101
|
Olsen JG, Pedersen L, Christensen CL, Olsen O, Henriksen A. Barley aldose reductase: structure, cofactor binding, and substrate recognition in the aldo/keto reductase 4C family. Proteins 2008; 71:1572-81. [PMID: 18300247 DOI: 10.1002/prot.21996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johan G Olsen
- Biostructure Group, Carlsberg Laboratory, Gamle Carlsberg Vej 10, DK-2500 Valby, Denmark
| | | | | | | | | |
Collapse
|
102
|
Drel VR, Pacher P, Ali TK, Shin J, Julius U, El-Remessy AB, Obrosova IG. Aldose reductase inhibitor fidarestat counteracts diabetes-associated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med 2008; 21:667-676. [PMID: 18506358 DOI: 10.3892/ijmm.21.6.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This study was aimed at evaluating the potent and specific aldose reductase inhibitor fidarestat, on diabetes-associated cataract formation, and retinal oxidative-nitrosative stress, glial activation, and apoptosis. Control and streptozotocin-diabetic rats were treated with or without fidarestat (16 mg kg(-1)d(-1)) for 10 weeks after an initial 2-week period without treatment. Lens changes were evaluated by indirect ophthalmoscopy and portable slit lamp. Nitrotyrosine, poly(ADP-ribose), and glial fibrillary acidic protein expression were assessed by immunohistochemistry. The rate of apoptosis was quantified in flat-mounted retinas by TUNEL assay with immunoperoxidase staining. To dissect the effects of high glucose exposure in retinal microvascular cells, primary bovine retinal pericytes and endothelial cells were cultured in 5 or 30 mM glucose, with or without fidarestat (10 microM) for 3-14 days. Apoptosis was assessed by TUNEL assay, nitrotyrosine and poly(ADP-ribose) by immunocytochemistry, and Bax and Bcl-2 expression by Western blot analyses. Fidarestat treatment prevented diabetic cataract formation and counteracted retinal nitrosative stress, and poly(ADP-ribose) polymerase activation, as well as glial activation. The number of TUNEL-positive nuclei (mean +/- SEM) was increased approximately 4-fold in diabetic rats vs. controls (207+/-33 vs. 49+/-4, p<0.01), and this increase was partially prevented by fidarestat (106+/-34, p<0.05 vs. untreated diabetic group). The apoptotic cell number increased with the prolongation of exposure of both pericytes and endothelial cells to high glucose levels. Fidarestat counteracted nitrotyrosine and poly(ADP-ribose) accumulation and apoptosis in both cell types. Antiapoptotic effect of fidarestat in high glucose-exposed retinal pericytes was not associated with the inhibition of Bax or increase in Bcl-2 expression. In conclusion, the findings, i) support an important role for aldose reductase in diabetes-associated cataract formation, and retinal oxidative-nitrosative stress, glial activation, and apoptosis, and ii) provide a rationale for the development of aldose reductase inhibitors, and, in particular, fidarestat, for the prevention and treatment of diabetic ocular complications.
Collapse
Affiliation(s)
- Viktor R Drel
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Stefek M, Snirc V, Djoubissie PO, Majekova M, Demopoulos V, Rackova L, Bezakova Z, Karasu C, Carbone V, El-Kabbani O. Carboxymethylated pyridoindole antioxidants as aldose reductase inhibitors: Synthesis, activity, partitioning, and molecular modeling. Bioorg Med Chem 2008; 16:4908-20. [DOI: 10.1016/j.bmc.2008.03.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/05/2008] [Accepted: 03/14/2008] [Indexed: 01/25/2023]
|
104
|
Pacher P. Poly(ADP-ribose) polymerase inhibition as a novel therapeutic approach against intraepidermal nerve fiber loss and neuropathic pain associated with advanced diabetic neuropathy: a commentary on "PARP Inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy". Free Radic Biol Med 2008; 44:969-971. [PMID: 18194675 PMCID: PMC2322872 DOI: 10.1016/j.freeradbiomed.2007.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 12/19/2007] [Indexed: 01/21/2023]
Affiliation(s)
- Pal Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, Room 2-N17, MSC 9413, Bethesda, MD 20892-9413, USA.
| |
Collapse
|
105
|
Winter-Vann AM, Johnson GL. Integrated activation of MAP3Ks balances cell fate in response to stress. J Cell Biochem 2008; 102:848-58. [PMID: 17786929 DOI: 10.1002/jcb.21522] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In vivo, tissues and organs are exposed to numerous stressors that require cells to respond appropriately for viability and homeostasis. Cells respond to these stressors, which range from UV irradiation, heat shock, chemicals, and changes in osmolality, to oxidative stress and inflammatory cytokines, by activating pathways that protect cells from damage. If the stress is too great, cells commit to undergo apoptosis. Such cell fate decisions involve the stress-mediated activation of mitogen-activated protein kinase (MAPK) networks, ultimately under the control of MAPK kinase kinases, or MAP3Ks. It is the MAP3Ks that coordinate the localization, duration and magnitude of MAPK activation in response to cell stress. A single stressor may activate several MAP3Ks, each of which impacts the balance between survival and apoptotic signaling. In this prospect article, we review the specific MAP3Ks that integrate the physiological response to cell stressors. The interrelationships among different stressors are discussed, with an emphasis on how the balance of signaling through MAP3Ks controls the MAPK response to determine cell fate.
Collapse
Affiliation(s)
- Ann M Winter-Vann
- Department of Pharmacology, 1108 Mary Ellen Jones Bldg, Campus Box 7365, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7365, USA
| | | |
Collapse
|
106
|
Saito M, Ueo M, Kametaka S, Saigo O, Uchida S, Hosaka H, Sakamoto K, Nakahara T, Mori A, Ishii K. Attenuation of Cataract Progression by A-3922, a Dihydrobenzofuran Derivative, in Streptozotocin-Induced Diabetic Rats. Biol Pharm Bull 2008; 31:1959-63. [DOI: 10.1248/bpb.31.1959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Maki Saito
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
- Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
| | - Mayumi Ueo
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Sokichi Kametaka
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Orie Saigo
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Seiichi Uchida
- Department of Biological Research, Division 2, Odawara Research Center, Nippon Soda Co., Ltd
| | - Hideo Hosaka
- Department of Biological Research, Division 2, Odawara Research Center, Nippon Soda Co., Ltd
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Asami Mori
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| | - Kunio Ishii
- Department of Molecular Pharmacology, School of Pharmaceutical Sciences, Kitasato University
| |
Collapse
|
107
|
Fu J, Tay SSW, Ling EA, Dheen ST. Aldose reductase is implicated in high glucose-induced oxidative stress in mouse embryonic neural stem cells. J Neurochem 2007; 103:1654-65. [PMID: 17727625 DOI: 10.1111/j.1471-4159.2007.04880.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxidative stress caused by hyperglycemia is one of the key factors responsible for maternal diabetes-induced congenital malformations, including neural tube defects in embryos. However, mechanisms by which maternal diabetes induces oxidative stress during neurulation are not clear. The present study was aimed to investigate whether high glucose induces oxidative stress in neural stem cells (NSCs), which compose the neural tube during development. We also investigated the mechanism by which high glucose disturbs the growth and survival of NSCs in vitro. NSCs were exposed to physiological d-glucose concentration (PG, 5 mmol/L), PG with l-glucose (25 mmol/L), or high d-glucose concentration (HG, 30 or 45 mmol/l). HG induced reactive oxygen species production and mRNA expression of aldose reductase (AR), which catalyzes the glucose reduction through polyol pathway, in NSCs. Expression of glucose transporter 1 (Glut1) mRNA and protein which regulates glucose uptake in NSCs was increased at early stage (24 h) and became down-regulated at late stage (72 h) of exposure to HG. Inhibition of AR by fidarestat, an AR inhibitor, decreased the oxidative stress, restored the cell viability and proliferation, and reduced apoptotic cell death in NSCs exposed to HG. Moreover, inhibition of AR attenuated the down-regulation of Glut1 expression in NSCs exposed to HG for 72 h. These results suggest that the activation of polyol pathway plays a role in the induction of oxidative stress which alters Glut1 expression and cell cycle in NSCs exposed to HG, thereby resulting in abnormal patterning of the neural tube in embryos of diabetic pregnancy.
Collapse
Affiliation(s)
- Jiang Fu
- Molecular Neurobiology Laboratory, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
108
|
Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Drel VR, Obrosova IG, Pacher P. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol 2007; 293:H610-H619. [PMID: 17384130 PMCID: PMC2228254 DOI: 10.1152/ajpheart.00236.2007] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-kappaB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Tchaikovski V, Waltenberger J. Angiogenesis and Arteriogenesis in Diabetes Mellitus: Signal Transduction Defects as the Molecular Basis of Vascular Cell Dysfunction. THERAPEUTIC NEOVASCULARIZATION–QUO VADIS? 2007:33-73. [DOI: 10.1007/1-4020-5955-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
110
|
Smart EJ, Li XA. Hyperglycemia: Cell death in a cave. Biochim Biophys Acta Mol Basis Dis 2007; 1772:524-6. [PMID: 17320358 DOI: 10.1016/j.bbadis.2007.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/19/2022]
Abstract
Mitochondria play a central role in mediating high glucose-induced apoptosis. A recent study has shown that increases in glucose levels induce significant alterations in caveolae components, suggesting that high glucose may affect apoptotic signaling initiated in caveolae.
Collapse
Affiliation(s)
- Eric J Smart
- University of Kentucky Medical Center, Lexington, KY 40504, USA.
| | | |
Collapse
|
111
|
Tas S, Sarandol E, Ayvalik SZ, Serdar Z, Dirican M. Vanadyl Sulfate, Taurine, and Combined Vanadyl Sulfate and Taurine Treatments in Diabetic Rats: Effects on the Oxidative and Antioxidative Systems. Arch Med Res 2007; 38:276-83. [PMID: 17350476 DOI: 10.1016/j.arcmed.2006.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vanadyl sulfate (VS) and taurine are two promising agents in the treatment of diabetes related to their antihyperglycemic, antihyperlipidemic, and hyperinsulinemic effects. Data about the effects of VS on the oxidant-antioxidant system is limited and controversial. However, taurine is a well-documented antioxidant agent and our aim was to investigate the effects of VS, taurine and VS and taurine combination on the oxidative-antioxidative systems in streptozotocin-nicotinamide (STZ-NA) diabetic rats. METHODS Nicotinamide (230 mg/kg, i.p.) and streptozotocin (65 mg/kg, i.p.) were administered. VS (0.75 mg/mL) and taurine (1%) were added to drinking water for 5 weeks. Rats were divided as control (C), diabetes (D), diabetes+VS (D+VS), diabetes+taurine (D+T), diabetes+VS and taurine (D+VST). Plasma and tissue malondialdehyde (MDA) levels were measured by high-performance liquid chromatography and spectrophotometry, respectively. Paraoxonase and arylesterase activities were measured by spectrophotometric methods and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined using commercial kits. RESULTS VS, taurine and VS and taurine combination treatments reduced the enhanced blood glucose, serum total cholesterol and triglyceride, tissue MDA and plasma MDA (except in the D+VS group) levels and increased the reduced serum insulin level, serum paraoxonase and arylesterase activities, GSH-Px activity and SOD activity (except in the D+VS group). CONCLUSIONS The findings of the present study suggest that VS and taurine exert beneficial effects on the blood glucose and lipid levels in STZ-NA diabetic rats. However, VS might exert prooxidative or antioxidative effects in various components of the body and taurine and VS combination might be an alternative for sole VS administration.
Collapse
Affiliation(s)
- Sibel Tas
- Department of Biology, Science and Literature Faculty, Uludag University, Bursa, Turkey.
| | | | | | | | | |
Collapse
|
112
|
Abstract
Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure in the Western World. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. It is well recognized that metabolic and hemodynamic factors play a central role in accelerating renal disease in diabetes. However, recent experimental studies have suggested that increased generation of reactive oxygen species (ROS) as a result of the diabetic milieu may play a central role in the progression of diabetic microvascular complications. These ROS appear to be generated primarily from mitochondrial sources and via the enzyme, NADPH oxidase. This review focuses on how ROS play a deleterious role in the diabetic kidney and how they are involved in crosstalk among various signaling pathways, ultimately leading to renal dysfunction and structural injury.
Collapse
Affiliation(s)
- Melinda T Coughlan
- Albert Einstein Centre for Diabetes Complications, Wynn Domain, Baker Heart Research Institute, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
113
|
Abstract
Peripheral neuropathy, and specifically distal peripheral neuropathy (DPN), is one of the most frequent and troublesome complications of diabetes mellitus. It is the major reason for morbidity and mortality among diabetic patients. It is also frequently associated with debilitating pain. Unfortunately, our knowledge of the natural history and pathogenesis of this disease remains limited. For a long time hyperglycemia was viewed as a major, if not the sole factor, responsible for all symptomatic presentations of DPN. Multiple clinical observations and animal studies supported this view. The control of blood glucose as an obligatory step of therapy to delay or reverse DPN is no longer an arguable issue. However, while supporting evidence for the glycemic hypothesis has accumulated, multiple controversies accumulated as well. It is obvious now that DPN cannot be fully understood without considering factors besides hyperglycemia. Some symptoms of DPN may develop with little, if any, correlation with the glycemic status of a patient. It is also clear that identification of these putative non-glycemic mechanisms of DPN is of utmost importance for our understanding of failures with existing treatments and for the development of new approaches for diagnosis and therapy of DPN. In this work we will review the strengths and weaknesses of the glycemic hypothesis, focusing on clinical and animal data and on the pathogenesis of early stages and triggers of DPN other than hyperglycemia.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, Slot 515, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, United States.
| | | | | |
Collapse
|
114
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
115
|
Affiliation(s)
- Johannes Wohlrab
- Department of Dermatology and Venereology, University Clinic and Polyclinic for Orthopedic and Physical Medicine, Martin-Luther-University Halle-Wittenberg, Germany.
| | | | | |
Collapse
|
116
|
|