101
|
Ramishetti S, Peer D. Engineering lymphocytes with RNAi. Adv Drug Deliv Rev 2019; 141:55-66. [PMID: 30529305 DOI: 10.1016/j.addr.2018.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/31/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Lymphocytes are the gatekeepers of the body's immune system and are involved in pathogenesis if their surveillance is stalled by inhibitory molecules or when they act as mediators for viral entry. Engineering lymphocytes in order to restore their functions is an unmet need in immunological disorders, cancer and in lymphotropic viral infections. Recently, the FDA approved several therapeutic antibodies for blocking inhibitory signals on T cells. This has revolutionized the field of solid tumor care, together with chimeric antigen receptor T cell (CAR-T) therapy that did the same for hematological malignancies. RNA interference (RNAi) is a promising approach where gene function can be inhibited in almost all types of cells. However, manipulation of genes in lymphocyte subsets are difficult due to their hard-to-transfect nature and in vivo targeting remains challenging as they are dispersed throughout the body. The ability of RNAi molecules to gain entry into cells is almost impossible without delivery strategy. Nanotechnology approaches are rapidly growing and their impact in the field of drug and gene delivery applications to transport payloads inside cells have been extensively studied. Here we discuss various technologies available for RNAi delivery to lymphocytes. We shed light on the importance of targeting molecules in order to target lymphocytes in vivo. In addition, we discuss recent developments of RNAi delivery to lymphocyte subsets, and detail the potential implication for the future of molecular medicine in leukocytes implicated diseases.
Collapse
|
102
|
Yin H, Wang H, Li Z, Shu D, Guo P. RNA Micelles for the Systemic Delivery of Anti-miRNA for Cancer Targeting and Inhibition without Ligand. ACS NANO 2019; 13:706-717. [PMID: 30543397 PMCID: PMC6542267 DOI: 10.1021/acsnano.8b07948] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Displaying the advantage of nanoparticles in cancer targeting and drug delivery, micelles have shown great potential in cancer therapy. The mechanism for micelle targeting to cancer without the need for ligands is due to the size advantage of micelles within the lower end of the nanometer scale that is the optimal size for favoring the enhanced permeability and retention (EPR) effect while escaping trapping by macrophages. MicroRNAs are ubiquitous and play critical roles in regulating gene expression, cell growth, and cancer development. However, their in vivo delivery in medical applications is still challenging. Here, we report the targeted delivery of anti-miRNA to cancers via RNA micelles. The phi29 packaging RNA three-way junction (pRNA-3WJ) was used as a scaffold to construct micelles. An oligo with 8nt locked nucleic acid (LNA) complementary to the seed region of microRNA21(miR21) was included in the micelles as an interference molecule for cancer inhibition. These RNA micelles carrying anti-miR21 exhibited strong binding and internalization to cancer cells, inhibited the function of oncogenic miR21, enhanced the expression of the pro-apoptotic factor, and induced cell apoptosis. Animal trials revealed effective tumor targeting and inhibition in xenograft models. The inclusion of folate as a targeting ligand in the micelles did not show significant improvement of the therapeutic efficacy in vivo, suggesting that micelles can carry therapeutics to a target tumor and inhibit its growth without ligands.
Collapse
Affiliation(s)
- Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | - Hongzhi Wang
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | - Zhefeng Li
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
- Corresponding Authors; phone: 614-293-2114. ; phone: 614-293-2118
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
- Dorothy M. Davis Heart and Lung Research Institute
- James Comprehensive Cancer Center, College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Authors; phone: 614-293-2114. ; phone: 614-293-2118
| |
Collapse
|
103
|
Kubo T, Nishimura Y, Hatori Y, Akagi R, Mihara K, Yanagihara K, Seyama T. Antitumor effect of palmitic acid‐conjugated Dsi
RNA
for colon cancer in a mouse subcutaneous tumor model. Chem Biol Drug Des 2019; 93:570-581. [DOI: 10.1111/cbdd.13454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/07/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Takanori Kubo
- Department of Life ScienceFaculty of PharmacyYasuda Women's University Hiroshima Japan
| | - Yoshio Nishimura
- Department of Life ScienceFaculty of PharmacyYasuda Women's University Hiroshima Japan
| | - Yuta Hatori
- Department of Life ScienceFaculty of PharmacyYasuda Women's University Hiroshima Japan
| | - Reiko Akagi
- Department of Life ScienceFaculty of PharmacyYasuda Women's University Hiroshima Japan
| | - Keichiro Mihara
- Department of Hematology and OncologyResearch Institute for Radiation Biology and MedicineHiroshima University Hiroshima Japan
| | - Kazuyoshi Yanagihara
- Exploratory Oncology Research & Clinical Trial CenterNational Cancer Center Kashiwa Chiba Japan
| | - Toshio Seyama
- Department of Life ScienceFaculty of PharmacyYasuda Women's University Hiroshima Japan
| |
Collapse
|
104
|
Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019; 234:12369-12384. [PMID: 30605237 DOI: 10.1002/jcp.28058] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Despite the recent progress in cancer management approaches, the mortality rate of cancer is still growing and there are lots of challenges in the clinics in terms of novel therapeutics. MicroRNAs (miRNA) are regulatory small noncoding RNAs and are already confirmed to have a great role in regulating gene expression level by targeting multiple molecules that affect cell physiology and disease development. Recently, miRNAs have been introduced as promising therapeutic targets for cancer treatment. Regulatory potential of tumor suppressor miRNAs, which enables regulation of entire signaling networks within the cells, makes them an interesting option for developing cancer therapeutics. In this regard, over recent decades, scientists have aimed at developing powerful and safe targeting approaches to restore these suppressive miRNAs in cancerous cells. The present review summarizes the function of miRNAs in tumor development and presents recent findings on how miRNAs have served as therapeutic agents against cancer, with a special focus on tumor suppressor miRNAs (mimics). Moreover, the latest investigations on the therapeutic strategies of miRNA delivery have been presented.
Collapse
Affiliation(s)
- Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zeinab Rostami
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
105
|
Affiliation(s)
- Arthur A Levin
- From Research and Development, Avidity Biosciences, La Jolla, CA
| |
Collapse
|
106
|
Ratnayake G, Bain AL, Fletcher N, Howard CB, Khanna KK, Thurecht KJ. RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Lett 2018; 439:14-23. [PMID: 30240587 DOI: 10.1016/j.canlet.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi) therapy is an emerging class of biopharmaceutical that has immense potential in cancer medicine. RNAi medicines are based on synthetic oligonucleotides that can suppress a target protein in tumour cells with high specificity. This review explores the attractive prospect of using RNAi as a radiosensitiser by targeting the DNA damage response. There are a multitude of molecular targets involved in the detection and repair of DNA damage that are suitable for this purpose. Recent developments in delivery technologies such nanoparticle carriers and conjugation strategies have allowed RNAi therapeutics to enter clinical trials in the treatment of cancer. With further progress, RNAi targeting of the DNA damage response may hold great promise in guiding radiation oncology into the era of precision medicine.
Collapse
Affiliation(s)
- G Ratnayake
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; QIMR Berghofer Medical Research Institute, Australia; Royal Brisbane and Women's Hospital, Australia.
| | - A L Bain
- QIMR Berghofer Medical Research Institute, Australia
| | - N Fletcher
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - C B Howard
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia
| | - K K Khanna
- QIMR Berghofer Medical Research Institute, Australia
| | - K J Thurecht
- Centre of Advanced Imaging, University of Queensland, Australia; Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australia
| |
Collapse
|
107
|
Balaratnam S, West N, Basu S. A piRNA utilizes HILI and HIWI2 mediated pathway to down-regulate ferritin heavy chain 1 mRNA in human somatic cells. Nucleic Acids Res 2018; 46:10635-10648. [PMID: 30102404 PMCID: PMC6237762 DOI: 10.1093/nar/gky728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
The piwi interacting RNAs (piRNAs) are small non-coding RNAs that specifically bind to the PIWI proteins, a functional requirement. The piRNAs regulate germline development, transposons control, and gene expression. However, piRNA-mediated post-transcriptional gene regulation in human somatic cells is not well understood. We discovered a human piRNA (piR-FTH1) which has a complementary sequence in the ferritin heavy chain 1 (Fth1) mRNA. We demonstrated that expression of piR-FTH1 and Fth1 are inversely correlated in the tested tumor cell lines. We found that piR-FTH1 negatively regulates the Fth1 expression at post-transcriptional level in triple negative breast cancer (TNBC) cells. Additionally, we confirmed that transfected piR-FTH1 knocks down the Fth1 mRNA via the HIWI2 and HILI mediated mechanism. piR-FTH1 mediated Fth1 repression also increased doxorubicin sensitivity by a remarkable 20-fold in TNBC cells. Since the current piRNA-mediated knockdowns of target mRNA are mostly reported in germ line cells, piRNA-mediated post-transcriptional gene regulation in somatic cells is rather unique in its application and mechanistically uses an alternative pathway to siRNA and miRNA. This work begins to lay the groundwork with a broader impact on treatment of various diseases that are linked to elevated levels of specific mRNAs which have a piRNA target.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Nicole West
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
108
|
Glackin CA. Nanoparticle Delivery of TWIST Small Interfering RNA and Anticancer Drugs: A Therapeutic Approach for Combating Cancer. Enzymes 2018; 44:83-101. [PMID: 30360816 DOI: 10.1016/bs.enz.2018.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Breast and ovarian cancer are the leading cause of cancer-related deaths in women in the United States with over 232,000 new Breast Cancer (BC) diagnoses expected in 2018 and almost 40,000 deaths and an estimated 239,000 new ovarian cancer (OC) cases and 152,000 deaths worldwide annually. OC is the most lethal gynecologic malignancy. This high mortality rate is due to tumor recurrence and metastasis, primarily caused by chemoresistant cancer stem-like cells (CSCs). Triple Negative Breast Cancer (TNBC) patients also become resistant to chemotherapy due to recurrence of CSCs. Currently, no ovarian or breast cancer therapies target CSC specifically. TWIST is overexpressed in the majority of chemoresistant cancers resulting in a low survival rate. Our long-term goal is to develop novel treatments for women with ovarian and breast cancer, specifically treatments that sensitize chemoresistant tumors. Despite successful initial surgery and chemotherapy, over 70% of advanced EOC will recur, and only 15-30% of recurrent disease will respond to chemotherapy (Cortez et al., 2017; Berezhnaya, 2010; Jackson et al., 2015). Moreover, drug resistance causes treatment failure in over 90% of patients with metastatic disease (Solmaz et al., 2015). Thus, recurrent metastatic disease is a major clinical challenge without effective therapy. One of the major challenges in the treatment of breast cancer is the presence of a subpopulation of cancer cells that are chemoresistant (CRC) and metastatic. Given that metastasis is the driving force behind mortality for breast and ovarian cancer patients, it is essential to identify the characteristics of these aberrant cancer cells that allow them to spread to distant sites in the body and develop into metastatic tumors. Understanding the metastatic mechanisms driving cancer cell dispersal will open the door to developing novel therapies that prevent metastasis and improve long-term outcomes for patients. In this chapter we assess the feasibility of targeting the Twist and EMT signaling pathways in breast and ovarian cancer. Additional discussions of the pathways that mediate epithelial-mesenchymal transition (EMT), a process that can give rise to chemoresistance. We review potential treatment strategies for targeting EMT and drug resistance as well as the problems that may arise with these targeted delivery therapeutic approaches. Finally, we examine recent advances in the field, including cancer stem cell targeted nanoparticle delivery and small interference RNA (siRNA) technology, and discuss the impact that these approaches may have on translating much needed therapeutic approaches into the clinic, for the benefit of patients battling this devastating disease.
Collapse
Affiliation(s)
- Carlotta A Glackin
- Developmental and Stem Cell Biology, City of Hope Medical Center, Duarte, CA, United States.
| |
Collapse
|
109
|
Kumari S, Bhattacharya D, Rangaraj N, Chakarvarty S, Kondapi AK, Rao NM. Aurora kinase B siRNA-loaded lactoferrin nanoparticles potentiate the efficacy of temozolomide in treating glioblastoma. Nanomedicine (Lond) 2018; 13:2579-2596. [DOI: 10.2217/nnm-2018-0110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the efficacy of lactoferrin nanoparticles (LfNPs) in delivering siRNA across the blood–brain barrier to treat glioblastoma multiforme (GBM) and with an additional objective of potentiation of conventional temozolomide (TMZ) chemotherapy. Methods: Aurora kinase B (AKB) siRNA-loaded nanoparticles (AKB–LfNPs) were prepared with milk protein, lactoferrin, by water in oil emulsion method. AKB–LfNPs were tested in cell lines and in GBM orthotopic mouse model with and without TMZ treatment. Results: AKB silencing, cytotoxicity and cell cycle arrest by these LfNPs were shown to be effective on GL261 cells. Tumor growth was significantly lower in AKB–LfNPs alone and in combination with TMZ treated mice and increased the survival by 2.5-times. Conclusion: Treatment of AKB–LfNPs to GBM mice improves life expectancy and has potential to combine with conventional chemotherapy.
Collapse
Affiliation(s)
- Sonali Kumari
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Dwaipayan Bhattacharya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| | - Nandini Rangaraj
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Sumana Chakarvarty
- Centre for Cellular & Molecular Biology (CCMB), Council of Scientific & Industrial Research (CSIR), Uppal Road, Hyderabad 500007, Telangana State, India
| | - Anand K Kondapi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500 046, Telangana State, India
| | - Nalam M Rao
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Council of Scientific & Industrial Research, Uppal Road, Hyderabad 500 007, Telangana State, India
| |
Collapse
|
110
|
Khalil IA, Yamada Y, Harashima H. Optimization of siRNA delivery to target sites: issues and future directions. Expert Opin Drug Deliv 2018; 15:1053-1065. [PMID: 30198792 DOI: 10.1080/17425247.2018.1520836] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ikramy A. Khalil
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
- Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
111
|
Park HM, Liu H, Wu J, Chong A, Mackley V, Fellmann C, Rao A, Jiang F, Chu H, Murthy N, Lee K. Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nat Commun 2018; 9:3313. [PMID: 30120228 PMCID: PMC6098076 DOI: 10.1038/s41467-018-05641-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Engineering of the Cpf1 crRNA has the potential to enhance its gene editing efficiency and non-viral delivery to cells. Here, we demonstrate that extending the length of its crRNA at the 5' end can enhance the gene editing efficiency of Cpf1 both in cells and in vivo. Extending the 5' end of the crRNA enhances the gene editing efficiency of the Cpf1 RNP to induce non-homologous end-joining and homology-directed repair using electroporation in cells. Additionally, chemical modifications on the extended 5' end of the crRNA result in enhanced serum stability. Also, extending the 5' end of the crRNA by 59 nucleotides increases the delivery efficiency of Cpf1 RNP in cells and in vivo cationic delivery vehicles including polymer nanoparticle. Thus, 5' extension and chemical modification of the Cpf1 crRNA is an effective method for enhancing the gene editing efficiency of Cpf1 and its delivery in vivo.
Collapse
Affiliation(s)
| | - Hui Liu
- GenEdit Inc., Berkeley, CA, 94720, USA
| | - Joann Wu
- GenEdit Inc., Berkeley, CA, 94720, USA
| | | | | | - Christof Fellmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Anirudh Rao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Fuguo Jiang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Niren Murthy
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
| | | |
Collapse
|
112
|
Xuan W, Peng Y, Deng Z, Peng T, Kuai H, Li Y, He J, Jin C, Liu Y, Wang R, Tan W. A basic insight into aptamer-drug conjugates (ApDCs). Biomaterials 2018; 182:216-226. [PMID: 30138784 DOI: 10.1016/j.biomaterials.2018.08.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 12/19/2022]
Abstract
Aptamers are often compared with antibodies since both types of molecules function as targeting ligands for specific cancer cell recognition. However, aptamers offer several advantages, including small size, facile chemical modification, high chemical stability, low immunogenicity, rapid tissue penetration, and engineering simplicity. Despite these advantages, several crucial factors have delayed their clinical translation, such as concerns over inherent physicochemical stability and safety. Meanwhile, steps have been taken to make aptamer-drug conjugates, or ApDCs, a clinically practical tool. In this review, we highlight the development of ApDCs and discuss how researchers are solving some problems associated with their clinical application for targeted therapy.
Collapse
Affiliation(s)
- Wenjing Xuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yongbo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhengyu Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hailan Kuai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yingying Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jiaxuan He
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Cheng Jin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ruowen Wang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, College of Chemistry and Chemical Engineering, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China; Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, College of Chemistry and Chemical Engineering, Shanghai 200240, China; Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, United States.
| |
Collapse
|
113
|
Sivakumar P, Kim S, Kang HC, Shim MS. Targeted siRNA delivery using aptamer-siRNA chimeras and aptamer-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1543. [PMID: 30070426 DOI: 10.1002/wnan.1543] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/09/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
The sequence-specific gene-silencing ability of small interfering RNA (siRNA) has been exploited as a new therapeutic approach for the treatment of a variety of diseases. However, efficient and safe delivery of siRNA into target cells is still a challenge in the clinical development of siRNA-based therapeutics. Recently, nucleic acid-based aptamers that target cell surface proteins have emerged as a new class of targeting moieties due to their high specificity and avidity. To date, various aptamer-mediated siRNA delivery systems have been developed to enhance the RNA interference (RNAi) efficacy of siRNA via targeted delivery. In this review, we summarize recent advances in developing aptamer-mediated siRNA delivery systems for RNAi therapeutics, mainly aptamer-siRNA chimeras and aptamer-functionalized nanocarriers incorporating siRNA, with a focus on their molecular designs and formulations. In addition, the challenges and engineering strategies of aptamer-mediated siRNA delivery systems for clinical translation are discussed. This article is categorized under: Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Padmanaban Sivakumar
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Sumin Kim
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do, Republic of Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
114
|
Affiliation(s)
- Tina Lucas
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany (T.L., A.B., S.D.)
- German Center of Cardiovascular Research, Partner Site Rhein-Main, Frankfurt, Germany (T.L., A.B., S.D.)
| | - Angelika Bonauer
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany (T.L., A.B., S.D.)
- German Center of Cardiovascular Research, Partner Site Rhein-Main, Frankfurt, Germany (T.L., A.B., S.D.)
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Goethe University Frankfurt, Germany (T.L., A.B., S.D.)
- German Center of Cardiovascular Research, Partner Site Rhein-Main, Frankfurt, Germany (T.L., A.B., S.D.)
| |
Collapse
|
115
|
Gatta AK, Hariharapura RC, Udupa N, Reddy MS, Josyula VR. Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opin Drug Discov 2018; 13:709-725. [PMID: 29902093 DOI: 10.1080/17460441.2018.1480607] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION RNA interference has become a tool of choice in the development of drugs in various therapeutic areas of Post Transcriptional Gene Silencing (PTGS). The critical element in developing successful RNAi therapeutics lies in designing small interfering RNA (siRNA) using an efficient algorithm satisfying the designing criteria. Further, translation of siRNA from bench-side to bedside needs an efficient delivery system and/or chemical modification. Areas covered: This review emphasizes the importance of dicer, the criteria for efficient siRNA design, the currently available algorithms and strategies to overcome off-target effects, immune stimulatory effects and endosomal trap. Expert opinion: Specificity and stability are the primary concerns for siRNA therapeutics. The design criteria and algorithms should be chosen rationally to have a siRNA sequence that binds to the corresponding mRNA as it happens in the Watson and Crick base pairing. However, it must evade a few more hurdles (Endocytosis, Serum stability etc.) to be functional in the cytosol.
Collapse
Affiliation(s)
- Aditya Kiran Gatta
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Raghu Chandrashekhar Hariharapura
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Nayanabhirama Udupa
- b Research Directorate of Health Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Meka Sreenivasa Reddy
- c Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences , Manipal Academy of Higher Education , Manipal , Karnataka , India
| | - Venkata Rao Josyula
- a Cell and Molecular Biology lab, Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal , Karnataka , India
| |
Collapse
|
116
|
Vlaho D, Damha MJ. Synthesis of Chimeric Oligonucleotides Having Modified Internucleotide Linkages via an Automated H-Phosphonate/Phosphoramidite Approach. ACTA ACUST UNITED AC 2018; 73:e53. [PMID: 29927099 DOI: 10.1002/cpnc.53] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This article describes an automated solid-phase approach for the synthesis of chimeric oligonucleotides containing phosphoramidate-modified internucleotide linkages. An optimized H-phosphonate synthetic cycle is combined with the commonly used phosphoramidite approach to obtain oligonucleotides comprising blocks having various types of internucleotide linkages. This article is specific to the synthesis of oligonucleotides having phosphoramidate modifications, but is adaptable to permit the incorporation of other modified linkages accessible through H-phosphonate diester intermediates. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Danielle Vlaho
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
117
|
MacLeod AR, Crooke ST. RNA Therapeutics in Oncology: Advances, Challenges, and Future Directions. J Clin Pharmacol 2018; 57 Suppl 10:S43-S59. [PMID: 28921648 DOI: 10.1002/jcph.957] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022]
Abstract
RNA-based therapeutic technologies represent a rapidly expanding class of therapeutic opportunities with the power to modulate cellular biology in ways never before possible. With RNA-targeted therapeutics, inhibitors of previously undruggable proteins, gene expression modulators, and even therapeutic proteins can be rationally designed based on sequence information alone, something that is not possible with other therapeutic modalities. The most advanced RNA therapeutic modalities are antisense oligonucleotides (ASOs) and small interfering RNAs. Particularly with ASOs, recent clinical data have demonstrated proof of mechanism and clinical benefit with these approaches across several nononcology disease areas by multiple routes of administration. In cancer, next-generation ASOs have recently demonstrated single-agent activity in patients with highly refractory cancers. Here we discuss advances in RNA therapeutics for the treatment of cancer and the challenges that remain to solidify these as mainstay therapeutic modalities to bridge the pharmacogenomic divide that remains in cancer drug discovery.
Collapse
Affiliation(s)
- A Robert MacLeod
- Vice President, Oncology Discovery, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Stanley T Crooke
- CEO and Chairman of the Board, Ionis Pharmaceuticals, Carlsbad, CA, USA
| |
Collapse
|
118
|
Shu Y, Yin H, Rajabi M, Li H, Vieweger M, Guo S, Shu D, Guo P. RNA-based micelles: A novel platform for paclitaxel loading and delivery. J Control Release 2018; 276:17-29. [PMID: 29454064 PMCID: PMC5964609 DOI: 10.1016/j.jconrel.2018.02.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/22/2022]
Abstract
RNA can serve as powerful building blocks for bottom-up fabrication of nanostructures for biotechnological and biomedical applications. In addition to current self-assembly strategies utilizing base pairing, motif piling and tertiary interactions, we reported for the first time the formation of RNA based micellar nanoconstruct with a cholesterol molecule conjugated onto one helical end of a branched pRNA three-way junction (3WJ) motif. The resulting amphiphilic RNA micelles consist of a hydrophilic RNA head and a covalently linked hydrophobic lipid tail that can spontaneously assemble in aqueous solution via hydrophobic interaction. Taking advantage of pRNA 3WJ branched structure, the assembled RNA micelles are capable of escorting multiple functional modules. As a proof of concept for delivery for therapeutics, Paclitaxel was loaded into the RNA micelles with significantly improved water solubility. The successful construction of the drug loaded RNA micelles was confirmed and characterized by agarose gel electrophoresis, atomic force microscopy (AFM), dynamic light scattering (DLS), and fluorescence Nile Red encapsulation assay. The estimate critical micelle formation concentration ranges from 39 nM to 78 nM. The Paclitaxel loaded RNA micelles can internalize into cancer cells and inhibit their proliferation. Further studies showed that the Paclitaxel loaded RNA micelles induced cancer cell apoptosis in a Caspase-3 dependent manner but RNA micelles alone exhibited low cytotoxicity. Finally, the Paclitaxel loaded RNA micelles targeted to tumor in vivo without accumulation in healthy tissues and organs. There is also no or very low induction of pro-inflammatory response. Therefore, multivalence, cancer cell permeability, combined with controllable assembly, low or non toxic nature, and tumor targeting are all promising features that make our pRNA micelles a suitable platform for potential drug delivery.
Collapse
Affiliation(s)
- Yi Shu
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Hongran Yin
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Mehdi Rajabi
- Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Hui Li
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States; Nanobiotechnology Center, Markey Cancer Center and Department of Pharmaceutical Sciences/College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Mario Vieweger
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Sijin Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Dan Shu
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, Division of Pharmaceutics and Pharmaceutical Chemistry/College of Pharmacy, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute and James Comprehensive Cancer Center, The Ohio State Universtiy, Columbus, OH 43210, United States.
| |
Collapse
|
119
|
Shahin SA, Wang R, Simargi SI, Contreras A, Parra Echavarria L, Qu L, Wen W, Dellinger T, Unternaehrer J, Tamanoi F, Zink JI, Glackin CA. Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1381-1394. [PMID: 29665439 DOI: 10.1016/j.nano.2018.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/19/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
TWIST protein is critical to development and is activated in many cancers. TWIST regulates epithelial-mesenchymal transition, and is linked to angiogenesis, metastasis, cancer stem cell phenotype, and drug resistance. The majority of epithelial ovarian cancer (EOC) patients with metastatic disease respond well to first-line chemotherapy but most relapse with disease that is both metastatic and drug resistant, leading to a five-year survival rate under 20%. We are investigating the role of TWIST in mediating these relapses. We demonstrate TWIST-siRNA (siTWIST) and a novel nanoparticle delivery platform to reverse chemoresistance in an EOC model. Hyaluronic-acid conjugated mesoporous silica nanoparticles (MSN-HAs) carried siTWIST into target cells and led to sustained TWIST knockdown in vitro. Mice treated with siTWIST-MSN-HA and cisplatin exhibited specific tumor targeting and reduction of tumor burden. This platform has potential application for overcoming clinical challenges of tumor cell targeting, metastasis and chemoresistance in ovarian and other TWIST overexpressing cancers.
Collapse
Affiliation(s)
- Sophia A Shahin
- Irell & Manella Graduate School of Biological Sciences, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Ruining Wang
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Shirleen I Simargi
- Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Biological Sciences, California State University, Pomona, CA
| | - Altagracia Contreras
- Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Biological Sciences, California State University, Long Beach, CA
| | - Liliana Parra Echavarria
- Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Louise Qu
- Irell & Manella Graduate School of Biological Sciences, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Wei Wen
- Department of Surgery, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Thanh Dellinger
- Department of Surgery, City of Hope - Beckman Research Institute, Duarte, California, USA
| | - Juli Unternaehrer
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, CA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology, and Molecular Genetics, Jonsson Comprehensive Cancer Center, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Jeffrey I Zink
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, USA
| | - Carlotta A Glackin
- Irell & Manella Graduate School of Biological Sciences, City of Hope - Beckman Research Institute, Duarte, California, USA; Department of Stem Cell and Developmental Biology, City of Hope - Beckman Research Institute, Duarte, California, USA.
| |
Collapse
|
120
|
Artigas F, Celada P, Bortolozzi A. Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. Eur Neuropsychopharmacol 2018. [PMID: 29525411 DOI: 10.1016/j.euroneuro.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the second part we focus on two treatment strategies that may overcome the main limitations of current antidepressant drugs. First, we review the experimental and clinical evidence supporting the use of glutamatergic drugs as fast-acting antidepressants. Secondly, we review the involvement of microRNAs (miRNAs) in the pathophysiology of major depressive disorder (MDD) and the use of small RNAs (e.g.., small interfering RNAs or siRNAs) to knockdown genes in monoaminergic and non-monoaminergic neurons and induce antidepressant-like responses in experimental animals. The development of glutamatergic agents is a promising venue for antidepressant drug development, given the antidepressant properties of the non-competitive NMDA receptor antagonist ketamine. Its unique properties appear to result from the activation of AMPA receptors by a metabolite [(2S,6S;2R,6R)-hydroxynorketamine (HNK)] and mTOR signaling. These effects increase synaptogenesis in prefrontal cortical pyramidal neurons and enhance serotonergic neurotransmission via descending inputs to the raphe nuclei. This view is supported by the cancellation of ketamine's antidepressant-like effects by inhibition of serotonin synthesis. We also review existing evidence supporting the involvement of miRNAs in MDD and the preclinical use of RNA interference (RNAi) strategies to target genes involved in antidepressant response. Many miRNAs have been associated to MDD, some of which e.g., miR-135 targets genes involved in antidepressant actions. Likewise, SSRI-conjugated siRNA evokes faster and/or more effective antidepressant-like responses. Intranasal application of sertraline-conjugated siRNAs directed to 5-HT1A receptors and SERT evoked much faster changes of pre- and postsynaptic antidepressant markers than those produced by fluoxetine.
Collapse
Affiliation(s)
- F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain.
| | - P Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - A Bortolozzi
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| |
Collapse
|
121
|
Nikam RR, Gore KR. Journey of siRNA: Clinical Developments and Targeted Delivery. Nucleic Acid Ther 2018; 28:209-224. [PMID: 29584585 DOI: 10.1089/nat.2017.0715] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the evolutionary discovery of RNA interference and its utilization for gene knockdown in mammalian cell, a remarkable progress has been achieved in small interfering RNA (siRNA) therapeutics. siRNA is a promising tool, utilized as therapeutic agent against various diseases. Despite its significant potential benefits, safe, efficient, and target oriented delivery of siRNA is one of the major challenges in siRNA therapeutics. This review covers major achievements in clinical trials and targeted delivery of siRNAs using various targeting ligand-receptor pair. Local and systemically administered siRNA drug candidates at various phases in clinical trials are described in this review. This review also provides a deep insight in development of targeted delivery of siRNA. Various targeting ligand-siRNA pair with complexation and conjugation approaches are discussed in this review. This will help to achieve further optimization and development in targeted delivery of siRNAs to achieve higher gene silencing efficiency with lowest siRNA dose availability.
Collapse
Affiliation(s)
| | - Kiran R Gore
- Department of Chemistry, University of Mumbai , Mumbai, India
| |
Collapse
|
122
|
Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol 2018. [PMID: 29521426 DOI: 10.1002/jcp.26514] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally by interfering with the translation of one or more target mRNAs. The unique miRNA sequences are involved in many physiological and pathological processes. Dysregulation of miRNAs contributes to the pathogenesis of all types of cancer. Notably, the diminished expression of tumor suppressor miRNAs, such as members of the Let-7 and miR-34 family, promotes tumor progression, invasion and metastasis. The past lustrum in particular, has witnessed substantial improvement of miRNA replacement therapy. This approach aims to restore tumor suppressor miRNA function in tumor cells using synthetic miRNA mimics or miRNA expression plasmids. Here, we provide a comprehensive review of recent advances in miRNA replacement therapy for treatment of cancer and its advantages over conventional gene therapy. We discuss a wide variety of delivery methods and vectors, as well as obstacles that remain to be overcome. Lastly, we review efforts to reverse epigenetic alterations, which affect miRNA expression in cancer cells, and the promising observation that restoring miRNA function re-sensitizes resistant tumor cells to chemotherapeutic drugs. The fact that various miRNA replacement therapies are currently in clinical trial demonstrates the great potential of this approach to treat cancer.
Collapse
Affiliation(s)
- Nayer Hosseinahli
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahyar Aghapour
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Pascal H G Duijf
- University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
123
|
Jasinski DL, Li H, Guo P. The Effect of Size and Shape of RNA Nanoparticles on Biodistribution. Mol Ther 2018; 26:784-792. [PMID: 29402549 PMCID: PMC5910665 DOI: 10.1016/j.ymthe.2017.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/31/2022] Open
Abstract
Drugs with ideal pharmacokinetic profile require long half-life but little organ accumulation. Generally, PK and organ accumulation are contradictory factors: smaller size leads to faster excretion and shorter half-lives and thus a lower tendency to reach targets; larger size leads to longer circulation but stronger organ accumulation that leads to toxicity. Organ accumulation has been reported to be size dependent due in large part to engulfing by macrophages. However, publications on the size effect are inconsistent because of complication by the effect of shape that varies from nanoparticle to nanoparticle. Unique to RNA nanotechnology, size could be tuned without a change in shape, resulting in a true size comparison. Here we investigated size effects using RNA squares of identical shape but varying size and shape effects using RNA triangles, squares, and pentagons of identical size but varying shape. We found that circulation time increased with increasing RNA nanoparticle size from 5-25 nm, which is the common size range of therapeutic RNA nanoparticles. Most particles were cleared from the body within 2 hr after systemic injection. Undetectable organ accumulation was found at any time for 5 nm particles. For 20 nm particles, weak signal was found after 24 hr, while accumulation in tumor was strongest during the entire study.
Collapse
Affiliation(s)
- Daniel L Jasinski
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Hui Li
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, The Ohio State University, Columbus, OH, USA; College of Medicine, Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; NCI Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA; Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
124
|
Yu X, Ghamande S, Liu H, Xue L, Zhao S, Tan W, Zhao L, Tang SC, Wu D, Korkaya H, Maihle NJ, Liu HY. Targeting EGFR/HER2/HER3 with a Three-in-One Aptamer-siRNA Chimera Confers Superior Activity against HER2 + Breast Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 10:317-330. [PMID: 29499944 PMCID: PMC5862534 DOI: 10.1016/j.omtn.2017.12.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/30/2022]
Abstract
HER family members are interdependent and functionally compensatory. Simultaneously targeting EGFR/HER2/HER3 by antibody combinations has demonstrated superior treatment efficacy over targeting one HER receptor. However, antibody combinations have their limitations, with high immunogenicity and high cost. In this study, we have developed a three-in-one nucleic acid aptamer-small interfering RNA (siRNA) chimera, which targets EGFR/HER2/HER3 in one molecule. This inhibitory molecule was constructed such that a single EGFR siRNA is positioned between the HER2 and HER3 aptamers to create a HER2 aptamer-EGFR siRNA-HER3 aptamer chimera (H2EH3). EGFR siRNA was delivered into HER2-expressing cells by HER2/HER3 aptamer-induced internalization. HER2/HER3 aptamers act as antagonist molecules for blocking HER2 and HER3 signaling pathways and also as tumor-targeting agents for siRNA delivery. H2EH3 enables down-modulation of the expression of all three receptors, thereby triggering cell apoptosis. In breast cancer xenograft models, H2EH3 is able to bind to breast tumors with high specificity and significantly inhibits tumor growth via either systemic or intratumoral administration. Owing to low immunogenicity, ease of production, and high thermostability, H2EH3 is a promising therapeutic to supplement current single HER inhibitors and may act as a treatment for HER2+ breast cancer with intrinsic or acquired resistance to current drugs.
Collapse
Affiliation(s)
- Xiaolin Yu
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Haitao Liu
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Lu Xue
- Department of Pediatrics, the First Hospital of Jilin University, Changchun, 130021, China
| | - Shuhua Zhao
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Wenxi Tan
- Department of Gynecology and Obstetrics, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Lijing Zhao
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA
| | - Shou-Ching Tang
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Daqing Wu
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hasan Korkaya
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Nita J Maihle
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
| | - Hong Yan Liu
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; Department of Biochemistry and Molecular Biology, Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
125
|
Lau CML, Yu Y, Jahanmir G, Chau Y. Controlled release technology for anti-angiogenesis treatment of posterior eye diseases: Current status and challenges. Adv Drug Deliv Rev 2018; 126:145-161. [PMID: 29625138 DOI: 10.1016/j.addr.2018.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/25/2018] [Accepted: 03/27/2018] [Indexed: 12/27/2022]
Abstract
Antiangiogenic therapeutics, such as corticosteroids, VEGF targeting antibodies and aptamers have been demonstrated effective in controlling retinal and choroidal neovascularization related vision loss. However, to manage the chronic conditions, it requires long term and frequent intravitreal injections of these drugs, resulting in poor patient compliance and suboptimal treatment. In addition, emerging drugs such as tyrosine kinase inhibitors and siRNAs received much expectations, but the late stage clinical trials encountered various obstacles. Controlled release technology could improve the existing treatment regimen by extending therapeutic duration, reducing risks and burdens caused by frequent injections, and enabling new drugs to overcome the hurdles of translation. Here, we give qualitative and quantitative discussions about the principle mechanisms of polymeric reservoir, polymeric matrix and hydrogel systems. We also reveal the design rationales of the existing drug delivery and release systems in preclinical and clinical stages. Lastly, the animal models of ocular angiogenesis diseases are critically reviewed, which could help to facilitate the translation of controlled release technologies from bench to bedside.
Collapse
Affiliation(s)
- Chi Ming Laurence Lau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Yu Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; Pleryon Therapeutics Limited, Hong Kong
| | - Ghodsiehsadat Jahanmir
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong; The Hong Kong University of Science and Technology Shenzhen Institute, Shenzhen 518057, China.
| |
Collapse
|
126
|
Ma Y, Liu S, Wang Y, Zhao Y, Huang Y, Zhong L, Guan Z, Zhang L, Yang Z. Isonucleotide incorporation into middle and terminal siRNA duplexes exhibits high gene silencing efficacy and nuclease resistance. Org Biomol Chem 2018; 15:5161-5170. [PMID: 28585968 DOI: 10.1039/c7ob01065f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this study, we introduced a pair of nucleotide enantiomers, d-/l-isonucleotides (d-/l-isoNA), to examine the interactions between siRNAs and their related proteins. The serum stability and gene-silencing activity of the modified siRNAs were systematically evaluated. Gene-silencing activity had a site-specific effect, and the incorporation of a single d-isoNA at the 8th position (counting from the 5'-terminus) in the antisense strand improved the gene-silencing activity by improving RISC loading and affecting the movement of the PIWI domain. d-isoNA incorporated at the terminus of siRNA including the 2nd position in the antisense strand and 3'-overhangs in the sense strand, especially the latter, enhanced nuclease resistance and prolonged the silencing retention time. In addition, l-isoNA incorporation into the middle of the sense strand enhanced activity. These results provide a chemical strategy for the modulation of siRNA gene-silencing activity and nuclease resistance.
Collapse
Affiliation(s)
- Yuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Schubert MS, Cedrone E, Neun B, Behlke MA, Dobrovolskaia MA. Chemical Modification of CRISPR gRNAs Eliminate type I Interferon Responses in Human Peripheral Blood Mononuclear Cells. JOURNAL OF CYTOKINE BIOLOGY 2018; 3:121. [PMID: 30225466 PMCID: PMC6138052 DOI: 10.4172/2576-3881.1000121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES CRISPR/Cas9 is currently the primary tool used for genome editing in mammalian cells. To cleave and alter genomic DNA, both the Cas9 nuclease and a guide RNA (gRNA) must be present in the nucleus. One preferred method of introducing these reagents is direct transfection of a recombinant Cas9 protein complexed with a synthetic gRNA as a ribonucleoprotein (RNP) complex. It is well established from prior work in RNA interference that synthetic RNAs can induce a type I interferon (IFN) response that can limit the application of such methods both in vitro and in vivo. While the immunological properties of short siRNAs are well understood, little is known about the immune recognition of longer CRISPR gRNAs. The objective of our in vitro study was to investigate how the composition of the gRNA influences its recognition by human immune cells. METHODS The study was performed in vitro in human peripheral blood mononuclear cells (PBMCs). The PBMCs from healthy donor volunteers were treated with gRNA for 24 h, and the levels of type I IFNs in culture supernatants were measured by a multiplex enzyme-linked immunosorbent chemiluminescent assay. Prior to the analysis in PBMCs, the physicochemical parameters and functionality of all nucleic acid constructs were confirmed by electrospray-ionization mass spectrometry and CRISPR/Cas9 gene editing assessment in HEK293-Cas9 cells, respectively. RESULTS We found that unmodified synthetic CRISPR gRNAs triggered a strong IFN response in PBMC cultures in vitro that could be prevented with chemical modification. Likewise, in vitro-transcribed single-guide RNAs (sgRNAs) also triggered a strong IFN response that could only be partially suppressed by phosphatase removal of the 5'-triphosphate group. However, the process by which the gRNA is prepared (i.e., chemically synthesized as a two-part crRNA:tracrRNA complex or in vitro-transcribed as an sgRNA) does not directly influence the immune response to an unmodified gRNA. When experiments were performed in the HEK293 cells, only in vitro-transcribed sgRNA containing 5'-triphosphate induced IFN secretion. CONCLUSION The results of our structure-activity relationship study, therefore, suggest that chemical modifications commonly used to reduce the immunostimulation of traditional RNA therapeutics can also be used as effective tools to eliminate undesirable IFN responses to gRNAs.
Collapse
Affiliation(s)
- Mollie S. Schubert
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Edward Cedrone
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry Neun
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mark A. Behlke
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA 52241, USA
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
128
|
Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev 2018; 118:1599-1663. [PMID: 29322778 DOI: 10.1021/acs.chemrev.7b00504] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid progress in genome sequencing technology has put us firmly into a postgenomic era. A key challenge in biomedical research is harnessing genome sequence to fulfill the promise of personalized medicine. This Review describes how genome sequencing has enabled the identification of disease-causing biomolecules and how these data have been converted into chemical probes of function, preclinical lead modalities, and ultimately U.S. Food and Drug Administration (FDA)-approved drugs. In particular, we focus on the use of oligonucleotide-based modalities to target disease-causing RNAs; small molecules that target DNA, RNA, or protein; the rational repurposing of known therapeutic modalities; and the advantages of pharmacogenetics. Lastly, we discuss the remaining challenges and opportunities in the direct utilization of genome sequence to enable design of medicines.
Collapse
Affiliation(s)
- Alicia J Angelbello
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L Chen
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica L Childs-Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Peiyuan Zhang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Zi-Fu Wang
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D Disney
- Departments of Chemistry and Neuroscience, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
129
|
Salim L, McKim C, Desaulniers JP. Effective carrier-free gene-silencing activity of cholesterol-modified siRNAs. RSC Adv 2018; 8:22963-22966. [PMID: 35540146 PMCID: PMC9081628 DOI: 10.1039/c8ra03908a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
The use of short interfering RNAs (siRNAs) as therapeutics holds great promise, but chemical modifications must first be employed to improve their pharmacokinetic properties. This study evaluates the in vitro cellular uptake and knock-down efficacy of cholesterol-modified triazole-linked siRNAs targeting firefly luciferase in the absence of a transfection carrier. These siRNAs displayed low cytotoxicity and excellent dose-dependent knockdown in HeLa cells in the 500 to 3000 nM concentration range, with a 70–80% reduction in firefly luciferase activity. Our results indicate that this modification is compatible with the RNA interference pathway, and is less cytotoxic and more effective than a commercially-available triethylene glycol (TEG) cholesterol modification. The use of short interfering RNAs (siRNAs) as therapeutics holds great promise, but chemical modifications must first be employed to improve their pharmacokinetic properties.![]()
Collapse
Affiliation(s)
- Lidya Salim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | - Chris McKim
- University of Ontario Institute of Technology
- Faculty of Science
- Oshawa
- Canada
| | | |
Collapse
|
130
|
Circular siRNAs for Reducing Off-Target Effects and Enhancing Long-Term Gene Silencing in Cells and Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:237-244. [PMID: 29499936 PMCID: PMC5768153 DOI: 10.1016/j.omtn.2017.12.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 11/17/2022]
Abstract
Circular non-coding RNAs are found to play important roles in biology but are still relatively unexplored as a structural motif for chemically regulating gene function. Here, we investigated whether small interfering RNA (siRNA) with a circular structure can circumvent off-target gene silencing, a problem often observed with standard linear duplex siRNA. In the present work, we, for the first time, synthesized a series of circular siRNAs by cyclizing two ends of a single-stranded RNA (sense or antisense strand) to construct circular siRNAs that were more resistant to enzymatic degradation. Gene silencing of GFP and luciferase was successfully achieved using these circular siRNAs with circular sense strand RNAs and their complementary linear antisense strand RNAs. The off-target effect of sense strand RNAs was evaluated and no cross off-target effects were observed. In addition, we successfully achieved longer gene-silencing efficiency in mice with circular siRNAs than with linear siRNAs. These results indicate the promise of circular siRNAs for overcoming off-target effects of siRNAs and enhancing the possible long-term effect of siRNA gene silencing in basic research and drug development.
Collapse
|
131
|
Yin H, Song CQ, Suresh S, Wu Q, Walsh S, Rhym LH, Mintzer E, Bolukbasi MF, Zhu LJ, Kauffman K, Mou H, Oberholzer A, Ding J, Kwan SY, Bogorad RL, Zatsepin T, Koteliansky V, Wolfe SA, Xue W, Langer R, Anderson DG. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat Biotechnol 2017; 35:1179-1187. [PMID: 29131148 PMCID: PMC5901668 DOI: 10.1038/nbt.4005] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 10/09/2017] [Indexed: 12/12/2022]
Abstract
Efficient genome editing with Cas9-sgRNA in vivo has required the use of viral delivery systems, which have limitations for clinical applications. Translational efforts to develop other RNA therapeutics have shown that judicious chemical modification of RNAs can improve therapeutic efficacy by reducing susceptibility to nuclease degradation. Guided by the structure of the Cas9-sgRNA complex, we identify regions of sgRNA that can be modified while maintaining or enhancing genome-editing activity, and we develop an optimal set of chemical modifications for in vivo applications. Using lipid nanoparticle formulations of these enhanced sgRNAs (e-sgRNA) and mRNA encoding Cas9, we show that a single intravenous injection into mice induces >80% editing of Pcsk9 in the liver. Serum Pcsk9 is reduced to undetectable levels, and cholesterol levels are significantly lowered about 35% to 40% in animals. This strategy may enable non-viral, Cas9-based genome editing in the liver in clinical settings.
Collapse
Affiliation(s)
- Hao Yin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chun-Qing Song
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sneha Suresh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Qiongqiong Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stephen Walsh
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Luke Hyunsik Rhym
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Esther Mintzer
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mehmet Fatih Bolukbasi
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kevin Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Haiwei Mou
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Alicia Oberholzer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Junmei Ding
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Suet-Yan Kwan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Timofei Zatsepin
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Victor Koteliansky
- Center of Translational Biomedicine, Skolkovo Institute of Science and Technology, Skolkovo, Moscow, Russia
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences & Technology, Cambridge, Massachusetts, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
132
|
Krhac Levacic A, Morys S, Wagner E. Solid-phase supported design of carriers for therapeutic nucleic acid delivery. Biosci Rep 2017; 37:BSR20160617. [PMID: 28963371 PMCID: PMC5662914 DOI: 10.1042/bsr20160617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Nucleic acid molecules are important therapeutic agents in the field of antisense oligonucleotide, RNA interference, and gene therapies. Since nucleic acids are not able to cross cell membranes and enter efficiently into cells on their own, the development of efficient, safe, and precise delivery systems is the crucial challenge for development of nucleic acid therapeutics. For the delivery of nucleic acids to their intracellular site of action, either the cytosol or the nucleus, several extracellular and intracellular barriers have to be overcome. Multifunctional carriers may handle the different special requirements of each barrier. The complexity of such macromolecules however poses a new hurdle in medical translation, which is the chemical production in reproducible and well-defined form. Solid-phase assisted synthesis (SPS) presents a solution for this challenge. The current review provides an overview on the design and SPS of precise sequence-defined synthetic carriers for nucleic acid cargos.
Collapse
Affiliation(s)
- Ana Krhac Levacic
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Stephan Morys
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, D-81377 Munich, Germany
- Nanosystems Initiative Munich, Schellingstrasse 4, D-80799 Munich, Germany
| |
Collapse
|
133
|
Jasinski DL, Yin H, Li Z, Guo P. Hydrophobic Effect from Conjugated Chemicals or Drugs on In Vivo Biodistribution of RNA Nanoparticles. Hum Gene Ther 2017; 29:77-86. [PMID: 28557574 DOI: 10.1089/hum.2017.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Liver or other organ accumulation of drugs is one of the major problems that leads to toxicity and side effects in therapy using chemicals or other macromolecules. It has been shown that specially designed RNA nanoparticles can specifically target cancer cells, silence oncogenic genes, and stop cancer growth with little or no accumulation in the liver or other vital organs. It is well known that physical properties of nanoparticles such as size, shape, and surface chemistry affect biodistribution and pharmacokinetic profiles in vivo. This study examined how the hydrophobicity of chemicals conjugated to RNA nanoparticles affect in vivo biodistribution. Weaker organ accumulation was observed for hydrophobic chemicals after they were conjugated to RNA nanoparticles, revealing RNA's ability to solubilize hydrophobic chemicals. It was found that different chemicals conjugated to RNA nanoparticles resulted in the alteration of RNA hydrophobicity. Stronger hydrophobicity induced by chemical conjugates resulted in higher accumulation of RNA nanoparticles in vital organs in mice. This study provides new insights for handling drug insolubility, therapeutic toxicity, and organ clearance in drug development.
Collapse
Affiliation(s)
- Daniel L Jasinski
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| | - Hongran Yin
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| | - Zhefeng Li
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology and Cell Biology; Dorothy M. Davis Heart and Lung Research Institute; NCI Comprehensive Cancer Center; and Center for RNA Nanobiotechnology and Nanomedicine, The Ohio State University , Columbus, Ohio
| |
Collapse
|
134
|
Mustonen EK, Palomäki T, Pasanen M. Oligonucleotide-based pharmaceuticals: Non-clinical and clinical safety signals and non-clinical testing strategies. Regul Toxicol Pharmacol 2017; 90:328-341. [PMID: 28966105 DOI: 10.1016/j.yrtph.2017.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides, short interfering RNAs (siRNAs) and aptamers are oligonucleotide-based pharmaceuticals with a promising role in targeted therapies. Currently, five oligonucleotide-based pharmaceuticals have achieved marketing authorization in Europe or USA and many more are undergoing clinical testing. However, several safety concerns have been raised in non-clinical and clinical studies. Oligonucleotides share properties with both chemical and biological pharmaceuticals and therefore they pose challenges also from the regulatory point of view. We have analyzed the safety data of oligonucleotides and evaluated the applicability of current non-clinical toxicological guidelines for assessing the safety of oligonucleotide-based pharmaceuticals. Oligonucleotide-based pharmaceuticals display a similar toxicological profile, exerting adverse effects on liver and kidney, evoking hematological alterations, as well as causing immunostimulation and prolonging the coagulation time. It is possible to extrapolate some of these effects from non-clinical studies to humans. However, evaluation strategies for genotoxicity testing of "non-natural" oligonucleotides should be revised. Additionally, the selective use of surrogates and prediction of clinical endpoints for non-clinically observed immunostimulation is complicated by its multiple potential manifestations, demanding improvements in the testing strategies. Utilizing more relevant and mechanistic-based approaches and taking better account of species differences, could possibly improve the prediction of relevant immunological/proinflammatory effects in humans.
Collapse
Affiliation(s)
- Enni-Kaisa Mustonen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Markku Pasanen
- University of Eastern Finland, Faculty of Health Sciences, School of Pharmacy, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
135
|
Hagopian JC, Hamil AS, van den Berg A, Meade BR, Eguchi A, Palm-Apergi C, Dowdy SF. Induction of RNAi Responses by Short Left-Handed Hairpin RNAi Triggers. Nucleic Acid Ther 2017; 27:260-271. [PMID: 28933656 DOI: 10.1089/nat.2017.0686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small double-stranded, left-handed hairpin (LHP) RNAs containing a 5'-guide-loop-passenger-3' structure induce RNAi responses by a poorly understood mechanism. To explore LHPs, we synthesized fully 2'-modified LHP RNAs targeting multiple genes and found all to induce robust RNAi responses. Deletion of the loop and nucleotides at the 5'-end of the equivalent passenger strand resulted in a smaller LHP that still induced strong RNAi responses. Surprisingly, progressive deletion of up to 10 nucleotides from the 3'-end of the guide strand resulted in a 32mer LHP capable of inducing robust RNAi responses. However, further guide strand deletion inhibited LHP activity, thereby defining the minimal length guide targeting length to 13 nucleotides. To dissect LHP processing, we examined LHP species that coimmunoprecipitated with Argonaute 2 (Ago2), the catalytic core of RNA-induced silencing complex, and found that the Ago2-associated processed LHP species was of a length that correlated with Ago2 cleavage of the passenger strand. Placement of a blocking 2'-OMe blocking modification at the LHP predicted Ago2 cleavage site resulted in an intact LHP loaded into Ago2 and no RNAi response. Taken together, these data argue that in the absence of a substantial loop, this novel class of small LHP RNAs enters the RNAi pathway by a Dicer-independent mechanism that involves Ago2 cleavage and results in an extended guide strand. This work establishes LHPs as an alternative RNAi trigger that can be produced from a single synthesis for potential use as an RNAi therapeutic.
Collapse
Affiliation(s)
- Jonathan C Hagopian
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Alexander S Hamil
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Arjen van den Berg
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Bryan R Meade
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Akiko Eguchi
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Caroline Palm-Apergi
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| | - Steven F Dowdy
- Department of Cellular and Molecular Medicine, UCSD School of Medicine , La Jolla, California
| |
Collapse
|
136
|
Aptamer-siRNA Chimeras: Discovery, Progress, and Future Prospects. Biomedicines 2017; 5:biomedicines5030045. [PMID: 28792479 PMCID: PMC5618303 DOI: 10.3390/biomedicines5030045] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/07/2023] Open
Abstract
Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs). In this review, we summarize recent progress in the aptamer selection technology that has made possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of aptamer-targeted siRNA drugs for clinical development are further highlighted.
Collapse
|
137
|
Lipophilic siRNA targets albumin in situ and promotes bioavailability, tumor penetration, and carrier-free gene silencing. Proc Natl Acad Sci U S A 2017; 114:E6490-E6497. [PMID: 28739942 DOI: 10.1073/pnas.1621240114] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Clinical translation of therapies based on small interfering RNA (siRNA) is hampered by siRNA's comprehensively poor pharmacokinetic properties, which necessitate molecule modifications and complex delivery strategies. We sought an alternative approach to commonly used nanoparticle carriers by leveraging the long-lived endogenous serum protein albumin as an siRNA carrier. We synthesized siRNA conjugated to a diacyl lipid moiety (siRNA-L2), which rapidly binds albumin in situ. siRNA-L2, in comparison with unmodified siRNA, exhibited a 5.7-fold increase in circulation half-life, an 8.6-fold increase in bioavailability, and reduced renal accumulation. Benchmarked against leading commercial siRNA nanocarrier in vivo jetPEI, siRNA-L2 achieved 19-fold greater tumor accumulation and 46-fold increase in per-tumor-cell uptake in a mouse orthotopic model of human triple-negative breast cancer. siRNA-L2 penetrated tumor tissue rapidly and homogeneously; 30 min after i.v. injection, siRNA-L2 achieved uptake in 99% of tumor cells, compared with 60% for jetPEI. Remarkably, siRNA-L2 achieved a tumor:liver accumulation ratio >40:1 vs. <3:1 for jetPEI. The improved pharmacokinetic properties of siRNA-L2 facilitated significant tumor gene silencing for 7 d after two i.v. doses. Proof-of-concept was extended to a patient-derived xenograft model, in which jetPEI tumor accumulation was reduced fourfold relative to the same formulation in the orthotopic model. The siRNA-L2 tumor accumulation diminished only twofold, suggesting that the superior tumor distribution of the conjugate over nanoparticles will be accentuated in clinical situations. These data reveal the immense promise of in situ albumin targeting for development of translational, carrier-free RNAi-based cancer therapies.
Collapse
|
138
|
Alexander-Bryant AA, Zhang H, Attaway CC, Pugh W, Eggart L, Sansevere RM, Andino LM, Dinh L, Cantini LP, Jakymiw A. Dual peptide-mediated targeted delivery of bioactive siRNAs to oral cancer cells in vivo. Oral Oncol 2017; 72:123-131. [PMID: 28797448 DOI: 10.1016/j.oraloncology.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A). MATERIALS AND METHODS Fluorescence microscopy, real-time PCR, Western blot analysis, and in vivo bioimaging of mice containing orthotopic xenograft tumors were used to examine the ability of the dual peptide carrier to mediate specific delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells/tissues. RESULTS Co-complexation of the EGFR-targeting peptide, GE11R9, with the endosome-disruptive 599 peptide facilitated the specific uptake of siRNAs into oral cancer cells overexpressing EGFR in vitro with optimal gene silencing observed at a 60:30:1 (GE11R9:599:siRNA) molar ratio. Furthermore, when administered systemically to mice bearing xenograft oral tumors, this dual peptide complex mediated increased targeted delivery of siRNAs into tumor tissues in comparison to the 599 peptide alone and significantly enhanced CIP2A silencing. CONCLUSION Herein we provide the first report demonstrating the clinical potential of a dual peptide strategy for siRNA-based therapeutics by synergistically mediating the effective targeting and delivery of bioactive siRNAs into EGFR-overexpressing oral cancer cells.
Collapse
Affiliation(s)
- Angela A Alexander-Bryant
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA; Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | - Haiwen Zhang
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Christopher C Attaway
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - William Pugh
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Laurence Eggart
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Robert M Sansevere
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Lourdes M Andino
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Lu Dinh
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Liliana P Cantini
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA
| | - Andrew Jakymiw
- Department of Oral Health Sciences and Center for Oral Health Research, Hollings Cancer Center, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA; Department of Bioengineering, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
139
|
Kaczmarek JC, Kowalski PS, Anderson DG. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med 2017; 9:60. [PMID: 28655327 PMCID: PMC5485616 DOI: 10.1186/s13073-017-0450-0] [Citation(s) in RCA: 473] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The rapid expansion of the available genomic data continues to greatly impact biomedical science and medicine. Fulfilling the clinical potential of genetic discoveries requires the development of therapeutics that can specifically modulate the expression of disease-relevant genes. RNA-based drugs, including short interfering RNAs and antisense oligonucleotides, are particularly promising examples of this newer class of biologics. For over two decades, researchers have been trying to overcome major challenges for utilizing such RNAs in a therapeutic context, including intracellular delivery, stability, and immune response activation. This research is finally beginning to bear fruit as the first RNA drugs gain FDA approval and more advance to the final phases of clinical trials. Furthermore, the recent advent of CRISPR, an RNA-guided gene-editing technology, as well as new strides in the delivery of messenger RNA transcribed in vitro, have triggered a major expansion of the RNA-therapeutics field. In this review, we discuss the challenges for clinical translation of RNA-based therapeutics, with an emphasis on recent advances in delivery technologies, and present an overview of the applications of RNA-based drugs for modulation of gene/protein expression and genome editing that are currently being investigated both in the laboratory as well as in the clinic.
Collapse
Affiliation(s)
- James C Kaczmarek
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Daniel G Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA. .,Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
140
|
Rhana P, Trivelato RR, Beirão PSL, Cruz JS, Rodrigues ALP. Is there a role for voltage-gated Na+ channels in the aggressiveness of breast cancer? ACTA ACUST UNITED AC 2017; 50:e6011. [PMID: 28591378 PMCID: PMC5463531 DOI: 10.1590/1414-431x20176011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common cancer among women and its metastatic potential is responsible for numerous deaths. Thus, the need to find new targets for improving treatment, and even finding the cure, becomes increasingly greater. Ion channels are known to participate in several physiological functions, such as muscle contraction, cell volume regulation, immune response and cell proliferation. In breast cancer, different types of ion channels have been associated with tumorigenesis. Recently, voltage-gated Na+ channels (VGSC) have been implicated in the processes that lead to increased tumor aggressiveness. To explain this relationship, different theories, associated with pH changes, gene expression and intracellular Ca2+, have been proposed in an attempt to better understand the role of these ion channels in breast cancer. However, these theories are having difficulty being accepted because most of the findings are contrary to the present scientific knowledge. Several studies have shown that VGSC are related to different types of cancer, making them a promising pharmacological target against this debilitating disease. Molecular biology and cell electrophysiology have been used to look for new forms of treatment aiming to reduce aggressiveness and the disease progress.
Collapse
Affiliation(s)
- P Rhana
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil.,Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R R Trivelato
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| | - P S L Beirão
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - J S Cruz
- Laboratório de Membranas Excitáveis e de Biologia Cardiovascular, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A L P Rodrigues
- Laboratório de Câncer de Mama, Canais Iônicos e AMP Cíclico, Faculdade de Ciências Humanas, Sociais e da Saúde, Universidade FUMEC, Belo Horizonte, MG, Brasil
| |
Collapse
|
141
|
Antiviral treatment strategies based on gene silencing and genome editing. Curr Opin Virol 2017; 24:46-54. [DOI: 10.1016/j.coviro.2017.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 12/18/2022]
|
142
|
Liu Y, Xu CF, Iqbal S, Yang XZ, Wang J. Responsive Nanocarriers as an Emerging Platform for Cascaded Delivery of Nucleic Acids to Cancer. Adv Drug Deliv Rev 2017; 115:98-114. [PMID: 28396204 DOI: 10.1016/j.addr.2017.03.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 12/19/2022]
Abstract
Cascades of systemic and intracellular obstacles, including low stability in blood, little tumor accumulation, weak tumor penetration, poor cellular uptake, inefficient endosomal escape and deficient disassembly in the cytoplasm, must be overcome in order to deliver nucleic acid drugs for cancer therapy. Nanocarriers that are sensitive to a variety of physiological stimuli, such as pH, redox status, and cell enzymes, are substantially changing the landscape of nucleic acid drug delivery by helping to overcome cascaded systemic and intracellular barriers. This review discusses nucleic acid-based therapeutics, systemic and intracellular barriers to efficient nucleic acid delivery, and nanocarriers responsive to extracellular and intracellular biological stimuli to overcome individual barriers. In particular, responsive nanocarriers for the cascaded delivery of nucleic acids in vivo are highlighted. Developing novel cascaded nanocarriers that transform their physicochemical properties in response to various stimuli in a timely and spatially controlled manner for nucleic acid drug delivery holds great potential for translating the promise of nucleic acid drugs and achieving clinically successful cancer therapy.
Collapse
|
143
|
Böldicke T. Single domain antibodies for the knockdown of cytosolic and nuclear proteins. Protein Sci 2017; 26:925-945. [PMID: 28271570 PMCID: PMC5405437 DOI: 10.1002/pro.3154] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
Single domain antibodies (sdAbs) from camels or sharks comprise only the variable heavy chain domain. Human sdAbs comprise the variable domain of the heavy chain (VH) or light chain (VL) and can be selected from human antibodies. SdAbs are stable, nonaggregating molecules in vitro and in vivo compared to complete antibodies and scFv fragments. They are excellent novel inhibitors of cytosolic/nuclear proteins because they are correctly folded inside the cytosol in contrast to scFv fragments. SdAbs are unique because of their excellent specificity and possibility to target posttranslational modifications such as phosphorylation sites, conformers or interaction regions of proteins that cannot be targeted with genetic knockout techniques and are impossible to knockdown with RNAi. The number of inhibiting cytosolic/nuclear sdAbs is increasing and usage of synthetic single pot single domain antibody libraries will boost the generation of these fascinating molecules without the need of immunization. The most frequently selected antigenic epitopes belong to viral and oncogenic proteins, followed by toxins, proteins of the nervous system as well as plant- and drosophila proteins. It is now possible to select functional sdAbs against virtually every cytosolic/nuclear protein and desired epitope. The development of new endosomal escape protein domains and cell-penetrating peptides for efficient transfection broaden the application of inhibiting sdAbs. Last but not least, the generation of relatively new cell-specific nanoparticles such as polymersomes and polyplexes carrying cytosolic/nuclear sdAb-DNA or -protein will pave the way to apply cytosolic/nuclear sdAbs for inhibition of viral infection and cancer in the clinic.
Collapse
Affiliation(s)
- Thomas Böldicke
- Helmholtz Centre for Infection Research, Structure and Function of ProteinsInhoffenstraße 7, D‐38124BraunschweigGermany
| |
Collapse
|
144
|
Tian H, Zhou C, Yang J, Li J, Gong Z. Long and short noncoding RNAs in lung cancer precision medicine: Opportunities and challenges. Tumour Biol 2017; 39:1010428317697578. [PMID: 28381159 DOI: 10.1177/1010428317697578] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The long and short noncoding RNAs have been involved in the molecular diagnosis, targeted therapy, and predicting prognosis of lung cancer. Utilizing noncoding RNAs as biomarkers and systemic RNA interference as an innovative therapeutic strategy has an immense likelihood to generate novel concepts in precision oncology. Targeting of RNA interference payloads such as small interfering RNAs, microRNA mimetic, or anti-microRNA (antagomirs) into specific cell types has achieved initial success. The clinical trials of noncoding RNA-based therapies are on the way with some positive results. Many attempts are done for developing novel noncoding RNA delivery strategies that could overcome systemic or local barriers. Furthermore, it precipitates concerted efforts to define the molecular subtypes of lung cancer, characterize the genomic landscape of lung cancer subtypes, identify novel therapeutic targets, and reveal mechanisms of sensitivity and resistance to targeted therapies. These efforts contribute a visible effect now in lung cancer precision medicine: patients receive molecular testing to determine whether their tumor harbors an actionable come resistance to the first-generation drugs are in clinical trials, and drugs targeting the immune system are showing activity in patients. This extraordinary promise is tempered by the sobering fact that even the newest treatments for metastatic disease are rarely curative and are effective only in a small fraction of all patients. Thus, ongoing and future efforts to find new vulnerabilities of lung cancers unravel the complexity of drug resistance, increase the efficacy of immunotherapies, and perform biomarker-driven clinical trials are necessary to improve the outcome of lung cancer patients.
Collapse
Affiliation(s)
- Haihua Tian
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China.,3 Department of Laboratory Medicine, Ningbo Kangning Hospital, Ningbo, China
| | - Chengwei Zhou
- 4 Department of Thoracic Surgery, The Affiliated Hospital of Ningbo University School of Medicine, Ningbo, China
| | - Jie Yang
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Jingqiu Li
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Zhaohui Gong
- 1 Department of Biochemistry and Molecular Biology, Ningbo University School of Medicine, Ningbo, China.,2 Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| |
Collapse
|
145
|
Mizrahy S, Hazan-Halevy I, Dammes N, Landesman-Milo D, Peer D. Current Progress in Non-viral RNAi-Based Delivery Strategies to Lymphocytes. Mol Ther 2017; 25:1491-1500. [PMID: 28392163 DOI: 10.1016/j.ymthe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
RNAi-based therapy holds great promise, as it can be utilized for the treatment of multiple conditions in an accurate manner via sequence-specific manipulation of gene expression. To date, RNAi therapeutics have advanced into clinical trials for liver diseases and solid tumors; however, delivery of RNAi to leukocytes in general and to lymphocytes in particular remains a challenge. Lymphocytes are notoriously hard to transduce with RNAi payloads and are disseminated throughout the body, often located in deep tissues; therefore, developing an efficient systemic delivery system directed to lymphocytes is not a trivial task. Successful manipulation of lymphocyte function with RNAi possesses immense therapeutic potential, as it will enable researchers to resolve lymphocyte-implicated diseases such as inflammation, autoimmunity, transplant rejection, viral infections, and blood cancers. This potential has propelled the development of novel targeted delivery systems relying on the accumulating research knowledge from multiple disciplines, including materials science and engineering, immunology, and genetics. Here, we will discuss the recent progress in non-viral delivery strategies of RNAi payloads to lymphocytes. Special emphasis will be made on the challenges and potential opportunities in manipulating lymphocyte function with RNAi. These approaches might ultimately become a novel therapeutic modality to treat leukocyte-related diseases.
Collapse
Affiliation(s)
- Shoshy Mizrahy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Inbal Hazan-Halevy
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niels Dammes
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Landesman-Milo
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
146
|
Flenker KS, Burghardt EL, Dutta N, Burns WJ, Grover JM, Kenkel EJ, Weaver TM, Mills J, Kim H, Huang L, Owczarzy R, Musselman CA, Behlke MA, Ford B, McNamara JO. Rapid Detection of Urinary Tract Infections via Bacterial Nuclease Activity. Mol Ther 2017; 25:1353-1362. [PMID: 28391960 DOI: 10.1016/j.ymthe.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
Rapid and accurate bacterial detection methods are needed for clinical diagnostic, water, and food testing applications. The wide diversity of bacterial nucleases provides a rich source of enzymes that could be exploited as signal amplifying biomarkers to enable rapid, selective detection of bacterial species. With the exception of the use of micrococcal nuclease activity to detect Staphylococcus aureus, rapid methods that detect bacterial pathogens via their nuclease activities have not been developed. Here, we identify endonuclease I as a robust biomarker for E. coli and develop a rapid ultrasensitive assay that detects its activity. Comparison of nuclease activities of wild-type and nuclease-knockout E. coli clones revealed that endonuclease I is the predominant DNase in E. coli lysates. Endonuclease I is detectable by immunoblot and activity assays in uropathogenic E. coli strains. A rapid assay that detects endonuclease I activity in patient urine with an oligonucleotide probe exhibited substantially higher sensitivity for urinary tract infections than that reported for rapid urinalysis methods. The 3 hr turnaround time is much shorter than that of culture-based methods, thereby providing a means for expedited administration of appropriate antimicrobial therapy. We suggest this approach could address various unmet needs for rapid detection of E. coli.
Collapse
Affiliation(s)
- Katie S Flenker
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Elliot L Burghardt
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nirmal Dutta
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - William J Burns
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Julia M Grover
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth J Kenkel
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Tyler M Weaver
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - James Mills
- Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Hyeon Kim
- University of Iowa Research Foundation, University of Iowa, Iowa City, IA 52242, USA
| | - Lingyan Huang
- Integrated DNA Technologies (IDT), Coralville, IA 52241, USA
| | | | - Catherine A Musselman
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mark A Behlke
- Integrated DNA Technologies (IDT), Coralville, IA 52241, USA
| | - Bradley Ford
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - James O McNamara
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
147
|
Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M. Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 2017; 41:535-61. [PMID: 27581942 DOI: 10.1007/s12038-016-9632-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aptamers are small, single-stranded oligonucleotides (DNA or RNA) that bind to their target with high specificity and affinity. Although aptamers are analogous to antibodies for a wide range of target recognition and variety of applications, they have significant advantages over antibodies. Since aptamers have recently emerged as a class of biomolecules with an application in a wide array of fields, we need to summarize the latest developments herein. In this review we will discuss about the latest developments in using aptamers in diagnostics, drug delivery and imaging. We begin with diagnostics, discussing the application of aptamers for the detection of infective agents itself, antigens/ toxins (bacteria), biomarkers (cancer), or a combination. The ease of conjugation and labelling of aptamers makes them a potential tool for diagnostics. Also, due to the reduced off-target effects of aptamers, their use as a potential drug delivery tool is emerging rapidly. Hence, we discuss their use in targeted delivery in conjugation with siRNAs, nanoparticles, liposomes, drugs and antibodies. Finally, we discuss about the conjugation strategies applicable for RNA and DNA aptamers for imaging. Their stability and self-assembly after heating makes them superior over protein-based binding molecules in terms of labelling and conjugation strategies.
Collapse
Affiliation(s)
- Chetan Chandola
- 1Center for Cellular and Molecular Platforms, NCBS-TIFR, Bangalore 560 065, India
| | | | | | | | | |
Collapse
|
148
|
Gerasymenko IM, Kleschevnikov VV, Kedlian VR, Sakhno LO, Arbuzova IA, Sheludko YV, Dosenko VE, Kuchuk NV. Establishment of transgenic lettuce plants producing potentially antihypertensive ShRNA. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
149
|
Jasinski D, Haque F, Binzel DW, Guo P. Advancement of the Emerging Field of RNA Nanotechnology. ACS NANO 2017; 11:1142-1164. [PMID: 28045501 PMCID: PMC5333189 DOI: 10.1021/acsnano.6b05737] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/03/2017] [Indexed: 05/14/2023]
Abstract
The field of RNA nanotechnology has advanced rapidly during the past decade. A variety of programmable RNA nanoparticles with defined shape, size, and stoichiometry have been developed for diverse applications in nanobiotechnology. The rising popularity of RNA nanoparticles is due to a number of factors: (1) removing the concern of RNA degradation in vitro and in vivo by introducing chemical modification into nucleotides without significant alteration of the RNA property in folding and self-assembly; (2) confirming the concept that RNA displays very high thermodynamic stability and is suitable for in vivo trafficking and other applications; (3) obtaining the knowledge to tune the immunogenic properties of synthetic RNA constructs for in vivo applications; (4) increased understanding of the 4D structure and intermolecular interaction of RNA molecules; (5) developing methods to control shape, size, and stoichiometry of RNA nanoparticles; (6) increasing knowledge of regulation and processing functions of RNA in cells; (7) decreasing cost of RNA production by biological and chemical synthesis; and (8) proving the concept that RNA is a safe and specific therapeutic modality for cancer and other diseases with little or no accumulation in vital organs. Other applications of RNA nanotechnology, such as adapting them to construct 2D, 3D, and 4D structures for use in tissue engineering, biosensing, resistive biomemory, and potential computer logic gate modules, have stimulated the interest of the scientific community. This review aims to outline the current state of the art of RNA nanoparticles as programmable smart complexes and offers perspectives on the promising avenues of research in this fast-growing field.
Collapse
Affiliation(s)
| | | | - Daniel W Binzel
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| | - Peixuan Guo
- College of Pharmacy, Division
of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine,
Department of Physiology & Cell Biology; and Dorothy M. Davis
Heart and Lung Research Institute, The Ohio
State University, Columbus, Ohio 43210, United States
| |
Collapse
|
150
|
Scherman D, Rousseau A, Bigey P, Escriou V. Genetic pharmacology: progresses in siRNA delivery and therapeutic applications. Gene Ther 2017; 24:151-156. [PMID: 28121307 DOI: 10.1038/gt.2017.6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/03/2017] [Indexed: 12/16/2022]
Abstract
In the RNA interference process, the catalytic degradation of an endogenous mRNA results from the Watson-Crick complementary recognition by either a small silencing synthetic double-stranded ribonucleotide (siRNA) or by a small hairpin RNA (shRNA) produced in the cell by transcription from a DNA template. This interference process ideally results in an exquisitely specific mRNA suppression. The present review is dedicated to siRNAs. It describes the mechanism of RNA silencing and the main siRNA delivery techniques, with a focus on siRNA self-complexing to cationic lipids to form nanoparticles, which are called lipoplexes. The addition to lipoplexes of an anionic polymer leads to the ternary formulation APIRL (Anionic-Polymer-Interfering-RNA-Lipoplexes) with increased in vivo stability and biological efficacy. In terms of clinical development, the review focuses on therapeutic applications by intravenous delivery to the liver and inflammatory joints, and to localized siRNA delivery to the ocular sphere.
Collapse
Affiliation(s)
- D Scherman
- CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Faculty of Pharmacy, Sorbonne-Paris-Cité, UTCBS, Paris, France.,Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,INSERM, UTCBS U 1022, F-75006 Paris, France, 4,avenue de l'Observatoire, Paris, France
| | - A Rousseau
- CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Faculty of Pharmacy, Sorbonne-Paris-Cité, UTCBS, Paris, France.,Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,INSERM, UTCBS U 1022, F-75006 Paris, France, 4,avenue de l'Observatoire, Paris, France
| | - P Bigey
- CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Faculty of Pharmacy, Sorbonne-Paris-Cité, UTCBS, Paris, France.,Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,INSERM, UTCBS U 1022, F-75006 Paris, France, 4,avenue de l'Observatoire, Paris, France
| | - V Escriou
- CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Faculty of Pharmacy, Sorbonne-Paris-Cité, UTCBS, Paris, France.,Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France.,INSERM, UTCBS U 1022, F-75006 Paris, France, 4,avenue de l'Observatoire, Paris, France
| |
Collapse
|