101
|
Nonaka PN, Uriarte JJ, Campillo N, Melo E, Navajas D, Farré R, Oliveira LVF. Mechanical properties of mouse lungs along organ decellularization by sodium dodecyl sulfate. Respir Physiol Neurobiol 2014; 200:1-5. [PMID: 24837837 DOI: 10.1016/j.resp.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 11/18/2022]
Abstract
Lung decellularization is based on the use of physical, chemical, or enzymatic methods to break down the integrity of the cells followed by a treatment to extract the cellular material from the lung scaffold. The aim of this study was to characterize the mechanical changes throughout the different steps of lung decellularization process. Four lungs from mice (C57BL/6) were decellularized by using a conventional protocol based on sodium dodecyl sulfate. Lungs resistance (R(L)) and elastance (E(L)) were measured along decellularization steps and were computed by linear regression fitting of tracheal pressure, flow, and volume during mechanical ventilation. Transients differences found were more distinct in an intermediate step after the lungs were rinsed with deionized water and treated with 1% SDS, whereupon the percentage of variation reached approximately 80% for resistance values and 30% for elastance values. In conclusion, although a variation in extracellular matrix stiffness was observed during the decellularization process, this variation can be considered negligible overall because the resistance and elastance returned to basal values at the final decellularization step.
Collapse
Affiliation(s)
- Paula N Nonaka
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil
| | - Juan J Uriarte
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Esther Melo
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain; Institut de Bioenginyeria de Catalunya, Barcelona, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Spain; CIBER de Enfermedades Respiratorias, Bunyola, Spain
| | - Luis V F Oliveira
- Master's and Doctoral Degree Programs in Rehabilitation Sciences, Nove de Julho University, Sao Paulo, Brazil.
| |
Collapse
|
102
|
Abstract
PURPOSE OF REVIEW Patients suffering from end-stage organ failure requiring organ transplantation face donor organ shortage and adverse effect of chronic immunosuppression. Recent progress in the field of organ bioengineering based on decellularized organ scaffolds and patient-derived cells holds great promise to address these issues. RECENT FINDINGS Perfusion-decellularization is the most consistent method to obtain decellularized whole-organ scaffolds to serve as a platform for organ bioengineering. Important advances have occurred in organ bioengineering using decellularized scaffolds in small animal models. However, the function exhibited by bioengineered organs has been rudimentary. Pluripotent stem cells seem to hold promise as the ideal regenerative cells to be used with this approach but the techniques to effectively and reliably manipulate their fate are still to be discovered. Finally, this technology needs to be scaled up to human size to be of clinical relevance. SUMMARY The search for alternatives to allogeneic organ transplantation continues. Important milestones have been achieved in organ bioengineering with the use of decellularized scaffolds. However, many challenges remain on the way to producing an autologous, fully functional organ that can be transplanted similar to a donor organ.
Collapse
|
103
|
Calle EA, Ghaedi M, Sundaram S, Sivarapatna A, Tseng MK, Niklason LE. Strategies for whole lung tissue engineering. IEEE Trans Biomed Eng 2014; 61:1482-96. [PMID: 24691527 PMCID: PMC4126648 DOI: 10.1109/tbme.2014.2314261] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent work has demonstrated the feasibility of using decellularized lung extracellular matrix scaffolds to support the engineering of functional lung tissue in vitro. Rendered acellular through the use of detergents and other reagents, the scaffolds are mounted in organ-specific bioreactors where cells in the scaffold are provided with nutrients and appropriate mechanical stimuli such as ventilation and perfusion. Though initial studies are encouraging, a great deal remains to be done to advance the field and transition from rodent lungs to whole human tissue engineered lungs. To do so, a variety of hurdles must be overcome. In particular, a reliable source of human-sized scaffolds, as well as a method of terminal sterilization of scaffolds, must be identified. Continued research in lung cell and developmental biology will hopefully help identify the number and types of cells that will be required to regenerate functional lung tissue. Finally, bioreactor designs must be improved in order to provide more precise ventilation stimuli and vascular perfusion in order to avoid injury to or death of the cells cultivated within the scaffold. Ultimately, the success of efforts to engineer a functional lung in vitro will critically depend on the ability to create a fully endothelialized vascular network that provides sufficient barrier function and alveolar-capillary surface area to exchange gas at rates compatible with healthy lung function.
Collapse
Affiliation(s)
- Elizabeth A. Calle
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Mahboobe Ghaedi
- Department of Anesthesia, Yale University, New Haven, CT 06519 USA
| | - Sumati Sundaram
- Department of Anesthesia, Yale University, New Haven, CT 06519 USA
| | - Amogh Sivarapatna
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Michelle K. Tseng
- Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| | - Laura E. Niklason
- Department of Anesthesia and Department of Biomedical Engineering, Yale University, New Haven, CT 06519 USA
| |
Collapse
|
104
|
Mendez JJ, Ghaedi M, Steinbacher D, Niklason LE. Epithelial cell differentiation of human mesenchymal stromal cells in decellularized lung scaffolds. Tissue Eng Part A 2014; 20:1735-46. [PMID: 24393055 DOI: 10.1089/ten.tea.2013.0647] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Identification of appropriate donor cell types is important for lung cell therapy and for lung regeneration. Previous studies have indicated that mesenchymal stromal cells derived from human bone marrow (hBM-MSCs) and from human adipose tissue (hAT-MSCs) may have the ability to trans-differentiate into lung epithelial cells. However, these data remain controversial. Herein, the ability of hBM-MSCs and hAT-MSCs to repopulate acellular rodent lung tissue was evaluated. hBM-MSCs and hAT-MSCs were isolated from bone marrow aspirate and lipoaspirate, respectively. Rat lungs were decellularized with CHAPS detergent, followed by seeding the matrix with hBM-MSCs and hAT-MSCs. Under appropriate culture conditions, both human MSC populations attached to and proliferated within the lung tissue scaffold. In addition, cells were capable of type 2 pneumocyte differentiation, as assessed by marker expression of surfactant protein C (pro-SPC) at the protein and the RNA level, and by the presence of lamellar bodies by transmission electron microscopy. Additionally, hAT-MSCs contributed to Clara-like cells that lined the airways in the lung scaffolds, whereas the hBM-MSCs did not. We also tested the differentiation potential of MSCs on different extracellular matrix components in vitro, and found that protein substrate influences MSC epithelial differentiation. Together our data show the capacity for human MSCs to differentiate toward lung epithelial phenotypes, and the possibility of using these cells for lung cell therapies and tissue engineering.
Collapse
Affiliation(s)
- Julio J Mendez
- 1 Department of Anesthesiology and Biomedical Engineering, Yale University , New Haven, Connecticut
| | | | | | | |
Collapse
|
105
|
Zhou Q, Ye X, Sun R, Matsumoto Y, Moriyama M, Asano Y, Ajioka Y, Saijo Y. Differentiation of mouse induced pluripotent stem cells into alveolar epithelial cells in vitro for use in vivo. Stem Cells Transl Med 2014; 3:675-85. [PMID: 24763685 DOI: 10.5966/sctm.2013-0142] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alveolar epithelial cells (AECs) differentiated from induced pluripotent stem cells (iPSCs) represent new opportunities in lung tissue engineering and cell therapy. In this study, we modified a two-step protocol for embryonic stem cells that resulted in a yield of ∼9% surfactant protein C (SPC)(+) alveolar epithelial type II (AEC II) cells from mouse iPSCs in a 12-day period. The differentiated iPSCs showed morphological characteristics similar to those of AEC II cells. When differentiated iPSCs were seeded and cultured in a decellularized mouse lung scaffold, the cells reformed an alveolar structure and expressed SPC or T1α protein (markers of AEC II or AEC I cells, respectively). Finally, the differentiated iPSCs were instilled intratracheally into a bleomycin-induced mouse acute lung injury model. The transplanted cells integrated into the lung alveolar structure and expressed SPC and T1α. Significantly reduced lung inflammation and decreased collagen deposition were observed following differentiated iPSC transplantation. In conclusion, we report a simple and rapid protocol for in vitro differentiation of mouse iPSCs into AECs. Differentiated iPSCs show potential for regenerating three-dimensional alveolar lung structure and can be used to abrogate lung injury.
Collapse
Affiliation(s)
- Qiliang Zhou
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Xulu Ye
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ruowen Sun
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshifumi Matsumoto
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masato Moriyama
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoshiya Asano
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yoichi Ajioka
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuo Saijo
- Department of Medical Oncology and Division of Molecular and Diagnostic Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Pediatric Hematology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China; Department of Neuroanatomy, Cell Biology, and Histology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
106
|
Tsuchiya T, Sivarapatna A, Rocco K, Nanashima A, Nagayasu T, Niklason LE. Future prospects for tissue engineered lung transplantation: decellularization and recellularization-based whole lung regeneration. Organogenesis 2014; 10:196-207. [PMID: 24488093 PMCID: PMC4154954 DOI: 10.4161/org.27846] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/13/2014] [Accepted: 01/13/2014] [Indexed: 01/16/2023] Open
Abstract
The shortage of donor lungs for transplantation causes a significant number of patient deaths. The availability of laboratory engineered, functional organs would be a major advance in meeting the demand for organs for transplantation. The accumulation of information on biological scaffolds and an increased understanding of stem/progenitor cell behavior has led to the idea of generating transplantable organs by decellularizing an organ and recellularizing using appropriate cells. Recellularized solid organs can perform organ-specific functions for short periods of time, which indicates the potential for the clinical use of engineered solid organs in the future. The present review provides an overview of progress and recent knowledge about decellularization and recellularization-based approaches for generating tissue engineered lungs. Methods to improve decellularization, maturation of recellularized lung, candidate species for transplantation and future prospects of lung bioengineering are also discussed.
Collapse
Affiliation(s)
- Tomoshi Tsuchiya
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Amogh Sivarapatna
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Kevin Rocco
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| | - Atsushi Nanashima
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Takeshi Nagayasu
- Division of Surgical Oncology; Department of Surgery; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki, Japan
| | - Laura E Niklason
- Departments of Anesthesia and Biomedical Engineering; Yale University; New Haven, CT USA
| |
Collapse
|
107
|
Wagner DE, Bonenfant NR, Parsons CS, Sokocevic D, Brooks EM, Borg ZD, Lathrop MJ, Wallis JD, Daly AB, Lam YW, Deng B, DeSarno MJ, Ashikaga T, Loi R, Weiss DJ. Comparative decellularization and recellularization of normal versus emphysematous human lungs. Biomaterials 2014; 35:3281-97. [PMID: 24461327 PMCID: PMC4215725 DOI: 10.1016/j.biomaterials.2013.12.103] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 12/31/2013] [Indexed: 12/24/2022]
Abstract
Acellular whole human lung scaffolds represent a unique opportunity for ex vivo tissue engineering. However, it remains unclear whether lungs from individuals with chronic lung diseases such as chronic obstructive pulmonary disease (COPD) can be appropriately decellularized and recellularized. To assess this, cadaveric human lungs from normal (non-smoking) patients and from patients with COPD (smoking history) were decellularized and found by histochemical and immunohistochemical staining, electron microscopy, and mass spectrometry to retain characteristic histological architecture and extracellular matrix components (ECM) reflecting either normal or COPD, particularly emphysematous, origin. Inoculation of human bronchial epithelial cells, endothelial progenitor cells, bone marrow-derived mesenchymal stem cells, and lung fibroblasts via airway or vascular routes into small, excised segments of the decellularized lungs demonstrated that normal lung scaffolds robustly supported initial engraftment and growth of each cell type for up to one month. In contrast, despite initial binding, all cell types inoculated into decellularized emphysematous lungs did not survive beyond one week. However, cell attachment and proliferation on solubilized ECM homogenates of decellularized normal and emphysematous lungs coated onto tissue culture plates was comparable and not impaired, suggesting that the 3-dimensional decellularized emphysematous scaffolds may lack the necessary ECM architecture to support sustained cell growth.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Nicholas R Bonenfant
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Charles S Parsons
- Department of Surgery, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Dino Sokocevic
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Elice M Brooks
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Zachary D Borg
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Melissa J Lathrop
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - John D Wallis
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Amanda B Daly
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA
| | - Ying Wai Lam
- Department of Biology, University of Vermont, 311 Marsh Life Sciences, Burlington, VT 05405, USA
| | - Bin Deng
- Department of Biology, University of Vermont, 311 Marsh Life Sciences, Burlington, VT 05405, USA
| | - Michael J DeSarno
- Department of Biostatistics, University of Vermont, 27 Hills Building, Burlington, VT 05405, USA
| | - Takamaru Ashikaga
- Department of Biostatistics, University of Vermont, 27 Hills Building, Burlington, VT 05405, USA
| | - Roberto Loi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, USA.
| |
Collapse
|
108
|
Scarritt ME, Bonvillain RW, Burkett BJ, Wang G, Glotser EY, Zhang Q, Sammarco MC, Betancourt AM, Sullivan DE, Bunnell BA. Hypertensive rat lungs retain hallmarks of vascular disease upon decellularization but support the growth of mesenchymal stem cells. Tissue Eng Part A 2014; 20:1426-43. [PMID: 24378017 DOI: 10.1089/ten.tea.2013.0438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
There are an insufficient number of donor organs available to meet the demand for lung transplantation. This issue could be addressed by regenerating functional tissue from diseased or damaged lungs that would otherwise be deemed unsuitable for transplant. Detergent-mediated whole-lung decellularization produces a three-dimensional natural scaffold that can be repopulated with various cell types. In this study, we investigated the decellularization and initial recellularization of diseased lungs using a rat model of monocrotaline-induced pulmonary hypertension (MCT-PHT). Decellularization of control and MCT-PHT Sprague-Dawley rat lungs was accomplished by treating the lungs with a combination of Triton X-100, sodium deoxycholate, NaCl, and DNase. The resulting acellular matrices were characterized by DNA quantification, Western blotting, immunohistochemistry, and proteomic analyses revealing that decellularization was able to remove cells while leaving the extracellular matrix (ECM) components and lung ultrastructure intact. Decellularization significantly reduced DNA content (∼30-fold in MCT-PHT lungs and ∼50-fold in the control lungs) and enriched ECM components (>60-fold in both the control and MCT-PHT lungs) while depleting cellular proteins. MicroCT visualization of MCT-PHT rat lungs indicated that the vasculature was narrowed as a result of MCT treatment, and this characteristic was unchanged by decellularization. Mean arterial vessel diameter of representative decellularized MCT-PHT and control scaffolds was estimated to be 0.152±0.134 mm and 0.247±0.160 mm, respectively. Decellularized MCT-PHT lung scaffolds supported attachment and survival of rat adipose-derived stem cells (rASCs), seeded into the airspace or the vasculature, for at least 2 weeks. The cells seeded in MCT-PHT lung scaffolds proliferated and underwent apoptosis similar to control scaffolds; however, the initial percentage of apoptotic cells was slightly higher in MCT-PHT lungs (2.79±2.03% vs. 1.05±1.02% of airway-seeded rASCs, and 4.47±1.21% vs. 2.66±0.10% of vascular seeded rASCs). The ECM of cell-seeded scaffolds showed no signs of degradation by the cells after 14 days in culture. These data suggest that diseased hypertensive lungs can be efficiently decellularized similar to control lungs and have the potential to be recellularized with mesenchymal stem cells with the ultimate goal of generating healthy, functional pulmonary tissue.
Collapse
Affiliation(s)
- Michelle E Scarritt
- 1 Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine , New Orleans, Louisiana
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Wagner DE, Fenn SL, Bonenfant NR, Marks ER, Borg Z, Saunders P, Floreani RA, Weiss DJ. Design and Synthesis of an Artificial Pulmonary Pleura for High Throughput Studies in Acellular Human Lungs. Cell Mol Bioeng 2014; 7:184-195. [PMID: 25750684 DOI: 10.1007/s12195-014-0323-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/06/2014] [Indexed: 11/25/2022] Open
Abstract
Whole organ decellularization of complex organs, such as lungs, presents a unique opportunity for use of acellular scaffolds for ex vivo tissue engineering or for studying cell-extracellular matrix interactions ex vivo. A growing body of literature investigating decellularizing and recellularizing rodent lungs has provided important proof of concept models and rodent lungs are readily available for high throughput studies. In contrast, comparable progress in large animal and human lungs has been impeded owing to more limited availability and difficulties in handling larger tissue. While the use of smaller segments of acellular large animal or human lungs would maximize usage from a single lung, excision of small acellular segments compromises the integrity of the pleural layer, leaving the terminal ends of blood vessels and airways exposed. We have developed a novel pleural coating using non-toxic ionically crosslinked alginate or photocrosslinked methacrylated alginate which can be applied to excised acellular lung segments, permits inflation of small segments, and significantly enhances retention of cells inoculated through cannulated airways or blood vessels. Further, photocrosslinking methacrylated alginate, using eosin Y and triethanolamine (TEOA) at 530nm wavelength, results in a mechanically stable pleural coating that permits effective cyclic 3-dimensional stretch, i.e. mechanical ventilation, of individual segments.
Collapse
Affiliation(s)
- Darcy E Wagner
- Department of Medicine, University of Vermont, 226 Health Sciences Research Facility Center, Burlington, VT 05405 USA
| | - Spencer L Fenn
- College of Engineering and Mathematical Sciences, University of Vermont, 109 Votey Hall, Burlington, VT 05405 USA
| | - Nicholas R Bonenfant
- Department of Medicine, University of Vermont, 226 Health Sciences Research Facility Center, Burlington, VT 05405 USA
| | - Elliot R Marks
- Department of Medicine, University of Vermont, 226 Health Sciences Research Facility Center, Burlington, VT 05405 USA
| | - Zachary Borg
- Department of Medicine, University of Vermont, 226 Health Sciences Research Facility Center, Burlington, VT 05405 USA
| | - Patrick Saunders
- Department of Medicine, University of Vermont, 226 Health Sciences Research Facility Center, Burlington, VT 05405 USA
| | - Rachael A Floreani
- College of Engineering and Mathematical Sciences, University of Vermont, 109 Votey Hall, Burlington, VT 05405 USA
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, 226 Health Sciences Research Facility Center, Burlington, VT 05405 USA
| |
Collapse
|
110
|
Lecht S, Stabler CT, Rylander AL, Chiaverelli R, Schulman ES, Marcinkiewicz C, Lelkes PI. Enhanced reseeding of decellularized rodent lungs with mouse embryonic stem cells. Biomaterials 2014; 35:3252-62. [PMID: 24439414 DOI: 10.1016/j.biomaterials.2013.12.093] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/24/2013] [Indexed: 12/23/2022]
Abstract
Repopulation of decellularized lung scaffolds (DLS) is limited due to alterations in the repertoire and ratios of the residual extracellular matrix (ECM) proteins, characterized by e.g., the retention of type I collagen and loss of glycoproteins. We hypothesized that pre-treatment of decellularized matrices with defined ECM proteins, which match the repertoire of integrin receptors expressed by the cells to be seeded (e.g., embryonic stem cells) can increase the efficacy of the reseeding process. To test this hypothesis, we first determined the integrin receptors profile of mouse embryonic stem cells (mESCs). Mouse ESCs express α3, α5, α6, α9 and β1, but not α1, α2 and α4 integrin subunits, as established by Western blotting and adhesion to laminin and fibronectin, but not to collagens type I and IV. Reseeding of DLS with mESCs was inefficient (6.9 ± 0.5%), but was significantly enhanced (2.3 ± 0.1 fold) by pre-treating the scaffolds with media conditioned by A549 human lung adenocarcinoma cells, which we found to contain ∼5 μg/ml laminin. Furthermore, pre-treatment with A549-conditioned media resulted in a significantly more uniform distribution of the seeded mESCs throughout the engineered organ as compared to untreated DLS. Our study may advance whole lung engineering by stressing the importance of matching the integrin receptor repertoire of the seeded cells and the cell binding motifs of DLS.
Collapse
Affiliation(s)
- Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Alexis L Rylander
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Rachel Chiaverelli
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Edward S Schulman
- Division of Pulmonary, Critical Care and Sleep Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA.
| |
Collapse
|
111
|
Wagner DE, Bonenfant NR, Sokocevic D, DeSarno MJ, Borg ZD, Parsons CS, Brooks EM, Platz JJ, Khalpey ZI, Hoganson DM, Deng B, Lam YW, Oldinski RA, Ashikaga T, Weiss DJ. Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration. Biomaterials 2014; 35:2664-79. [PMID: 24411675 DOI: 10.1016/j.biomaterials.2013.11.078] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/26/2013] [Indexed: 12/26/2022]
Abstract
Acellular scaffolds from complex whole organs such as lung are being increasingly studied for ex vivo organ generation and for in vitro studies of cell-extracellular matrix interactions. We have established effective methods for efficient de and recellularization of large animal and human lungs including techniques which allow multiple small segments (∼ 1-3 cm(3)) to be excised that retain 3-dimensional lung structure. Coupled with the use of a synthetic pleural coating, cells can be selectively physiologically inoculated via preserved vascular and airway conduits. Inoculated segments can be further sliced for high throughput studies. Further, we demonstrate thermography as a powerful noninvasive technique for monitoring perfusion decellularization and for evaluating preservation of vascular and airway networks following human and porcine lung decellularization. Collectively, these techniques are a significant step forward as they allow high throughput in vitro studies from a single lung or lobe in a more biologically relevant, three-dimensional acellular scaffold.
Collapse
Affiliation(s)
- Darcy E Wagner
- University of Vermont, Department of Medicine, 226 Health Sciences, Research Facility Center, Burlington, VT 05405, USA.
| | - Nicholas R Bonenfant
- University of Vermont, Department of Medicine, 226 Health Sciences, Research Facility Center, Burlington, VT 05405, USA.
| | - Dino Sokocevic
- University of Vermont, Department of Medicine, 226 Health Sciences, Research Facility Center, Burlington, VT 05405, USA.
| | - Michael J DeSarno
- University of Vermont, Department of Medical Biostatistics, 27 Hills Building, Burlington, VT 05405, USA.
| | - Zachary D Borg
- University of Vermont, Department of Medicine, 226 Health Sciences, Research Facility Center, Burlington, VT 05405, USA.
| | - Charles S Parsons
- University of Vermont, Department of Surgery, Fletcher House 301, Burlington, VT 05405, USA.
| | - Elice M Brooks
- University of Vermont, Department of Medicine, 226 Health Sciences, Research Facility Center, Burlington, VT 05405, USA.
| | - Joseph J Platz
- University of Vermont, Department of Surgery, Fletcher House 301, Burlington, VT 05405, USA.
| | - Zain I Khalpey
- University of Arizona, Department of Surgery, 1501 North Campbell Avenue, Tucson, AZ 85724, USA.
| | - David M Hoganson
- Washington University in St. Louis, Department of Surgery, 1 Barnes Jewish Plaza, 3108 Queeny Tower, St. Louis, MO 63110, USA.
| | - Bin Deng
- University of Vermont, Department of Biology, 311 Marsh Life Sciences, Burlington, VT 05405, USA.
| | - Ying W Lam
- University of Vermont, Department of Biology, 311 Marsh Life Sciences, Burlington, VT 05405, USA.
| | - Rachael A Oldinski
- University of Vermont, College of Engineering and Mathematics, 301 Votey Hall, 33 Colchester Ave, Burlington, VT 05405, USA.
| | - Takamaru Ashikaga
- University of Vermont, Department of Medical Biostatistics, 27 Hills Building, Burlington, VT 05405, USA.
| | - Daniel J Weiss
- University of Vermont, Department of Medicine, 226 Health Sciences, Research Facility Center, Burlington, VT 05405, USA.
| |
Collapse
|
112
|
Ma T. Acellular biomaterials in mesenchymal stem cell-mediated endogenous tissue regeneration. J Mater Chem B 2014; 2:31-35. [DOI: 10.1039/c3tb21369b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
113
|
Sun H, Calle E, Chen X, Mathur A, Zhu Y, Mendez J, Zhao L, Niklason L, Peng X, Peng H, Herzog EL. Fibroblast engraftment in the decellularized mouse lung occurs via a β1-integrin-dependent, FAK-dependent pathway that is mediated by ERK and opposed by AKT. Am J Physiol Lung Cell Mol Physiol 2013; 306:L463-75. [PMID: 24337923 DOI: 10.1152/ajplung.00100.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Creation of bioartificial organs has been enhanced by the development of strategies involving decellularized mammalian lung. Because fibroblasts critically support lung function through a number of mechanisms, study of these cells in the context of the decellularized lung has the potential to improve the structure and function of tissue-engineered lungs. We characterized the engraftment and survival of a mouse fibroblast cell line in decellularized rat lung slices and found a time-dependent increase in cell numbers assessed by hematoxylin and eosin staining, cell proliferation assessed by Ki67 staining, and minimal cell death assessed by TUNEL staining. We developed a repopulation index to allow quantification of cell survival that accounts for variation in cell density throughout the seeded scaffold. We then applied this method to the study of mouse lung scaffolds and found that decellularization of presliced mouse lungs produced matrices with preserved alveolar architecture and proteinaceous components including fibronectin, collagens I and IV, laminin, and elastin. Treatment with a β1-integrin-neutralizing antibody significantly reduced the repopulation index after 24 h of culture. Treatment with focal adhesion kinase (FAK) inhibitor and extracellular signal-regulated kinase (ERK) inhibitor further reduced initial repopulation scores while treatment with AKT inhibitor increased initial scores. Rho-associated kinase inhibitor had no discernible effect. These data indicate that initial adhesion and survival of mouse fibroblasts in the decellularized mouse lung occur in a β1-integrin-dependent, FAK/ERK-dependent manner that is opposed by AKT.
Collapse
Affiliation(s)
- Huanxing Sun
- Yale School of Medicine, Section of Pulmonary, Critical Care, and Sleep Medicine, 300 Cedar St. TAC 441S, New Haven CT 06520-8057.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Hoganson DM, Meppelink AM, Hinkel CJ, Goldman SM, Liu XH, Nunley RM, Gaut JP, Vacanti JP. Differentiation of human bone marrow mesenchymal stem cells on decellularized extracellular matrix materials. J Biomed Mater Res A 2013; 102:2875-83. [PMID: 24027176 DOI: 10.1002/jbm.a.34941] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/24/2013] [Accepted: 09/05/2013] [Indexed: 01/09/2023]
Abstract
Mesenchymal bone marrow stromal cells may be a source of cells to preseed decellularized biologic mesh materials for improved cellularization and promote a more physiologic tissue after remodeling. Spontaneous differentiation of mesenchymal stromal cells on the decellularized material would be undesirable. Conversely, induced differentiation of mesenchymal stem cells (MSC) on the material would suggest that these materials may have promise as scaffold materials for bone, cartilage, or adipocyte formation. Two sources of mesenchymal cells were evaluated for induced differentiation in control wells. These MSCs were also evaluated for spontaneous or induced differentiation on decellularized porcine dermis and mesothelium materials. Primarily harvested bone marrow MSCs and commercially obtained MSCs were induced into osteoblasts and adipocytes on decellularized dermis and mesothelium materials. The MSCs were able to be induced into chondrocytes in pellet form but not when grown as a monolayer on the materials. The MSCs did not undergo spontaneous differentiation when grown on the materials for up to four weeks. MSC grown on decellularized porcine dermis or mesothelium do not spontaneously differentiate and may serve as a source of autologous cells for preseeding these extracellular matrix materials prior to implantation.
Collapse
Affiliation(s)
- D M Hoganson
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St. Louis, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Melo E, Garreta E, Luque T, Cortiella J, Nichols J, Navajas D, Farré R. Effects of the decellularization method on the local stiffness of acellular lungs. Tissue Eng Part C Methods 2013; 20:412-22. [PMID: 24083889 DOI: 10.1089/ten.tec.2013.0325] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and conventional decellularization procedures do not result in substantially different local stiffness in the acellular lung.
Collapse
Affiliation(s)
- Esther Melo
- 1 Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona , Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
116
|
Gilpin SE, Guyette JP, Gonzalez G, Ren X, Asara JM, Mathisen DJ, Vacanti JP, Ott HC. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. J Heart Lung Transplant 2013; 33:298-308. [PMID: 24365767 DOI: 10.1016/j.healun.2013.10.030] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/04/2013] [Accepted: 10/23/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Organ engineering is a theoretical alternative to allotransplantation for end-stage organ failure. Whole-organ scaffolds can be created by detergent perfusion via the native vasculature, generating an acellular matrix suitable for recellularization with selected cell types. We aimed to up-scale this process, generating biocompatible scaffolds of a clinically relevant scale. METHODS Rat, porcine, and human lungs were decellularized by detergent perfusion at constant pressures. Collagen, elastin, and glycosaminoglycan content of scaffolds were quantified by colorimetric assays. Proteomic analysis was performed by microcapillary liquid chromatography tandem mass spectrometry. Extracellular matrix (ECM) slices were cultured with human umbilical vein endothelial cells (HUVEC), small airway epithelial cells (SAEC), or pulmonary alveolar epithelial cells (PAECs) and evaluated by time-lapse live cell microscopy and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Whole-organ culture was maintained under constant-pressure media perfusion after seeding with PAECs. RESULTS Rat lungs were decellularized using: (1) sodium dodecyl sulfate (SDS), (2) sodium deoxycholate (SDC), or (3) 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). Resulting scaffolds showed comparable loss of DNA but greatest preservation of ECM components in SDS-decellularized lungs. Porcine (n = 10) and human (n = 7) lungs required increased SDS concentration, perfusion pressures, and time to achieve decellularization as determined by loss of DNA, with preservation of intact matrix composition and lung architecture. Proteomic analysis of human decellularized lungs further confirmed ECM preservation. Recellularization experiments confirmed scaffold biocompatibility when cultured with mature cell phenotypes and scaffold integrity for the duration of biomimetic culture. CONCLUSIONS SDS-based perfusion decellularization can be applied to whole porcine and human lungs to generate biocompatible organ scaffolds with preserved ECM composition and architecture.
Collapse
Affiliation(s)
- Sarah Elizabeth Gilpin
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Jacques P Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Gabriel Gonzalez
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Xi Ren
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School
| | - John M Asara
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Douglas J Mathisen
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School
| | - Joseph P Vacanti
- Center for Regenerative Medicine, Massachusetts General Hospital; Division of Pediatric Surgery
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital; Harvard Medical School; Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital; Harvard Stem Cell Institute, Boston, Massachusetts.
| |
Collapse
|
117
|
Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 2013; 123:4950-62. [PMID: 24135142 DOI: 10.1172/jci68793] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 08/15/2013] [Indexed: 01/11/2023] Open
Abstract
The use of induced pluripotent stem cells (iPSCs) has been postulated to be the most effective strategy for developing patient-specific respiratory epithelial cells, which may be valuable for lung-related cell therapy and lung tissue engineering. We generated a relatively homogeneous population of alveolar epithelial type II (AETII) and type I (AETI) cells from human iPSCs that had phenotypic properties similar to those of mature human AETII and AETI cells. We used these cells to explore whether lung tissue can be regenerated in vitro. Consistent with an AETII phenotype, we found that up to 97% of cells were positive for surfactant protein C, 95% for mucin-1, 93% for surfactant protein B, and 89% for the epithelial marker CD54. Additionally, exposing induced AETII to a Wnt/β-catenin inhibitor (IWR-1) changed the iPSC-AETII-like phenotype to a predominantly AETI-like phenotype. We found that of induced AET1 cells, more than 90% were positive for type I markers, T1α, and caveolin-1. Acellular lung matrices were prepared from whole rat or human adult lungs treated with decellularization reagents, followed by seeding these matrices with alveolar cells derived from human iPSCs. Under appropriate culture conditions, these progenitor cells adhered to and proliferated within the 3D lung tissue scaffold and displayed markers of differentiated pulmonary epithelium.
Collapse
|
118
|
Bioengineered kidneys: new sights on a distant horizon. Int Urol Nephrol 2013; 46:477-80. [DOI: 10.1007/s11255-013-0570-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
119
|
Girard ED, Jensen TJ, Vadasz SD, Blanchette AE, Zhang F, Moncada C, Weiss DJ, Finck CM. Automated procedure for biomimetic de-cellularized lung scaffold supporting alveolar epithelial transdifferentiation. Biomaterials 2013; 34:10043-55. [PMID: 24095252 DOI: 10.1016/j.biomaterials.2013.09.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/16/2013] [Indexed: 12/19/2022]
Abstract
The optimal method for creating a de-cellularized lung scaffold that is devoid of cells and cell debris, immunologically inert, and retains necessary extracellular matrix (ECM) has yet to be identified. Herein, we compare automated detergent-based de-cellularization approaches utilizing either constant pressure (CP) or constant flow (CF), to previously published protocols utilizing manual pressure (MP) to instill and rinse out the de-cellularization agents. De-cellularized lungs resulting from each method were evaluated for presence of remaining ECM proteins and immunostimulatory material such as nucleic acids and intracellular material. Our results demonstrate that the CP and MP approaches more effectively remove cellular materials but differentially retain ECM proteins. The CP method has the added benefit of being a faster, reproducible de-cellularization process. To assess the functional ability of the de-cellularized scaffolds to maintain epithelial cells, intra-tracheal inoculation with GFP expressing C10 alveolar epithelial cells (AEC) was performed. Notably, the CP de-cellularized lungs were able to support growth and spontaneous differentiation of C10-GFP cells from a type II-like phenotype to a type I-like phenotype.
Collapse
Affiliation(s)
- Eric D Girard
- Department of Surgery, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT 06106, USA; Department of Vascular Biology, University of Connecticut Health Center, 263 Farmington Avenue, MC3501, Farmington, CT 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Lim ML, Jungebluth P, Ajalloueian F, Friedrich LH, Gilevich I, Grinnemo KH, Gubareva E, Haag JC, Lemon G, Sjöqvist S, Caplan AL, Macchiarini P. Whole organ and tissue reconstruction in thoracic regenerative surgery. Mayo Clin Proc 2013; 88:1151-66. [PMID: 24079685 DOI: 10.1016/j.mayocp.2013.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/09/2013] [Accepted: 03/15/2013] [Indexed: 12/25/2022]
Abstract
Development of novel prognostic, diagnostic, and treatment options will provide major benefits for millions of patients with acute or chronic respiratory dysfunction, cardiac-related disorders, esophageal problems, or other diseases in the thorax. Allogeneic organ transplant is currently available. However, it remains a trap because of its dependency on a very limited supply of donated organs, which may be needed for both initial and subsequent transplants. Furthermore, it requires lifelong treatment with immunosuppressants, which are associated with adverse effects. Despite early clinical applications of bioengineered organs and tissues, routine implementation is still far off. For this review, we searched the PubMed, MEDLINE, and Ovid databases for the following keywords for each tissue or organ: tissue engineering, biological and synthetic scaffold/graft, acellular and decelluar(ized), reseeding, bioreactor, tissue replacement, and transplantation. We identified the current state-of-the-art practices in tissue engineering with a focus on advances during the past 5 years. We discuss advantages and disadvantages of biological and synthetic solutions and introduce novel strategies and technologies for the field. The ethical challenges of innovation in this area are also reviewed.
Collapse
Affiliation(s)
- Mei Ling Lim
- Advanced Center for Translational Regenerative Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Abstract
Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.
Collapse
Affiliation(s)
- David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
122
|
Turner NJ, Keane TJ, Badylak SF. Lessons from developmental biology for regenerative medicine. ACTA ACUST UNITED AC 2013; 99:149-59. [DOI: 10.1002/bdrc.21040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Surgery, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Timothy J. Keane
- McGowan Institute for Regenerative Medicine; University of Pittsburgh, Pittsburgh, Pennsylvania and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Bioengineering, University of Pittsburgh; Pittsburgh Pennsylvania
| |
Collapse
|
123
|
Murphy SV, Atala A. Cell therapy for cystic fibrosis. J Tissue Eng Regen Med 2013; 9:210-23. [DOI: 10.1002/term.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 01/11/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022]
Affiliation(s)
- Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine; Wake Forest University Health Sciences; Winston-Salem NC USA
| |
Collapse
|
124
|
O'Neill JD, Anfang R, Anandappa A, Costa J, Javidfar J, Wobma HM, Singh G, Freytes DO, Bacchetta MD, Sonett JR, Vunjak-Novakovic G. Decellularization of human and porcine lung tissues for pulmonary tissue engineering. Ann Thorac Surg 2013; 96:1046-55; discussion 1055-6. [PMID: 23870827 DOI: 10.1016/j.athoracsur.2013.04.022] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 04/01/2013] [Accepted: 04/05/2013] [Indexed: 01/18/2023]
Abstract
BACKGROUND The only definitive treatment for end-stage organ failure is orthotopic transplantation. Lung extracellular matrix (LECM) holds great potential as a scaffold for lung tissue engineering because it retains the complex architecture, biomechanics, and topologic specificity of the lung. Decellularization of human lungs rejected from transplantation could provide "ideal" biologic scaffolds for lung tissue engineering, but the availability of such lungs remains limited. The present study was designed to determine whether porcine lung could serve as a suitable substitute for human lung to study tissue engineering therapies. METHODS Human and porcine lungs were procured, sliced into sheets, and decellularized by three different methods. Compositional, ultrastructural, and biomechanical changes to the LECM were characterized. The suitability of LECM for cellular repopulation was evaluated by assessing the viability, growth, and metabolic activity of human lung fibroblasts, human small airway epithelial cells, and human adipose-derived mesenchymal stem cells over a period of 7 days. RESULTS Decellularization with 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) showed the best maintenance of both human and porcine LECM, with similar retention of LECM proteins except for elastin. Human and porcine LECM supported the cultivation of pulmonary cells in a similar way, except that the human LECM was stiffer and resulted in higher metabolic activity of the cells than porcine LECM. CONCLUSIONS Porcine lungs can be decellularized with CHAPS to produce LECM scaffolds with properties resembling those of human lungs, for pulmonary tissue engineering. We propose that porcine LECM can be an excellent screening platform for the envisioned human tissue engineering applications of decellularized lungs.
Collapse
Affiliation(s)
- John D O'Neill
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Fisher MB, Mauck RL. Tissue engineering and regenerative medicine: recent innovations and the transition to translation. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:1-13. [PMID: 23253031 DOI: 10.1089/ten.teb.2012.0723] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of tissue engineering and regenerative medicine (TERM) has exploded in the last decade. In this Year (or so) in Review, we highlight some of the high impact advances within the field over the past several years. Using the past as our guide and starting with an objective premise, we attempt so to identify recent "hot topics" and transformative publications within the field. Through this process, several key themes emerged: (1) tissue engineering: grafts and materials, (2) regenerative medicine: scaffolds and factors that control endogenous tissue formation, (3) clinical trials, and (4) novel cell sources: induced pluripotent stem cells. Within these focus areas, we summarize the highly impactful articles that emerged from our objective analysis and review additional recent publications to augment and expand upon these key themes. Finally, we discuss where the TERM field may be headed and how to monitor such a broad-based and ever-expanding community.
Collapse
Affiliation(s)
- Matthew B Fisher
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
126
|
Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, Balasubramani M, Johnson SA, Sicari BM, Kollar E, Badylak SF, Banerjee I. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials 2013; 34:6760-72. [PMID: 23787110 DOI: 10.1016/j.biomaterials.2013.05.066] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 05/24/2013] [Indexed: 01/13/2023]
Abstract
Approximately 285 million people worldwide suffer from diabetes, with insulin supplementation as the most common treatment measure. Regenerative medicine approaches such as a bioengineered pancreas has been proposed as potential therapeutic alternatives. A bioengineered pancreas will benefit from the development of a bioscaffold that supports and enhances cellular function and tissue development. Perfusion-decellularized organs are a likely candidate for use in such scaffolds since they mimic compositional, architectural and biomechanical nature of a native organ. In this study, we investigate perfusion-decellularization of whole pancreas and the feasibility to recellularize the whole pancreas scaffold with pancreatic cell types. Our result demonstrates that perfusion-decellularization of whole pancreas effectively removes cellular and nuclear material while retaining intricate three-dimensional microarchitecture with perfusable vasculature and ductal network and crucial extracellular matrix (ECM) components. To mimic pancreatic cell composition, we recellularized the whole pancreas scaffold with acinar and beta cell lines and cultured up to 5 days. Our result shows successful cellular engraftment within the decellularized pancreas, and the resulting graft gave rise to strong up-regulation of insulin gene expression. These findings support biological utility of whole pancreas ECM as a biomaterials scaffold for supporting and enhancing pancreatic cell functionality and represent a step toward bioengineered pancreas using regenerative medicine approaches.
Collapse
Affiliation(s)
- Saik-Kia Goh
- Department of Bioengineering, University of Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Wong AP, Rossant J. Generation of Lung Epithelium from Pluripotent Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2013; 1:137-145. [PMID: 23662247 PMCID: PMC3646155 DOI: 10.1007/s40139-013-0016-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The understanding of key processes and signaling mechanisms in lung development has been mainly demonstrated through gain and loss of function studies in mice, while human lung development remains largely unexplored due to inaccessibility. Several recent reports have exploited the identification of key signaling mechanisms that regulate lineage commitment and restriction in mouse lung development, to direct differentiation of both mouse and human pluripotent stem cells towards lung epithelial cells. In this review, we discuss the recent advances in the generation of respiratory epithelia from pluripotent stem cells and the potential of these engineered cells for novel scientific discoveries in lung diseases and future translation into regenerative therapies.
Collapse
Affiliation(s)
- Amy P. Wong
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
| | - Janet Rossant
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1L7 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| |
Collapse
|
128
|
Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment. Biomaterials 2013; 34:6638-48. [PMID: 23727263 PMCID: PMC3988964 DOI: 10.1016/j.biomaterials.2013.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/07/2013] [Indexed: 12/31/2022]
Abstract
Tissue engineering of autologous lung tissue aims to become a therapeutic alternative to transplantation. Efforts published so far in creating scaffolds have used harsh decellularization techniques that damage the extracellular matrix (ECM), deplete its components and take up to 5 weeks to perform. The aim of this study was to create a lung natural acellular scaffold using a method that will reduce the time of production and better preserve scaffold architecture and ECM components. Decellularization of rat lungs via the intratracheal route removed most of the nuclear material when compared to the other entry points. An intermittent inflation approach that mimics lung respiration yielded an acellular scaffold in a shorter time with an improved preservation of pulmonary micro-architecture. Electron microscopy demonstrated the maintenance of an intact alveolar network, with no evidence of collapse or tearing. Pulsatile dye injection via the vasculature indicated an intact capillary network in the scaffold. Morphometry analysis demonstrated a significant increase in alveolar fractional volume, with alveolar size analysis confirming that alveolar dimensions were maintained. Biomechanical testing of the scaffolds indicated an increase in resistance and elastance when compared to fresh lungs. Staining and quantification for ECM components showed a presence of collagen, elastin, GAG and laminin. The intratracheal intermittent decellularization methodology could be translated to sheep lungs, demonstrating a preservation of ECM components, alveolar and vascular architecture. Decellularization treatment and methodology preserves lung architecture and ECM whilst reducing the production time to 3 h. Cell seeding and in vivo experiments are necessary to proceed towards clinical translation.
Collapse
|
129
|
Nonaka PN, Campillo N, Uriarte JJ, Garreta E, Melo E, de Oliveira LVF, Navajas D, Farré R. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J Biomed Mater Res A 2013; 102:413-9. [DOI: 10.1002/jbm.a.34708] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/13/2013] [Accepted: 03/14/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Paula N. Nonaka
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- Master's and Doctoral Degree Programs in Rehabilitation Sciences; Nove de Julho University; Sao Paulo Brazil
| | - Noelia Campillo
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- Institut de Bioenginyeria de Catalunya; Barcelona Spain
- CIBER de Enfermedades Respiratorias; Bunyola Spain
| | - Juan J. Uriarte
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- CIBER de Enfermedades Respiratorias; Bunyola Spain
- Institut Investigacions Biomediques August Pi Sunyer; Barcelona Spain
| | - Elena Garreta
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- CIBER de Enfermedades Respiratorias; Bunyola Spain
- Institut Investigacions Biomediques August Pi Sunyer; Barcelona Spain
| | - Esther Melo
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- CIBER de Enfermedades Respiratorias; Bunyola Spain
- Institut Investigacions Biomediques August Pi Sunyer; Barcelona Spain
| | - Luis V. F. de Oliveira
- Master's and Doctoral Degree Programs in Rehabilitation Sciences; Nove de Julho University; Sao Paulo Brazil
| | - Daniel Navajas
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- Institut de Bioenginyeria de Catalunya; Barcelona Spain
- CIBER de Enfermedades Respiratorias; Bunyola Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria; Facultat de Medicina, Universitat de Barcelona; Spain
- CIBER de Enfermedades Respiratorias; Bunyola Spain
- Institut Investigacions Biomediques August Pi Sunyer; Barcelona Spain
| |
Collapse
|
130
|
Sokocevic D, Bonenfant NR, Wagner DE, Borg ZD, Lathrop MJ, Lam YW, Deng B, DeSarno MJ, Ashikaga T, Loi R, Hoffman AM, Weiss DJ. The effect of age and emphysematous and fibrotic injury on the re-cellularization of de-cellularized lungs. Biomaterials 2013; 34:3256-69. [PMID: 23384794 PMCID: PMC4215729 DOI: 10.1016/j.biomaterials.2013.01.028] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/04/2013] [Indexed: 01/02/2023]
Abstract
Use of de-cellularized cadaveric lungs as 3-dimensional scaffolds for ex vivo lung tissue generation offers a new potential therapeutic approach for clinical lung transplantation. However, it is likely that some of the available cadaveric human lungs may be from older donors or from donors with previously existing structural lung diseases such as emphysema or pulmonary fibrosis. It is not known whether these lungs will be suitable for either de-cellularization or re-cellularization. To investigate this, we assessed the effects of advanced age, representative emphysematous and fibrotic injuries, and the combination of advanced age and emphysematous injury and found significant differences both in histologic appearance and in the retention of extracellular matrix (ECM) and other proteins, as assessed by immunohistochemistry and mass spectrometry, between the different conditions. However, despite these differences, binding, retention and growth of bone marrow-derived mesenchymal stromal cells (MSCs) over a 1-month period following intratracheal inoculation were similar between the different experimental conditions. In contrast, significant differences occurred in the growth of C10 mouse lung epithelial cells between the different conditions. Therefore, age, lung injury, and the cell type used for re-cellularization may significantly impact the usefulness of de-cellularized whole lungs for ex vivo lung tissue regeneration.
Collapse
Affiliation(s)
- Dino Sokocevic
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, United States
| | - Nicholas R. Bonenfant
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, United States
| | - Darcy E. Wagner
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, United States
| | - Zachary D. Borg
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, United States
| | - Melissa J. Lathrop
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, United States
| | - Ying Wai Lam
- Department of Biology, University of Vermont College of Arts and Sciences, 311 Marsh Life Sciences, Burlington, VT 05405, United States
| | - Bin Deng
- Department of Biology, University of Vermont College of Arts and Sciences, 311 Marsh Life Sciences, Burlington, VT 05405, United States
| | - Michael J. DeSarno
- Biostatistics Unit, University of Vermont College of Medicine, 27 Hills Building, Burlington, VT 05405, United States
| | - Taka Ashikaga
- Biostatistics Unit, University of Vermont College of Medicine, 27 Hills Building, Burlington, VT 05405, United States
| | - Roberto Loi
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Andrew M. Hoffman
- Department of Clinical Sciences, Tufts University, Cummings School of Veterinary Medicine, Bldg 21, Suite 102, 200 Westboro Road, North Grafton, MA 01536, United States
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, 226 Health Science Research Facility, Burlington, VT 05405, United States
| |
Collapse
|
131
|
Bonenfant NR, Sokocevic D, Wagner DE, Borg ZD, Lathrop M, Lam YW, Deng B, DeSarno M, Ashikaga T, Loi R, Weiss DJ. The effects of storage and sterilization on de-cellularized and re-cellularized whole lung. Biomaterials 2013; 34:3231-45. [PMID: 23380353 PMCID: PMC4201372 DOI: 10.1016/j.biomaterials.2013.01.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/04/2013] [Indexed: 12/14/2022]
Abstract
Despite growing interest on the potential use of de-cellularized whole lungs as 3-dimensional scaffolds for ex vivo lung tissue generation, optimal processing including sterilization and storage conditions, are not well defined. Further, it is unclear whether lungs need to be obtained immediately or may be usable even if harvested several days post-mortem, a situation mimicking potential procurement of human lungs from autopsy. We therefore assessed effects of delayed necropsy, prolonged storage (3 and 6 months), and of two commonly utilized sterilization approaches: irradiation or final rinse with peracetic acid, on architecture and extracellular matrix (ECM) protein characteristics of de-cellularized mouse lungs. These different approaches resulted in significant differences in both histologic appearance and in retention of ECM and intracellular proteins as assessed by immunohistochemistry and mass spectrometry. Despite these differences, binding and proliferation of bone marrow-derived mesenchymal stromal cells (MSCs) over a one month period following intratracheal inoculation was similar between experimental conditions. In contrast, significant differences occurred with C10 mouse lung epithelial cells between the different conditions. Therefore, delayed necropsy, duration of scaffold storage, sterilization approach, and cell type used for re-cellularization may significantly impact the usefulness of this biological scaffold-based model of ex vivo lung tissue regeneration.
Collapse
Affiliation(s)
- Nicholas R. Bonenfant
- Department of Medicine, University of Vermont College of Medicine, Burlington VT 05405
| | - Dino Sokocevic
- Department of Medicine, University of Vermont College of Medicine, Burlington VT 05405
| | - Darcy E. Wagner
- Department of Medicine, University of Vermont College of Medicine, Burlington VT 05405
| | - Zachary D. Borg
- Department of Medicine, University of Vermont College of Medicine, Burlington VT 05405
| | - Melissa Lathrop
- Department of Medicine, University of Vermont College of Medicine, Burlington VT 05405
| | - Ying Wai Lam
- Department of Biology, University of Vermont College of Arts and Sciences, Burlington VT 05405
| | - Bin Deng
- Department of Biology, University of Vermont College of Arts and Sciences, Burlington VT 05405
| | - Michael DeSarno
- Biostatistics Unit, University of Vermont College of Medicine, Burlington VT 05405
| | - Taka Ashikaga
- Biostatistics Unit, University of Vermont College of Medicine, Burlington VT 05405
| | - Roberto Loi
- Dept of Biomedical Sciences, University of Cagliari, Italy
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington VT 05405
| |
Collapse
|
132
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
133
|
Brouwer KM, Hoogenkamp HR, Daamen WF, van Kuppevelt TH. Regenerative medicine for the respiratory system: distant future or tomorrow's treatment? Am J Respir Crit Care Med 2012; 187:468-75. [PMID: 23220914 DOI: 10.1164/rccm.201208-1558pp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine (RM) is a new field of biomedical science that focuses on the regeneration of tissues and organs and the restoration of organ function. Although regeneration of organ systems such as bone, cartilage, and heart has attracted intense scientific research over recent decades, RM research regarding the respiratory system, including the trachea, the lung proper, and the diaphragm, has lagged behind. However, the last 5 years have witnessed novel approaches and initial clinical applications of tissue-engineered constructs to restore organ structure and function. In this regard, this article briefly addresses the basics of RM and introduces the key elements necessary for tissue regeneration, including (stem) cells, biomaterials, and extracellular matrices. In addition, the current status of the (clinical) application of RM to the respiratory system is discussed, and bottlenecks and recent approaches are identified. For the trachea, several initial clinical studies have been reported and have used various combinations of cells and scaffolds. Although promising, the methods used in these studies require optimization and standardization. For the lung proper, only (stem) cell-based approaches have been probed clinically, but it is becoming apparent that combinations of cells and scaffolds are required to successfully restore the lung's architecture and function. In the case of the diaphragm, clinical applications have focused on the use of decellularized scaffolds, but novel scaffolds, with or without cells, are clearly needed for true regeneration of diaphragmatic tissue. We conclude that respiratory treatment with RM will not be realized tomorrow, but its future looks promising.
Collapse
Affiliation(s)
- Katrien M Brouwer
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
134
|
Soto-Gutierrez A, Wertheim JA, Ott HC, Gilbert TW. Perspectives on whole-organ assembly: moving toward transplantation on demand. J Clin Invest 2012; 122:3817-23. [PMID: 23114604 DOI: 10.1172/jci61974] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is an ever-growing demand for transplantable organs to replace acute and chronically damaged tissues. This demand cannot be met by the currently available donor organs. Efforts to provide an alternative source have led to the development of organ engineering, a discipline that combines cell biology, tissue engineering, and cell/organ transplantation. Over the last several years, engineered organs have been implanted into rodent recipients and have shown modest function. In this article, we summarize the most recent advances in this field and provide a perspective on the challenges of translating this promising new technology into a proven regenerative therapy.
Collapse
Affiliation(s)
- Alejandro Soto-Gutierrez
- Department of Pathology, Transplantation Section of Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | | | | | | |
Collapse
|
135
|
Nichols JE, Niles JA, Cortiella J. Production and utilization of acellular lung scaffolds in tissue engineering. J Cell Biochem 2012; 113:2185-92. [PMID: 22573544 DOI: 10.1002/jcb.24112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulmonary disease is a worldwide public health problem that reduces the quality of life and increases the need for hospital admissions as well as the risk for premature death for those affected. For many patients, lung transplantation is the only chance for survival. Unfortunately, there is a significant shortage of lungs for transplantation and since the lung is the most likely organ to be damaged during procurement many lungs deemed unacceptable for transplantation are simply discarded. Rather than discarding these lungs they can be used to produce three-dimensional acellular (AC) natural lung scaffolds for the generation of engineered lung tissue. AC scaffolds are lungs whose original cells have been destroyed by exposure to detergents and physical methods of removing cells and cell debris. This creates a lung scaffold from the skeleton of the lungs themselves. The scaffolds are then used to support adult, stem or progenitor cells which can be grown into functional lung tissue. Recent studies show that engineered lung tissues are capable of surviving after in vivo transplantation and support limited gas exchange. In the future engineered lung tissue has the potential to be used in clinical applications to replace lung functions lost following injury or disease. This manuscript discusses recent advances in development and use of AC scaffolds to support engineering of lung tissues.
Collapse
Affiliation(s)
- Joan E Nichols
- Department of Internal Medicine Infectious Diseases, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-0435, USA.
| | | | | |
Collapse
|
136
|
Abstract
Decellularized tissues have been successfully used in a variety of tissue engineering/regenerative medicine applications, and more recently decellularized organs have been utilized in the first stages of organ engineering. The protocols used to decellularize simple tissues versus intact organs differ greatly. Herein, the most commonly used decellularization methods for both surgical mesh materials and whole organs are described, with consideration given to how these different processes affect the extracellular matrix and the host response to the scaffold.
Collapse
Affiliation(s)
- Thomas W Gilbert
- Cardiothoracic Surgery, and Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15224, USA.
| |
Collapse
|
137
|
Welham NV, Chang Z, Smith LM, Frey BL. Proteomic analysis of a decellularized human vocal fold mucosa scaffold using 2D electrophoresis and high-resolution mass spectrometry. Biomaterials 2012; 34:669-76. [PMID: 23102991 DOI: 10.1016/j.biomaterials.2012.09.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/21/2012] [Indexed: 12/22/2022]
Abstract
Natural biologic scaffolds for tissue engineering are commonly generated by decellularization of tissues and organs. Despite some preclinical and clinical success, in vivo scaffold remodeling and functional outcomes remain variable, presumably due to the influence of unidentified bioactive molecules on the scaffold-host interaction. Here, we used 2D electrophoresis and high-resolution mass spectrometry-based proteomic analyses to evaluate decellularization effectiveness and identify potentially bioactive protein remnants in a human vocal fold mucosa model. We noted proteome, phosphoproteome and O-glycoproteome depletion post-decellularization, and identified >200 unique protein species within the decellularized scaffold. Gene ontology-based enrichment analysis revealed a dominant set of functionally-related ontology terms associated with extracellular matrix assembly, organization, morphology and patterning, consistent with preservation of a tissue-specific niche for later cell seeding and infiltration. We further identified a subset of ontology terms associated with bioactive (some of which are antigenic) cellular proteins, despite histological and immunohistochemical data indicating complete decellularization. These findings demonstrate the value of mass spectrometry-based proteomics in identifying agents potentially responsible for variation in host response to engineered tissues derived from decellularized scaffolds. This work has implications for the manufacturing of biologic scaffolds from any tissue or organ, as well as for prediction and monitoring of the scaffold-host interaction in vivo.
Collapse
Affiliation(s)
- Nathan V Welham
- Division of Otolaryngology, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA.
| | | | | | | |
Collapse
|
138
|
Bonvillain RW, Danchuk S, Sullivan DE, Betancourt AM, Semon JA, Eagle ME, Mayeux JP, Gregory AN, Wang G, Townley IK, Borg ZD, Weiss DJ, Bunnell BA. A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng Part A 2012; 18:2437-52. [PMID: 22764775 DOI: 10.1089/ten.tea.2011.0594] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Currently, patients with end-stage lung disease are limited to lung transplantation as their only treatment option. Unfortunately, the lungs available for transplantation are few. Moreover, transplant recipients require life-long immune suppression to tolerate the transplanted lung. A promising alternative therapeutic strategy is decellularization of whole lungs, which permits the isolation of an intact scaffold comprised of innate extracellular matrix (ECM) that can theoretically be recellularized with autologous stem or progenitor cells to yield a functional lung. Nonhuman primates (NHP) provide a highly relevant preclinical model with which to assess the feasibility of recellularized lung scaffolds for human lung transplantation. Our laboratory has successfully accomplished lung decellularization and initial stem cell inoculation of the resulting ECM scaffold in an NHP model. Decellularization of normal adult rhesus macaque lungs as well as the biology of the resulting acellular matrix have been extensively characterized. Acellular NHP matrices retained the anatomical and ultrastructural properties of native lungs with minimal effect on the content, organization, and appearance of ECM components, including collagen types I and IV, laminin, fibronectin, and sulfated glycosaminoglycans (GAG), due to decellularization. Proteomics analysis showed enrichment of ECM proteins in total tissue extracts due to the removal of cells and cellular proteins by decellularization. Cellular DNA was effectively removed after decellularization (∼92% reduction), and the remaining nuclear material was found to be highly disorganized, very-low-molecular-weight fragments. Both bone marrow- and adipose-derived mesenchymal stem cells (MSC) attach to the decellularized lung matrix and can be maintained within this environment in vitro, suggesting that these cells may be promising candidates and useful tools for lung regeneration. Analysis of decellularized lung slice cultures to which MSC were seeded showed that the cells attached to the decellularized matrix, elongated, and proliferated in culture. Future investigations will focus on optimizing the recellularization of NHP lung scaffolds toward the goal of regenerating pulmonary tissue. Bringing this technology to eventual human clinical application will provide patients with an alternative therapeutic strategy as well as significantly reduce the demand for transplantable organs and patient wait-list time.
Collapse
Affiliation(s)
- Ryan W Bonvillain
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Jensen T, Roszell B, Zang F, Girard E, Matson A, Thrall R, Jaworski DM, Hatton C, Weiss DJ, Finck C. A rapid lung de-cellularization protocol supports embryonic stem cell differentiation in vitro and following implantation. Tissue Eng Part C Methods 2012; 18:632-46. [PMID: 22404373 DOI: 10.1089/ten.tec.2011.0584] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pulmonary diseases represent a large portion of neonatal and adult morbidity and mortality. Many of these have no cure, and new therapeutic approaches are desperately needed. De-cellularization of whole organs, which removes cellular elements but leaves intact important extracellular matrix (ECM) proteins and three-dimensional architecture, has recently been investigated for ex vivo generation of lung tissues. As specific cell culture surfaces, including ECM composition, profoundly affect cell differentiation, this approach offers a potential means of using de-cellularized lungs to direct differentiation of embryonic and other types of stem/progenitor cells into lung phenotypes. Several different methods of whole-lung de-cellularization have been reported, but the optimal method that will best support re-cellularization and generation of lung tissues from embryonic stem cells (ESCs) has not been determined. We present a 24-h approach for de-cellularizing mouse lungs utilizing a detergent-based (Triton-X100 and sodium deoxycholate) approach with maintenance of three-dimensional lung architecture and ECM protein composition. Predifferentiated murine ESCs (mESCs), with phenotypic characteristics of type II alveolar epithelial cells, were seeded into the de-cellularized lung scaffolds. Additionally, we evaluated the effect of coating the de-cellularized scaffold with either collagen or Matrigel to determine if this would enhance cell adhesion and affect mechanics of the scaffold. Finally, we subcutaneously implanted scaffolds in vivo after seeding them with mESCs that are predifferentiated to express pro-surfactant protein C (pro-SPC). The in vivo environment supported maintenance of the pro-SPC-expressing phenotype and further resulted in vascularization of the implant. We conclude that a rapid detergent-based de-cellularization approach results in a scaffold that can maintain phenotypic evidence of alveolar epithelial differentiation of ESCs and support neovascularization after in vivo implantation.
Collapse
Affiliation(s)
- Todd Jensen
- Department of Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, Kwok LW, Mou H, Rajagopal J, Shen SS, Dowton AA, Serra M, Weiss DJ, Green MD, Snoeck HW, Ramirez MI, Kotton DN. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell Stem Cell 2012; 10:398-411. [PMID: 22482505 PMCID: PMC3322392 DOI: 10.1016/j.stem.2012.01.019] [Citation(s) in RCA: 292] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 12/18/2011] [Accepted: 01/25/2012] [Indexed: 11/17/2022]
Abstract
Two populations of Nkx2-1(+) progenitors in the developing foregut endoderm give rise to the entire postnatal lung and thyroid epithelium, but little is known about these cells because they are difficult to isolate in a pure form. We demonstrate here the purification and directed differentiation of primordial lung and thyroid progenitors derived from mouse embryonic stem cells (ESCs). Inhibition of TGFβ and BMP signaling, followed by combinatorial stimulation of BMP and FGF signaling, can specify these cells efficiently from definitive endodermal precursors. When derived using Nkx2-1(GFP) knockin reporter ESCs, these progenitors can be purified for expansion in culture and have a transcriptome that overlaps with developing lung epithelium. Upon induction, they can express a broad repertoire of markers indicative of lung and thyroid lineages and can recellularize a 3D lung tissue scaffold. Thus, we have derived a pure population of progenitors able to recapitulate the developmental milestones of lung/thyroid development.
Collapse
Affiliation(s)
- Tyler A. Longmire
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Laertis Ikonomou
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Finn Hawkins
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Constantina Christodoulou
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Yuxia Cao
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - JC Jean
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Letty W. Kwok
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hongmei Mou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA02114, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA02114, USA
| | - Steven S. Shen
- Section of Computational Biomedicine, and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USAw
- Center for Health Informatics and Bioinformatics, Department of Biochemistry and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Anne A. Dowton
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Maria Serra
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Daniel J. Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT 05405
| | - Michael D. Green
- Mount Sinai School of Medicine, Department of Oncological Science, New York, NY 10029, USA
| | - Hans-Willem Snoeck
- Mount Sinai School of Medicine, Department of Oncological Science, New York, NY 10029, USA
| | - Maria I. Ramirez
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Darrell N. Kotton
- Boston University Pulmonary Center, Boston, Massachusetts 02118, USA
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA 02118, USA
| |
Collapse
|
141
|
|
142
|
Abstract
End-stage organ failure is a key challenge for the medical community because of the ageing population and the severe shortage of suitable donor organs available. Equally, injuries to or congenital absence of complex tissues such as the trachea, oesophagus, or skeletal muscle have few therapeutic options. A new approach to treatment involves the use of three-dimensional biological scaffolds made of allogeneic or xenogeneic extracellular matrix derived from non-autologous sources. These scaffolds can act as an inductive template for functional tissue and organ reconstruction after recellularisation with autologous stem cells or differentiated cells. Such an approach has been used successfully for the repair and reconstruction of several complex tissues such as trachea, oesophagus, and skeletal muscle in animal models and human beings, and, guided by appropriate scientific and ethical oversight, could serve as a platform for the engineering of whole organs and other tissues.
Collapse
Affiliation(s)
- Stephen F Badylak
- McGowan Institute for Regenerative Medicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel J Weiss
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, VT, USA
| | - Arthur Caplan
- Center for Bioethics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Paolo Macchiarini
- Advanced Center of Translational Regenerative Medicine, Stockholm, Sweden.
| |
Collapse
|
143
|
Lau AN, Goodwin M, Kim CF, Weiss DJ. Stem cells and regenerative medicine in lung biology and diseases. Mol Ther 2012; 20:1116-30. [PMID: 22395528 DOI: 10.1038/mt.2012.37] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A number of novel approaches for repair and regeneration of injured lung have developed over the past several years. These include a better understanding of endogenous stem and progenitor cells in the lung that can function in reparative capacity as well as extensive exploration of the potential efficacy of administering exogenous stem or progenitor cells to function in lung repair. Recent advances in ex vivo lung engineering have also been increasingly applied to the lung. The current status of these approaches as well as initial clinical trials of cell therapies for lung diseases are reviewed below.
Collapse
Affiliation(s)
- Allison N Lau
- Department of Genetics, Stem Cell Program, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
144
|
Wallis JM, Borg ZD, Daly AB, Deng B, Ballif BA, Allen GB, Jaworski DM, Weiss DJ. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods 2012; 18:420-32. [PMID: 22165818 DOI: 10.1089/ten.tec.2011.0567] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several different detergent-based methods are currently being explored for de-cellularizing whole lungs for subsequent use as three-dimensional scaffolds for ex vivo lung tissue generation. However, it is not yet clear which of these methods may provide a scaffold that best supports re-cellularization and generation of functional lung tissue. Notably, the detergents used for de-cellularization activate matrix metalloproteinases that can potentially degrade extracellular matrix (ECM) proteins important for subsequent binding and growth of cells inoculated into the de-cellularized scaffolds. We assessed gelatinase activation and the histologic appearance, protein composition, and lung mechanics of the end product scaffolds produced with three different detergent-based de-cellularization methods utilizing either Triton-X 100/sodium deoxycholate (Triton/SDC), sodium dodecyl sulfate (SDS), or 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). There were significant differences both in gelatinase activation and in the retention of ECM and other intracellular proteins, assessed by immunohistochemistry, mass spectrometry, and western blotting as well as in airways resistance and elastance of lungs de-cellularized with the different methods. However, despite these differences, binding and initial growth following intratracheal inoculation with either bone marrow-derived mesenchymal stromal cells or with C10 mouse lung epithelial cells was similar between lungs de-cellularized with each method. Therefore despite differences in the structural composition of the de-cellularized lungs, initial re-cellularization does not appear significantly different between the three de-cellularization approaches studied.
Collapse
Affiliation(s)
- John M Wallis
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | | | | | | | | | | | | |
Collapse
|
145
|
Tang G, Kawai T, Komatsuzawa H, Mintz KP. Lipopolysaccharides mediate leukotoxin secretion in Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2011; 27:70-82. [PMID: 22394466 DOI: 10.1111/j.2041-1014.2011.00632.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We previously reported that lipopolysaccharide (LPS) -related sugars are associated with the glycosylation of the collagen adhesin EmaA, a virulence determinant of Aggregatibacter actinomycetemcomitans. In this study, the role of LPS in the secretion of other virulence factors was investigated. The secretion of the epithelial adhesin Aae, the immunoglobulin Fc receptor Omp34 and leukotoxin were examined in a mutant strain with inactivated TDP-4-keto-6-deoxy-d-glucose 3,5-epimerase (rmlC), which resulted in altered O-antigen polysaccharides (O-PS) of LPS. The secretion of Aae and Omp34 was not affected. However, the leukotoxin secretion, which is mediated by the TolC-dependent type I secretion system, was altered in the rmlC mutant. The amount of secreted leukotoxin in the bacterial growth medium was reduced nine-fold, with a concurrent four-fold increase of the membrane-bound toxin in the mutant compared with the wild-type strain. The altered leukotoxin secretion pattern was restored to the wild-type by complementation of the rmlC gene in trans. Examination of the ltxA mRNA levels indicated that the leukotoxin secretion was post-transcriptionally regulated in the modified O-PS containing strain. The mutant strain also showed increased resistance to vancomycin, an antibiotic dependent on TolC for internalization, indicating that TolC was affected. Overexpression of TolC in the rmlC mutant resulted in an increased TolC level in the outer membrane but did not restore the leukotoxin secretion profile to the wild-type phenotype. The data suggest that O-PS mediate leukotoxin secretion in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- G Tang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|