101
|
Kosyna FK, Nagel M, Kluxen L, Kraushaar K, Depping R. The importin α/β-specific inhibitor Ivermectin affects HIF-dependent hypoxia response pathways. Biol Chem 2016; 396:1357-67. [PMID: 26351913 DOI: 10.1515/hsz-2015-0171] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/23/2015] [Indexed: 11/15/2022]
Abstract
Hypoxia-inducible transcription factors (HIFs) regulate hundreds of genes involved in cellular adaptation to reduced oxygen availability. HIFs consist of an O2-labile α-subunit (primarily HIF-1α and HIF-2α) and a constitutive HIF-1β subunit. In normoxia the HIF-α subunit is hydroxylated by members of a family of prolyl-4-hydroxylase domain (PHD) proteins, PHD1-3, resulting in recognition by von Hippel-Lindau protein, ubiquitination and proteasomal degradation. In contrast, reduced oxygen availability inhibits PHD activity resulting in HIF-1α stabilisation and nuclear accumulation. Nuclear import of HIF-1α mainly depends on classical nuclear localisation signals (NLS) and involves importin α/β heterodimers. Recently, a specific inhibitor of nuclear import has been identified that inhibits importin α/β-dependent import with no effects on a range of other nuclear transport pathways involving members of the importin protein family. In this study we evaluated the physiological activity of this importin α/β-inhibitor (Ivermectin) in the hypoxia response pathway. Treatment with Ivermectin decreases binding activity of HIF-1α to the importin α/β-heterodimer. Moreover, HIF-1α nuclear localisation, nuclear HIF-1α protein levels, HIF-target gene expression, as well as HIF-transcriptional activity are reduced upon Ivermectin treatment. For the first time, we demonstrate the effect of specific importin α/β-inhibition on the hypoxic response on the molecular level.
Collapse
|
102
|
Liu Z, Lam N, Wang E, Virden RA, Pawel B, Attiyeh EF, Maris JM, Thiele CJ. Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene 2016; 36:97-109. [PMID: 27270431 PMCID: PMC5140774 DOI: 10.1038/onc.2016.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/06/2016] [Accepted: 04/15/2016] [Indexed: 12/21/2022]
Abstract
As a transcription factor, localization to the nucleus and the recruitment of cofactors to regulate gene transcription is essential. Nuclear localization and nucleosome remodeling and histone deacetylase (NuRD) complex binding are required for the zinc-finger transcription factor CASZ1 to function as a neuroblastoma (NB) tumor suppressor. However, the critical amino acids (AAs) that are required for CASZ1 interaction with NuRD complex and the regulation of CASZ1 subcellular localization have not been characterized. Through alanine scanning, immunofluorescence cell staining and co-immunoprecipitation, we define a critical region at the CASZ1 N terminus (AAs 23-40) that mediates the CASZ1b nuclear localization and NuRD interaction. Furthermore, we identified a nuclear export signal (NES) at the N terminus (AAs 176-192) that contributes to CASZ1 nuclear-cytoplasmic shuttling in a chromosomal maintenance 1-dependent manner. An analysis of CASZ1 protein expression in a primary NB tissue microarray shows that high nuclear CASZ1 staining is detected in tumor samples from NB patients with good prognosis. In contrast, cytoplasmic-restricted CASZ1 staining or low nuclear CASZ1 staining is found in tumor samples from patients with poor prognosis. These findings provide insight into mechanisms by which CASZ1 regulates transcription, and suggests that regulation of CASZ1 subcellular localization may impact its function in normal development and pathologic conditions such as NB tumorigenesis.
Collapse
Affiliation(s)
- Z Liu
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - N Lam
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - E Wang
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - R A Virden
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - B Pawel
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - E F Attiyeh
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - J M Maris
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - C J Thiele
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
103
|
Joerger AC, Fersht AR. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Annu Rev Biochem 2016; 85:375-404. [DOI: 10.1146/annurev-biochem-060815-014710] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany;
| | - Alan R. Fersht
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
104
|
Beckerman R, Yoh K, Mattia-Sansobrino M, Zupnick A, Laptenko O, Karni-Schmidt O, Ahn J, Byeon IJ, Keezer S, Prives C. Lysines in the tetramerization domain of p53 selectively modulate G1 arrest. Cell Cycle 2016; 15:1425-38. [PMID: 27210019 DOI: 10.1080/15384101.2016.1170270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Functional in a tetrameric state, the protein product of the p53 tumor suppressor gene confers its tumor-suppressive activity by transactivating genes which promote cell-cycle arrest, senescence, or programmed cell death. How p53 distinguishes between these divergent outcomes is still a matter of considerable interest. Here we discuss the impact of 2 mutations in the tetramerization domain that confer unique properties onto p53. By changing lysines 351 and 357 to arginine, thereby blocking all post-translational modifications of these residues, DNA binding and transcriptional regulation by p53 remain virtually unchanged. On the other hand, by changing these lysines to glutamine (2KQ-p53), thereby neutralizing their positive charge and potentially mimicking acetylation, p53 is impaired in the induction of cell cycle arrest and yet can still effectively induce cell death. Surprisingly, when 2KQ-p53 is expressed at high levels in H1299 cells, it can bind to and transactivate numerous p53 target genes including p21, but not others such as miR-34a and cyclin G1 to the same extent as wild-type p53. Our findings show that strong induction of p21 is not sufficient to block H1299 cells in G1, and imply that modification of one or both of the lysines within the tetramerization domain may serve as a mechanism to shunt p53 from inducing cell cycle arrest.
Collapse
Affiliation(s)
| | - Kathryn Yoh
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | | | | | - Oleg Laptenko
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Orit Karni-Schmidt
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| | - Jinwoo Ahn
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - In-Ja Byeon
- b Department of Structural Biology , University of Pittsburgh , Pittsburgh , PA , USA
| | - Susan Keezer
- c Cell Signaling Technology, Inc. , Danvers , MA , USA
| | - Carol Prives
- a Department of Biological Sciences , Columbia University , New York , NY , USA
| |
Collapse
|
105
|
Proteome-wide search for functional motifs altered in tumors: Prediction of nuclear export signals inactivated by cancer-related mutations. Sci Rep 2016; 6:25869. [PMID: 27174732 PMCID: PMC4865848 DOI: 10.1038/srep25869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/22/2016] [Indexed: 12/15/2022] Open
Abstract
Large-scale sequencing projects are uncovering a growing number of missense mutations in human tumors. Understanding the phenotypic consequences of these alterations represents a formidable challenge. In silico prediction of functionally relevant amino acid motifs disrupted by cancer mutations could provide insight into the potential impact of a mutation, and guide functional tests. We have previously described Wregex, a tool for the identification of potential functional motifs, such as nuclear export signals (NESs), in proteins. Here, we present an improved version that allows motif prediction to be combined with data from large repositories, such as the Catalogue of Somatic Mutations in Cancer (COSMIC), and to be applied to a whole proteome scale. As an example, we have searched the human proteome for candidate NES motifs that could be altered by cancer-related mutations included in the COSMIC database. A subset of the candidate NESs identified was experimentally tested using an in vivo nuclear export assay. A significant proportion of the selected motifs exhibited nuclear export activity, which was abrogated by the COSMIC mutations. In addition, our search identified a cancer mutation that inactivates the NES of the human deubiquitinase USP21, and leads to the aberrant accumulation of this protein in the nucleus.
Collapse
|
106
|
Laptenko O, Shiff I, Freed-Pastor W, Zupnick A, Mattia M, Freulich E, Shamir I, Kadouri N, Kahan T, Manfredi J, Simon I, Prives C. The p53 C terminus controls site-specific DNA binding and promotes structural changes within the central DNA binding domain. Mol Cell 2016; 57:1034-1046. [PMID: 25794615 DOI: 10.1016/j.molcel.2015.02.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/23/2014] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
Abstract
DNA binding by numerous transcription factors including the p53 tumor suppressor protein constitutes a vital early step in transcriptional activation. While the role of the central core DNA binding domain (DBD) of p53 in site-specific DNA binding has been established, the contribution of the sequence-independent C-terminal domain (CTD) is still not well understood. We investigated the DNA-binding properties of a series of p53 CTD variants using a combination of in vitro biochemical analyses and in vivo binding experiments. Our results provide several unanticipated and interconnected findings. First, the CTD enables DNA binding in a sequence-dependent manner that is drastically altered by either its modification or deletion. Second, dependence on the CTD correlates with the extent to which the p53 binding site deviates from the canonical consensus sequence. Third, the CTD enables stable formation of p53-DNA complexes to divergent binding sites via DNA-induced conformational changes within the DBD itself.
Collapse
Affiliation(s)
- Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Idit Shiff
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Will Freed-Pastor
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Andrew Zupnick
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melissa Mattia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Ella Freulich
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Inbal Shamir
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Noam Kadouri
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - Tamar Kahan
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel
| | - James Manfredi
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Itamar Simon
- Department of Microbiology and Molecular Genetics, Hebrew University Medical School, IMRIC, Jerusalem 91120, Israel.
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
107
|
Nakayama R, Zhang YX, Czaplinski JT, Anatone AJ, Sicinska ET, Fletcher JA, Demetri GD, Wagner AJ. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget 2016; 7:16581-92. [PMID: 26918731 PMCID: PMC4941336 DOI: 10.18632/oncotarget.7667] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/09/2016] [Indexed: 12/11/2022] Open
Abstract
Selinexor is an orally bioavailable selective inhibitor of nuclear export that has been demonstrated to have preclinical activity in various cancer types and that is currently in Phase I and II clinical trials for advanced cancers. In this study, we evaluated the effects of selinexor in several preclinical models of various sarcoma subtypes. The efficacy of selinexor was investigated in vitro and in vivo using 17 cell lines and 9 sarcoma xenograft models including gastrointestinal stromal tumor (GIST), liposarcoma (LPS), leiomyosarcoma, rhabdomyosarcoma, undifferentiated sarcomas, and alveolar soft part sarcoma (ASPS). Most sarcoma cell lines were sensitive to selinexor with IC50s ranging from 28.8 nM to 218.2 nM (median: 66.1 nM). Selinexor suppressed sarcoma tumor xenograft growth, including models of ASPS that were resistant in vitro. In GIST cells with KIT mutations, selinexor induced G1- arrest without attenuation of phosphorylation of KIT, AKT, or MAPK, in contrast to imatinib. In LPS cell lines with MDM2 and CDK4 amplification, selinexor induced G1-arrest and apoptosis irrespective of p53 expression or mutation and irrespective of RB expression. Selinexor increased p53 and p21 expression at the protein but not RNA level, indicating a post-transcriptional effect. These results indicate that selinexor has potent in vitro and in vivo activity against a wide variety of sarcoma models by inducing G1-arrest independent of known molecular mechanisms in GIST and LPS. These studies further justify the exploration of selinexor in clinical trials targeting various sarcoma subtypes.
Collapse
Affiliation(s)
- Robert Nakayama
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
- Department of Orthopaedic Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yi-Xiang Zhang
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Jeffrey T. Czaplinski
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alex J. Anatone
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ewa T. Sicinska
- Department of Medical Oncology and Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jonathan A. Fletcher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George D. Demetri
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Andrew J. Wagner
- Ludwig Center at Dana-Farber/Harvard and Center for Sarcoma and Bone Oncology, Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
108
|
Niopek D, Wehler P, Roensch J, Eils R, Di Ventura B. Optogenetic control of nuclear protein export. Nat Commun 2016; 7:10624. [PMID: 26853913 PMCID: PMC4748110 DOI: 10.1038/ncomms10624] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
Active nucleocytoplasmic transport is a key mechanism underlying protein regulation in eukaryotes. While nuclear protein import can be controlled in space and time with a portfolio of optogenetic tools, protein export has not been tackled so far. Here we present a light-inducible nuclear export system (LEXY) based on a single, genetically encoded tag, which enables precise spatiotemporal control over the export of tagged proteins. A constitutively nuclear, chromatin-anchored LEXY variant expands the method towards light inhibition of endogenous protein export by sequestering cellular CRM1 receptors. We showcase the utility of LEXY for cell biology applications by regulating a synthetic repressor as well as human p53 transcriptional activity with light. LEXY is a powerful addition to the optogenetic toolbox, allowing various novel applications in synthetic and cell biology.
Collapse
Affiliation(s)
- Dominik Niopek
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Pierre Wehler
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Julia Roensch
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Roland Eils
- Department of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Bioinformatics and Functional Genomics, Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Barbara Di Ventura
- Department of Bioinformatics and Functional Genomics, Synthetic Biology Group, Institute for Pharmacy and Biotechnology (IPMB), University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), University of Heidelberg, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| |
Collapse
|
109
|
Dickmanns A, Monecke T, Ficner R. Structural Basis of Targeting the Exportin CRM1 in Cancer. Cells 2015; 4:538-68. [PMID: 26402707 PMCID: PMC4588050 DOI: 10.3390/cells4030538] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/07/2015] [Accepted: 09/11/2015] [Indexed: 12/19/2022] Open
Abstract
Recent studies have demonstrated the interference of nucleocytoplasmic trafficking with the establishment and maintenance of various cancers. Nucleocytoplasmic transport is highly regulated and coordinated, involving different nuclear transport factors or receptors, importins and exportins, that mediate cargo transport from the cytoplasm into the nucleus or the other way round, respectively. The exportin CRM1 (Chromosome region maintenance 1) exports a plethora of different protein cargoes and ribonucleoprotein complexes. Structural and biochemical analyses have enabled the deduction of individual steps of the CRM1 transport cycle. In addition, CRM1 turned out to be a valid target for anticancer drugs as it exports numerous proto-oncoproteins and tumor suppressors. Clearly, detailed understanding of the flexibility, regulatory features and cooperative binding properties of CRM1 for Ran and cargo is a prerequisite for the design of highly effective drugs. The first compound found to inhibit CRM1-dependent nuclear export was the natural drug Leptomycin B (LMB), which blocks export by competitively interacting with a highly conserved cleft on CRM1 required for nuclear export signal recognition. Clinical studies revealed serious side effects of LMB, leading to a search for alternative natural and synthetic drugs and hence a multitude of novel therapeutics. The present review examines recent progress in understanding the binding mode of natural and synthetic compounds and their inhibitory effects.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| | - Ralf Ficner
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, GZMB, Georg-August-Universität Göttingen, Justus-von-Liebig-Weg 11, Göttingen 37077, Germany.
| |
Collapse
|
110
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
111
|
Yumerefendi H, Dickinson DJ, Wang H, Zimmerman SP, Bear JE, Goldstein B, Hahn K, Kuhlman B. Control of Protein Activity and Cell Fate Specification via Light-Mediated Nuclear Translocation. PLoS One 2015; 10:e0128443. [PMID: 26083500 PMCID: PMC4471001 DOI: 10.1371/journal.pone.0128443] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
Light-activatable proteins allow precise spatial and temporal control of biological processes in living cells and animals. Several approaches have been developed for controlling protein localization with light, including the conditional inhibition of a nuclear localization signal (NLS) with the Light Oxygen Voltage (AsLOV2) domain of phototropin 1 from Avena sativa. In the dark, the switch adopts a closed conformation that sterically blocks the NLS motif. Upon activation with blue light the C-terminus of the protein unfolds, freeing the NLS to direct the protein to the nucleus. A previous study showed that this approach can be used to control the localization and activity of proteins in mammalian tissue culture cells. Here, we extend this result by characterizing the binding properties of a LOV/NLS switch and demonstrating that it can be used to control gene transcription in yeast. Additionally, we show that the switch, referred to as LANS (light-activated nuclear shuttle), functions in the C. elegans embryo and allows for control of nuclear localization in individual cells. By inserting LANS into the C. elegans lin-1 locus using Cas9-triggered homologous recombination, we demonstrated control of cell fate via light-dependent manipulation of a native transcription factor. We conclude that LANS can be a valuable experimental method for spatial and temporal control of nuclear localization in vivo.
Collapse
Affiliation(s)
- Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Daniel J. Dickinson
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hui Wang
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Seth P. Zimmerman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James E. Bear
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Klaus Hahn
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (BK); (KH)
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (BK); (KH)
| |
Collapse
|
112
|
De Cesare M, Cominetti D, Doldi V, Lopergolo A, Deraco M, Gandellini P, Friedlander S, Landesman Y, Kauffman MG, Shacham S, Pennati M, Zaffaroni N. Anti-tumor activity of selective inhibitors of XPO1/CRM1-mediated nuclear export in diffuse malignant peritoneal mesothelioma: the role of survivin. Oncotarget 2015; 6:13119-32. [PMID: 25948791 PMCID: PMC4537003 DOI: 10.18632/oncotarget.3761] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/06/2015] [Indexed: 11/25/2022] Open
Abstract
Survivin, which is highly expressed and promotes cell survival in diffuse malignant peritoneal mesothelioma (DMPM), exclusively relies on exportin 1 (XPO1/CRM1) to be shuttled into the cytoplasm and perform its anti-apoptotic function. Here, we explored the efficacy of Selective Inhibitors of Nuclear Export (SINE), KPT-251, KPT-276 and the orally available, clinical stage KPT-330 (selinexor), in DMPM preclinical models. Exposure to SINE induced dose-dependent inhibition of cell growth, cell cycle arrest at G1-phase and caspase-dependent apoptosis, which were consequent to a decrease of XPO1/CRM1 protein levels and the concomitant nuclear accumulation of its cargo proteins p53 and CDKN1a. Cell exposure to SINE led to a time-dependent reduction of cytoplasmic survivin levels. In addition, after an initial accumulation, the nuclear protein abundance progressively decreased, as a consequence of an enhanced ubiquitination and proteasome-dependent degradation. SINE and the survivin inhibitor YM155 synergistically cooperated in reducing DMPM cell proliferation. Most importantly, orally administered SINE caused a significant anti-tumor effect in subcutaneous and orthotopic DMPM xenografts without appreciable toxicity. Overall, we have demonstrated a marked efficacy of SINE in DMPM preclinical models that may relay on the interference with survivin intracellular distribution and function. Our study suggests SINE-mediated XPO1/CRM1 inhibition as a novel therapeutic option for DMPM.
Collapse
Affiliation(s)
- Michelandrea De Cesare
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Denis Cominetti
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Valentina Doldi
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Alessia Lopergolo
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Marcello Deraco
- Peritoneal Surface Malignancy Program, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paolo Gandellini
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | - Marzia Pennati
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
113
|
Di Girolamo M. Regulation of nucleocytoplasmic transport by ADP-ribosylation: the emerging role of karyopherin-β1 mono-ADP-ribosylation by ARTD15. Curr Top Microbiol Immunol 2015; 384:189-209. [PMID: 25037261 DOI: 10.1007/82_2014_421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modifications of a cellular protein by mono- and poly-ADP-ribosylation involve the cleavage of NAD (+) , with the release of its nicotinamide moiety. This is accompanied by the transfer of a single (mono-) or several (poly-) ADP-ribose molecules from NAD (+) to a specific amino-acid residue of the protein. Recent reports have shed new light on the correlation between NAD (+) -dependent ADP-ribosylation reactions and the endoplasmic reticulum, in addition to the well-documented roles of these reactions in the nucleus and mitochondria. We have demonstrated that ARTD15/PARP16 is a novel mono-ADP-ribosyltransferase with a new intracellular location, as it is associated with the endoplasmic reticulum. The endoplasmic reticulum, which is a membranous network of interconnected tubules and cisternae, is responsible for specialised cellular functions, including protein folding and protein transport. Maintenance of specialised cellular functions requires the correct flow of information between separate organelles that is made possible through the nucleocytoplasmic trafficking of proteins. ARTD15 appears to have a role in nucleocytoplasmic shuttling, through karyopherin-β1 mono-ADP-ribosylation. This is in line with the emerging role of ADP-ribosylation in the regulation of intracellular trafficking of cellular proteins. Indeed, other, ADP-ribosyltransferases like ARTD1/PARP1, have been reported to regulate nucleocytoplasmic trafficking of crucial proteins, including p53 and NF-κB, and as a consequence, to modulate the subcellular localisation of these proteins under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Di Girolamo
- G-Protein-Mediated Signalling Laboratory, Fondazione Mario Negri Sud, Via Nazionale 8/A, 66030, S. Maria Imbaro (CH), Italy,
| |
Collapse
|
114
|
Rangel LP, Costa DCF, Vieira TCRG, Silva JL. The aggregation of mutant p53 produces prion-like properties in cancer. Prion 2015; 8:75-84. [PMID: 24509441 PMCID: PMC7030899 DOI: 10.4161/pri.27776] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor protein p53 loses its function in more than 50% of human malignant tumors. Recent studies have suggested that mutant p53 can form aggregates that are related to loss-of-function effects, negative dominance and gain-of-function effects and cancers with a worsened prognosis. In recent years, several degenerative diseases have been shown to have prion-like properties similar to mammalian prion proteins (PrPs). However, whereas prion diseases are rare, the incidence of these neurodegenerative pathologies is high. Malignant tumors involving mutated forms of the tumor suppressor p53 protein seem to have similar substrata. The aggregation of the entire p53 protein and three functional domains of p53 into amyloid oligomers and fibrils has been demonstrated. Amyloid aggregates of mutant p53 have been detected in breast cancer and malignant skin tumors. Most p53 mutations related to cancer development are found in the DNA-binding domain (p53C), which has been experimentally shown to form amyloid oligomers and fibrils. Several computation programs have corroborated the predicted propensity of p53C to form aggregates, and some of these programs suggest that p53C is more likely to form aggregates than the globular domain of PrP. Overall, studies imply that mutant p53 exerts a dominant-negative regulatory effect on wild-type (WT) p53 and exerts gain-of-function effects when co-aggregating with other proteins such as p63, p73 and acetyltransferase p300. We review here the prion-like behavior of oncogenic p53 mutants that provides an explanation for their dominant-negative and gain-of-function properties and for the high metastatic potential of cancers bearing p53 mutations. The inhibition of the aggregation of p53 into oligomeric and fibrillar amyloids appears to be a promising target for therapeutic intervention in malignant tumor diseases.
Collapse
|
115
|
Conway AE, Haldeman JM, Wechsler DS, Lavau CP. A critical role for CRM1 in regulating HOXA gene transcription in CALM-AF10 leukemias. Leukemia 2015; 29:423-32. [PMID: 25027513 PMCID: PMC4297268 DOI: 10.1038/leu.2014.221] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/15/2014] [Accepted: 07/08/2014] [Indexed: 01/01/2023]
Abstract
The leukemogenic CALM-AF10 fusion protein is found in patients with immature acute myeloid and T-lymphoid malignancies. CALM-AF10 leukemias display abnormal H3K79 methylation and increased HOXA cluster gene transcription. Elevated expression of HOXA genes is critical for leukemia maintenance and progression; however, the precise mechanism by which CALM-AF10 alters HOXA gene expression is unclear. We previously determined that CALM contains a CRM1-dependent nuclear export signal (NES), which is both necessary and sufficient for CALM-AF10-mediated leukemogenesis. Here, we find that interaction of CALM-AF10 with the nuclear export receptor CRM1 is necessary for activating HOXA gene expression. We show that CRM1 localizes to HOXA loci where it recruits CALM-AF10, leading to transcriptional and epigenetic activation of HOXA genes. Genetic and pharmacological inhibition of the CALM-CRM1 interaction prevents CALM-AF10 enrichment at HOXA chromatin, resulting in immediate loss of transcription. These results provide a comprehensive mechanism by which the CALM-AF10 translocation activates the critical HOXA cluster genes. Furthermore, this report identifies a novel function of CRM1: the ability to bind chromatin and recruit the NES-containing CALM-AF10 transcription factor.
Collapse
Affiliation(s)
- Amanda E. Conway
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jonathan M. Haldeman
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Daniel S. Wechsler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Catherine P. Lavau
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
116
|
Carneiro BA, Altman JK, Kaplan JB, Ossenkoppele G, Swords R, Platanias LC, Giles FJ. Targeted therapy of acute myeloid leukemia. Expert Rev Anticancer Ther 2015; 15:399-413. [PMID: 25623136 DOI: 10.1586/14737140.2015.1004316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Advances in the understanding of the genetic underpinnings of acute myeloid leukemia are rapidly being translated into novel treatment strategies. Genomic profiling has highlighted the importance of the epigenetic machinery for leukemogenesis by identifying recurrent somatic mutations involving chromatin-modifier proteins. These genetic alterations function as dynamic regulators of gene expression and involve DNA-methyltransferase 3A, methyltransferase DOT1L, enhancer of zeste homologue 2, isocitrate dehydrogenases 1 and 2 and bromodomain-containing proteins. New therapeutic targets are also emerging from further delineation of cell signaling networks in acute myeloid leukemia blasts mediated by PIM kinases, polo-like kinase 1, cell surface protein CD98 and nucleocytoplasmic shuttling receptors, among others. Early results of targeted therapies directed at these molecular mechanisms are discussed in this review and their potential to improve the outcomes of patients by allowing the use of more effective and less toxic treatments.
Collapse
Affiliation(s)
- Benedito A Carneiro
- Northwestern Developmental Therapeutics Institute, Northwestern University Feinberg School of Medicine, 645 N Michigan Ave. Suite 1006, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Han X, Wang J, Shen Y, Zhang N, Wang S, Yao J, Shi Y. CRM1 as a new therapeutic target for non-Hodgkin lymphoma. Leuk Res 2015; 39:38-46. [PMID: 25466285 DOI: 10.1016/j.leukres.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/13/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
Abstract
The chromosomal region maintenance 1 (CRM1) may serve as a novel target for cancer treatment. Here, we investigated the anti non-Hodgkin lymphoma (NHL) activity of two novel CRM1 inhibitors (KPT-185 and KPT-276) in vitro and in vivo. KPT-185 displayed potent antiproliferative properties and induced cell-cycle arrest and apoptosis in several NHL cell lines and patients' tumor cells. The antitumor activity mainly consisted of inducing caspase cleavage and downregulating the expression of antiapoptotic proteins such as CRM1, nuclear factor-κB, and survivin. Furthermore, oral administration of KPT-276 significantly suppressed tumor growth in mice with Jeko-1 xenograft without any major toxic effects.
Collapse
Affiliation(s)
- Xiaohong Han
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Jianfei Wang
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Yinchen Shen
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Ningning Zhang
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Shuai Wang
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Jiarui Yao
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China.
| |
Collapse
|
118
|
Leroy B, Anderson M, Soussi T. TP53 mutations in human cancer: database reassessment and prospects for the next decade. Hum Mutat 2014; 35:672-88. [PMID: 24665023 DOI: 10.1002/humu.22552] [Citation(s) in RCA: 271] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/04/2014] [Indexed: 12/18/2022]
Abstract
More than 50% of human tumors carry TP53 gene mutations and in consequence more than 45,000 somatic and germline mutations have been gathered in the UMD TP53 database (http://p53.fr). Analyses of these mutations have been invaluable for bettering our knowledge on the structure-function relationships within the TP53 protein and the high degree of heterogeneity of the various TP53 mutants in human cancer. In this review, we discuss how with the release of the sequences of thousands of tumor genomes issued from high-throughput sequencing, the description of novel TP53 mutants is now reaching a plateau indicating that we are close to the full set of mutants that target the elusive tumor-suppressive activity of this protein. We performed an extensive and thorough analysis of the TP53 mutation database, focusing particularly on specific sets of mutations that were overlooked in the past because of their low frequencies, for example, synonymous mutations, splice mutations, or mutations-targeting residues subject to posttranslational modifications. We also discuss the evolution of the statistical methods used to differentiate TP53 passenger mutations and artifactual data from true mutations, a process vital to the release of an accurate TP53 mutation database that will in turn be an invaluable tool for both clinicians and researchers.
Collapse
Affiliation(s)
- Bernard Leroy
- Université Pierre et Marie Curie-Paris 6, Paris, 75005, France
| | | | | |
Collapse
|
119
|
Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2014; 282:445-62. [PMID: 25429850 PMCID: PMC7163960 DOI: 10.1111/febs.13163] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo‐cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease‐associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo‐cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease‐relevant molecular targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Bastien Cautain
- Fundacion MEDINA Parque tecnológico ciencias de la salud, Granada, Spain
| | | | | | | |
Collapse
|
120
|
Yuan L, Chen Z, Song S, Wang S, Tian C, Xing G, Chen X, Xiao ZX, He F, Zhang L. p53 degradation by a coronavirus papain-like protease suppresses type I interferon signaling. J Biol Chem 2014; 290:3172-82. [PMID: 25505178 PMCID: PMC4317044 DOI: 10.1074/jbc.m114.619890] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infection by human coronaviruses is usually characterized by rampant viral replication and severe immunopathology in host cells. Recently, the coronavirus papain-like proteases (PLPs) have been identified as suppressors of the innate immune response. However, the molecular mechanism of this inhibition remains unclear. Here, we provide evidence that PLP2, a catalytic domain of the nonstructural protein 3 of human coronavirus NL63 (HCoV-NL63), deubiquitinates and stabilizes the cellular oncoprotein MDM2 and induces the proteasomal degradation of p53. Meanwhile, we identify IRF7 (interferon regulatory factor 7) as a bona fide target gene of p53 to mediate the p53-directed production of type I interferon and the innate immune response. By promoting p53 degradation, PLP2 inhibits the p53-mediated antiviral response and apoptosis to ensure viral growth in infected cells. Thus, our study reveals that coronavirus engages PLPs to escape from the innate antiviral response of the host by inhibiting p53-IRF7-IFNβ signaling.
Collapse
Affiliation(s)
- Lin Yuan
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China, the Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Zhongbin Chen
- the Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China, and
| | - Shanshan Song
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Shan Wang
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Chunyan Tian
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Guichun Xing
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Xiaojuan Chen
- the Division of Infection and Immunity, Department of Electromagnetic and Laser Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China, and
| | - Zhi-Xiong Xiao
- the School of Life Sciences, Sichuan University, Sichuan Province, 610065, China
| | - Fuchu He
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China
| | - Lingqiang Zhang
- From the State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Collaborative Innovation Center for Cancer Medicine, Beijing 100850, China, the Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province 116044, China,
| |
Collapse
|
121
|
Parikh K, Cang S, Sekhri A, Liu D. Selective inhibitors of nuclear export (SINE)--a novel class of anti-cancer agents. J Hematol Oncol 2014; 7:78. [PMID: 25316614 PMCID: PMC4200201 DOI: 10.1186/s13045-014-0078-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/09/2014] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the nucleo-cytoplasmic transport of proteins plays an important role in carcinogenesis. The nuclear export of proteins depends on the activity of transport proteins, exportins. Exportins belong to the karyopherin β superfamily. Exportin-1 (XPO1), also known as chromosomal region maintenance 1 (CRM1), mediates transport of around 220 proteins. In this review, we summarized the development of a new class of antitumor drugs, collectively known as selective inhibitors of nuclear export (SINE). KPT-330 (selinexor) as an oral agent is showing activities in early clinical trials in both solid tumors and hematological malignancies.
Collapse
Affiliation(s)
| | | | | | - Delong Liu
- Henan Tumor Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
122
|
Ayroldi E, Petrillo MG, Bastianelli A, Marchetti MC, Ronchetti S, Nocentini G, Ricciotti L, Cannarile L, Riccardi C. L-GILZ binds p53 and MDM2 and suppresses tumor growth through p53 activation in human cancer cells. Cell Death Differ 2014; 22:118-30. [PMID: 25168242 DOI: 10.1038/cdd.2014.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/31/2022] Open
Abstract
The transcription factor p53 regulates the expression of genes crucial for biological processes such as cell proliferation, metabolism, cell repair, senescence and apoptosis. Activation of p53 also suppresses neoplastic transformations, thereby inhibiting the growth of mutated and/or damaged cells. p53-binding proteins, such as mouse double minute 2 homolog (MDM2), inhibit p53 activation and thus regulate p53-mediated stress responses. Here, we found that long glucocorticoid-induced leucine zipper (L-GILZ), a recently identified isoform of GILZ, activates p53 and that the overexpression of L-GILZ in p53(+/+) HCT116 human colorectal carcinoma cells suppresses the growth of xenografts in mice. In the presence of both p53 and MDM2, L-GILZ binds preferentially to MDM2 and interferes with p53/MDM2 complex formation, making p53 available for downstream gene activation. Consistent with this finding, L-GILZ induced p21 and p53 upregulated modulator of apoptosis (PUMA) expression only in p53(+/+) cells, while L-GILZ silencing reversed the anti-proliferative activity of dexamethasone as well as expression of p53, p21 and PUMA. Furthermore, L-GILZ stabilizes p53 proteins by decreasing p53 ubiquitination and increasing MDM2 ubiquitination. These findings reveal L-GILZ as a regulator of p53 and a candidate for new therapeutic anti-cancer strategies for tumors associated with p53 deregulation.
Collapse
Affiliation(s)
- E Ayroldi
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - M G Petrillo
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - A Bastianelli
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - M C Marchetti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - S Ronchetti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - G Nocentini
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - L Ricciotti
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - L Cannarile
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| | - C Riccardi
- Department Medicine, Section of Pharmacology, University of Perugia Medical School, Perugia, Italy
| |
Collapse
|
123
|
Rodríguez JA. Interplay between nuclear transport and ubiquitin/SUMO modifications in the regulation of cancer-related proteins. Semin Cancer Biol 2014; 27:11-9. [DOI: 10.1016/j.semcancer.2014.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/22/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022]
|
124
|
van der Watt PJ, Zemanay W, Govender D, Hendricks DT, Parker MI, Leaner VD. Elevated expression of the nuclear export protein, Crm1 (exportin 1), associates with human oesophageal squamous cell carcinoma. Oncol Rep 2014; 32:730-8. [PMID: 24898882 DOI: 10.3892/or.2014.3231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
Abstract
The nuclear export receptor, Crm1 (exportin 1), is involved in the nuclear translocation of proteins and certain RNAs from the nucleus to the cytoplasm and is thus crucial for the correct localisation of cellular components. Crm1 has recently been reported to be highly expressed in certain types of cancers, yet its expression in oesophageal cancer has not been investigated to date. We investigated the expression of Crm1 in normal and tumour tissues derived from 56 patients with human oesophageal squamous cell carcinoma and its functional significance in oesophageal cancer cell line models. Immunohistochemistry revealed that Crm1 expression was significantly elevated in oesophageal tumour tissues compared to normal tissues and its localisation shifted from predominantly nuclear to nuclear and cytoplasmic. Real‑time RT‑PCR revealed that Crm1 expression was elevated at the mRNA level. To determine the functional significance of elevated Crm1 expression in oesophageal cancer, its expression was inhibited using siRNA, and a significant decrease in cell proliferation was observed associated with G1 cell cycle arrest and the induction of apoptosis. Similarly, leptomycin B (LMB) treatment resulted in the effective killing of oesophageal cancer cells at nanomolar concentrations. Normal oesophageal epithelial cells, however, were much less sensitive to Crm1 inhibition with siRNA and LMB. Together, this study reveals that Crm1 expression is increased in oesophageal cancer and is required for the proliferation and survival of oesophageal cancer cells.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Widaad Zemanay
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, NHLS-Groote Schuur Hospital, Cape Town, South Africa
| | - Denver T Hendricks
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M I Parker
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
125
|
Turner JG, Dawson J, Cubitt CL, Baz R, Sullivan DM. Inhibition of CRM1-dependent nuclear export sensitizes malignant cells to cytotoxic and targeted agents. Semin Cancer Biol 2014; 27:62-73. [PMID: 24631834 PMCID: PMC4108511 DOI: 10.1016/j.semcancer.2014.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
Nuclear-cytoplasmic trafficking of proteins is a significant factor in the development of cancer and drug resistance. Subcellular localization of exported proteins linked to cancer development include those involved in cell growth and proliferation, apoptosis, cell cycle regulation, transformation, angiogenesis, cell adhesion, invasion, and metastasis. Here, we examined the basic mechanisms involved in the export of proteins from the nucleus to the cytoplasm. All proteins over 40kDa use the nuclear pore complex to gain entry or exit from the nucleus, with the primary nuclear export molecule involved in these processes being chromosome region maintenance 1 (CRM1, exportin 1 or XPO1). Proteins exported from the nucleus must possess a hydrophobic nuclear export signal (NES) peptide that binds to a hydrophobic groove containing an active-site Cys528 in the CRM1 protein. CRM1 inhibitors function largely by covalent modification of the active site Cys528 and prevent binding to the cargo protein NES. In the absence of a CRM1 inhibitor, CRM1 binds cooperatively to the NES of the cargo protein and RanGTP, forming a trimer that is actively transported out of the nucleus by facilitated diffusion. Nuclear export can be blocked by CRM1 inhibitors, NES peptide inhibitors or by preventing post-translational modification of cargo proteins. Clinical trials using the classic CRM1 inhibitor leptomycin B proved too toxic for patients; however, a new generation of less toxic small molecule inhibitors is being used in clinical trials in patients with both hematological malignancies and solid tumors. Additional trials are being initiated using small-molecule CRM1 inhibitors in combination with chemotherapeutics such as pegylated liposomal doxorubicin. In this review, we present evidence that combining the new CRM1 inhibitors with other classes of therapeutics may prove effective in the treatment of cancer. Potential combinatorial therapies discussed include the use of CRM1 inhibitors and the addition of alkylating agents (melphalan), anthracyclines (doxorubicin and daunomycin), BRAF inhibitors, platinum drugs (cisplatin and oxaliplatin), proteosome inhibitors (bortezomib and carfilzomib), or tyrosine-kinase inhibitors (imatinib). Also, the sequence of treatment may be important for combination therapy. We found that the most effective treatment regimen involved first priming the cancer cells with the CRM1 inhibitor followed by doxorubicin, bortezomib, carfilzomib, or melphalan. This order sensitized both de novo and acquired drug-resistant cancer cell lines.
Collapse
Affiliation(s)
- Joel G Turner
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jana Dawson
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher L Cubitt
- Translational Research Core Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel M Sullivan
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
126
|
Wang X, Li S. Protein mislocalization: mechanisms, functions and clinical applications in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1846:13-25. [PMID: 24709009 PMCID: PMC4141035 DOI: 10.1016/j.bbcan.2014.03.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 02/20/2014] [Accepted: 03/27/2014] [Indexed: 12/21/2022]
Abstract
The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
127
|
Fung HYJ, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014; 27:52-61. [PMID: 24631835 PMCID: PMC4108548 DOI: 10.1016/j.semcancer.2014.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
Abstract
CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| |
Collapse
|
128
|
Eliaš J, Dimitrio L, Clairambault J, Natalini R. The dynamics of p53 in single cells: physiologically based ODE and reaction-diffusion PDE models. Phys Biol 2014; 11:045001. [PMID: 25075792 DOI: 10.1088/1478-3975/11/4/045001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intracellular signalling network of the p53 protein plays important roles in genome protection and the control of cell cycle phase transitions. Recently observed oscillatory behaviour in single cells under stress conditions has inspired several research groups to simulate and study the dynamics of the protein with the aim of gaining a proper understanding of the physiological meanings of the oscillations. We propose compartmental ODE and PDE models of p53 activation and regulation in single cells following DNA damage and we show that the p53 oscillations can be retrieved by plainly involving p53-Mdm2 and ATM-p53-Wip1 negative feedbacks, which are sufficient for oscillations experimentally, with no further need to introduce any delays into the protein responses and without considering additional positive feedback.
Collapse
Affiliation(s)
- Ján Eliaš
- UPMC, Laboratoire Jacques-Louis Lions, 4 Place Jussieu, F-75005 Paris, France & INRIA Paris-Rocquencourt, MAMBA project-team, Paris and Rocquencourt, France
| | | | | | | |
Collapse
|
129
|
Sun H, Hattori N, Chien W, Sun Q, Sudo M, E-Ling GL, Ding L, Lim SL, Shacham S, Kauffman M, Nakamaki T, Koeffler HP. KPT-330 has antitumour activity against non-small cell lung cancer. Br J Cancer 2014; 111:281-91. [PMID: 24946002 PMCID: PMC4102938 DOI: 10.1038/bjc.2014.260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We investigated the biologic and pharmacologic activities of a chromosome region maintenance 1 (CRM1) inhibitor against human non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. METHODS The in vitro and in vivo effects of a novel CRM1 inhibitor (KPT-330) for a large number of anticancer parameters were evaluated using a large panel of 11 NSCLC cell lines containing different key driver mutations. Mice bearing human NSCLC xenografts were treated with KPT-330, and tumour growth was assessed. RESULTS KPT-330 inhibited proliferation and induced cell cycle arrest and apoptosis-related proteins in 11 NSCLC cells lines. Moreover, the combination of KPT-330 with cisplatin synergistically enhanced the cell kill of the NSCLC cells in vitro. Human NSCLC tumours growing in immunodeficient mice were markedly inhibited by KPT-330. Also, KPT-330 was effective even against NSCLC cells with a transforming mutation of either exon 20 of EGFR, TP53, phosphatase and tensin homologue, RAS or PIK3CA, suggesting the drug might be effective against a variety of lung cancers irrespective of their driver mutation. CONCLUSIONS Our results support clinical testing of KPT-330 as a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- H Sun
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - N Hattori
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - W Chien
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - Q Sun
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - M Sudo
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - G L E-Ling
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - L Ding
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - S L Lim
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - S Shacham
- Karyopharm Therapeutics, Boston, MA 01760, USA
| | - M Kauffman
- Karyopharm Therapeutics, Boston, MA 01760, USA
| | - T Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - H P Koeffler
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| |
Collapse
|
130
|
Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Chem Rev 2014; 114:6844-79. [PMID: 24830552 PMCID: PMC4100540 DOI: 10.1021/cr400713r] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute University of South Florida, Tampa, Florida 33612, United States
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Vrushank Davé
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| | - Lilia M. Iakoucheva
- Department of Psychiatry, University of California San Diego, La Jolla, California 92093, United States
| | - Prerna Malaney
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Steven J. Metallo
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Ravi Ramesh Pathak
- Department of Pathology and Cell Biology , Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Andreas C. Joerger
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
131
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
132
|
Zhou G, Wang J, Zhao M, Xie TX, Tanaka N, Sano D, Patel AA, Ward AM, Sandulache VC, Jasser SA, Skinner HD, Fitzgerald AL, Osman AA, Wei Y, Xia X, Songyang Z, Mills GB, Hung MC, Caulin C, Liang J, Myers JN. Gain-of-function mutant p53 promotes cell growth and cancer cell metabolism via inhibition of AMPK activation. Mol Cell 2014; 54:960-974. [PMID: 24857548 DOI: 10.1016/j.molcel.2014.04.024] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 02/18/2014] [Accepted: 04/07/2014] [Indexed: 12/25/2022]
Abstract
Many mutant p53 proteins (mutp53s) exert oncogenic gain-of-function (GOF) properties, but the mechanisms mediating these functions remain poorly defined. We show here that GOF mutp53s inhibit AMP-activated protein kinase (AMPK) signaling in head and neck cancer cells. Conversely, downregulation of GOF mutp53s enhances AMPK activation under energy stress, decreasing the activity of the anabolic factors acetyl-CoA carboxylase and ribosomal protein S6 and inhibiting aerobic glycolytic potential and invasive cell growth. Under conditions of energy stress, GOF mutp53s, but not wild-type p53, preferentially bind to the AMPKα subunit and inhibit AMPK activation. Given the importance of AMPK as an energy sensor and tumor suppressor that inhibits anabolic metabolism, our findings reveal that direct inhibition of AMPK activation is an important mechanism through which mutp53s can gain oncogenic function.
Collapse
Affiliation(s)
- Ge Zhou
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Jiping Wang
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei Zhao
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tong-Xin Xie
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Noriaki Tanaka
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daisuke Sano
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ameeta A Patel
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandra M Ward
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vlad C Sandulache
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samar A Jasser
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Heath D Skinner
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alison Lea Fitzgerald
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Abdullah A Osman
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuefeng Xia
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Diabetes Research, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduated Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
| | - Carlos Caulin
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jiyong Liang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
133
|
Burger K, Eick D. Functional ribosome biogenesis is a prerequisite for p53 destabilization: impact of chemotherapy on nucleolar functions and RNA metabolism. Biol Chem 2014; 394:1133-43. [PMID: 23640940 DOI: 10.1515/hsz-2013-0153] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/26/2013] [Indexed: 12/21/2022]
Abstract
The production and processing of ribosomal RNA is a complex and well-coordinated nucleolar process for ribosome biogenesis. Progress in understanding nucleolar structure and function has lead to the unexpected discovery of the nucleolus as a highly sensitive sensor of cellular stress and an important regulator of the tumor suppressor p53. Inhibition of ribosomal RNA metabolism has been shown to activate a signaling pathway for p53 induction. This review elucidates the potential of classical and recently developed chemotherapeutic drugs to stabilize p53 by inhibiting nucleolar functions.
Collapse
Affiliation(s)
- Kaspar Burger
- Department of Molecular Epigenetics, Helmholtz Zentrum München and Center for Integrated Protein Science Munich, Marchioninistrasse 25, 81377 Munich, Germany
| | | |
Collapse
|
134
|
Tan DSP, Bedard PL, Kuruvilla J, Siu LL, Razak ARA. Promising SINEs for embargoing nuclear-cytoplasmic export as an anticancer strategy. Cancer Discov 2014; 4:527-37. [PMID: 24743138 DOI: 10.1158/2159-8290.cd-13-1005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In cancer cells, the nuclear-cytoplasmic transport machinery is frequently disrupted, resulting in mislocalization and loss of function for many key regulatory proteins. In this review, the mechanisms by which tumor cells co-opt the nuclear transport machinery to facilitate carcinogenesis, cell survival, drug resistance, and tumor progression will be elucidated, with a particular focus on the role of the nuclear-cytoplasmic export protein. The recent development of a new generation of selective inhibitors of nuclear export (XPO1 antagonists) and how these novel anticancer drugs may bring us closer to the implementation of this therapeutic strategy in the clinic will be discussed.
Collapse
Affiliation(s)
- David S P Tan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
135
|
Comel A, Sorrentino G, Capaci V, Del Sal G. The cytoplasmic side of p53's oncosuppressive activities. FEBS Lett 2014; 588:2600-9. [PMID: 24747877 DOI: 10.1016/j.febslet.2014.04.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 01/25/2023]
Abstract
The tumor suppressor p53 is a transcription factor that in response to a plethora of stress stimuli activates a complex and context-dependent cellular response ultimately protecting genome integrity. In the last two decades, the discovery of cytoplasmic p53 localization has driven an intense research on its extra-nuclear functions. The ability to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm and mitochondria have been dissected. However, recent works indicate the involvement of cytoplasmic p53 also in biological processes such as autophagy, metabolism, oxidative stress and drug response. This review will focus on the mechanisms of cytoplasmic p53 activation and the pathophysiological role of p53's transcription-independent functions, highlighting possible therapeutic implications.
Collapse
Affiliation(s)
- Anna Comel
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy
| | - Giovanni Sorrentino
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy
| | - Valeria Capaci
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy
| | - Giannino Del Sal
- Laboratorio Nazionale CIB (LNCIB), Area Science Park, 34149 Trieste, Italy; Dipartimento di Scienze della Vita, Università degli Studi di Trieste, 34127, Italy.
| |
Collapse
|
136
|
|
137
|
Iron metabolism regulates p53 signaling through direct heme-p53 interaction and modulation of p53 localization, stability, and function. Cell Rep 2014; 7:180-93. [PMID: 24685134 PMCID: PMC4219651 DOI: 10.1016/j.celrep.2014.02.042] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 12/02/2013] [Accepted: 02/27/2014] [Indexed: 02/06/2023] Open
Abstract
Iron excess is closely associated with tumorigenesis in multiple types of human cancers, with underlying mechanisms yet unclear. Recently, iron deprivation has emerged as a major strategy for chemotherapy, but it exerts tumor suppression only on select human malignancies. Here, we report that the tumor suppressor protein p53 is downregulated during iron excess. Strikingly, the iron polyporphyrin heme binds to p53 protein, interferes with p53-DNA interactions, and triggers both nuclear export and cytosolic degradation of p53. Moreover, in a tumorigenicity assay, iron deprivation suppressed wild-type p53-dependent tumor growth, suggesting that upregulation of wild-type p53 signaling underlies the selective efficacy of iron deprivation. Our findings thus identify a direct link between iron/heme homeostasis and the regulation of p53 signaling, which not only provides mechanistic insights into iron-excess-associated tumorigenesis but may also help predict and improve outcomes in iron-deprivation-based chemotherapy.
Collapse
|
138
|
Gabizon R, Friedler A. Allosteric modulation of protein oligomerization: an emerging approach to drug design. Front Chem 2014; 2:9. [PMID: 24790978 PMCID: PMC3982530 DOI: 10.3389/fchem.2014.00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/22/2014] [Indexed: 01/05/2023] Open
Abstract
Many disease-related proteins are in equilibrium between different oligomeric forms. The regulation of this equilibrium plays a central role in maintaining the activity of these proteins in vitro and in vivo. Modulation of the oligomerization equilibrium of proteins by molecules that bind preferentially to a specific oligomeric state is emerging as a potential therapeutic strategy that can be applied to many biological systems such as cancer and viral infections. The target proteins for such compounds are diverse in structure and sequence, and may require different approaches for shifting their oligomerization equilibrium. The discovery of such oligomerization-modulating compounds is thus achieved based on existing structural knowledge about the specific target proteins, as well as on their interactions with partner proteins or with ligands. In silico design and combinatorial tools such as peptide arrays and phage display are also used for discovering compounds that modulate protein oligomerization. The current review highlights some of the recent developments in the design of compounds aimed at modulating the oligomerization equilibrium of proteins, including the "shiftides" approach developed in our lab.
Collapse
Affiliation(s)
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of JerusalemJerusalem, Israel
| |
Collapse
|
139
|
Wang S, Han X, Wang J, Yao J, Shi Y. Antitumor effects of a novel chromosome region maintenance 1 (CRM1) inhibitor on non-small cell lung cancer cells in vitro and in mouse tumor xenografts. PLoS One 2014; 9:e89848. [PMID: 24595136 PMCID: PMC3942386 DOI: 10.1371/journal.pone.0089848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/28/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chromosome Region Maintenance 1 (CRM1) is a nuclear exporter and its inhibitor has anti-tumor activity in various cancers. This study assessed the therapeutic efficiency of the novel CRM1 inhibitor KPT-185 on non-small cell lung cancer (NSCLC). METHODS NSCLC cell lines were treated with KPT-185 to assess changes in cell viability, cell cycle, apoptosis, and protein expression. NOD-SCID mice carrying NSCLC cell xenografts were orally treated with KPT-276, a clinical analog of KPT-185, to examine the efficacy and side effects of KPT-276 in vivo. RESULTS KPT-185 significantly reduced the viability of six NSCLC cell lines in a time- and dose-dependent manner, including epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI)-resistant H1975 and H1650GR cell lines. In addition, KPT-185 induced these NSCLC cells to arrest at G1 phase of the cell cycle and caused apoptosis in a dose-dependent manner. KPT-185 treatment also reduced CRM1 protein levels in six NSCLC cell lines, and the reduction could be completely abolished by the proteasome inhibitor bortezomib. KPT-185 activated caspase 3, 8, and 9, but inhibited survivin expression in NSCLC cells. In a mouse H1975 cell xenograft model, tumor growth was significantly inhibited by oral KPT-276 administration, and there was no significant mouse body weight loss or other side effects. CONCLUSIONS The current study demonstrated the anti-tumor effects of KPT-185 in NSCLC cells, including EGFR-TKI-resistant NSCLC cell lines. Further studies will assess anti-tumor activity of KPT-185 in a clinical trial for NSCLC patients.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Medical Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Department of Medical Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jianfei Wang
- Department of Medical Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jiarui Yao
- Department of Medical Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Cancer Institute/Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| |
Collapse
|
140
|
Li Q, Zhang P, Zhang C, Wang Y, Wan R, Yang Y, Guo X, Huo R, Lin M, Zhou Z, Sha J. DDX3X regulates cell survival and cell cycle during mouse early embryonic development. J Biomed Res 2014; 28:282-91. [PMID: 25050112 PMCID: PMC4102842 DOI: 10.7555/jbr.27.20130047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/06/2013] [Accepted: 08/04/2013] [Indexed: 12/13/2022] Open
Abstract
DDX3X is a highly conserved DEAD-box RNA helicase that participates in RNA transcription, RNA splicing, and mRNA transport, translation, and nucleo-cytoplasmic transport. It is highly expressed in metaphase II (MII) oocytes and is the predominant DDX3 variant in the ovary and embryo. However, whether it is important in mouse early embryo development remains unknown. In this study, we investigated the function of DDX3X in early embryogenesis by cytoplasmic microinjection with its siRNA in zygotes or single blastomeres of 2-cell embryos. Our results showed that knockdown of Ddx3x in zygote cytoplasm led to dramatically diminished blastocyst formation, reduced cell numbers, and an increase in the number of apoptotic cells in blastocysts. Meanwhile, there was an accumulation of p53 in RNAi blastocysts. In addition, the ratio of cell cycle arrest during 2-cell to 4-cell transition increased following microinjection of Ddx3x siRNA into single blastomeres of 2-cell embryos compared with control. These results suggest that Ddx3x is an essential gene associated with cell survival and cell cycle control in mouse early embryos, and thus plays key roles in normal embryo development.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Pan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chao Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ying Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ru Wan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ye Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Min Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
141
|
Vlatković N, Boyd MT, Rubbi CP. Nucleolar control of p53: a cellular Achilles' heel and a target for cancer therapy. Cell Mol Life Sci 2014; 71:771-91. [PMID: 23685903 PMCID: PMC11113510 DOI: 10.1007/s00018-013-1361-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/07/2013] [Accepted: 04/30/2013] [Indexed: 02/07/2023]
Abstract
Nucleoli perform a crucial cell function, ribosome biogenesis, and of critical relevance to the subject of this review, they are also extremely sensitive to cellular stresses, which can cause loss of function and/or associated structural disruption. In recent years, we have learned that cells take advantage of this stress sensitivity of nucleoli, using them as stress sensors. One major protein regulated by this role of nucleoli is the tumor suppressor p53, which is activated in response to diverse cellular injuries in order to exert its onco-protective effects. Here we discuss a model of nucleolar regulation of p53, which proposes that key steps in the promotion of p53 degradation by the ubiquitin ligase MDM2 occur in nucleoli, thus providing an explanation for the observed link between nucleolar disruption and p53 stability. We review current evidence for this compartmentalization in p53 homeostasis and highlight current limitations of the model. Interestingly, a number of current chemotherapeutic agents capable of inducing a p53 response are likely to do so by targeting nucleolar functions and these compounds may serve to inform further improved therapeutic targeting of nucleoli.
Collapse
Affiliation(s)
- Nikolina Vlatković
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Mark T. Boyd
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| | - Carlos P. Rubbi
- Cancer Research Centre, University of Liverpool, 200 London Rd, Liverpool, L3 9TA UK
| |
Collapse
|
142
|
Youssef G, Gillett C, Agbaje O, Crompton T, Montano X. Phosphorylation of NTRK1 at Y674/Y675 induced by TP53-dependent repression of PTPN6 expression: a potential novel prognostic marker for breast cancer. Mod Pathol 2014; 27:361-74. [PMID: 23948750 DOI: 10.1038/modpathol.2013.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 12/29/2022]
Abstract
We have identified a ligand-independent mechanism whereby the tumor suppressor, TP53, induces nerve growth factor receptor, NTRK1, phosphorylation at Y674/Y675 (NTRK1-pY674/pY675), via the repression of the NTRK1-phosphatase, PTPN6. This results in suppression of breast cancer cell proliferation. In this investigation, we aimed to establish whether perturbation of the wild-type TP53-NTRK1-pY674/pY675-PTPN6 pathway has an impact on disease-free survival of breast cancer patients without neo-adjuvant treatment. A total of 308 tumor samples were stained for NTRK1, NTRK1-pY674/pY675, PTPN6, and TP53 expression. Association between expression levels and disease-free survival was determined by the univariate/multivariate and Kaplan-Meir methods of analysis. DNA from tumors was sequenced to identify mutant or wild-type TP53. Tumors expressing NTRK1-pY674/pY675 but with undetectable or low levels of PTPN6 and TP53 were associated with prolonged 5, 10, and 15 years' disease-free survival by 48%, 36%, and 37%, respectively, in the multivariate analysis (P<0.05). A similar result was observed in tumors expressing wild-type TP53, NTRK1-pY674/pY675, and low or undetectable levels of PTPN6. Given that estrogen receptor-positive breast cancers encode wild-type TP53, we analyzed this expression pattern in these tumors. Multivariate analysis showed that it was significantly and independently predictive of prolonged survival by 66%, 70%, and 84%, respectively, (P<0.05). The Kaplan-Meir method demonstrated that NTRK1-pY674/pY675 together with undetectable or low levels of PTPN6 correlated with 59% probability of disease-free survival (median survival 15 years), compared with 7% probability of disease-free survival (median survival 4.5 years) when absent. In luminal A tumors, the presence of this pattern was estimated to have a 61% probability of disease-free survival (median survival 15 years), compared with 6% probability of disease-free survival (median survival 3 years) when it was absent. These results strongly suggest that expression of NTRK1-pY674/pY675 together with wild-type TP53 and low levels of PTPN6 expression are predictors of improved disease-free survival and that they could be useful biomarkers to predict clinical outcome.
Collapse
Affiliation(s)
- Gehad Youssef
- 1] Immunobiology Unit, UCL, Institute of Child Health, London, UK [2] Molecular Hematology and Cancer Biology Unit, UCL, Institute of Child Health, London, UK
| | - Cheryl Gillett
- Breast Tissue & Data Bank, Division of Cancer Studies, King's College London, Guys Hospital, London, UK
| | - Orunsola Agbaje
- Cancer Epidemiology Group, Division of Cancer Studies, King's College London, Guys Hospital, London, UK
| | - Tessa Crompton
- Immunobiology Unit, UCL, Institute of Child Health, London, UK
| | - Ximena Montano
- 1] Immunobiology Unit, UCL, Institute of Child Health, London, UK [2] Molecular Hematology and Cancer Biology Unit, UCL, Institute of Child Health, London, UK [3] School of Health and Social Work, Department of Allied Health Professions and Midwifery University of Hertfordshire, Hatfield, UK
| |
Collapse
|
143
|
Differential outcome of MEK1/2 inhibitor-platinum combinations in platinum-sensitive and -resistant ovarian carcinoma cells. Cancer Lett 2014; 347:212-24. [PMID: 24576622 DOI: 10.1016/j.canlet.2014.02.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/28/2023]
Abstract
Deregulated pro-survival signalling plays a role in ovarian carcinoma drug resistance. Here, we show that cisplatin or oxaliplatin in combination with the MEK1/2 inhibitor CI-1040 resulted in a synergistic effect associated with enhanced apoptotic response in platinum-sensitive cells. The drug combinations were additive in platinum-resistant cells exhibiting increased phospho-ERK1/2, down-regulation of apoptosis-related factors (BAX, PUMA, FOXO1) and of phosphatases inhibiting ERK1/2 (DUSP5, DUSP6). Consistently, FOXO1 knockdown in sensitive cells reduced the efficacy of the combination treatment. Pharmacological targeting of ERK1/2 pathway increases cell sensitivity to platinum compounds by interfering with multiple events, ultimately favouring apoptosis induction in selected molecular backgrounds.
Collapse
|
144
|
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2:535-62. [PMID: 24634836 PMCID: PMC3953959 DOI: 10.1016/j.redox.2014.02.006] [Citation(s) in RCA: 630] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment. Complexity of redox regulation increases along the phylogenetic tree. Complex regulatory networks allow for a high degree of H2O2 biological plasticity. H2O2 modulates gene expression at all steps from transcription to protein synthesis. Fast response (s) is mediated by sensors with high H2O2 reactivity. Low reactivity H2O2 sensors may mediate slow (h) or localized H2O2 responses.
Collapse
Affiliation(s)
- H. Susana Marinho
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Cyrne
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Lisboa, Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
145
|
Tompa P. Multisteric Regulation by Structural Disorder in Modular Signaling Proteins: An Extension of the Concept of Allostery. Chem Rev 2013; 114:6715-32. [DOI: 10.1021/cr4005082] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Peter Tompa
- VIB Department of Structural
Biology, Vrije Universiteit Brussel, 1050 Brussels, Belgium
- Institute of Enzymology, Biological Research Center, Hungarian Academy
of Sciences, Budapest H-1113, Hungary
| |
Collapse
|
146
|
Wickramasekera NT, Das GM. Tumor suppressor p53 and estrogen receptors in nuclear-mitochondrial communication. Mitochondrion 2013; 16:26-37. [PMID: 24177747 DOI: 10.1016/j.mito.2013.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/04/2013] [Accepted: 10/22/2013] [Indexed: 01/09/2023]
Abstract
Several gene transcription regulators considered solely localized within the nuclear compartment are being reported to be present in the mitochondria as well. There is growing interest in the role of mitochondria in regulating cellular metabolism in normal and disease states. Various findings demonstrate the importance of crosstalk between nuclear and mitochondrial genomes, transcriptomes, and proteomes in regulating cellular functions. Both tumor suppressor p53 and estrogen receptor (ER) were originally characterized as nuclear transcription factors. In addition to their individual roles as regulators of various genes, these two proteins interact resulting in major cellular consequences. In addition to its nuclear role, p53 has been localized to the mitochondria where it executes various transcription-independent functions. Likewise, ERs are reported to be present in mitochondria; however their functional roles remain to be clearly defined. In this review, we provide an integrated view of the current knowledge of nuclear and mitochondrial p53 and ERs and how it relates to normal and pathological physiology.
Collapse
Affiliation(s)
- Nadi T Wickramasekera
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States
| | - Gokul M Das
- Department of Pharmacology and Therapeutics, Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, United States.
| |
Collapse
|
147
|
Burger K, Mühl B, Kellner M, Rohrmoser M, Gruber-Eber A, Windhager L, Friedel CC, Dölken L, Eick D. 4-thiouridine inhibits rRNA synthesis and causes a nucleolar stress response. RNA Biol 2013; 10:1623-30. [PMID: 24025460 DOI: 10.4161/rna.26214] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High concentrations (> 100 µM) of the ribonucleoside analog 4-thiouridine (4sU) is widely used in methods for RNA analysis like photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and nascent messenger (m)RNA labeling (4sU-tagging). Here, we show that 4sU-tagging at low concentrations ≤ 10 µM can be used to measure production and processing of ribosomal (r)RNA. However, elevated concentrations of 4sU (> 50 µM), which are usually used for mRNA labeling experiments, inhibit production and processing of 47S rRNA. The inhibition of rRNA synthesis is accompanied by nucleoplasmic translocation of nucleolar nucleophosmin (NPM1), induction of the tumor suppressor p53, and inhibition of proliferation. We conclude that metabolic labeling of RNA by 4sU triggers a nucleolar stress response, which might influence the interpretation of results. Therefore, functional ribosome biogenesis, nucleolar integrity, and cell cycle should be addressed in 4sU labeling experiments.
Collapse
Affiliation(s)
- Kaspar Burger
- Department of Molecular Epigenetics; Helmholtz Center Munich; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| | - Bastian Mühl
- Department of Molecular Epigenetics; Helmholtz Center Munich; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| | - Markus Kellner
- Department of Molecular Epigenetics; Helmholtz Center Munich; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| | - Michaela Rohrmoser
- Department of Molecular Epigenetics; Helmholtz Center Munich; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| | - Anita Gruber-Eber
- Department of Molecular Epigenetics; Helmholtz Center Munich; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| | - Lukas Windhager
- Institute for Informatics, Teaching and Research Unit Bioinformatics; Ludwig-Maximilians-University Munich; Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Teaching and Research Unit Bioinformatics; Ludwig-Maximilians-University Munich; Munich, Germany
| | - Lars Dölken
- Department of Medicine; Addenbrooke's Hospital; University of Cambridge; Cambridge, UK
| | - Dirk Eick
- Department of Molecular Epigenetics; Helmholtz Center Munich; Center for Integrated Protein Science Munich (CIPSM); Munich, Germany
| |
Collapse
|
148
|
RUNX Family Participates in the Regulation of p53-Dependent DNA Damage Response. Int J Genomics 2013; 2013:271347. [PMID: 24078903 PMCID: PMC3775453 DOI: 10.1155/2013/271347] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/01/2013] [Indexed: 11/24/2022] Open
Abstract
A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor
initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated
and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such as
p21WAF1, BAX, and PUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53
is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic
response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a
variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between
p53 and RUNX family in response to DNA damage.
Collapse
|
149
|
Santiago A, Li D, Zhao LY, Godsey A, Liao D. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Mol Biol Cell 2013; 24:2739-52. [PMID: 23825024 PMCID: PMC3756925 DOI: 10.1091/mbc.e12-10-0771] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/24/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022] Open
Abstract
Chromosomal region maintenance 1 (CRM1) mediates p53 nuclear export. Although p53 SUMOylation promotes its nuclear export, the underlying mechanism is unclear. Here we show that tethering of a small, ubiquitin-like modifier (SUMO) moiety to p53 markedly increases its cytoplasmic localization. SUMO attachment to p53 does not affect its oligomerization, suggesting that subunit dissociation required for exposing p53's nuclear export signal (NES) is unnecessary for p53 nuclear export. Surprisingly, SUMO-mediated p53 nuclear export depends on the SUMO-interacting motif (SIM)-binding pocket of SUMO-1. The CRM1 C-terminal domain lacking the NES-binding groove interacts with tetrameric p53, and the proper folding of the p53 core domain, rather than the presence of the N- or C-terminal tails, appears to be important for p53-CRM1 interaction. The CRM1 Huntington, EF3, a subunit of PP2A, and TOR1 9 (HEAT9) loop, which regulates GTP-binding nuclear protein Ran binding and cargo release, contains a prototypical SIM. Remarkably, disruption of this SIM in conjunction with a mutated SIM-binding groove of SUMO-1 markedly enhances the binding of CRM1 to p53-SUMO-1 and their accumulation in the nuclear pore complexes (NPCs), as well as their persistent association in the cytoplasm. We propose that SUMOylation of a CRM1 cargo such as p53 at the NPCs unlocks the HEAT9 loop of CRM1 to facilitate the disassembly of the transporting complex and cargo release to the cytoplasm.
Collapse
Affiliation(s)
- Aleixo Santiago
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Dawei Li
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
- Department of Urology, Qilu Hospital, Shandong University, Jinan 250012, Shandong, China
| | - Lisa Y. Zhao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Adam Godsey
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, and UF Genetics Institute, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
150
|
Suppiah A, Greenman J. Clinical utility of anti- p53 auto-antibody: Systematic review and focus on colorectal cancer. World J Gastroenterol 2013; 19:4651-4670. [PMID: 23922463 PMCID: PMC3732838 DOI: 10.3748/wjg.v19.i29.4651] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 03/26/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
Mutation of the p53 gene is a key event in the carcinogenesis of many different types of tumours. These can occur throughout the length of the p53 gene. Anti-p53 auto-antibodies are commonly produced in response to these p53 mutations. This review firstly describes the various mechanisms of p53 dysfunction and their association with subsequent carcinogenesis. Following this, the mechanisms of induction of anti-p53 auto-antibody production are shown, with various hypotheses for the discrepancies between the presence of p53 mutation and the presence/absence of anti-p53 auto-antibodies. A systematic review was performed with a descriptive summary of key findings of each anti-p53 auto-antibody study in all cancers published in the last 30 years. Using this, the cumulative frequency of anti-p53 auto-antibody in each cancer type is calculated and then compared with the incidence of p53 mutation in each cancer to provide the largest sample calculation and correlation between mutation and anti-p53 auto-antibody published to date. Finally, the review focuses on the data of anti-p53 auto-antibody in colorectal cancer studies, and discusses future strategies including the potentially promising role using anti-p53 auto-antibody presence in screening and surveillance.
Collapse
|