101
|
Abstract
Motivation Whole-genome alignment (WGA) methods show insufficient scalability toward the generation of large-scale WGAs. Profile alignment-based approaches revolutionized the fields of multiple sequence alignment construction methods by significantly reducing computational complexity and runtime. However, WGAs need to consider genomic rearrangements between genomes, which make the profile-based extension of several whole-genomes challenging. Currently, none of the available methods offer the possibility to align or extend WGA profiles. Results Here, we present genome profile alignment, an approach that aligns the profiles of WGAs and that is capable of producing large-scale WGAs many times faster than conventional methods. Our concept relies on already available whole-genome aligners, which are used to compute several smaller sets of aligned genomes that are combined to a full WGA with a divide and conquer approach. To align or extend WGA profiles, we make use of the SuperGenome data structure, which features a bidirectional mapping between individual sequence and alignment coordinates. This data structure is used to efficiently transfer different coordinate systems into a common one based on the principles of profiles alignments. The approach allows the computation of a WGA where alignments are subsequently merged along a guide tree. The current implementation uses progressiveMauve and offers the possibility for parallel computation of independent genome alignments. Our results based on various bacterial datasets up to several hundred genomes show that we can reduce the runtime from months to hours with a quality that is negligibly worse than the WGA computed with the conventional progressiveMauve tool. Availability and implementation GPA is freely available at https://lambda.informatik.uni-tuebingen.de/gitlab/ahennig/GPA. GPA is implemented in Java, uses progressiveMauve and offers a parallel computation of WGAs. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- André Hennig
- Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Kay Nieselt
- Center for Bioinformatics (ZBIT), Integrative Transcriptomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
102
|
Magi A, Semeraro R, Mingrino A, Giusti B, D'Aurizio R. Nanopore sequencing data analysis: state of the art, applications and challenges. Brief Bioinform 2019. [PMID: 28637243 DOI: 10.1093/bib/bbx062] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nanopore sequencing process is based on the transit of a DNA molecule through a nanoscopic pore, and since the 90s is considered as one of the most promising approaches to detect polymeric molecules. In 2014, Oxford Nanopore Technologies (ONT) launched a beta-testing program that supplied the scientific community with the first prototype of a nanopore sequencer: the MinION. Thanks to this program, several research groups had the opportunity to evaluate the performance of this novel instrument and develop novel computational approaches for analyzing this new generation of data. Despite the short period of time from the release of the MinION, a large number of algorithms and tools have been developed for base calling, data handling, read mapping, de novo assembly and variant discovery. Here, we face the main computational challenges related to the analysis of nanopore data, and we carry out a comprehensive and up-to-date survey of the algorithmic solutions adopted by the bioinformatic community comparing performance and reporting limits and advantages of using this new generation of sequences for genomic analyses. Our analyses demonstrate that the use of nanopore data dramatically improves the de novo assembly of genomes and allows for the exploration of structural variants with an unprecedented accuracy and resolution. However, despite the impressive improvements reached by ONT in the past 2 years, the use of these data for small-variant calling is still challenging, and at present, it needs to be coupled with complementary short sequences for mitigating the intrinsic biases of nanopore sequencing technology.
Collapse
Affiliation(s)
- Alberto Magi
- Department of Statistics, National Cheng Kung University in Taiwan
| | - Roberto Semeraro
- Department of Molecular Physiology and Biophysics, Vanderbilt University, USA
| | | | - Betti Giusti
- Department of Biostatistics, Vanderbilt University, USA
| | | |
Collapse
|
103
|
Leung AKY, Liu MCJ, Li L, Lai YYY, Chu C, Kwok PY, Ho PL, Yip KY, Chan TF. OMMA enables population-scale analysis of complex genomic features and phylogenomic relationships from nanochannel-based optical maps. Gigascience 2019; 8:giz079. [PMID: 31289833 PMCID: PMC6615982 DOI: 10.1093/gigascience/giz079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 01/13/2019] [Accepted: 06/16/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Optical mapping is an emerging technology that complements sequencing-based methods in genome analysis. It is widely used in improving genome assemblies and detecting structural variations by providing information over much longer (up to 1 Mb) reads. Current standards in optical mapping analysis involve assembling optical maps into contigs and aligning them to a reference, which is limited to pairwise comparison and becomes bias-prone when analyzing multiple samples. FINDINGS We present a new method, OMMA, that extends optical mapping to the study of complex genomic features by simultaneously interrogating optical maps across many samples in a reference-independent manner. OMMA captures and characterizes complex genomic features, e.g., multiple haplotypes, copy number variations, and subtelomeric structures when applied to 154 human samples across the 26 populations sequenced in the 1000 Genomes Project. For small genomes such as pathogenic bacteria, OMMA accurately reconstructs the phylogenomic relationships and identifies functional elements across 21 Acinetobacter baumannii strains. CONCLUSIONS With the increasing data throughput of optical mapping system, the use of this technology in comparative genome analysis across many samples will become feasible. OMMA is a timely solution that can address such computational need. The OMMA software is available at https://github.com/TF-Chan-Lab/OMTools.
Collapse
Affiliation(s)
| | - Melissa Chun-Jiao Liu
- Carol Yu Center for Infection and Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Le Li
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yvonne Yuk-Yin Lai
- Cardiovascular Research Institute, University of California, San Francisco, CA 94153, USA
- Institute of Human Genetics, University of California, San Francisco, CA 94153, USA
| | - Catherine Chu
- Cardiovascular Research Institute, University of California, San Francisco, CA 94153, USA
- Institute of Human Genetics, University of California, San Francisco, CA 94153, USA
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, University of California, San Francisco, CA 94153, USA
- Institute of Human Genetics, University of California, San Francisco, CA 94153, USA
| | - Pak-Leung Ho
- Carol Yu Center for Infection and Department of Microbiology, The University of Hong Kong, Queen Mary Hospital, Pok Fu Lam, Hong Kong
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ting-Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
104
|
O'Neill MB, Shockey A, Zarley A, Aylward W, Eldholm V, Kitchen A, Pepperell CS. Lineage specific histories of Mycobacterium tuberculosis dispersal in Africa and Eurasia. Mol Ecol 2019; 28:3241-3256. [PMID: 31066139 PMCID: PMC6660993 DOI: 10.1111/mec.15120] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/29/2022]
Abstract
Mycobacterium tuberculosis (M.tb) is a globally distributed, obligate pathogen of humans that can be divided into seven clearly defined lineages. An emerging consensus places the origin and global dispersal of M.tb within the past 6,000 years: identifying how the ancestral clone of M.tb spread and differentiated within this timeframe is important for identifying the ecological drivers of the current pandemic. We used Bayesian phylogeographic inference to reconstruct the migratory history of M.tb in Africa and Eurasia and to investigate lineage specific patterns of spread from a geographically diverse sample of 552 M.tb genomes. Applying evolutionary rates inferred with ancient M.tb genome calibration, we estimated the timing of major events in the migratory history of the pathogen. Inferred timings contextualize M.tb dispersal within historical phenomena that altered patterns of connectivity throughout Africa and Eurasia: trans-Indian Ocean trade in spices and other goods, the Silk Road and its predecessors, the expansion of the Roman Empire, and the European Age of Exploration. We found that Eastern Africa and Southeast Asia have been critical in the dispersal of M.tb. Our results further reveal that M.tb populations have grown through range expansion, as well as in situ, and delineate the independent evolutionary trajectories of bacterial subpopulations underlying the current pandemic.
Collapse
Affiliation(s)
- Mary B. O'Neill
- Laboratory of GeneticsUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Unit of Human Evolutionary GeneticsInstitut PasteurParisFrance
| | - Abigail Shockey
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Alex Zarley
- Department of GeographyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - William Aylward
- Department of Classical and Ancient Near Eastern StudiesUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Vegard Eldholm
- Infection Control and Environmental HealthNorwegian Institute of Public HealthOsloNorway
| | - Andrew Kitchen
- Department of AnthropologyUniversity of IowaIowa CityIAUSA
| | - Caitlin S. Pepperell
- Department of Medical Microbiology and ImmunologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
105
|
Bornstein K, Tennant SM, Hazen TH, Sorkin JD, Tapia MD, Sow SO, Onwuchekwa U, Levine MM, Rasko DA. Genetic changes associated with the temporal shift in invasive non-typhoidal Salmonella serovars in Bamako Mali. PLoS Negl Trop Dis 2019; 13:e0007297. [PMID: 31170153 PMCID: PMC6592554 DOI: 10.1371/journal.pntd.0007297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 06/25/2019] [Accepted: 03/13/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Invasive non-typhoidal Salmonella (iNTS) serovars S. Typhimurium and S. Enteritidis are major etiologic agents of invasive bacterial disease among infants and young children in sub-Saharan Africa, including in Mali. Early studies of iNTS serovars in several countries indicated that S. Typhimurium was more prevalent than S. Enteritidis, including in Mali before 2008. We investigated genomic and associated phenotypic changes associated with an increase in the relative proportion of iNTS caused by S. Enteritidis versus S. Typhimurium in Bamako, Mali, during the period 2002-2012. METHODOLOGY/PRINCIPAL FINDINGS Comparative genomics studies identified homologs of tetracycline resistance and arsenic utilization genes that were associated with the temporal shift of serovars causing iNTS shift, along with several hypothetical proteins. These findings, validated through PCR screening and phenotypic assays, provide initial steps towards characterizing the genomic changes consequent to unknown evolutionary pressures associated with the shift in serovar prevalence. CONCLUSIONS/SIGNIFICANCE This work identified a shift to S. Enteritidis from the more classic S. Typhimurium, associated with iNTS in Bamako, Mali, during the period 2002-2012. This type of shift in underlying iNTS pathogens are of great importance to pediatric public health in endemic regions of sub-Saharan Africa. Additionally, this work demonstrates the utility of combining epidemiologic data, whole genome sequencing, and functional characterization in the laboratory to identify and characterize genomic changes in the isolates that may be involved with the observed shift in circulating iNTS agents.
Collapse
Affiliation(s)
- Kristin Bornstein
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- ICF, Lee Highway, Fairfax, Virginia, United States of America
| | - Sharon M. Tennant
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Baltimore VA Medical Center Geriatric Research, Education, and Clinical Center, and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Tracy H. Hazen
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - John D. Sorkin
- Baltimore VA Medical Center Geriatric Research, Education, and Clinical Center, and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Milagritos D. Tapia
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Samba O. Sow
- Centre pour le Développement des Vaccins, Mali (CVD-Mali), Bamako, Mali, Africa
| | - Uma Onwuchekwa
- Centre pour le Développement des Vaccins, Mali (CVD-Mali), Bamako, Mali, Africa
| | - Myron M. Levine
- Center for Vaccine Development and Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Baltimore VA Medical Center Geriatric Research, Education, and Clinical Center, and Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - David A. Rasko
- Institute for Genome Sciences, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
106
|
Jesser KJ, Valdivia-Granda W, Jones JL, Noble RT. Clustering of Vibrio parahaemolyticus Isolates Using MLST and Whole-Genome Phylogenetics and Protein Motif Fingerprinting. Front Public Health 2019; 7:66. [PMID: 31139608 PMCID: PMC6519141 DOI: 10.3389/fpubh.2019.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/06/2019] [Indexed: 01/22/2023] Open
Abstract
Vibrio parahaemolyticus is a ubiquitous and abundant member of native microbial assemblages in coastal waters and shellfish. Though V. parahaemolyticus is predominantly environmental, some strains have infected human hosts and caused outbreaks of seafood-related gastroenteritis. In order to understand differences among clinical and environmental V. parahaemolyticus strains, we used high quality DNA sequencing data to compare the genomes of V. parahaemolyticus isolates (n = 43) from a variety of geographic locations and clinical and environmental sample matrices. We used phylogenetic trees inferred from multilocus sequence typing (MLST) and whole-genome (WG) alignments, as well as a novel classification and genome clustering approach that relies on protein motif fingerprints (MFs), to assess relationships between V. parahaemolyticus strains and identify novel molecular targets associated with virulence. Differences in strain clustering at more than one position were observed between the MLST and WG phylogenetic trees. The WG phylogeny had higher support values and strain resolution since isolates of the same sequence type could be differentiated. The MF analysis revealed groups of protein motifs that were associated with the pathogenic MLST type ST36 and a large group of clinical strains isolated from human stool. A subset of the stool and ST36-associated protein motifs were selected for further analysis and the motif sequences were found in genes with a variety of functions, including transposases, secretion system components and effectors, and hypothetical proteins. DNA sequences associated with these protein motifs are candidate targets for future molecular assays in order to improve surveys of pathogenic V. parahaemolyticus in the environment and seafood.
Collapse
Affiliation(s)
- Kelsey J Jesser
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| | | | - Jessica L Jones
- Gulf Coast Seafood Laboratory, Division of Seafood Science and Technology, U.S. Food and Drug Administration, Dauphin Island, AL, United States
| | - Rachel T Noble
- Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, NC, United States
| |
Collapse
|
107
|
Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, Chen J, Wang L, You J, Fan D, Edwards D, Zhang X. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:881-892. [PMID: 30315621 PMCID: PMC6587448 DOI: 10.1111/pbi.13022] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 05/08/2023]
Abstract
Sesame (Sesamum indicum L.) is an important oil crop renowned for its high oil content and quality. Recently, genome assemblies for five sesame varieties including two landraces (S. indicum cv. Baizhima and Mishuozhima) and three modern cultivars (S. indicum var. Zhongzhi13, Yuzhi11 and Swetha), have become available providing a rich resource for comparative genomic analyses and gene discovery. Here, we employed a reference-assisted assembly approach to improve the draft assemblies of four of the sesame varieties. We then constructed a sesame pan-genome of 554.05 Mb. The pan-genome contained 26 472 orthologous gene clusters; 15 409 (58.21%) of them were core (present across all five sesame genomes), whereas the remaining 41.79% (11 063) clusters and the 15 890 variety-specific genes were dispensable. Comparisons between varieties suggest that modern cultivars from China and India display significant genomic variation. The gene families unique to the sesame modern cultivars contain genes mainly related to yield and quality, while those unique to the landraces contain genes involved in environmental adaptation. Comparative evolutionary analysis indicates that several genes involved in plant-pathogen interaction and lipid metabolism are under positive selection, which may be associated with sesame environmental adaption and selection for high seed oil content. This study of the sesame pan-genome provides insights into the evolution and genomic characteristics of this important oilseed and constitutes a resource for further sesame crop improvement.
Collapse
Affiliation(s)
- Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneParkvilleMelbourneVicAustralia
| | - Kun Lu
- College of Agronomy and Biotechnology, and Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingChina
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS)ThièsSenegal
| | - Yanxin Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | - Jinfeng Chen
- Department of Plant Pathology & MicrobiologyUniversity of CaliforniaRiversideCAUSA
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | - Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| | | | - David Edwards
- School of Biological Sciences and Institute of AgricultureUniversity of Western AustraliaPerthWAAustralia
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil CropsMinistry of AgricultureOil Crops Research InstituteThe Chinese Academy of Agricultural SciencesWuhanChina
| |
Collapse
|
108
|
Storer JM, Mierl JR, Brantley SA, Threeton B, Sukharutski Y, Rewerts LC, St Romain CP, Foreman MM, Baker JN, Walker JA, Orkin JD, Melin AD, Phillips KA, Konkel MK, Batzer MA. Amplification Dynamics of Platy-1 Retrotransposons in the Cebidae Platyrrhine Lineage. Genome Biol Evol 2019; 11:1105-1116. [PMID: 30888417 PMCID: PMC6464705 DOI: 10.1093/gbe/evz062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2019] [Indexed: 12/11/2022] Open
Abstract
Platy-1 elements are Platyrrhine-specific, short interspersed elements originally discovered in the Callithrix jacchus (common marmoset) genome. To date, only the marmoset genome has been analyzed for Platy-1 repeat content. Here, we report full-length Platy-1 insertions in other New World monkey (NWM) genomes (Saimiri boliviensis, squirrel monkey; Cebus imitator, capuchin monkey; and Aotus nancymaae, owl monkey) and analyze the amplification dynamics of lineage-specific Platy-1 insertions. A relatively small number of full-length and lineage-specific Platy-1 elements were found in the squirrel, capuchin, and owl monkey genomes compared with the marmoset genome. In addition, only a few older Platy-1 subfamilies were recovered in this study, with no Platy-1 subfamilies younger than Platy-1-6. By contrast, 62 Platy-1 subfamilies were discovered in the marmoset genome. All of the lineage-specific insertions found in the squirrel and capuchin monkeys were fixed present. However, ∼15% of the lineage-specific Platy-1 loci in Aotus were polymorphic for insertion presence/absence. In addition, two new Platy-1 subfamilies were identified in the owl monkey genome with low nucleotide divergences compared with their respective consensus sequences, suggesting minimal ongoing retrotransposition in the Aotus genus and no current activity in the Saimiri, Cebus, and Sapajus genera. These comparative analyses highlight the finding that the high number of Platy-1 elements discovered in the marmoset genome is an exception among NWM analyzed thus far, rather than the rule. Future studies are needed to expand upon our knowledge of Platy-1 amplification in other NWM genomes.
Collapse
Affiliation(s)
| | - Jackson R Mierl
- Department of Biological Sciences, Louisiana State University
| | | | | | | | - Lydia C Rewerts
- Department of Biological Sciences, Louisiana State University
| | | | | | - Jasmine N Baker
- Department of Biological Sciences, Louisiana State University
| | | | - Joseph D Orkin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada
| | - Amanda D Melin
- Department of Anthropology and Archaeology & Department of Medical Genetics, University of Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, N.W. Calgary, Alberta, Canada
| | - Kimberley A Phillips
- Department of Psychology, Trinity University.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Miriam K Konkel
- Department of Biological Sciences, Louisiana State University.,Department of Genetics & Biochemistry, Clemson University
| | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University
| |
Collapse
|
109
|
Genome sequence of Xanthomonas fuscans subsp. fuscans strain Xff49: a new isolate obtained from common beans in Southern Brazil. Braz J Microbiol 2019; 50:357-367. [PMID: 30850979 DOI: 10.1007/s42770-019-00050-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
The genus Xanthomonas comprises Gram-negative bacteria, many of which are phytopathogens. Xanthomonas fuscans subsp. fuscans is one of the most devastating pathogens affecting the bean plant, resulting in the common bacterial blight of bean (CBB). The disease is mainly foliar and affects a wide variety of bean species, thus acting as the yield-limiting factor for the bean crop. Here, we report the whole-genome sequencing of a new strain of X. fuscans subsp. fuscans, named Xff49, isolated from the infected and symptomatic beans from Capão do Leão, Southern Brazil. The genetic analysis demonstrated the presence of single-nucleotide variants (SNVs) in this strain, potentially affecting the mobilome, cell mobility, and inorganic ion metabolism. In addition, the analysis resulted in the identification of a new plasmid similar to the pAX22 derived from Achromobacter denitrificans, which was named plX, along with plA and plC, previously reported in other strains of X. fuscans subsp. fuscans. Xff49 represents the first Brazilian genome of X. fuscans subsp. fuscans and might provide useful information applicable to the studies of phylogenetics, evolution, and pathogenomics, thereby allowing a better understanding of the genomic features present in the Brazilian strains.
Collapse
|
110
|
Liu Y, Long D, Xiang TX, Du FL, Wei DD, Wan LG, Deng Q, Cao XW, Zhang W. Whole genome assembly and functional portrait of hypervirulent extensively drug-resistant NDM-1 and KPC-2 co-producing Klebsiella pneumoniae of capsular serotype K2 and ST86. J Antimicrob Chemother 2019; 74:1233-1240. [PMID: 30843067 DOI: 10.1093/jac/dkz023] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Dan Long
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Tian-Xin Xiang
- Department of Infectious Disease, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Fang-Ling Du
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Dan Dan Wei
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - La-Gen Wan
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Qiong Deng
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Xian-Wei Cao
- Department of Hospital Infection Control, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| | - Wei Zhang
- Department of Respiration, First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, PR China
| |
Collapse
|
111
|
Chung SY, Kwon T, Bak YS, Park JJ, Kim CH, Cho SH, Kim W. Comparative genomic analysis of enterotoxigenic Escherichia coli O159 strains isolated from diarrheal patients in Korea. Gut Pathog 2019; 11:9. [PMID: 30828387 PMCID: PMC6383257 DOI: 10.1186/s13099-019-0289-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/11/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Enterotoxigenic Escherichia coli (ETEC) is a common cause of bacterial infection that leads to diarrhea. Although some studies have proposed a potential association between the toxic profile and genetic background, association between toxin of ETEC and phylo-group has not been reported yet. The objective of this study was to examine genomic and phylogenetic characteristics of ETEC strain NCCP15731 and NCCP15733 by whole genome sequencing and comparative genomic analysis of two phylo-groups of O159 reference strains. RESULTS Whole genome sequencing showed that genome size of NCCP15731 strain was 4,663,459 bp, containing 4435 CDS and 19 RNAs. The genome size of NCCP15733 was 4,645,336 bp, containing 4369 CDS and 23 RNAs. Both NCCP15731 and NCCP15733 were classified in the phylo-group A, which is one of major E. coli phylogenetic groups. Their serotype was O159:H34. They possessed the virulence factor such as adherence systems, auto transporter systems, and flagella segments of major driving force for ETEC pathogenicity. They also harbored STh enterotoxin. Hierarchical clustering result based on the presence or absence of a total of 108 major virulence factors of 14 O159 ETEC strains showed that seven strains in phylo-group A and seven strains in phylo-group B1 were clustered each other, respectively. Colonization factors (CFs) of NCCP15731 or NCCP15733 were not detected. CONCLUSIONS Serotype of NCCP15731 and NCCP15733, representing major types of ETEC in Korea, was O159:H34 and their MLST type was ST218. Comparison with other O159 strains revealed that NCCP15731 was specialized for transporter system and secretion system whereas NCCP15733 had unique genes related to capsular polysaccharide. Compared with E159, the most recent common ancestor, these two strains had different toxin type and virulence factors. These results will improve our understanding of ETEC O159 strains to prevent ETEC disease.
Collapse
Affiliation(s)
- Si-yun Chung
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| | - Taesoo Kwon
- Cloud9, 133, Yeonje-gil, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28164 Republic of Korea
| | - Young-Seok Bak
- Department of Emergency Medical Services, Sun Moon University, Asan-si, Chungcheongnam-do 31460 Republic of Korea
| | - Joung Je Park
- Department of Emergency Medical Service, Pohang University, Heunghae-eup, Sindeok-ro, Pohang-si, Gyeongsangbuk-do Republic of Korea
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, Sungkyunkwan University and Samsung Advanced Institute for Health Sciences and Technology (SAIHST), 2066 Seobu-ro, Suwon, 16419 Republic of Korea
| | - Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, 363-951 Republic of Korea
| | - Won Kim
- School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742 Republic of Korea
| |
Collapse
|
112
|
Abstract
Rapidly improving sequencing technology coupled with computational developments in sequence assembly are making reference-quality genome assembly economical. Hundreds of vertebrate genome assemblies are now publicly available, and projects are being proposed to sequence thousands of additional species in the next few years. Such dense sampling of the tree of life should give an unprecedented new understanding of evolution and allow a detailed determination of the events that led to the wealth of biodiversity around us. To gain this knowledge, these new genomes must be compared through genome alignment (at the sequence level) and comparative annotation (at the gene level). However, different alignment and annotation methods have different characteristics; before starting a comparative genomics analysis, it is important to understand the nature of, and biases and limitations inherent in, the chosen methods. This review is intended to act as a technical but high-level overview of the field that should provide this understanding. We briefly survey the state of the genome alignment and comparative annotation fields and potential future directions for these fields in a new, large-scale era of comparative genomics.
Collapse
Affiliation(s)
- Joel Armstrong
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Ian T Fiddes
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
- 10x Genomics, Pleasanton, California 94566, USA
| | - Mark Diekhans
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, California 95064, USA;
| |
Collapse
|
113
|
Draft Genome Sequences of Eight Vibrio sp. Clinical Isolates from across the United States That Form a Basal Sister Clade to Vibrio cholerae. Microbiol Resour Announc 2019; 8:MRA01473-18. [PMID: 30687832 PMCID: PMC6346164 DOI: 10.1128/mra.01473-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/15/2018] [Indexed: 11/20/2022] Open
Abstract
We sequenced the genomes of eight isolates from various regions of the United States. These isolates form a monophyletic cluster clearly related to but distinct from Vibrio cholerae. Phylogenetic and genomic analyses suggest that they represent a basal lineage highly divergent from Vibrio cholerae or a novel species.
Collapse
|
114
|
Haueisen J, Möller M, Eschenbrenner CJ, Grandaubert J, Seybold H, Adamiak H, Stukenbrock EH. Highly flexible infection programs in a specialized wheat pathogen. Ecol Evol 2019; 9:275-294. [PMID: 30680113 PMCID: PMC6342133 DOI: 10.1002/ece3.4724] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022] Open
Abstract
Many filamentous plant pathogens exhibit high levels of genomic variability, yet the impact of this variation on host-pathogen interactions is largely unknown. We have addressed host specialization in the wheat pathogen Zymoseptoria tritici. Our study builds on comparative analyses of infection and gene expression phenotypes of three isolates and reveals the extent to which genomic variation translates into phenotypic variation. The isolates exhibit genetic and genomic variation but are similarly virulent. By combining confocal microscopy, disease monitoring, staining of ROS, and comparative transcriptome analyses, we conducted a detailed comparison of the infection processes of these isolates in a susceptible wheat cultivar. We characterized four core infection stages: establishment, biotrophic growth, lifestyle transition, and necrotrophic growth and asexual reproduction that are shared by the three isolates. However, we demonstrate differentiated temporal and spatial infection development and significant differences in the expression profiles of the three isolates during the infection stages. More than 20% of the genes were differentially expressed and these genes were located significantly closer to transposable elements, suggesting an impact of epigenetic regulation. Further, differentially expressed genes were enriched in effector candidates suggesting that isolate-specific strategies for manipulating host defenses are present in Z. tritici. We demonstrate that individuals of a host-specialized pathogen have highly differentiated infection programs characterized by flexible infection development and functional redundancy. This illustrates how high genetic diversity in pathogen populations results in highly differentiated infection phenotypes, which fact needs to be acknowledged to understand host-pathogen interactions and pathogen evolution.
Collapse
Affiliation(s)
- Janine Haueisen
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Environmental Genomics GroupChristian‐Albrechts University KielKielGermany
| | - Mareike Möller
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Environmental Genomics GroupChristian‐Albrechts University KielKielGermany
| | - Christoph J. Eschenbrenner
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Environmental Genomics GroupChristian‐Albrechts University KielKielGermany
| | - Jonathan Grandaubert
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Fungal Biology and PathogenicityInstitute PasteurParisFrance
| | - Heike Seybold
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Environmental Genomics GroupChristian‐Albrechts University KielKielGermany
| | - Holger Adamiak
- Environmental Genomics GroupChristian‐Albrechts University KielKielGermany
| | - Eva H. Stukenbrock
- Environmental Genomics GroupMax Planck Institute for Evolutionary BiologyPlönGermany
- Environmental Genomics GroupChristian‐Albrechts University KielKielGermany
| |
Collapse
|
115
|
Abstract
Whole-genome alignment (WGA) is the prediction of evolutionary relationships at the nucleotide level between two or more genomes. It combines aspects of both colinear sequence alignment and gene orthology prediction and is typically more challenging to address than either of these tasks due to the size and complexity of whole genomes. Despite the difficulty of this problem, numerous methods have been developed for its solution because WGAs are valuable for genome-wide analyses such as phylogenetic inference, genome annotation, and function prediction. In this chapter, we discuss the meaning and significance of WGA and present an overview of the methods that address it. We also examine the problem of evaluating whole-genome aligners and offer a set of methodological challenges that need to be tackled in order to make most effective use of our rapidly growing databases of whole genomes.
Collapse
Affiliation(s)
- Colin N Dewey
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
116
|
Liu WJ, Zou R, Hu Y, Zhao M, Quan C, Tan S, Luo K, Yuan J, Zheng H, Liu J, Liu M, Bi Y, Yan J, Zhu B, Wang D, Wu G, Liu L, Yuen KY, Gao GF, Liu Y. Clinical, immunological and bacteriological characteristics of H7N9 patients nosocomially co-infected by Acinetobacter Baumannii: a case control study. BMC Infect Dis 2018; 18:664. [PMID: 30551738 PMCID: PMC6295110 DOI: 10.1186/s12879-018-3447-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 10/16/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bacterial co-infection of patients suffering from influenza pneumonia is a key element that increases morbidity and mortality. The occurrence of Acinetobacter baumannii co-infection in patients with avian influenza A (H7N9) virus infection has been described as one of the most prevalent bacterial co-infections. However, the clinical and laboratory features of this entity of H7N9 and A. baumannii co-infection have not been systematically investigated. METHODS We collected clinical and laboratory data from laboratory-confirmed H7N9 cases co-infected by A. baumannii. H7N9 patients without bacterial co-infection and patients with A. baumannii-related pneumonia in the same hospital during the same period were recruited as controls. The antibiotic resistance features and the corresponding genome determinants of A. baumannii and the immune responses of the patients were tested through the respiratory and peripheral blood specimens. RESULTS Invasive mechanical ventilation was the most significant risk factor for the nosocomial A. baumannii co-infection in H7N9 patients. The co-infection resulted in severe clinical manifestation which was associated with the dysregulation of immune responses including deranged T-cell counts, antigen-specific T-cell responses and plasma cytokines. The emergence of genome variations of extensively drug-resistant A. baumannii associated with acquired polymyxin resistance contributed to the fatal outcome of a co-infected patient. CONCLUSIONS The co-infection of H7N9 patients by extensively drug-resistant A. baumannii with H7N9 infection is an important issue which deserves attention. The dysfunctions of immune responses were associated with the co-infection and were correlated with the disease severity. These data provide useful reference for the diagnosis and treatment of H7N9 infection.
Collapse
Affiliation(s)
- William J. Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
| | - Yongfei Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Chuansong Quan
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kai Luo
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Dayan Wang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Wu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Special Administration Region, Hong Kong, China
| | - George F. Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- Center for Influenza Research and Early-Warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, 518112 China
| |
Collapse
|
117
|
Wang Y, Zhang N, Li T, Yang J, Zhu X, Fang C, Li S, Si H. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.). Comput Biol Chem 2018; 78:53-63. [PMID: 30497020 DOI: 10.1016/j.compbiolchem.2018.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022]
Abstract
The plant-specific TCP transcription factors, which play critical roles in diverse aspects of biological processes, have been identified and analyzed in various plant species. However, no systematical study of TCP family genes in potato (Solanum tuberosum L.) has been undertaken. In this study, a total of 31 non-redundant TCP transcription factors of potato were identified and divided into two subfamilies including three distinct subclades. The various orthologous TCP genes in Arabidopsis, rice, potato and tomato were identified using synteny and phylogenetic analysis. Protein motif analysis demonstrated that StTCPs in the same subclade shared similar conserved motif structures. Gene structure analysis showed that almost all StTCPs displayed highly conserved exon-intron organization. The analysis of StTCP gene promoter regions revealed that multiple cis-acting elements were involved in plant growth, development, hormone responses as well as stress responses. The result of StTCP gene expression profiles showed they had tissue-specific expression patterns which implied their differentiated functions. According to the results of quantitative RT-PCR (qRT-PCR), 7 StTCP genes were dramatically up-regulated during the release of tuber dormancy and some specific StTCP genes were strongly responding to different abiotic stresses and multiple hormones, which suggested they had important roles in potato growth and development processes. The results of our findings could provide comprehensive insights in StTCP family genes of potato for further functional investigations.
Collapse
Affiliation(s)
- Yapeng Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ting Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Chenxi Fang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science/Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
118
|
Draft Genome Sequences of Nine Vibrio sp. Isolates from across the United States Closely Related to Vibrio cholerae. Microbiol Resour Announc 2018; 7:MRA00965-18. [PMID: 30533846 PMCID: PMC6284734 DOI: 10.1128/mra.00965-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/16/2018] [Indexed: 12/03/2022] Open
Abstract
We are reporting whole-genome sequences of nine Vibrio sp. isolates closely related to the waterborne human pathogen Vibrio cholerae. We are reporting whole-genome sequences of nine Vibrio sp. isolates closely related to the waterborne human pathogen Vibrio cholerae. These isolates were recovered from sources, including human samples, from different regions of the United States. Genome analysis suggests that this group of isolates represents a highly divergent basal V. cholerae lineage or a closely related novel species.
Collapse
|
119
|
Abstract
Background Pseudomonas aeruginosa is a common bacterium which is recognized for its association with hospital-acquired infections and its advanced antibiotic resistance mechanisms. Tuberculosis, one of the major causes of mortality, is initiated by the deposition of Mycobacterium tuberculosis. Accessory sequences shared by a subset of strains of a species play an important role in a species’ evolution, antibiotic resistance and infectious potential. Results Here, with a multiple sequence aligner, we segmented 25 P. aeruginosa genomes and 28 M. tuberculosis genomes into core blocks (include sequences shared by all the input genomes) and dispensable blocks (include sequences shared by a subset of the input genomes), respectively. For each input genome, we then constructed a scaffold consisting of its core and dispensable blocks sorted by blocks’ locations on the chromosomes. Consecutive dispensable blocks on these scaffold formed instable regions. After a comprehensive study of these instable regions, three characteristics of instable regions are summarized: instable regions were short, site specific and varied in different strains. Three DNA elements (directed repeats (DRs), transposons and integrons) were then studied to see whether these DNA elements are associated with the variation of instable regions. A pipeline was developed to search for DR pairs on the flank of every instable sequence. 27 DR pairs in P. aeruginosa strains and 6 pairs in M. tuberculosis strains were found to exist in the instable regions. On the average, 14% and 12% of instable regions in P. aeruginosa strains covered transposase genes and integrase genes, respectively. In M. tuberculosis strains, an average of 43% and 8% of instable regions contain transposase genes and integrase genes, respectively. Conclusions Instable regions were short, site specific and varied in different strains for both P. aeruginosa and M. tuberculosis. Our experimental results showed that DRs, transposons and integrons may be associated with variation of instable regions. Electronic supplementary material The online version of this article (10.1186/s12938-018-0563-8) contains supplementary material, which is available to authorized users.
Collapse
|
120
|
Wang S, Song Q, Li S, Hu Z, Dong G, Song C, Huang H, Liu Y. Assembly of a Complete Mitogenome of Chrysanthemum nankingense Using Oxford Nanopore Long Reads and the Diversity and Evolution of Asteraceae Mitogenomes. Genes (Basel) 2018; 9:E547. [PMID: 30424578 PMCID: PMC6267336 DOI: 10.3390/genes9110547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/03/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
Diversity in structure and organization is one of the main features of angiosperm mitochondrial genomes (mitogenomes). The ultra-long reads of Oxford Nanopore Technology (ONT) provide an opportunity to obtain a complete mitogenome and investigate the structural variation in unprecedented detail. In this study, we compared mitogenome assembly methods using Illumina and/or ONT sequencing data and obtained the complete mitogenome (208 kb) of Chrysanthemum nankingense based on the hybrid assembly method. The mitogenome encoded 19 transfer RNA genes, three ribosomal RNA genes, and 34 protein-coding genes with 21 group II introns disrupting eight intron-contained genes. A total of seven medium repeats were related to homologous recombination at different frequencies as supported by the long ONT reads. Subsequently, we investigated the variations in gene content and constitution of 28 near-complete mitogenomes from Asteraceae. A total of six protein-coding genes were missing in all Asteraceae mitogenomes, while four other genes were not detected in some lineages. The core fragments (~88 kb) of the Asteraceae mitogenomes had a higher GC content (~46.7%) than the variable and specific fragments. The phylogenetic topology based on the core fragments of the Asteraceae mitogenomes was highly consistent with the topologies obtained from the corresponding plastid datasets. Our results highlighted the advantages of the complete assembly of the C. nankingense mitogenome and the investigation of its structural variation based on ONT sequencing data. Moreover, the method based on local collinear blocks of the mitogenomes could achieve the alignment of highly rearrangeable and variable plant mitogenomes as well as construct a robust phylogenetic topology.
Collapse
Affiliation(s)
- Shuaibin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qingwei Song
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shanshan Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, Guangzhou 510650, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | | | - Chi Song
- Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China.
| | - Hongwen Huang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, the Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Yifei Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
121
|
Zhang D, He JY, Haddadi P, Zhu JH, Yang ZH, Ma L. Genome sequence of the potato pathogenic fungus Alternaria solani HWC-168 reveals clues for its conidiation and virulence. BMC Microbiol 2018; 18:176. [PMID: 30400851 PMCID: PMC6219093 DOI: 10.1186/s12866-018-1324-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Alternaria solani is a known air-born deuteromycete fungus with a polycyclic life cycle and is the causal agent of early blight that causes significant yield losses of potato worldwide. However, the molecular mechanisms underlying the conidiation and pathogenicity remain largely unknown. RESULTS We produced a high-quality genome assembly of A. solani HWC-168 that was isolated from a major potato-producing region of Northern China, which facilitated a comprehensive gene annotation, the accurate prediction of genes encoding secreted proteins and identification of conidiation-related genes. The assembled genome of A. solani HWC-168 has a genome size 32.8 Mb and encodes 10,358 predicted genes that are highly similar with related Alternaria species including Alternaria arborescens and Alternaria brassicicola. We identified conidiation-related genes in the genome of A. solani HWC-168 by searching for sporulation-related homologues identified from Aspergillus nidulans. A total of 975 secreted protein-encoding genes, which might act as virulence factors, were identified in the genome of A. solani HWC-168. The predicted secretome of A. solani HWC-168 possesses 261 carbohydrate-active enzymes (CAZy), 119 proteins containing RxLx[EDQ] motif and 27 secreted proteins unique to A. solani. CONCLUSIONS Our findings will facilitate the identification of conidiation- and virulence-related genes in the genome of A. solani. This will permit new insights into understanding the molecular mechanisms underlying the A. solani-potato pathosystem and will add value to the global fungal genome database.
Collapse
Affiliation(s)
- Dai Zhang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Jia-Yu He
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N0X2 Canada
| | - Jie-Hua Zhu
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Zhi-Hui Yang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| | - Lisong Ma
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001 China
| |
Collapse
|
122
|
Chung M, Munro JB, Tettelin H, Dunning Hotopp JC. Using Core Genome Alignments To Assign Bacterial Species. mSystems 2018; 3:e00236-18. [PMID: 30534598 PMCID: PMC6280431 DOI: 10.1128/msystems.00236-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 12/14/2022] Open
Abstract
With the exponential increase in the number of bacterial taxa with genome sequence data, a new standardized method to assign species designations is needed that is consistent with classically obtained taxonomic analyses. This is particularly acute for unculturable, obligate intracellular bacteria with which classically defined methods, like DNA-DNA hybridization, cannot be used, such as those in the Rickettsiales. In this study, we generated nucleotide-based core genome alignments for a wide range of genera with classically defined species, as well as those within the Rickettsiales. We created a workflow that uses the length, sequence identity, and phylogenetic relationships inferred from core genome alignments to assign genus and species designations that recapitulate classically obtained results. Using this method, most classically defined bacterial genera have a core genome alignment that is ≥10% of the average input genome length. Both Anaplasma and Neorickettsia fail to meet this criterion, indicating that the taxonomy of these genera should be reexamined. Consistently, genomes from organisms with the same species epithet have ≥96.8% identity of their core genome alignments. Additionally, these core genome alignments can be used to generate phylogenomic trees to identify monophyletic clades that define species and neighbor-network trees to assess recombination across different taxa. By these criteria, Wolbachia organisms are delineated into species different from the currently used supergroup designations, while Rickettsia organisms are delineated into 9 distinct species, compared to the current 27 species. By using core genome alignments to assign taxonomic designations, we aim to provide a high-resolution, robust method to guide bacterial nomenclature that is aligned with classically obtained results. IMPORTANCE With the increasing availability of genome sequences, we sought to develop and apply a robust, portable, and high-resolution method for the assignment of genera and species designations that can recapitulate classically defined taxonomic designations. Using cutoffs derived from the lengths and sequence identities of core genome alignments along with phylogenetic analyses, we sought to evaluate or reevaluate genus- and species-level designations for diverse taxa, with an emphasis on the order Rickettsiales, where species designations have been applied inconsistently. Our results indicate that the Rickettsia genus has an overabundance of species designations, that the current Anaplasma and Neorickettsia genus designations are both too broad and need to be divided, and that there are clear demarcations of Wolbachia species that do not align precisely with the existing supergroup designations.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - James B. Munro
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, Maryland, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
123
|
Cohanim AB, Amsalem E, Saad R, Shoemaker D, Privman E. Evolution of Olfactory Functions on the Fire Ant Social Chromosome. Genome Biol Evol 2018; 10:2947-2960. [PMID: 30239696 PMCID: PMC6279166 DOI: 10.1093/gbe/evy204] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/16/2022] Open
Abstract
Understanding the molecular evolutionary basis of social behavior is a major challenge in evolutionary biology. Social insects evolved a complex language of chemical signals to coordinate thousands of individuals. In the fire ant Solenopsis invicta, chemical signals are involved in the determination of a polymorphic social organization. Single-queen (monogyne) or multiqueen (polygyne) social structure is determined by the "social chromosome," a nonrecombining region containing ∼504 genes with two distinct haplotypes, SB and Sb. Monogyne queens are always SBB, while polygyne queens are always SBb. Workers discriminate monogyne from polygyne queens based on olfactory cues. Here, we took an evolutionary genomics approach to search for candidate genes in the social chromosome that could be responsible for this discrimination. We compared the SB and Sb haplotypes and analyzed the evolutionary rates since their divergence. Notably, we identified a cluster of 23 odorant receptors in the nonrecombining region of the social chromosome that stands out in terms of nonsynonymous changes in both haplotypes. The cluster includes twelve genes formed by recent Solenopsis-specific duplications. We found evidence for positive selection on several tree branches and significant differences between the SB and Sb haplotypes of these genes. The most dramatic difference is the complete deletion of two of these genes in Sb. These results suggest that the evolution of polygyne social organization involved adaptations in olfactory genes and opens the way for functional studies of the molecular mechanisms underlying social behavior.
Collapse
Affiliation(s)
- Amir B Cohanim
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| | - Etya Amsalem
- Department of Entomology, Huck Institutes of the Life Sciences, Pennsylvania State University
| | - Rana Saad
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee
| | - Eyal Privman
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Israel
| |
Collapse
|
124
|
Estes AM, Hearn DJ, Agrawal S, Pierson EA, Dunning Hotopp JC. Comparative genomics of the Erwinia and Enterobacter olive fly endosymbionts. Sci Rep 2018; 8:15936. [PMID: 30374192 PMCID: PMC6205999 DOI: 10.1038/s41598-018-33809-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
The pestivorous tephritid olive fly has long been known as a frequent host of the obligately host-associated bacterial endosymbiont, Erwinia dacicola, as well as other facultative endosymbionts. The genomes of Erwinia dacicola and Enterobacter sp. OLF, isolated from a California olive fly, encode the ability to supplement amino acids and vitamins missing from the olive fruit on which the larvae feed. The Enterobacter sp. OLF genome encodes both uricase and ureases, and the Er. dacicola genome encodes an allantoate transport pathway, suggesting that bird feces or recycling the fly's waste products may be important sources of nitrogen. No homologs to known nitrogenases were identified in either bacterial genome, despite suggestions of their presence from experiments with antibiotic-treated flies. Comparisons between the olive fly endosymbionts and their free-living relatives revealed similar GC composition and genome size. The Er. dacicola genome has fewer genes for amino acid metabolism, cell motility, and carbohydrate transport and metabolism than free-living Erwinia spp. while having more genes for cell division, nucleotide metabolism and replication as well as mobile elements. A 6,696 bp potential lateral gene transfer composed primarily of amino acid synthesis and transport genes was identified that is also observed in Pseudomonas savastanoii pv savastanoii, the causative agent of olive knot disease.
Collapse
Affiliation(s)
- Anne M Estes
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA.
| | - David J Hearn
- Department of Biological Sciences, Towson University, Baltimore, MD, 21252, USA
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Elizabeth A Pierson
- Department of Horticultural Sciences, Texas A & M University, College Station, TX, 77843, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
125
|
Yang ZK, Luo H, Zhang Y, Wang B, Gao F. Recombinational DSBs-intersected genes converge on specific disease- and adaptability-related pathways. Bioinformatics 2018; 34:3421-3426. [PMID: 29726921 DOI: 10.1093/bioinformatics/bty376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Motivation The budding yeast Saccharomyces cerevisiae is a model species powerful for studying the recombination of eukaryotes. Although many recombination studies have been performed for this species by experimental methods, the population genomic study based on bioinformatics analyses is urgently needed to greatly increase the range and accuracy of recombination detection. Here, we carry out the population genomic analysis of recombination in S.cerevisiae to reveal the potential rules between recombination and evolution in eukaryotes. Results By population genomic analysis, we discover significantly more and longer recombination events in clinical strains, which indicates that adverse environmental conditions create an obviously wider range of genetic combination in response to the selective pressure. Based on the analysis of recombinational double strand breaks (DSBs)-intersected genes (RDIGs), we find that RDIGs significantly converge on specific disease- and adaptability-related pathways, indicating that recombination plays a biologically key role in the repair of DSBs related to diseases and environmental adaptability, especially the human neurological disorders. By evolutionary analysis of RDIGs, we find that the RDIGs highly prevailing in populations of yeast tend to be more evolutionarily conserved, indicating the accurate repair of DSBs in these RDIGs is critical to ensure the eukaryotic survival or fitness. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zhi-Kai Yang
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China.,SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Hao Luo
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Yanming Zhang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Baijing Wang
- SinoGenoMax Co., Ltd./Chinese National Human Genome Center, Beijing, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
126
|
Chen JN, Zhou L, Qiu XM, Yang RH, Liang J, Pan YH, Li HF, Peng GR, Shao CK. Determination and genome-wide analysis of Epstein-Barr virus (EBV) sequences in EBV-associated gastric carcinoma from Guangdong, an endemic area of nasopharyngeal carcinoma. J Med Microbiol 2018; 67:1614-1627. [PMID: 30239329 DOI: 10.1099/jmm.0.000839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
About 10 % of gastric carcinoma worldwide is associated with EBV, which is defined as EBV-associated gastric carcinoma (EBVaGC). To date, EBV sequence data from EBVaGC in Guangdong, China, an endemic area of nasopharyngeal carcinoma (NPC), are not available. In the present study, two EBV genomes from EBVaGC specimens from Guangdong (designated as GDGC1 and GDGC2) were determined by next-generation sequencing, de novo assembly and joining of contigs by Sanger sequencing. In addition, we sequenced EBV from two Korean EBVaGC cell lines, YCCEL1 and SNU-719. Genomic diversity, including single nucleotide polymorphisms (SNPs) and insertions and deletions (indels), phylogenetic analysis and rates of protein evolution, was performed using bioinformatics software. The four gastric carcinoma-derived EBV (GC-EBV) were all type I. Compared with the reference EBV genome, a total of 1815 SNPs (146 indels), 1519 SNPs (106 indels), 1812 SNPs (126 indels) and 1484 SNPs (106 indels) were found in GDGC1, GDGC2, YCCEL1 and SNU-719, respectively. These variations were distributed across the entire genome, especially in latent genes. In contrast, the sequences of promoters and non-coding RNAs were strictly conserved. Phylogenetic analyses suggested the presence of at least two parental lineages of EBV among the GC-EBV genomes. Rates of protein evolution analyses showed that lytic genes were under purifying selection; in contrast, latency genes were under positive selection. In conclusion, this study determined the EBV genomes in EBVaGC from Guangdong and performed a detailed genome-wide analysis of GC-EBV, which would be helpful for further understanding of the relationship between EBV genomic variation and EBVaGC carcinogenesis.
Collapse
Affiliation(s)
- Jian-Ning Chen
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| | - Lu Zhou
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| | - Xin-Min Qiu
- 2Genetic Testing Lab, Guangdong Provincial Hospital of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, PR China.,3DRIGEN Co. Ltd., No.121-122 Chuangye Yuan, Shenzhen 518100, PR China
| | - Ri-Hong Yang
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| | - Jing Liang
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| | - Yu-Hang Pan
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| | - Hai-Feng Li
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| | - Guo-Rong Peng
- 3DRIGEN Co. Ltd., No.121-122 Chuangye Yuan, Shenzhen 518100, PR China
| | - Chun-Kui Shao
- 1Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, No.600 Tianhe Road, Guangzhou 510630, PR China
| |
Collapse
|
127
|
Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection. Infect Immun 2018; 86:IAI.00331-18. [PMID: 30061376 PMCID: PMC6204747 DOI: 10.1128/iai.00331-18] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/21/2018] [Indexed: 01/05/2023] Open
Abstract
Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. Therapy for bacteremia caused by Staphylococcus aureus is often ineffective, even when treatment conditions are optimal according to experimental protocols. Adapted subclones, such as those bearing mutations that attenuate agr-mediated virulence activation, are associated with persistent infection and patient mortality. To identify additional alterations in agr-defective mutants, we sequenced and assembled the complete genomes of clone pairs from colonizing and infected sites of several patients in whom S. aureus demonstrated a within-host loss of agr function. We report that events associated with agr inactivation result in agr-defective blood and nares strain pairs that are enriched in mutations compared to pairs from wild-type controls. The random distribution of mutations between colonizing and infecting strains from the same patient, and between strains from different patients, suggests that much of the genetic complexity of agr-defective strains results from prolonged infection or therapy-induced stress. However, in one of the agr-defective infecting strains, multiple genetic changes resulted in increased virulence in a murine model of bloodstream infection, bypassing the mutation of agr and raising the possibility that some changes were selected. Expression profiling correlated the elevated virulence of this agr-defective mutant to restored expression of the agr-regulated ESAT6-like type VII secretion system, a known virulence factor. Thus, additional mutations outside the agr locus can contribute to diversification and adaptation during infection by S. aureus agr mutants associated with poor patient outcomes.
Collapse
|
128
|
Wang P, Liu Z, Huang Y. Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430. J Basic Microbiol 2018; 58:1083-1090. [PMID: 30240023 DOI: 10.1002/jobm.201800181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/11/2018] [Indexed: 12/28/2022]
Abstract
A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6 Mb linear chromosome and 0.2 Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.
Collapse
Affiliation(s)
- Peipei Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, China
| |
Collapse
|
129
|
Biederstedt E, Oliver JC, Hansen NF, Jajoo A, Dunn N, Olson A, Busby B, Dilthey AT. NovoGraph: Human genome graph construction from multiple long-read de novo assemblies. F1000Res 2018; 7:1391. [PMID: 30613392 PMCID: PMC6305223 DOI: 10.12688/f1000research.15895.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 01/06/2023] Open
Abstract
Genome graphs are emerging as an important novel approach to the analysis of high-throughput human sequencing data. By explicitly representing genetic variants and alternative haplotypes in a mappable data structure, they can enable the improved analysis of structurally variable and hyperpolymorphic regions of the genome. In most existing approaches, graphs are constructed from variant call sets derived from short-read sequencing. As long-read sequencing becomes more cost-effective and enables de novo assembly for increasing numbers of whole genomes, a method for the direct construction of a genome graph from sets of assembled human genomes would be desirable. Such assembly-based genome graphs would encompass the wide spectrum of genetic variation accessible to long-read-based de novo assembly, including large structural variants and divergent haplotypes. Here we present NovoGraph, a method for the construction of a human genome graph directly from a set of de novo assemblies. NovoGraph constructs a genome-wide multiple sequence alignment of all input contigs and creates a graph by merging the input sequences at positions that are both homologous and sequence-identical. NovoGraph outputs resulting graphs in VCF format that can be loaded into third-party genome graph toolkits. To demonstrate NovoGraph, we construct a genome graph with 23,478,835 variant sites and 30,582,795 variant alleles from de novo assemblies of seven ethnically diverse human genomes (AK1, CHM1, CHM13, HG003, HG004, HX1, NA19240). Initial evaluations show that mapping against the constructed graph reduces the average mismatch rate of reads from sample NA12878 by approximately 0.2%, albeit at a slightly increased rate of reads that remain unmapped.
Collapse
Affiliation(s)
- Evan Biederstedt
- Weill Cornell Medicine, New York, NY, 10065, USA
- New York Genome Center, New York, NY, 10013, USA
| | - Jeffrey C. Oliver
- Office of Digital Innovation and Stewardship, University Libraries, University of Arizona, Tucson, AZ, 85721, USA
| | - Nancy F. Hansen
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20817, USA
| | - Aarti Jajoo
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nathan Dunn
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Ben Busby
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, 20817, USA
| | - Alexander T. Dilthey
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20817, USA
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
130
|
Allué-Guardia A, Koenig SSK, Quirós P, Muniesa M, Bono JL, Eppinger M. Closed Genome and Comparative Phylogenetic Analysis of the Clinical Multidrug Resistant Shigella sonnei Strain 866. Genome Biol Evol 2018; 10:2241-2247. [PMID: 30060169 PMCID: PMC6128377 DOI: 10.1093/gbe/evy168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 01/10/2023] Open
Abstract
Shigella sonnei is responsible for the majority of shigellosis infections in the US with over 500,000 cases reported annually. Here, we present the complete genome of the clinical multidrug resistant (MDR) strain 866, which is highly susceptible to bacteriophage infections. The strain has a circular chromosome of 4.85 Mb and carries a 113 kb MDR plasmid. This IncB/O/K/Z-type plasmid, termed p866, confers resistance to five different classes of antibiotics including ß-lactamase, sulfonamide, tetracycline, aminoglycoside, and trimethoprim. Comparative analysis of the plasmid architecture and gene inventory revealed that p866 shares its plasmid backbone with previously described IncB/O/K/Z-type Shigella spp. and Escherichia coli plasmids, but is differentiated by the insertion of antibiotic resistance cassettes, which we found associated with mobile genetic elements such as Tn3, Tn7, and Tn10. A whole genome-derived phylogenetic reconstruction showed the evolutionary relationships of S. sonnei strain 866 and the four established Shigella species, highlighting the clonal nature of S. sonnei.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Sara S K Koenig
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| | - Pablo Quirós
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Spain
| | - James L Bono
- Agricultural Research Service, United States Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | - Mark Eppinger
- Department of Biology, University of Texas at San Antonio.,South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio
| |
Collapse
|
131
|
Izzard L, Chung M, Dunning Hotopp J, Vincent G, Paris D, Graves S, Stenos J. Isolation of a divergent strain of Rickettsia japonica from Dew's Australian bat Argasid ticks (Argas (Carios) dewae) in Victoria, Australia. Ticks Tick Borne Dis 2018; 9:1484-1488. [PMID: 30025798 PMCID: PMC6135670 DOI: 10.1016/j.ttbdis.2018.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/20/2022]
Abstract
A divergent strain of Rickettsia japonica was isolated from a Dew's Australian bat argasid tick, Argas (Carios) dewae, collected in southern Victoria, Australia and a full-genome analysis along with sequencing of 5 core gene fragments was undertaken. This isolate was designated Rickettsia japonica str. argasii (ATCC VR-1665, CSUR R179).
Collapse
Affiliation(s)
- Leonard Izzard
- Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia
| | - Matthew Chung
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Gemma Vincent
- Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia
| | - Daniel Paris
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Stephen Graves
- Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, Geelong, Victoria, Australia.
| |
Collapse
|
132
|
Salazar AN, Abeel T. Approximate, simultaneous comparison of microbial genome architectures via syntenic anchoring of quiver representations. Bioinformatics 2018; 34:i732-i742. [PMID: 30423098 PMCID: PMC6129293 DOI: 10.1093/bioinformatics/bty614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Motivation A long-standing limitation in comparative genomic studies is the dependency on a reference genome, which hinders the spectrum of genetic diversity that can be identified across a population of organisms. This is especially true in the microbial world where genome architectures can significantly vary. There is therefore a need for computational methods that can simultaneously analyze the architectures of multiple genomes without introducing bias from a reference. Results In this article, we present Ptolemy: a novel method for studying the diversity of genome architectures-such as structural variation and pan-genomes-across a collection of microbial assemblies without the need of a reference. Ptolemy is a 'top-down' approach to compare whole genome assemblies. Genomes are represented as labeled multi-directed graphs-known as quivers-which are then merged into a single, canonical quiver by identifying 'gene anchors' via synteny analysis. The canonical quiver represents an approximate, structural alignment of all genomes in a given collection encoding structural variation across (sub-) populations within the collection. We highlight various applications of Ptolemy by analyzing structural variation and the pan-genomes of different datasets composing of Mycobacterium, Saccharomyces, Escherichia and Shigella species. Our results show that Ptolemy is flexible and can handle both conserved and highly dynamic genome architectures. Ptolemy is user-friendly-requires only FASTA-formatted assembly along with a corresponding GFF-formatted file-and resource-friendly-can align 24 genomes in ∼10 mins with four CPUs and <2 GB of RAM. Availability and implementation Github: https://github.com/AbeelLab/ptolemy. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alex N Salazar
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas Abeel
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
133
|
Comparative Genomics and Description of Putative Virulence Factors of Melissococcus plutonius, the Causative Agent of European Foulbrood Disease in Honey Bees. Genes (Basel) 2018; 9:genes9080419. [PMID: 30127293 PMCID: PMC6116112 DOI: 10.3390/genes9080419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022] Open
Abstract
In Europe, approximately 84% of cultivated crop species depend on insect pollinators, mainly bees. Apis mellifera (the Western honey bee) is the most important commercial pollinator worldwide. The Gram-positive bacterium Melissococcus plutonius is the causative agent of European foulbrood (EFB), a global honey bee brood disease. In order to detect putative virulence factors, we sequenced and analyzed the genomes of 14 M. plutonius strains, including two reference isolates. The isolates do not show a high diversity in genome size or number of predicted protein-encoding genes, ranging from 2.021 to 2.101 Mbp and 1589 to 1686, respectively. Comparative genomics detected genes that might play a role in EFB pathogenesis and ultimately in the death of the honey bee larvae. These include bacteriocins, bacteria cell surface- and host cell adhesion-associated proteins, an enterococcal polysaccharide antigen, an epsilon toxin, proteolytic enzymes, and capsule-associated proteins. In vivo expression of three putative virulence factors (endo-alpha-N-acetylgalactosaminidase, enhancin and epsilon toxin) was verified using naturally infected larvae. With our strain collection, we show for the first time that genomic differences exist between non-virulent and virulent typical strains, as well as a highly virulent atypical strain, that may contribute to the virulence of M. plutonius. Finally, we also detected a high number of conserved pseudogenes (75 to 156) per genome, which indicates genomic reduction during evolutionary host adaptation.
Collapse
|
134
|
Wang D, Wang L. GRSR: a tool for deriving genome rearrangement scenarios from multiple unichromosomal genome sequences. BMC Bioinformatics 2018; 19:291. [PMID: 30367596 PMCID: PMC6101096 DOI: 10.1186/s12859-018-2268-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Genome rearrangements describe changes in the genetic linkage relationship of large chromosomal regions, involving reversals, transpositions, block interchanges, deletions, insertions, fissions, fusions and translocations etc. Many algorithms for calculating rearrangement scenarios between two genomes have been proposed. Very often, the calculated rearrangement scenario is not unique for the same pair of permutations. Hence, how to decide which calculated rearrangement scenario is more biologically meaningful becomes an essential task. Up to now, several mechanisms for genome rearrangements have been studied. One important theory is that genome rearrangement may be mediated by repeats, especially for reversal events. Many reversal regions are found to be flanked by a pair of inverted repeats. As a result, whether there are repeats at the breakpoints of the calculated rearrangement events can shed a light on deciding whether the calculated rearrangement events is biologically meaningful. To our knowledge, there is no tool which can automatically identify rearrangement events and check whether there exist repeats at the breakpoints of each calculated rearrangement event. Results In this paper, we describe a new tool named GRSR which allows us to compare multiple unichromosomal genomes to identify “independent” (obvious) rearrangement events such as reversals, (inverted) block interchanges and (inverted) transpositions and automatically searches for repeats at the breakpoints of each rearrangement event. We apply our tool on the complete genomes of 28 Mycobacterium tuberculosis strains and 24 Shewanella strains respectively. In both Mycobacterium tuberculosis and Shewanella strains, our tool finds many reversal regions flanked by a pair of inverted repeats. In particular, the GRSR tool also finds an inverted transposition and an inverted block interchange in Shewanella, where the repeats at the ends of rearrangement regions remain unchanged after the rearrangement event. To our knowledge, this is the first time such a phenomenon for inverted transposition and inverted block interchange is reported in Shewanella. Conclusions From the calculated results, there are many examples supporting the theory that the existence of repeats at the breakpoints of a rearrangement event can make the sequences at the breakpoints remain unchanged before and after the rearrangement events, suggesting that the conservation of ends could possibly be a popular phenomenon in many types of genome rearrangement events.
Collapse
Affiliation(s)
- Dan Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, People's Republic of China
| | - Lusheng Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave., Hong Kong, People's Republic of China. .,University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, People's Republic of China.
| |
Collapse
|
135
|
Chung M, Small ST, Serre D, Zimmerman PA, Dunning Hotopp JC. Draft genome sequence of the Wolbachia endosymbiont of Wuchereria bancrofti wWb. Pathog Dis 2018; 75:4584485. [PMID: 29099918 PMCID: PMC5827699 DOI: 10.1093/femspd/ftx115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
The draft genome assembly of the Wolbachia endosymbiont of
Wuchereria bancrofti (wWb) consists of 1060 850 bp in
100 contigs and contains 961 ORFs, with a single copy of the 5S rRNA, 16S rRNA and 23S
rRNA and each of the 34 tRNA genes. Phylogenetic core genome analyses show
wWb to cluster with other strains in supergroup D of the
Wolbachia phylogeny, while being most closely related to the
Wolbachia endosymbiont of Brugia malayi strain TRS
(wBm). The wWb and wBm genomes share
779 orthologous clusters with wWb having 101 unclustered genes and
wBm having 23 unclustered genes. The higher number of unclustered genes
in the wWb genome likely reflects the fragmentation of the draft
genome.
Collapse
Affiliation(s)
- Matthew Chung
- Institute for Genome Sciences, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Scott T Small
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA.,Eck Institute for Global Health, University of Notre Dame, South Bend, IN 46556, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
136
|
van Hal SJ, Steinig EJ, Andersson P, Holden MTG, Harris SR, Nimmo GR, Williamson DA, Heffernan H, Ritchie SR, Kearns AM, Ellington MJ, Dickson E, de Lencastre H, Coombs GW, Bentley SD, Parkhill J, Holt DC, Giffard PM, Tong SYC. Global Scale Dissemination of ST93: A Divergent Staphylococcus aureus Epidemic Lineage That Has Recently Emerged From Remote Northern Australia. Front Microbiol 2018; 9:1453. [PMID: 30038600 PMCID: PMC6047344 DOI: 10.3389/fmicb.2018.01453] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: In Australia, community-associated methicillin-resistant Staphylococcus aureus (MRSA) lineage sequence type (ST) 93 has rapidly risen to dominance since being described in the early 1990s. We examined 459 ST93 genome sequences from Australia, New Zealand, Samoa, and Europe to investigate the evolutionary history of ST93, its emergence in Australia and subsequent spread overseas. Results: Comparisons with other S. aureus genomes indicate that ST93 is an early diverging and recombinant lineage, comprising of segments from the ST59/ST121 lineage and from a divergent but currently unsampled Staphylococcal population. However, within extant ST93 strains limited genetic diversity was apparent with the most recent common ancestor dated to 1977 (95% highest posterior density 1973-1981). An epidemic ST93 population arose from a methicillin-susceptible progenitor in remote Northern Australia, which has a proportionally large Indigenous population, with documented overcrowded housing and a high burden of skin infection. Methicillin-resistance was acquired three times in these regions, with a clade harboring a staphylococcal cassette chromosome mec (SCCmec) IVa expanding and spreading to Australia's east coast by 2000. We observed sporadic and non-sustained introductions of ST93-MRSA-IVa to the United Kingdom. In contrast, in New Zealand, ST93-MRSA-IVa was sustainably transmitted with clonal expansion within the Pacific Islander population, who experience similar disadvantages as Australian Indigenous populations. Conclusion: ST93 has a highly recombinant genome including portions derived from an early diverging S. aureus population. Our findings highlight the need to understand host population factors in the emergence and spread of antimicrobial resistant community pathogens.
Collapse
Affiliation(s)
- Sebastiaan J. van Hal
- Department of Microbiology and Infectious Diseases, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Eike J. Steinig
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, Australia
- Australian Institute of Tropical Health and Medicine, Townsville, QLD, Australia
| | - Patiyan Andersson
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Matthew T. G. Holden
- School of Medicine, University of St. Andrews, Fife, United Kingdom
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Simon R. Harris
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Graeme R. Nimmo
- Pathology Queensland Central Laboratory and Griffith University School of Medicine, Queensland Health, Brisbane, QLD, Australia
| | - Deborah A. Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Helen Heffernan
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - S. R. Ritchie
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Angela M. Kearns
- Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Matthew J. Ellington
- National Infection Service, Public Health England, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Elizabeth Dickson
- Scottish MRSA Reference Service, Scottish Microbiology Reference Laboratories, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Herminia de Lencastre
- Laboratory of Molecular Genetics, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY, United States
| | - Geoffrey W. Coombs
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Department of Microbiology, Fiona Stanley Hospital, Perth, WA, Australia
| | - Stephen D. Bentley
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics, Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Deborah C. Holt
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Phillip M. Giffard
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Steven Y. C. Tong
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital, and The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
137
|
Li FW, Brouwer P, Carretero-Paulet L, Cheng S, de Vries J, Delaux PM, Eily A, Koppers N, Kuo LY, Li Z, Simenc M, Small I, Wafula E, Angarita S, Barker MS, Bräutigam A, dePamphilis C, Gould S, Hosmani PS, Huang YM, Huettel B, Kato Y, Liu X, Maere S, McDowell R, Mueller LA, Nierop KGJ, Rensing SA, Robison T, Rothfels CJ, Sigel EM, Song Y, Timilsena PR, Van de Peer Y, Wang H, Wilhelmsson PKI, Wolf PG, Xu X, Der JP, Schluepmann H, Wong GKS, Pryer KM. Fern genomes elucidate land plant evolution and cyanobacterial symbioses. NATURE PLANTS 2018; 4:460-472. [PMID: 29967517 PMCID: PMC6786969 DOI: 10.1038/s41477-018-0188-8] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/24/2018] [Indexed: 05/18/2023]
Abstract
Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns-one at the base of 'core leptosporangiates' and one specific to Azolla. One fern-specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbuscular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla-cyanobacterial symbiosis. These genomic resources will help in exploring the biotechnological potential of Azolla and address fundamental questions in the evolution of plant life.
Collapse
Affiliation(s)
- Fay-Wei Li
- Boyce Thompson Institute, Ithaca, NY, USA.
- Plant Biology Section, Cornell University, Ithaca, NY, USA.
| | - Paul Brouwer
- Molecular Plant Physiology Department, Utrecht University, Utrecht, the Netherlands
| | - Lorenzo Carretero-Paulet
- Bioinformatics Institute Ghent and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Shifeng Cheng
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet Tolosan, France
| | - Ariana Eily
- Department of Biology, Duke University, Durham, NC, USA
| | - Nils Koppers
- Department of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | - Zheng Li
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Mathew Simenc
- Department of Biological Science, California State University, Fullerton, CA, USA
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eric Wafula
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Stephany Angarita
- Department of Biological Science, California State University, Fullerton, CA, USA
| | - Michael S Barker
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | | | - Claude dePamphilis
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Sven Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | | | - Bruno Huettel
- Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding, Cologne, Germany
| | - Yoichiro Kato
- Institute for Sustainable Agro-ecosystem Services, University of Tokyo, Tokyo, Japan
| | - Xin Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Steven Maere
- Bioinformatics Institute Ghent and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Rose McDowell
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | | | - Klaas G J Nierop
- Geolab, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
| | | | - Tanner Robison
- Department of Biology, Utah State University, Logan, UT, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Erin M Sigel
- Department of Biology, University of Louisiana, Lafayette, LA, USA
| | - Yue Song
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Prakash R Timilsena
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yves Van de Peer
- Bioinformatics Institute Ghent and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Hongli Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | | | - Paul G Wolf
- Department of Biology, Utah State University, Logan, UT, USA
| | - Xun Xu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Joshua P Der
- Department of Biological Science, California State University, Fullerton, CA, USA
| | | | - Gane K-S Wong
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
- Department of Biological Sciences, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
138
|
Greninger AL, Roychoudhury P, Xie H, Casto A, Cent A, Pepper G, Koelle DM, Huang ML, Wald A, Johnston C, Jerome KR. Ultrasensitive Capture of Human Herpes Simplex Virus Genomes Directly from Clinical Samples Reveals Extraordinarily Limited Evolution in Cell Culture. mSphere 2018; 3:e00283-18. [PMID: 29898986 PMCID: PMC6001610 DOI: 10.1128/mspheredirect.00283-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex viruses (HSVs) are difficult to sequence due to their large DNA genome, high GC content, and the presence of repeats. To date, most HSV genomes have been recovered from culture isolates, raising concern that these genomes may not accurately represent circulating clinical strains. We report the development and validation of a DNA oligonucleotide hybridization panel to recover nearly complete HSV genomes at abundances up to 50,000-fold lower than previously reported. Using copy number information on herpesvirus and host DNA background via quantitative PCR, we developed a protocol for pooling for cost-effective recovery of more than 50 HSV-1 or HSV-2 genomes per MiSeq run. We demonstrate the ability to recover >99% of the HSV genome at >100× coverage in 72 h at viral loads that allow whole-genome recovery from latently infected ganglia. We also report a new computational pipeline for rapid HSV genome assembly and annotation. Using the above tools and a series of 17 HSV-1-positive clinical swabs sent to our laboratory for viral isolation, we show limited evolution of HSV-1 during viral isolation in human fibroblast cells compared to the original clinical samples. Our data indicate that previous studies using low-passage-number clinical isolates of herpes simplex viruses are reflective of the viral sequences present in the lesion and thus can be used in phylogenetic analyses. We also detect superinfection within a single sample with unrelated HSV-1 strains recovered from separate oral lesions in an immunosuppressed patient during a 2.5-week period, illustrating the power of direct-from-specimen sequencing of HSV.IMPORTANCE Herpes simplex viruses affect more than 4 billion people across the globe, constituting a large burden of disease. Understanding the global diversity of herpes simplex viruses is important for diagnostics and therapeutics as well as cure research and tracking transmission among humans. To date, most HSV genomics has been performed on culture isolates and DNA swabs with high quantities of virus. We describe the development of wet-lab and computational tools that enable the accurate sequencing of near-complete genomes of HSV-1 and HSV-2 directly from clinical specimens at abundances >50,000-fold lower than previously sequenced and at significantly reduced cost. We use these tools to profile circulating HSV-1 strains in the community and illustrate limited changes to the viral genome during the viral isolation process. These techniques enable cost-effective, rapid sequencing of HSV-1 and HSV-2 genomes that will help enable improved detection, surveillance, and control of this human pathogen.
Collapse
Affiliation(s)
- Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Amanda Casto
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anne Cent
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Gregory Pepper
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - David M Koelle
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Benaroya Research Institute, Seattle, Washington, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| | - Anna Wald
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Christine Johnston
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Keith R Jerome
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Institute, Seattle, Washington, USA
| |
Collapse
|
139
|
Genomic analysis of a Raoultella ornithinolytica strain causing prosthetic joint infection in an immunocompetent patient. Sci Rep 2018; 8:9462. [PMID: 29930334 PMCID: PMC6013458 DOI: 10.1038/s41598-018-27833-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/25/2018] [Indexed: 11/08/2022] Open
Abstract
We sequenced the genome of Raoultella ornithinolytica strain Marseille-P1025 that caused a rare case of prosthetic joint infection in a 67-year-old immunocompetent male. The 6.7-Mb genome exhibited a genomic island (RoGI) that was unique among R. ornithinolytica strains. RoGI was likely acquired by lateral gene transfer from a member of the Pectobacterium genus and coded for a type IVa secretion system found in other pathogenic bacteria and that may have conferred strain Marseille-P1025 an increased virulence. Strain Marseille-P1025 was also able to infect, multiply within, and kill Acanthamoaeba castellanii amoebae.
Collapse
|
140
|
Phylogenetic conservatism of thermal traits explains dispersal limitation and genomic differentiation of Streptomyces sister-taxa. ISME JOURNAL 2018; 12:2176-2186. [PMID: 29880909 DOI: 10.1038/s41396-018-0180-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
The latitudinal diversity gradient is a pattern of biogeography observed broadly in plants and animals but largely undocumented in terrestrial microbial systems. Although patterns of microbial biogeography across broad taxonomic scales have been described in a range of contexts, the mechanisms that generate biogeographic patterns between closely related taxa remain incompletely characterized. Adaptive processes are a major driver of microbial biogeography, but there is less understanding of how microbial biogeography and diversification are shaped by dispersal limitation and drift. We recently described a latitudinal diversity gradient of species richness and intraspecific genetic diversity in Streptomyces by using a geographically explicit culture collection. Within this geographically explicit culture collection, we have identified Streptomyces sister-taxa whose geographic distribution is delimited by latitude. These sister-taxa differ in geographic distribution, genomic diversity, and ecological traits despite having nearly identical SSU rRNA gene sequences. Comparative genomic analysis reveals genomic differentiation of these sister-taxa consistent with restricted gene flow across latitude. Furthermore, we show phylogenetic conservatism of thermal traits between the sister-taxa suggesting that thermal trait adaptation limits dispersal and gene flow across climate regimes as defined by latitude. Such phylogenetic conservatism of thermal traits is commonly associated with latitudinal diversity gradients for plants and animals. These data provide further support for the hypothesis that the Streptomyces latitudinal diversity gradient was formed as a result of historical demographic processes defined by dispersal limitation and driven by paleoclimate dynamics.
Collapse
|
141
|
Ozer EA. ClustAGE: a tool for clustering and distribution analysis of bacterial accessory genomic elements. BMC Bioinformatics 2018; 19:150. [PMID: 29678129 PMCID: PMC5910555 DOI: 10.1186/s12859-018-2154-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The non-conserved accessory genome of bacteria can be associated with important adaptive characteristics that can contribute to niche specificity or pathogenicity of strains. High degrees of structural and compositional diversity in genomic islands and other elements of the accessory genome can complicate characterization of accessory genome contents among populations of strains. Methods for easily and effectively defining the distributions of discrete elements of the accessory genome among bacterial strains in a population are needed to explore the relationships between the flexible genome and bacterial adaptive traits. RESULTS We have developed the open-source software package ClustAGE. This program, written in Perl, uses BLAST to cluster nucleotide accessory genomic elements from the genomes of multiple bacterial strains and to identify their distribution within the study population. The program output can be used in combination with strain phenotype data or other characteristics to detect associations. Optional graphical output is available for visualizing accessory genome gene content and distribution patterns. The capabilities of the software are demonstrated on a collection of 14 Pseudomonas aeruginosa genome sequences. CONCLUSIONS The ClustAGE software and utilities are effective for identifying characteristics and distributions of accessory genomic elements among groups of bacterial genomes. The ability to easily and effectively characterize the accessory genome of a sequence collection may provide a better understanding of the accessory genome's contribution to a species' adaptation and pathogenesis. The ClustAGE source code can be downloaded from https://clustage.sourceforge.io and a limited web-based implementation is available at http://vfsmspineagent.fsm.northwestern.edu/cgi-bin/clustage.cgi .
Collapse
Affiliation(s)
- Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
142
|
Nosil P, Villoutreix R, de Carvalho CF, Farkas TE, Soria-Carrasco V, Feder JL, Crespi BJ, Gompert Z. Natural selection and the predictability of evolution in Timema stick insects. Science 2018; 359:765-770. [PMID: 29449486 DOI: 10.1126/science.aap9125] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 12/21/2017] [Indexed: 01/03/2023]
Abstract
Predicting evolution remains difficult. We studied the evolution of cryptic body coloration and pattern in a stick insect using 25 years of field data, experiments, and genomics. We found that evolution is more difficult to predict when it involves a balance between multiple selective factors and uncertainty in environmental conditions than when it involves feedback loops that cause consistent back-and-forth fluctuations. Specifically, changes in color-morph frequencies are modestly predictable through time (r2 = 0.14) and driven by complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes in pattern-morph frequencies are highly predictable due to negative frequency-dependent selection (r2 = 0.86). For both traits, however, natural selection drives evolution around a dynamic equilibrium, providing some predictability to the process.
Collapse
Affiliation(s)
- Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Romain Villoutreix
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Timothy E Farkas
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06369, USA
| | - Víctor Soria-Carrasco
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Zach Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
143
|
Gopinath GR, Cinar HN, Murphy HR, Durigan M, Almeria M, Tall BD, DaSilva AJ. A hybrid reference-guided de novo assembly approach for generating Cyclospora mitochondrion genomes. Gut Pathog 2018; 10:15. [PMID: 29643938 PMCID: PMC5891936 DOI: 10.1186/s13099-018-0242-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 04/01/2018] [Indexed: 11/10/2022] Open
Abstract
Cyclospora cayetanensis is a coccidian parasite associated with large and complex foodborne outbreaks worldwide. Linking samples from cyclosporiasis patients during foodborne outbreaks with suspected contaminated food sources, using conventional epidemiological methods, has been a persistent challenge. To address this issue, development of new methods based on potential genomically-derived markers for strain-level identification has been a priority for the food safety research community. The absence of reference genomes to identify nucleotide and structural variants with a high degree of confidence has limited the application of using sequencing data for source tracking during outbreak investigations. In this work, we determined the quality of a high resolution, curated, public mitochondrial genome assembly to be used as a reference genome by applying bioinformatic analyses. Using this reference genome, three new mitochondrial genome assemblies were built starting with metagenomic reads generated by sequencing DNA extracted from oocysts present in stool samples from cyclosporiasis patients. Nucleotide variants were identified in the new and other publicly available genomes in comparison with the mitochondrial reference genome. A consolidated workflow, presented here, to generate new mitochondrion genomes using our reference-guided de novo assembly approach could be useful in facilitating the generation of other mitochondrion sequences, and in their application for subtyping C. cayetanensis strains during foodborne outbreak investigations.
Collapse
Affiliation(s)
- G R Gopinath
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| | - H N Cinar
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| | - H R Murphy
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| | - M Durigan
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| | - M Almeria
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| | - B D Tall
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| | - A J DaSilva
- Office of Applied Research and Safety Assessment (OARSA), Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 2070 USA
| |
Collapse
|
144
|
Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu WG. Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 2018; 19:218. [PMID: 29580205 PMCID: PMC5870499 DOI: 10.1186/s12864-018-4597-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND With approximately one-third of their genomes consisting of linear and circular plasmids, the Lyme disease agent cluster of species has the most complex genomes among known bacteria. We report here a comparative analysis of plasmids in eleven Borreliella (also known as Borrelia burgdorferi sensu lato) species. RESULTS We sequenced the complete genomes of two B. afzelii, two B. garinii, and individual B. spielmanii, B. bissettiae, B. valaisiana and B. finlandensis isolates. These individual isolates carry between seven and sixteen plasmids, and together harbor 99 plasmids. We report here a comparative analysis of these plasmids, along with 70 additional Borreliella plasmids available in the public sequence databases. We identify only one new putative plasmid compatibility type (the 30th) among these 169 plasmid sequences, suggesting that all or nearly all such types have now been discovered. We find that the linear plasmids in the non-B. burgdorferi species have undergone the same kinds of apparently random, chaotic rearrangements mediated by non-homologous recombination that we previously discovered in B. burgdorferi. These rearrangements occurred independently in the different species lineages, and they, along with an expanded chromosomal phylogeny reported here, allow the identification of several whole plasmid transfer events among these species. Phylogenetic analyses of the plasmid partition genes show that a majority of the plasmid compatibility types arose early, most likely before separation of the Lyme agent Borreliella and relapsing fever Borrelia clades, and this, with occasional cross species plasmid transfers, has resulted in few if any species-specific or geographic region-specific Borreliella plasmid types. CONCLUSIONS The primordial origin and persistent maintenance of the Borreliella plasmid types support their functional indispensability as well as evolutionary roles in facilitating genome diversity. The improved resolution of Borreliella plasmid phylogeny based on conserved partition-gene clusters will lead to better determination of gene orthology which is essential for prediction of biological function, and it will provide a basis for inferring detailed evolutionary mechanisms of Borreliella genomic variability including homologous gene and plasmid exchanges as well as non-homologous rearrangements.
Collapse
Affiliation(s)
- Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department and Biology Department, University of Utah School of Medicine, Salt Lake City, UT USA
- Biology Department, University of Utah, Salt Lake City, UT USA
- Pathology Department, University of Utah School of Medicine, Room 2200K Emma Eccles Jones Medical Research Building, 15 North Medical Drive East, Salt Lake City, UT 84112 USA
| | - Lia Di
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
| | - Saymon Akther
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
| | - Emmanuel F. Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Benjamin J. Luft
- Department of Medicine, Health Science Center, Stony Brook University, Stony Brook, NY USA
| | - Steven E. Schutzer
- Department of Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ USA
| | - Claire M. Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Wei-Gang Qiu
- Department of Biology, The Graduate Center, City University of New York, New York, NY USA
- Department of Biological Sciences and Center for Translational and Basic Research, Hunter College of the City University of New York, New York, NY USA
- Department of Physiology and Biophysics & Institute for Computational Biomedicine, Weil Cornell Medical College, New York, USA
| |
Collapse
|
145
|
Jorge S, Kremer FS, Oliveira NRD, Navarro GDOSV, Guimarães AM, Sanchez CD, Woloski RDDS, Ridieri KF, Campos VF, Pinto LDS, Dellagostin OA. Whole-genome sequencing of Leptospira interrogans from southern Brazil: genetic features of a highly virulent strain. Mem Inst Oswaldo Cruz 2018; 113:80-86. [PMID: 29236923 PMCID: PMC5722262 DOI: 10.1590/0074-02760170130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Leptospirosis is the most widespread zoonotic disease. It is caused by
infection with pathogenic Leptospira species, of which over
300 serovars have been described. The accurate identification of the
causative Leptospira spp. is required to ascertain the
pathogenic status of the local isolates. OBJECTIVES This study aimed to obtain the complete genome sequence of a virulent
Leptospira interrogans strain isolated from southern
Brazil and to describe its genetic features. METHODS The whole genome was sequenced by next-generation sequencing (Ion Torrent).
The genome was assembled, scaffolded, annotated, and manually reviewed.
Mutations were identified based on a variant calling analysis using the
genome of L. interrogans strain Fiocruz L1-130 as a
reference. FINDINGS The entire genome had an average GC content of 35%. The variant calling
analysis identified 119 single nucleotide polymorphisms (SNPs), from which
30 led to a missense mutation. The structural analyses identified potential
evidence of genomic inversions, translocations, and deletions in both the
chromosomes. MAIN CONCLUSIONS The genome properties provide comprehensive information about the local
isolates of Leptospira spp., and thereby, could facilitate
the identification of new targets for the development of diagnostic kits and
vaccines.
Collapse
Affiliation(s)
- Sérgio Jorge
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | | | | | | | | | | | | | - Karine Forster Ridieri
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Vinícius Farias Campos
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | - Luciano da Silva Pinto
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brasil
| | | |
Collapse
|
146
|
Choudoir MJ, Pepe-Ranney C, Buckley DH. Diversification of Secondary Metabolite Biosynthetic Gene Clusters Coincides with Lineage Divergence in Streptomyces. Antibiotics (Basel) 2018; 7:E12. [PMID: 29438308 PMCID: PMC5872123 DOI: 10.3390/antibiotics7010012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
We have identified Streptomyces sister-taxa which share a recent common ancestor and nearly identical small subunit (SSU) rRNA gene sequences, but inhabit distinct geographic ranges demarcated by latitude and have sufficient genomic divergence to represent distinct species. Here, we explore the evolutionary dynamics of secondary metabolite biosynthetic gene clusters (SMGCs) following lineage divergence of these sister-taxa. These sister-taxa strains contained 310 distinct SMGCs belonging to 22 different gene cluster classes. While there was broad conservation of these 22 gene cluster classes among the genomes analyzed, each individual genome harbored a different number of gene clusters within each class. A total of nine SMGCs were conserved across nearly all strains, but the majority (57%) of SMGCs were strain-specific. We show that while each individual genome has a unique combination of SMGCs, this diversity displays lineage-level modularity. Overall, the northern-derived (NDR) clade had more SMGCs than the southern-derived (SDR) clade (40.7 ± 3.9 and 33.8 ± 3.9, mean and S.D., respectively). This difference in SMGC content corresponded with differences in the number of predicted open reading frames (ORFs) per genome (7775 ± 196 and 7093 ± 205, mean and S.D., respectively) such that the ratio of SMGC:ORF did not differ between sister-taxa genomes. We show that changes in SMGC diversity between the sister-taxa were driven primarily by gene acquisition and deletion events, and these changes were associated with an overall change in genome size which accompanied lineage divergence.
Collapse
Affiliation(s)
- Mallory J Choudoir
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| | - Charles Pepe-Ranney
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| | - Daniel H Buckley
- School of Integrative Plant Science, Bradfield Hall 705, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
147
|
Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza. Nat Genet 2018; 50:285-296. [DOI: 10.1038/s41588-018-0040-0] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
|
148
|
Zhou W, Gay N, Oh J. ReprDB and panDB: minimalist databases with maximal microbial representation. MICROBIOME 2018; 6:15. [PMID: 29347966 PMCID: PMC5774170 DOI: 10.1186/s40168-018-0399-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/10/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Profiling of shotgun metagenomic samples is hindered by a lack of unified microbial reference genome databases that (i) assemble genomic information from all open access microbial genomes, (ii) have relatively small sizes, and (iii) are compatible to various metagenomic read mapping tools. Moreover, computational tools to rapidly compile and update such databases to accommodate the rapid increase in new reference genomes do not exist. As a result, database-guided analyses often fail to profile a substantial fraction of metagenomic shotgun sequencing reads from complex microbiomes. RESULTS We report pipelines that efficiently traverse all open access microbial genomes and assemble non-redundant genomic information. The pipelines result in two species-resolution microbial reference databases of relatively small sizes: reprDB, which assembles microbial representative or reference genomes, and panDB, for which we developed a novel iterative alignment algorithm to identify and assemble non-redundant genomic regions in multiple sequenced strains. With the databases, we managed to assign taxonomic labels and genome positions to the majority of metagenomic reads from human skin and gut microbiomes, demonstrating a significant improvement over a previous database-guided analysis on the same datasets. CONCLUSIONS reprDB and panDB leverage the rapid increases in the number of open access microbial genomes to more fully profile metagenomic samples. Additionally, the databases exclude redundant sequence information to avoid inflated storage or memory space and indexing or analyzing time. Finally, the novel iterative alignment algorithm significantly increases efficiency in pan-genome identification and can be useful in comparative genomic analyses.
Collapse
Affiliation(s)
- Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| | - Nicole Gay
- The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
- Stanford University, Stanford, CA USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT USA
| |
Collapse
|
149
|
Jandrasits C, Dabrowski PW, Fuchs S, Renard BY. seq-seq-pan: building a computational pan-genome data structure on whole genome alignment. BMC Genomics 2018; 19:47. [PMID: 29334898 PMCID: PMC5769345 DOI: 10.1186/s12864-017-4401-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022] Open
Abstract
Background The increasing application of next generation sequencing technologies has led to the availability of thousands of reference genomes, often providing multiple genomes for the same or closely related species. The current approach to represent a species or a population with a single reference sequence and a set of variations cannot represent their full diversity and introduces bias towards the chosen reference. There is a need for the representation of multiple sequences in a composite way that is compatible with existing data sources for annotation and suitable for established sequence analysis methods. At the same time, this representation needs to be easily accessible and extendable to account for the constant change of available genomes. Results We introduce seq-seq-pan, a framework that provides methods for adding or removing new genomes from a set of aligned genomes and uses these to construct a whole genome alignment. Throughout the sequential workflow the alignment is optimized for generating a representative linear presentation of the aligned set of genomes, that enables its usage for annotation and in downstream analyses. Conclusions By providing dynamic updates and optimized processing, our approach enables the usage of whole genome alignment in the field of pan-genomics. In addition, the sequential workflow can be used as a fast alternative to existing whole genome aligners for aligning closely related genomes. seq-seq-pan is freely available at https://gitlab.com/rki_bioinformatics Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4401-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Stephan Fuchs
- Robert Koch Institute, Wernigerode Branch, Burgstraße 37, Wernigerode, 38855, Germany
| | | |
Collapse
|
150
|
Rojas LJ, Weinstock GM, De La Cadena E, Diaz L, Rios R, Hanson BM, Brown JS, Vats P, Phillips DS, Nguyen H, Hujer KM, Correa A, Adams MD, Perez F, Sodergren E, Narechania A, Planet PJ, Villegas MV, Bonomo RA, Arias CA. An Analysis of the Epidemic of Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Convergence of Two Evolutionary Mechanisms Creates the "Perfect Storm". J Infect Dis 2017; 217:82-92. [PMID: 29029188 PMCID: PMC5853647 DOI: 10.1093/infdis/jix524] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/22/2017] [Indexed: 01/11/2023] Open
Abstract
Background Carbapenem resistance is a critical healthcare challenge worldwide. Particularly concerning is the widespread dissemination of Klebsiella pneumoniae carbapenemase (KPC). Klebsiella pneumoniae harboring blaKPC (KPC-Kpn) is endemic in many areas including the United States, where the epidemic was primarily mediated by the clonal dissemination of Kpn ST258. We postulated that the spread of blaKPC in other regions occurs by different and more complex mechanisms. To test this, we investigated the evolution and dynamics of spread of KPC-Kpn in Colombia, where KPC became rapidly endemic after emerging in 2005. Methods We sequenced the genomes of 133 clinical isolates recovered from 24 tertiary care hospitals located in 10 cities throughout Colombia, between 2002 (before the emergence of KPC-Kpn) and 2014. Phylogenetic reconstructions and evolutionary mapping were performed to determine temporal and genetic associations between the isolates. Results Our results indicate that the start of the epidemic was driven by horizontal dissemination of mobile genetic elements carrying blaKPC-2, followed by the introduction and subsequent spread of clonal group 258 (CG258) isolates containing blaKPC-3. Conclusions The combination of 2 evolutionary mechanisms of KPC-Kpn within a challenged health system of a developing country created the "perfect storm" for sustained endemicity of these multidrug-resistant organisms in Colombia.
Collapse
Affiliation(s)
- Laura J Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | | | - Elsa De La Cadena
- Bacterial Resistance and Hospital Epidemiology Unit, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
| | - Lorena Diaz
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston Houston, Texas
| | - Rafael Rios
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
| | - Blake M Hanson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Joseph S Brown
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Purva Vats
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Daniel S Phillips
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Hoan Nguyen
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Kristine M Hujer
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | - Adriana Correa
- Bacterial Resistance and Hospital Epidemiology Unit, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Federico Perez
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Medical Service, and Geriatric Research
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
| | - Erica Sodergren
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Apurva Narechania
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas
| | - Paul J Planet
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, New York
- Perelman School of Medicine, University of Pennsylvania, Philadelphia
- Pediatric Infectious Disease Division, Children’s Hospital of Philadelphia, Pennsylvania
| | - Maria V Villegas
- Bacterial Resistance and Hospital Epidemiology Unit, International Center for Medical Research and Training (CIDEIM), Cali, Colombia
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Medical Service, and Geriatric Research
- Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Ohio
- Case Western Reserve University -Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Ohio
| | - Cesar A Arias
- Molecular Genetics and Antimicrobial Resistance Unit - International Center for Microbial Genomics Universidad El Bosque, Bogotá, Colombia
- Center for Antimicrobial Resistance and Microbial Genomics, Division of Infectious Diseases, University of Texas McGovern Medical School at Houston Houston, Texas
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston Houston, Texas
- Center for Infectious Diseases, UTHealth School of Public Health, Houston, Texas
| |
Collapse
|