3390/pr2030639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
102
|
Panda N, Bissoyi A, Pramanik K, Biswas A. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri–tasar silk fibroin nanofibrous scaffold. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2014; 25:1440-57. [DOI: 10.1080/09205063.2014.943548] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
103
|
Costa PF, Martins A, Neves NM, Gomes ME, Reis RL. Automating the processing steps for obtaining bone tissue-engineered substitutes: from imaging tools to bioreactors. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:567-77. [PMID: 24673688 DOI: 10.1089/ten.teb.2013.0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bone diseases and injuries are highly incapacitating and result in a high demand for tissue substitutes with specific biomechanical and structural features. Tissue engineering has already proven to be effective in regenerating bone tissue, but has not yet been able to become an economically viable solution due to the complexity of the tissue, which is very difficult to be replicated, eventually requiring the utilization of highly labor-intensive processes. Process automation is seen as the solution for mass production of cellularized bone tissue substitutes at an affordable cost by being able to reduce human intervention as well as reducing product variability. The combination of tools such as medical imaging, computer-aided fabrication, and bioreactor technologies, which are currently used in tissue engineering, shows the potential to generate automated production ecosystems, which will, in turn, enable the generation of commercially available products with widespread clinical application.
Collapse
Affiliation(s)
- Pedro F Costa
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | | | |
Collapse
|
104
|
Chen H, Wang C, Zhu X, Zhang K, Fan Y, Zhang X. Fabrication of porous titanium scaffolds by stack sintering of microporous titanium spheres produced with centrifugal granulation technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:182-8. [PMID: 25175203 DOI: 10.1016/j.msec.2014.07.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/14/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
Abstract
Microporosity plays a key role in bioactivity and osteoinductivity of a biomaterial scaffold. A simple new approach to fabricating load-bearing porous titanium (Ti) scaffolds with uniform porous structure, highly controllable pore size and excellent biocompatibility was developed in the present study. This method was based on stack sintering of microporous Ti spheres produced with centrifugal granulation of commercial Ti powders. Macropores (180.0-341.8 μm) and micropores (6.1-11.8 μm) of the scaffolds were dependent on the sizes of the Ti spheres and the Ti powders, respectively. The compressive strength of the scaffolds (83.4-108.9 MPa) was high enough for the repair of load-bearing bone defects. Besides, the abundant micropores occurred on the rough and convex surface of the Ti spheres in the scaffolds were more favorable for adsorption of serum proteins, and thus promoted the growth of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- Hongjie Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Chunli Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
105
|
Optimal fluid flow enhanced mineralization of MG-63 cells in porous chitosan scaffold. J Taiwan Inst Chem Eng 2014. [DOI: 10.1016/j.jtice.2013.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
106
|
Tissue-engineered bone constructed in a bioreactor for repairing critical-sized bone defects in sheep. INTERNATIONAL ORTHOPAEDICS 2014; 38:2399-406. [PMID: 24916136 DOI: 10.1007/s00264-014-2389-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/18/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE Repair of bone defects, particularly critical-sized bone defects, is a considerable challenge in orthopaedics. Tissue-engineered bones provide an effective approach. However, previous studies mainly focused on the repair of bone defects in small animals. For better clinical application, repairing critical-sized bone defects in large animals must be studied. This study investigated the effect of a tissue-engineered bone for repairing critical-sized bone defect in sheep. METHODS A tissue-engineered bone was constructed by culturing bone marrow mesenchymal-stem-cell-derived osteoblast cells seeded in a porous β-tricalcium phosphate ceramic (β-TCP) scaffold in a perfusion bioreactor. A critical-sized bone defect in sheep was repaired with the tissue-engineered bone. At the eighth and 16th week after the implantation of the tissue-engineered bone, X-ray examination and histological analysis were performed to evaluate the defect. The bone defect with only the β-TCP scaffold served as the control. RESULT X-ray showed that the bone defect was successfully repaired 16 weeks after implantation of the tissue-engineered bone; histological sections showed that a sufficient volume of new bones formed in β-TCP 16 weeks after implantation. Eight and 16 weeks after implantation, the volume of new bones that formed in the tissue-engineered bone group was more than that in the β-TCP scaffold group (P < 0.05). CONCLUSION Tissue-engineered bone improved osteogenesis in vivo and enhanced the ability to repair critical-sized bone defects in large animals.
Collapse
|
107
|
García-Gareta E, Hua J, Rayan F, Blunn GW. Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:1553-1562. [PMID: 24519756 DOI: 10.1007/s10856-014-5170-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
Aseptic loosening in total joint replacements (TJRs) is mainly caused by osteolysis which leads to a reduction of the bone stock necessary for implant fixation in revision TJRs. Our aim was to develop bone tissue-engineered constructs based on scaffolds of clinical relevance in revision TJRs to reconstitute the bone stock at revision operations by using a perfusion bioreactor system (PBRS). The hypothesis was that a PBRS will enhance mesenchymal stem cells (MSCs) proliferation and osteogenic differentiation and will provide an even distribution of MSCs throughout the scaffolds when compared to static cultures. A PBRS was designed and implemented. Scaffolds, silicon substituted hydroxyapatite granules and calcium-phosphate coated porous TiAl6V4 cylinders, were seeded with MSCs and cultured either in static conditions or in the PBRS at 0.75 mL/min. Statistically significant increased cell proliferation and alkaline phosphatase activity was found in samples cultured in the PBRS. Histology revealed a more even cell distribution in the perfused constructs. SEM showed that cells arranged in sheets. Long cytoplasmic processes attached the cells to the scaffolds. We conclude that a novel tissue engineering approach to address the issue of poor bone stock at revision operations is feasible by using a PBRS.
Collapse
Affiliation(s)
- Elena García-Gareta
- John Scales Centre for Biomedical Engineering, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London, Stanmore, HA7 4LP, London, UK,
| | | | | | | |
Collapse
|
108
|
Costa PF, Vaquette C, Baldwin J, Chhaya M, Gomes ME, Reis RL, Theodoropoulos C, Hutmacher DW. Biofabrication of customized bone grafts by combination of additive manufacturing and bioreactor knowhow. Biofabrication 2014; 6:035006. [DOI: 10.1088/1758-5082/6/3/035006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
109
|
Du D, Ushida T, Furukawa KS. Influence of cassette design on three-dimensional perfusion culture of artificial bone. J Biomed Mater Res B Appl Biomater 2014; 103:84-91. [DOI: 10.1002/jbm.b.33188] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/25/2014] [Accepted: 04/12/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Dajiang Du
- Department of Orthopaedic Surgery, Sino-Russian Institute of Hard Tissue Development and Regeneration; Harbin Medical University; Nangang Harbin 150086 China
| | - Takashi Ushida
- Division of Biomedical Materials and Systems, Center for Disease Biology and Integrative Medicine; School of Medicine, the University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Katsuko S Furukawa
- NanoBio. Integration, University of Tokyo; Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Laboratory of Biomedical Engineering, Department of Mechanical Engineering; Graduate School of Engineering, the University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Bioengineering; Graduate School of Engineering, The University of Tokyo; 2nd Building, 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
110
|
Altmann B, Löchner A, Swain M, Kohal RJ, Giselbrecht S, Gottwald E, Steinberg T, Tomakidi P. Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. Biomaterials 2014; 35:3208-19. [DOI: 10.1016/j.biomaterials.2013.12.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/22/2013] [Indexed: 11/30/2022]
|
111
|
Pham NH, Voronov RS, Tummala NR, Papavassiliou DV. Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:033016. [PMID: 24730946 DOI: 10.1103/physreve.89.033016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Indexed: 06/03/2023]
Abstract
In this paper, bulk stress distributions in the pore space of columns packed with spheres are numerically computed with lattice Boltzmann simulations. Three different ideally packed and one randomly packed configuration of the columns are considered under Darcy flow conditions. The stress distributions change when the packing type changes. In the Darcy regime, the normalized stress distribution for a particular packing type is independent of the pressure difference that drives the flow and presents a common pattern. The three parameter (3P) log-normal distribution is found to describe the stress distributions in the randomly packed beds within statistical accuracy. In addition, the 3P log-normal distribution is still valid when highly porous scaffold geometries rather than sphere beds are examined. It is also shown that the 3P log-normal distribution can describe the bulk stress distribution in consolidated reservoir rocks like Berea sandstone.
Collapse
Affiliation(s)
- Ngoc H Pham
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019-1004, USA
| | - Roman S Voronov
- Department of Chemical Biological and Pharmaceutical Engineering, New Jersey Institute of Technology-University Heights, Newark, New Jersey 07102, USA
| | - Naga Rajesh Tummala
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019-1004, USA
| | - Dimitrios V Papavassiliou
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019-1004, USA
| |
Collapse
|
112
|
Needle-punched nonwoven matrix from regenerated collagen fiber for cartilage tissue engineering. J Appl Polym Sci 2014. [DOI: 10.1002/app.40404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
113
|
Spyropoulou A, Basdra EK. Mechanotransduction in bone: Intervening in health and disease. World J Exp Med 2013; 3:74-86. [DOI: 10.5493/wjem.v3.i4.74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/06/2013] [Accepted: 11/03/2013] [Indexed: 02/06/2023] Open
Abstract
Mechanotransduction has been proven to be one of the most significant variables in bone remodeling and its alterations have been shown to result in a variety of bone diseases. Osteoporosis, Paget’s disease, orthopedic disorders, osteopetrosis as well as hyperparathyroidism and hyperthyroidism all comprise conditions which have been linked with deregulated bone remodeling. Although the significance of mechanotransduction for bone health and disease is unquestionable, the mechanisms behind this important process have not been fully understood. This review will discuss the molecules that have been found to be implicated in mechanotransduction, as well as the mechanisms underlying bone health and disease, emphasizing on what is already known as well as new molecules potentially taking part in conveying mechanical signals from the cell surface towards the nucleus under physiological or pathologic conditions. It will also focus on the model systems currently used in mechanotransduction studies, like osteoblast-like cells as well as three-dimensional constructs and their applications among others. It will also examine the role of mechanostimulatory techniques in preventing and treating bone degenerative diseases and consider their applications in osteoporosis, craniofacial development, skeletal deregulations, fracture treatment, neurologic injuries following stroke or spinal cord injury, dentistry, hearing problems and bone implant integration in the near future.
Collapse
|
114
|
Gardel LS, Serra LA, Reis RL, Gomes ME. Use of perfusion bioreactors and large animal models for long bone tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 20:126-46. [PMID: 23924374 DOI: 10.1089/ten.teb.2013.0010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.
Collapse
Affiliation(s)
- Leandro S Gardel
- 1 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho , Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | | | | | | |
Collapse
|
115
|
Zhang Z, Jones D, Yue S, Lee P, Jones J, Sutcliffe C, Jones E. Hierarchical tailoring of strut architecture to control permeability of additive manufactured titanium implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4055-62. [DOI: 10.1016/j.msec.2013.05.050] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 04/24/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
|
116
|
Almeida HA, Bártolo PJ. Numerical simulations of bioextruded polymer scaffolds for tissue engineering applications. POLYM INT 2013. [DOI: 10.1002/pi.4585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Henrique A. Almeida
- Centre for Rapid and Sustainable Product Development; Marinha Grande Portugal
| | - Paulo J. Bártolo
- Centre for Rapid and Sustainable Product Development; Marinha Grande Portugal
| |
Collapse
|
117
|
Dahlin RL, Gershovich JG, Kasper FK, Mikos AG. Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds. Ann Biomed Eng 2013; 42:1381-90. [PMID: 23842695 DOI: 10.1007/s10439-013-0862-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/28/2013] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the effect of flow perfusion culture on the mineralization of co-cultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). Osteogenically precultured hMSCs were seeded onto electrospun scaffolds in monoculture or a 1:1 ratio with HUVECs, cultured for 7 or 14 days in osteogenic medium under static or flow perfusion conditions, and the resulting constructs were analyzed for cellularity, alkaline phosphatase (ALP) activity and calcium content. In flow perfusion, constructs with monocultures of hMSCs demonstrated higher cellularity and calcium content, but lower ALP activity compared to corresponding static controls. ALP activity was enhanced in co-cultures under flow perfusion conditions, compared to hMSCs alone; however unlike the static controls, the calcium content of the co-cultures in flow perfusion was not different from the corresponding hMSC monocultures. The data suggest that co-cultures of hMSCs and HUVECs did not contribute to enhanced mineralization compared to hMSCs alone under the flow perfusion conditions investigated in this study. However, flow perfusion culture resulted in an enhanced spatial distribution of cells and matrix compared to static cultures, which were limited to a thin surface layer.
Collapse
Affiliation(s)
- Rebecca L Dahlin
- Department of Bioengineering-MS 142, Rice University, 6100 Main Street, P.O. Box 1892, Houston, TX, 77005, USA
| | | | | | | |
Collapse
|
118
|
Cartmell SH, Thurstan S, Gittings JP, Griffiths S, Bowen CR, Turner IG. Polarization of porous hydroxyapatite scaffolds: Influence on osteoblast cell proliferation and extracellular matrix production. J Biomed Mater Res A 2013; 102:1047-52. [DOI: 10.1002/jbm.a.34790] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/30/2013] [Accepted: 05/01/2013] [Indexed: 11/12/2022]
Affiliation(s)
- S. H. Cartmell
- Materials Science Centre; University of Manchester; Grosvenor Street Manchester M13 9PL United Kingdom
- Guy Hilton Research Centre; Institute of Science and Technology in Medicine, University of Keele; Stoke-on-Trent ST4 7QB United Kingdom
| | - S. Thurstan
- Dermatology Research Centre; Institute of Inflammation and Repair, University of Manchester; Manchester M13 9PT United Kingdom
| | - J. P. Gittings
- Department of Mechanical Engineering; University of Bath; Bath BA2 7AY United Kingdom
| | - S. Griffiths
- Guy Hilton Research Centre; Institute of Science and Technology in Medicine, University of Keele; Stoke-on-Trent ST4 7QB United Kingdom
| | - C. R. Bowen
- Department of Mechanical Engineering; University of Bath; Bath BA2 7AY United Kingdom
| | - I. G. Turner
- Department of Mechanical Engineering; University of Bath; Bath BA2 7AY United Kingdom
| |
Collapse
|
119
|
Cigan AD, Nims RJ, Albro MB, Esau JD, Dreyer MP, Vunjak-Novakovic G, Hung CT, Ateshian GA. Insulin, ascorbate, and glucose have a much greater influence than transferrin and selenous acid on the in vitro growth of engineered cartilage in chondrogenic media. Tissue Eng Part A 2013; 19:1941-8. [PMID: 23544890 DOI: 10.1089/ten.tea.2012.0596] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primary goal of this study was to characterize the response of chondrocyte-seeded agarose constructs to varying concentrations of several key nutrients in a chondrogenic medium, within the overall context of optimizing the key nutrients and the placement of nutrient channels for successful growth of cartilage tissue constructs large enough to be clinically relevant in the treatment of osteoarthritis (OA). To this end, chondrocyte-agarose constructs (ø4×2.34 mm, 30×10(6) cells/mL) were subjected to varying supplementation levels of insulin (0× to 30× relative to standard supplementation), transferrin (0× to 30×), selenous acid (0× to 10×), ascorbate (0× to 30×), and glucose (0× to 3×). The quality of resulting engineered tissue constructs was evaluated by their compressive modulus (E(-Y)), tensile modulus (E(+Y)), hydraulic permeability (k), and content of sulfated glycosaminoglycans (sGAG) and collagen (COL); DNA content was also quantified. Three control groups from two separate castings of constructs (1× concentrations of all medium constituents) were used. After 42 days of culture, values in each of these controls were, respectively, E(-Y)=518±78, 401±113, 236±67 kPa; E(+Y)=1420±430, 1140±490, 1240±280 kPa; k=2.3±0.8×10(-3), 5.4±7.0×10(-3), 3.3±1.3×10(-3) mm(4)/N·s; sGAG=7.8±0.3, 6.3±0.4, 4.1±0.5%/ww; COL=1.3±0.2, 1.1±0.3, 1.4±0.4%/ww; and DNA=11.5±2.2, 12.1±0.6, 5.2±2.8 μg/disk. The presence of insulin and ascorbate was essential, but their concentrations may drop as low as 0.3× without detrimental effects on any of the measured properties; excessive supplementation of ascorbate (up to 30×) was detrimental to E(-Y), and 30× insulin was detrimental to both E(+Y) and E(-Y). The presence of glucose was similarly essential, and matrix elaboration was significantly dependent on its concentration (p<10(-6)), with loss of functional properties, composition, and cellularity observed at ≤0.3×; excessive glucose supplementation (up to 3×) showed no detrimental effects. In contrast, transferrin and selenous acid had no influence on matrix elaboration. These findings suggest that adequate distributions of insulin, ascorbate, and glucose, but not necessarily of transferrin and selenous acid, must be ensured within large engineered cartilage constructs to produce a viable substitute for joint tissue lost due to OA.
Collapse
Affiliation(s)
- Alexander D Cigan
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Vetsch JR, Müller R, Hofmann S. The evolution of simulation techniques for dynamic bone tissue engineering in bioreactors. J Tissue Eng Regen Med 2013; 9:903-17. [DOI: 10.1002/term.1733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 12/20/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Jolanda Rita Vetsch
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| | - Ralph Müller
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| | - Sandra Hofmann
- Institute for Biomechanics; Swiss Federal Institute of Technology Zürich (ETHZ); Switzerland
| |
Collapse
|
121
|
Weyand B, Kasper C, Israelowitz M, Gille C, von Schroeder HP, Reimers K, Vogt PM. A differential pressure laminar flow reactor supports osteogenic differentiation and extracellular matrix formation from adipose mesenchymal stem cells in a macroporous ceramic scaffold. Biores Open Access 2013; 1:145-56. [PMID: 23515420 PMCID: PMC3559213 DOI: 10.1089/biores.2012.9901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We present a laminar flow reactor for bone tissue engineering that was developed based on a computational fluid dynamics model. The bioreactor design permits a laminar flow field through its specific internal shape. An integrated bypass system that prevents pressure build-up through bypass openings for pressure release allows for a constant pressure environment during the changing of permeability values that are caused by cellular growth within a porous scaffold. A macroporous ceramic scaffold, composed of zirconium dioxide, was used as a test biomaterial that studies adipose stem cell behavior within a controlled three-dimensional (3D) flow and pressure environment. The topographic structure of the material provided a basis for stem cell proliferation and differentiation toward the osteogenic lineage. Dynamic culture conditions in the bioreactor supported cell viability during long-term culture and induced cell cluster formation and extra-cellular matrix deposition within the porous scaffold, though no complete closure of the pores with new-formed tissue was observed. We postulate that our system is suitable for studying fluid shear stress effects on stem cell proliferation and differentiation toward bone formation in tissue-engineered 3D constructs.
Collapse
Affiliation(s)
- Birgit Weyand
- Laboratory of Experimental Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Hannover Medical School , Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
122
|
Yu HS, Won JE, Jin GZ, Kim HW. Construction of mesenchymal stem cell-containing collagen gel with a macrochanneled polycaprolactone scaffold and the flow perfusion culturing for bone tissue engineering. Biores Open Access 2013; 1:124-36. [PMID: 23515189 PMCID: PMC3559226 DOI: 10.1089/biores.2012.0234] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A novel bone tissue-engineering construct was developed by using poly(ɛ-caprolactone) (PCL)-macrochanneled scaffolds combined with stem cell-seeded collagen hydrogels and then applying flow perfusion culture. Rat mesenchymal stem cells (MSCs) were loaded into collagen hydrogels, which were then combined with macrochanneled PCL scaffolds. Collagen hydrogels were demonstrated to provide favorable growth environments for MSCs and to foster proliferation. Cell number determination identified retention of substantially fewer (50–60%) cells when they were seeded directly onto macrochanneled PCL than of cells engineered within collagen hydrogels. Additionally, the cells actively proliferated within the combined scaffold for up to 7 days. MSC-loaded collagen–PCL scaffolds were subsequently cultured under flow perfusion to promote proliferation and osteogenic differentiation. Cells proliferated to levels significantly higher in flow perfusion culture than that under static conditions during 21 days. A quantitative polymerase chain reaction (QPCR) assay revealed significant alterations in the transcription of bone-related genes such as osteopontin (OPN), osteocalcin (OCN), and bone sialoprotein (BSP), such as 8-, 2.5-, and 3-fold induction, respectively, after 10 days of flow perfusion relative to those in static culture. OPN and OCN protein levels, as determined by Western blot, increased under flow perfusion. Cellular mineralization was significantly enhanced by the flow perfusion during 21 and 28 days. Analyses of mechanosensitive gene expression induced by flow perfusion shear stress revealed significant upregulation of c-fos and cyclooxygenase-2 (COX-2) during the initial culture period (3–5 days), suggesting that osteogenic stimulation was possible as a result of mechanical force-driven transduction. These results provide valuable information for the design of a new bone tissue-engineering system by combining stem cell-loaded collagen hydrogels with macrochanneled scaffolds in flow perfusion culture.
Collapse
Affiliation(s)
- Hye-Sun Yu
- Department of Nanobiomedical Science and WCU Research Center, Dankook University Graduate School, Dankook University , Cheonan, South Korea . ; Institute of Tissue Regeneration Engineering (ITREN), Dankook University , Cheonan, South Korea
| | | | | | | |
Collapse
|
123
|
Papantoniou Ir I, Chai YC, Luyten FP, Schrooten Ir J. Process quality engineering for bioreactor-driven manufacturing of tissue-engineered constructs for bone regeneration. Tissue Eng Part C Methods 2013. [PMID: 23198999 DOI: 10.1089/ten.tec.2012.0526] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incorporation of Quality-by-Design (QbD) principles in tissue-engineering bioprocess development toward clinical use will ensure that manufactured constructs possess prerequisite quality characteristics addressing emerging regulatory requirements and ensuring the functional in vivo behavior. In this work, the QbD principles were applied on a manufacturing process step for the in vitro production of osteogenic three-dimensional (3D) hybrid scaffolds that involves cell matrix deposition on a 3D titanium (Ti) alloy scaffold. An osteogenic cell source (human periosteum-derived cells) cultured in a bioinstructive medium was used to functionalize regular Ti scaffolds in a perfusion bioreactor, resulting in an osteogenic hybrid carrier. A two-level three-factor fractional factorial design of experiments was employed to explore a range of production-relevant process conditions by simultaneously changing value levels of the following parameters: flow rate (0.5-2 mL/min), cell culture duration (7-21 days), and cell-seeding density (1.5×10(3)-3×10(3) cells/cm(2)). This approach allowed to evaluate the individual impact of the aforementioned process parameters upon key quality attributes of the produced hybrids, such as collagen production, mineralization level, and cell number. The use of a fractional factorial design approach helped create a design space in which hybrid scaffolds of predefined quality attributes may be robustly manufactured while minimizing the number of required experiments.
Collapse
Affiliation(s)
- Ioannis Papantoniou Ir
- Laboratory for Skeletal Development and Joint Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
124
|
Abstract
Bone is a load-bearing tissue and physical forces play key roles in the development and maintenance of its structure. Mechanical cues can stimulate the expression of an osteogenic phenotype, enhance matrix and mineral deposition, and influence tissue organization to improve the functional outcome of engineered bone grafts. In recent years, a number of studies have investigated the effects of biophysical forces on the bone formation properties of osteoprogenitor cells. The application of physiologically relevant stimuli to tissue-engineered bone may be determined through observation and understanding of forces to which osteoblasts, osteoclasts, and osteocytes are exposed in native bone. Subsequently, these cues may be parameterized and their effects studied in well-defined in vitro systems. The osteo-inductive effects of three specific mechanical cues - shear stress, substrate rigidity, and nanotopography - on cells cultured in monolayer or in three-dimensional biomaterial scaffolds in vitro are reviewed. Additionally, we address the time-dependent effects of mechanical cues on vascular infiltration and de novo bone formation in acellular scaffolds implanted into load-bearing sites in vivo. Recent studies employing cutting-edge advances in biomaterial fabrication and bioreactor design have provided key insights into the role of mechanical cues on cellular fate and tissue properties of engineered bone grafts. By providing mechanistic understanding, future studies may go beyond empirical approaches to rational design of engineering systems to control tissue development.
Collapse
|
125
|
Fan J, Jia X, Huang Y, Fu BM, Fan Y. Greater scaffold permeability promotes growth of osteoblastic cells in a perfused bioreactor. J Tissue Eng Regen Med 2013; 9:E210-8. [PMID: 23349107 DOI: 10.1002/term.1701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/17/2012] [Accepted: 12/20/2012] [Indexed: 11/07/2022]
Abstract
Pore size and porosity have been widely acknowledged as important structural factors in tissue-engineered scaffolds. In fact, scaffolds with similar pore size and porosity can provide important and varied permeability due to different pore shape, interconnectivity and tortuosity. However, the effects of scaffold permeability on seeded cells remains largely unknown during tissue regeneration in vitro. In this study, we measured the Darcy permeability (K) of tri-calcium phosphate scaffolds by distributed them into three groups: Low, Medium and High. As a result, the effects of scaffold permeability on cell proliferation, cellular activity and growth in the inner pores were investigated in perfused and static cultures in vitro. Results demonstrated that higher permeable scaffolds exhibited superior performance during bone regeneration in vitro and the advantages of higher scaffold permeability were amplified in perfused culture. Based on these findings, scaffold permeability should be considered in future scaffold fabrications.
Collapse
Affiliation(s)
- Jie Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoling Jia
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Bingmei M Fu
- Department of Biomedical Engineering, the City College of the City University of New York, New York, NY, 10031, USA
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
126
|
Bart ZR, Wallace JM. Microcomputed Tomography Applications in Bone and Mineral Research. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/act.2013.23021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
127
|
Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev Rep 2012; 8:891-7. [PMID: 22139789 DOI: 10.1007/s12015-011-9337-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cbfa1/Runx2 is a bone transcription factor homologous to the Drosophila protein, Runt. Runx2 is a master gene that encodes for a protein involved in the osteogenic differentiation process from mesenchymal precursors. It is known that in Cbfa1 deficient mice (Cbfa1(-/-)) the lack of mature osteoblasts is associated to incomplete bone mineralization. An important aim of modern biology is the development of new molecular tools for identification of therapeutic approaches. Recent discoveries in cell and molecular biology enabled researchers in the bone tissue-engineering field to develop new strategies for gene and cell-based therapies. This review summarizes the process of osteogenic differentiation from mesenchymal stem cells and the importance of bone regeneration is discussed. In particular, given the increasing interest in the study of the transcription factor Runx2, this review highlights the role of this target gene and addresses recent strategies using Runx2 for bone regeneration.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, Clinic of Internal Medicine, section D, University of Verona, Piazzale Scuro, 10, 37134 Verona, Italy
| | | | | |
Collapse
|
128
|
Computational Modelling of the Mechanics of Trabecular Bone and Marrow Using Fluid Structure Interaction Techniques. Ann Biomed Eng 2012; 41:814-26. [DOI: 10.1007/s10439-012-0714-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
|
129
|
Ji R, Zhang N, You N, Li Q, Liu W, Jiang N, Liu J, Zhang H, Wang D, Tao K, Dou K. The differentiation of MSCs into functional hepatocyte-like cells in a liver biomatrix scaffold and their transplantation into liver-fibrotic mice. Biomaterials 2012; 33:8995-9008. [PMID: 22985996 DOI: 10.1016/j.biomaterials.2012.08.058] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/24/2012] [Indexed: 01/18/2023]
Abstract
Hepatocytes derived from mesenchymal stem cells (MSCs) hold great potential for cell-based therapies for liver diseases. The cell-based therapies are critically dependent on the hepatic differentiation of the MSCs with a high efficiency and on a considerable scale. Recent results have shown that decellularized organs provide a three-dimensional extracellular matrix for the lineage restriction of stem cell maturation. In this study, we compared the cell proliferation and hepatic differentiation of murine MSCs in a biomatrix scaffold from rat liver and in the presence and absence growth factors (GF) with a two-dimensional substrate. In the absence or presence of GF, the dynamic cultured scaffold (DCS) stimulated the MSCs to express endodermal and hepatocyte-specific genes and proteins associated with improved functions, and the cells exhibited the ultrastructural characteristics of mature hepatocytes. When transplanted into CCl(4)-injured mice, the cells pretreated with a combination of the DCS and GF exhibited increased survival, liver function, engraftment into the host liver and further hepatic differentiation. The paracrine effect of the transplanted cells on hepatic stellate cells and native hepatocytes played a key role in the treatment of the liver pathology. These studies define an effective method that facilitates the hepatic differentiation of MSCs exhibiting extensive functions and support further research into the use of a decellularized liver matrix as a bioscaffold for liver tissue engineering.
Collapse
Affiliation(s)
- Ru Ji
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Spencer T, Hidalgo-Bastida L, Cartmell S, Halliday I, Care C. In silico multi-scale model of transport and dynamic seeding in a bone tissue engineering perfusion bioreactor. Biotechnol Bioeng 2012; 110:1221-30. [DOI: 10.1002/bit.24777] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 01/25/2023]
|
131
|
Wang T, Gardiner BS, Lin Z, Rubenson J, Kirk TB, Wang A, Xu J, Smith DW, Lloyd DG, Zheng MH. Bioreactor design for tendon/ligament engineering. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:133-46. [PMID: 23072472 DOI: 10.1089/ten.teb.2012.0295] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.
Collapse
Affiliation(s)
- Tao Wang
- Centre for Orthopaedic Translational Research, School of Surgery, University of Western Australia, Crawley, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Szpalski C, Sagebin F, Barbaro M, Warren SM. The influence of environmental factors on bone tissue engineering. J Biomed Mater Res B Appl Biomater 2012; 101:663-75. [PMID: 23165885 DOI: 10.1002/jbm.b.32849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/28/2012] [Accepted: 10/05/2012] [Indexed: 12/14/2022]
Abstract
Bone repair and regeneration are dynamic processes that involve a complex interplay between the substrate, local and systemic cells, and the milieu. Although each constituent plays an integral role in faithfully recreating the skeleton, investigators have long focused their efforts on scaffold materials and design, cytokine and hormone administration, and cell-based therapies. Only recently have the intangible aspects of the milieu received their due attention. In this review, we highlight the important influence of environmental factors on bone tissue engineering.
Collapse
Affiliation(s)
- Caroline Szpalski
- Department of Plastic Surgery, New York University Langone Medical Center, New York, New York, USA
| | | | | | | |
Collapse
|
133
|
Abstract
Tissue engineering has emerged as a possible alternative to current treatments for bone injuries and defects. However, the common tissue engineering approach presents some obstacles to the development of functional tissues, such as insufficient nutrient and metabolite transport and non-homogenous cell distribution. Culture of bone cells in three-dimensional constructs in bioreactor systems is a solution for those problems as it improves mass transport in the culture system. For bone tissue engineering spinner flasks, rotating wall vessels and perfusion systems have been investigated, and based on these, variations that support cell seeding and mechanical stimulation have also been researched. This review aims at providing an overview of the concepts, advantages and future applications of bioreactor systems for bone tissue engineering with emphasis on the design of different perfusion systems and parameters that can be optimized.
Collapse
Affiliation(s)
- Diana Alves Gaspar
- Departamento de Engenharia Metalúrgica e de Materiais; Universidade do Porto; Faculdade de Engenharia (FEUP); Porto, Portugal
| | - Viviane Gomide
- Departamento de Engenharia Metalúrgica e de Materiais; Universidade do Porto; Faculdade de Engenharia (FEUP); Porto, Portugal
- Divisão de Biomateriais; INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
| | - Fernando Jorge Monteiro
- Departamento de Engenharia Metalúrgica e de Materiais; Universidade do Porto; Faculdade de Engenharia (FEUP); Porto, Portugal
- Divisão de Biomateriais; INEB-Instituto de Engenharia Biomédica; Universidade do Porto; Porto, Portugal
| |
Collapse
|
134
|
Perfusion flow enhances osteogenic gene expression and the infiltration of osteoblasts and endothelial cells into three-dimensional calcium phosphate scaffolds. Int J Biomater 2012; 2012:915620. [PMID: 22988460 PMCID: PMC3440867 DOI: 10.1155/2012/915620] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/04/2012] [Indexed: 01/08/2023] Open
Abstract
Maintaining cellular viability in vivo and in vitro is a critical issue in three-dimensional bone tissue engineering. While the use of osteoblast/endothelial cell cocultures on three-dimensional constructs has shown promise for increasing in vivo vascularization, in vitro maintenance of cellular viability remains problematic. This study used perfusion flow to increase osteogenic and angiogenic gene expression, decrease hypoxic gene expression, and increase cell and matrix coverage in osteoblast/endothelial cell co-cultures. Mouse osteoblast-like cells (MC3T3-E1) were cultured alone and in co-culture with mouse microvascular endothelial cells (EOMA) on three-dimensional scaffolds for 1, 2, 7, and 14 days with or without perfusion flow. mRNA levels were determined for several osteogenic, angiogenic, and hypoxia-related genes, and histological analysis was performed. Perfusion flow downregulated hypoxia-related genes (HIF-1α, VEGF, and OPN) at early timepoints, upregulated osteogenic genes (ALP and OCN) at 7 days, and downregulated RUNX-2 and VEGF mRNA at 14 days in osteoblast monocultures. Perfusion flow increased cell number, coverage of the scaffold perimeter, and matrix area in the center of scaffolds at 14 days. Additionally, perfusion flow increased the length of endothelial cell aggregations within co-cultures. These suggest perfusion stimulated co-cultures provide a means of increasing osteogenic and angiogenic activity.
Collapse
|
135
|
Israelowitz M, Weyand B, Rizvi S, Vogt P, von Schroeder H. Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics. JOURNAL OF HEALTHCARE ENGINEERING 2012. [DOI: 10.1260/2040-2295.3.3.455] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
136
|
Yan X, Bergstrom DJ, Chen XB. Modeling of cell cultures in perfusion bioreactors. IEEE Trans Biomed Eng 2012; 59:2568-75. [PMID: 22772976 DOI: 10.1109/tbme.2012.2206077] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cultivating cells and tissues in bioreactors is a critical step in forming artificial tissues or organs prior to transplantation. Among various bioreactors, the perfusion bioreactor is known for its enhanced convection through the cell-scaffold constructs. Knowledge of mass transfer is essential for controlling the cell culture process; however, obtaining this information remains a challenging task. In this research, a novel mathematical model is developed to represent the nutrient transport and cell growth in a 3-D scaffold cultivated in a perfusion bioreactor. Numerical methods are employed to solve the equations involved, with a focus on identifying the effect of factors such as porosity, culturing time, and flow rate, which are controllable in the scaffold fabrication and culturing process, on cell cultures. To validate the new model, the results from the model simulations were compared to the experimental results extracted from the literature. With the validated model, further simulations were carried out to investigate the glucose and oxygen distribution and the cell growth within the cell-scaffold construct in a perfusion bioreactor, thus providing insight into the cell culture process.
Collapse
Affiliation(s)
- X Yan
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
| | | | | |
Collapse
|
137
|
McCoy RJ, O'Brien FJ. Visualizing feasible operating ranges within tissue engineering systems using a “windows of operation” approach: A perfusion-scaffold bioreactor case study. Biotechnol Bioeng 2012; 109:3161-71. [DOI: 10.1002/bit.24566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 11/06/2022]
|
138
|
Maes F, Claessens T, Moesen M, Van Oosterwyck H, Van Ransbeeck P, Verdonck P. Computational models for wall shear stress estimation in scaffolds: A comparative study of two complete geometries. J Biomech 2012; 45:1586-92. [DOI: 10.1016/j.jbiomech.2012.04.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 03/19/2012] [Accepted: 04/09/2012] [Indexed: 12/24/2022]
|
139
|
Yoo D. Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions. Med Eng Phys 2012; 34:625-39. [DOI: 10.1016/j.medengphy.2012.03.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/16/2012] [Accepted: 03/17/2012] [Indexed: 11/27/2022]
|
140
|
Mohebbi-Kalhori D, Behzadmehr A, Doillon CJ, Hadjizadeh A. Computational modeling of adherent cell growth in a hollow-fiber membrane bioreactor for large-scale 3-D bone tissue engineering. J Artif Organs 2012; 15:250-65. [PMID: 22610313 DOI: 10.1007/s10047-012-0649-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 04/23/2012] [Indexed: 11/28/2022]
Abstract
The use of hollow-fiber membrane bioreactors (HFMBs) has been proposed for three-dimensional bone tissue growth at the clinical scale. However, to achieve an efficient HFMB design, the relationship between cell growth and environmental conditions must be determined. Therefore, in this work, a dynamic double-porous media model was developed to determine nutrient-dependent cell growth for bone tissue formation in a HFMB. The whole hollow-fiber scaffold within the bioreactor was treated as a porous domain in this model. The domain consisted of two interpenetrating porous regions, including a porous lumen region available for fluid flow and a porous extracapillary space filled with a collagen gel that contained adherent cells for promoting long-term growth into tissue-like mass. The governing equations were solved numerically and the model was validated using previously published experimental results. The contributions of several bioreactor design and process parameters to the performance of the bioreactor were studied. The results demonstrated that the process and design parameters of the HFMB significantly affect nutrient transport and thus cell behavior over a long period of culture. The approach presented here can be applied to any cell type and used to develop tissue engineering hollow-fiber scaffolds.
Collapse
Affiliation(s)
- Davod Mohebbi-Kalhori
- Department of Chemical Engineering-Biotechnology, Université de Sherbrooke, 2500, Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada.
| | | | | | | |
Collapse
|
141
|
Liu L, Zong C, Li B, Shen D, Tang Z, Chen J, Zheng Q, Tong X, Gao C, Wang J. The interaction betweenβ1 integrins and ERK1/2 in osteogenic differentiation of human mesenchymal stem cells under fluid shear stress modelled by a perfusion system. J Tissue Eng Regen Med 2012; 8:85-96. [DOI: 10.1002/term.1498] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/09/2011] [Accepted: 01/24/2012] [Indexed: 01/17/2023]
Affiliation(s)
- Liyue Liu
- Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou 310058 People's Republic of China
- Departmant of biology; Ningde Normal University; Ningde Fujian 352101 People's Republic of China
| | - Chen Zong
- Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou 310058 People's Republic of China
| | - Bo Li
- Institute of Medical Materials, College of Material and Chemistry; Zhejiang University; Hangzhou Zhejiang 310028 People's Republic of China
| | - Dan Shen
- Laboratory of Bone Marrow; First Hospital, Zhejiang University; Hangzhou Zhejiang 310006 People's Republic of China
| | - Zihua Tang
- Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou 310058 People's Republic of China
| | - Jiarong Chen
- Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou 310058 People's Republic of China
| | - Qiang Zheng
- Institute of Orthopaedics, Second Hospital; Zhejiang University; Hangzhou Zhejiang 310009 People's Republic of China
| | - Xiangming Tong
- Laboratory of Bone Marrow; First Hospital, Zhejiang University; Hangzhou Zhejiang 310006 People's Republic of China
| | - Changyou Gao
- Departmant of biology; Ningde Normal University; Ningde Fujian 352101 People's Republic of China
| | - Jinfu Wang
- Institute of Cell Biology, College of Life Sciences; Zhejiang University; Hangzhou 310058 People's Republic of China
| |
Collapse
|
142
|
|
143
|
Kavlock KD, Goldstein AS. Effect of pulse frequency on the osteogenic differentiation of mesenchymal stem cells in a pulsatile perfusion bioreactor. J Biomech Eng 2012; 133:091005. [PMID: 22010740 DOI: 10.1115/1.4004919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perfusion bioreactors are a promising in vitro strategy to engineer bone tissue because they supply needed oxygen and nutrients and apply an osteoinductive mechanical stimulus to osteoblasts within large porous three-dimensional scaffolds. Model two-dimensional studies have shown that dynamic flow conditions (e.g., pulsatile oscillatory waveforms) elicit an enhanced mechanotransductive response and elevated expression of osteoblastic proteins relative to steady flow. However, dynamic perfusion of three-dimensional scaffolds has been primarily examined in short term cultures to probe for early markers of mechanotransduction. Therefore, the objective of this study was to investigate the effect of extended dynamic perfusion culture on osteoblastic differentiation of primary mesenchymal stem cells (MSCs). To accomplish this, rat bone marrow-derived MSCs were seeded into porous foam scaffolds and cultured for 15 days in osteogenic medium under pulsatile regimens of 0.083, 0.050, and 0.017 Hz. Concurrently, MSCs seeded in scaffolds were also maintained under static conditions or cultured under steady perfusion. Analysis of the cells after 15 days of culture indicated that alkaline phosphatase (ALP) activity, mRNA expression of osteopontin (OPN), and accumulation of OPN and prostaglandin E(2) were enhanced for all four perfusion conditions relative to static culture. ALP activity, OPN and OC mRNA, and OPN protein accumulation were slightly higher for the intermediate frequency (0.05 Hz) as compared with the other flow conditions, but the differences were not statistically significant. Nevertheless, these results demonstrate that dynamic perfusion of MSCs may be a useful strategy for stimulating osteoblastic differentiation in vitro.
Collapse
Affiliation(s)
- Katherine D Kavlock
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0211, USA
| | | |
Collapse
|
144
|
Liu C, Abedian R, Meister R, Haasper C, Hurschler C, Krettek C, von Lewinski G, Jagodzinski M. Influence of perfusion and compression on the proliferation and differentiation of bone mesenchymal stromal cells seeded on polyurethane scaffolds. Biomaterials 2012; 33:1052-64. [DOI: 10.1016/j.biomaterials.2011.10.041] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 10/17/2011] [Indexed: 12/20/2022]
|
145
|
McCoy RJ, Jungreuthmayer C, O'Brien FJ. Influence of flow rate and scaffold pore size on cell behavior during mechanical stimulation in a flow perfusion bioreactor. Biotechnol Bioeng 2012; 109:1583-94. [PMID: 22249971 DOI: 10.1002/bit.24424] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/22/2011] [Accepted: 12/19/2011] [Indexed: 01/22/2023]
Abstract
Mechanically stimulating cell-seeded scaffolds by flow-perfusion is one approach utilized for developing clinically applicable bone graft substitutes. A key challenge is determining the magnitude of stimuli to apply that enhances cell differentiation but minimizes cell detachment from the scaffold. In this study, we employed a combined computational modeling and experimental approach to examine how the scaffold mean pore size influences cell attachment morphology and subsequently impacts upon cell deformation and detachment when subjected to fluid-flow. Cell detachment from osteoblast-seeded collagen-GAG scaffolds was evaluated experimentally across a range of scaffold pore sizes subjected to different flow rates and exposure times in a perfusion bioreactor. Cell detachment was found to be proportional to flow rate and inversely proportional to pore size. Using this data, a theoretical model was derived that accurately predicted cell detachment as a function of mean shear stress, mean pore size, and time. Computational modeling of cell deformation in response to fluid flow showed the percentage of cells exceeding a critical threshold of deformation correlated with cell detachment experimentally and the majority of these cells were of a bridging morphology (cells stretched across pores). These findings will help researchers optimize the mean pore size of scaffolds and perfusion bioreactor operating conditions to manage cell detachment when mechanically simulating cells via flow perfusion.
Collapse
Affiliation(s)
- R J McCoy
- Department of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | |
Collapse
|
146
|
Lambrechts D, Schrooten J, Van de Putte T, Van Oosterwyck H. Computational Modeling of Mass Transport and Its Relation to Cell Behavior in Tissue Engineering Constructs. COMPUTATIONAL MODELING IN TISSUE ENGINEERING 2012. [DOI: 10.1007/8415_2012_139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
147
|
Hidalgo-Bastida LA, Thirunavukkarasu S, Griffiths S, Cartmell SH, Naire S. Modeling and design of optimal flow perfusion bioreactors for tissue engineering applications. Biotechnol Bioeng 2011; 109:1095-9. [DOI: 10.1002/bit.24368] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 09/16/2011] [Accepted: 10/24/2011] [Indexed: 11/11/2022]
|
148
|
Brindley D, Moorthy K, Lee JH, Mason C, Kim HW, Wall I. Bioprocess forces and their impact on cell behavior: implications for bone regeneration therapy. J Tissue Eng 2011; 2011:620247. [PMID: 21904661 PMCID: PMC3166560 DOI: 10.4061/2011/620247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/17/2011] [Indexed: 12/15/2022] Open
Abstract
Bioprocess forces such as shear stress experienced during routine cell culture are considered to be harmful to cells. However, the impact of physical forces on cell behavior is an area of growing interest within the tissue engineering community, and it is widely acknowledged that mechanical stimulation including shear stress can enhance osteogenic differentiation. This paper considers the effects of bioprocess shear stress on cell responses such as survival and proliferation in several contexts, including suspension-adapted cells used for recombinant protein and monoclonal antibody manufacture, adherent cells for therapy in suspension, and adherent cells attached to their growth substrates. The enhanced osteogenic differentiation that fluid flow shear stress is widely found to induce is discussed, along with the tissue engineering of mineralized tissue using perfusion bioreactors. Recent evidence that bioprocess forces produced during capillary transfer or pipetting of cell suspensions can enhance osteogenic responses is also discussed.
Collapse
Affiliation(s)
- David Brindley
- Department of Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
Bone tissue engineering is a promising solution for patients with bone defects that require reconstruction. This regenerative therapy consists in culturing osteogenic cells on a biodegradable substrate to obtain a bio-hybrid construct that will stimulate bone healing after implantation. This multidisciplinary technology nevertheless requires further development before it can become routine clinical practice. One challenge is to achieve three-dimensional seeding and osteogenic commitment of mesenchymal stem cells on biomaterials under sterile and reproducible conditions. For this purpose, different dynamic culture systems have been developed. This paper reviews recent advances in the field of bioreactors for bone tissue engineering. The purpose of such systems is to improve nutrient delivery to the cells and generate shear stress that may promote cell differentiation into osteoblastic phenotypes. A brief overview of the value of computational fluid dynamics for understanding the cell environment is also provided. Finally, some proposals are made regarding the use of bioreactors as safe and controllable devices that will help commit cells and biomaterials for the regeneration of bone tissue.
Collapse
|
150
|
Rauh J, Milan F, Günther KP, Stiehler M. Bioreactor Systems for Bone Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 17:263-80. [DOI: 10.1089/ten.teb.2010.0612] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Juliane Rauh
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Falk Milan
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Klaus-Peter Günther
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| | - Maik Stiehler
- Department of Orthopedics and Centre for Translational Bone, Joint, and Soft Tissue Research, University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Regenerative Therapies Dresden, Dresden University of Technology, Dresden, Germany
| |
Collapse
|