101
|
Park E, Ahn YH, Kang HG, Yoo KH, Won NH, Lee KB, Moon KC, Seong MW, Gwon TR, Park SS, Cheong HI. COQ6 Mutations in Children With Steroid-Resistant Focal Segmental Glomerulosclerosis and Sensorineural Hearing Loss. Am J Kidney Dis 2017; 70:139-144. [DOI: 10.1053/j.ajkd.2016.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 10/15/2016] [Indexed: 01/15/2023]
|
102
|
Dogra S, Kaskel F. Steroid-resistant nephrotic syndrome: a persistent challenge for pediatric nephrology. Pediatr Nephrol 2017; 32:965-974. [PMID: 27783158 DOI: 10.1007/s00467-016-3459-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/19/2022]
Abstract
Steroid-resistant nephrotic syndrome remains a challenge to treat, but various efforts are underway to better understand the pathogenesis and improve patient outcomes. This review provides an update on the newer advances in understanding the molecular etiologies for a variety of podocyte abnormalities, potential circulating factors that may initiate and sustain the steroid-resistant state, genetic mutations, and precision medicine treatment modalities in this continuously perplexing disorder.
Collapse
Affiliation(s)
- Samriti Dogra
- Division of Pediatric Nephrology, Department of Pediatrics, Connecticut Children's Medical Center, 282 Washington Street, Hartford, CT, 06095, USA.
| | - Frederick Kaskel
- Division of Pediatric Nephrology, Department of Pediatrics, Children's Hospital at Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
103
|
Müller-Deile J, Dannenberg J, Schroder P, Lin MH, Miner JH, Chen R, Bräsen JH, Thum T, Nyström J, Staggs LB, Haller H, Fiedler J, Lorenzen JM, Schiffer M. Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases. Kidney Int 2017; 92:836-849. [PMID: 28476557 DOI: 10.1016/j.kint.2017.03.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/11/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023]
Abstract
The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases.
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| | - Jan Dannenberg
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Patricia Schroder
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Meei-Hua Lin
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rongjun Chen
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Imperial College London, National Heart and Lung Institute, London, UK; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Jenny Nyström
- Departments of Physiology and Nephrology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Hermann Haller
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Johan M Lorenzen
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany; Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, USA.
| |
Collapse
|
104
|
Ha TS. Genetics of hereditary nephrotic syndrome: a clinical review. KOREAN JOURNAL OF PEDIATRICS 2017; 60:55-63. [PMID: 28392820 PMCID: PMC5383633 DOI: 10.3345/kjp.2017.60.3.55] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/18/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
Advances in podocytology and genetic techniques have expanded our understanding of the pathogenesis of hereditary steroid-resistant nephrotic syndrome (SRNS). In the past 20 years, over 45 genetic mutations have been identified in patients with hereditary SRNS. Genetic mutations on structural and functional molecules in podocytes can lead to serious injury in the podocytes themselves and in adjacent structures, causing sclerotic lesions such as focal segmental glomerulosclerosis or diffuse mesangial sclerosis. This paper provides an update on the current knowledge of podocyte genes involved in the development of hereditary nephrotic syndrome and, thereby, reviews genotype-phenotype correlations to propose an approach for appropriate mutational screening based on clinical aspects.
Collapse
Affiliation(s)
- Tae-Sun Ha
- Department of Pediatrics, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
105
|
Schenk H, Müller-Deile J, Kinast M, Schiffer M. Disease modeling in genetic kidney diseases: zebrafish. Cell Tissue Res 2017; 369:127-141. [PMID: 28331970 DOI: 10.1007/s00441-017-2593-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 01/07/2023]
Abstract
Growing numbers of translational genomics studies are based on the highly efficient and versatile zebrafish (Danio rerio) vertebrate model. The increasing types of zebrafish models have improved our understanding of inherited kidney diseases, since they not only display pathophysiological changes but also give us the opportunity to develop and test novel treatment options in a high-throughput manner. New paradigms in inherited kidney diseases have been developed on the basis of the distinct genome conservation of approximately 70 % between zebrafish and humans in terms of existing gene orthologs. Several options are available to determine the functional role of a specific gene or gene sets. Permanent genome editing can be induced via complete gene knockout by using the CRISPR/Cas-system, among others, or via transient modification by using various morpholino techniques. Cross-species rescues succeeding knockdown techniques are employed to determine the functional significance of a target gene or a specific mutation. This article summarizes the current techniques and discusses their perspectives.
Collapse
Affiliation(s)
- Heiko Schenk
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Janina Müller-Deile
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mark Kinast
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA
| | - Mario Schiffer
- Department of Medicine/Nephrology, Hannover Medical School, Hannover, Germany.
- Mount Desert Island Biological Laboratory, Salisbury Cove, Bar Harbor, Me., USA.
| |
Collapse
|
106
|
Yao Y. Laminin: loss-of-function studies. Cell Mol Life Sci 2017; 74:1095-1115. [PMID: 27696112 PMCID: PMC11107706 DOI: 10.1007/s00018-016-2381-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 01/13/2023]
Abstract
Laminin, one of the most widely expressed extracellular matrix proteins, exerts many important functions in multiple organs/systems and at various developmental stages. Although its critical roles in embryonic development have been demonstrated, laminin's functions at later stages remain largely unknown, mainly due to its intrinsic complexity and lack of research tools (most laminin mutants are embryonic lethal). With the advance of genetic and molecular techniques, many new laminin mutants have been generated recently. These new mutants usually have a longer lifespan and show previously unidentified phenotypes. Not only do these studies suggest novel functions of laminin, but also they provide invaluable animal models that allow investigation of laminin's functions at late stages. Here, I first briefly introduce the nomenclature, structure, and biochemistry of laminin in general. Next, all the loss-of-function mutants/models for each laminin chain are discussed and their phenotypes compared. I hope to provide a comprehensive review on laminin functions and its loss-of-function models, which could serve as a reference for future research in this understudied field.
Collapse
Affiliation(s)
- Yao Yao
- College of Pharmacy, University of Minnesota, Duluth, MN, 55812, USA.
| |
Collapse
|
107
|
Mao M, Kiss M, Ou Y, Gould DB. Genetic dissection of anterior segment dysgenesis caused by a Col4a1 mutation in mouse. Dis Model Mech 2017; 10:475-485. [PMID: 28237965 PMCID: PMC5399567 DOI: 10.1242/dmm.027888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Ocular anterior segment dysgenesis (ASD) describes a spectrum of clinically and genetically heterogeneous congenital disorders affecting anterior structures that often lead to impaired vision. More importantly, 50-75% of patients with ASD develop early onset and aggressive glaucoma. Although several genes have been implicated in the etiology of ASD, the underlying mechanisms remain elusive. Type IV collagen alpha 1 (COL4A1) is an extracellular matrix protein and a critical component of nearly all basement membranes. COL4A1 mutations cause multi-system disorders in patients, including ASD (congenital cataracts, Axenfeld-Rieger's anomaly, Peter's anomaly and microphthalmia) and congenital or juvenile glaucoma. Here, we use a conditional Col4a1 mutation in mice to determine the location and timing of pathogenic events underlying COL4A1-related ocular dysgenesis. Our results suggest that selective expression of the Col4a1 mutation in neural crest cells and their derivatives is not sufficient to cause ocular dysgenesis and that selective expression of the Col4a1 mutation in vascular endothelial cells can lead to mild ASD and optic nerve hypoplasia but only on a sensitized background. In contrast, lens-specific expression of the conditional Col4a1 mutant allele led to cataracts, mild ASD and optic nerve hypoplasia, and age-related intraocular pressure dysregulation and optic nerve damage. Finally, ubiquitous expression of the conditional Col4a1 mutation at distinct developmental stages suggests that pathogenesis takes place before E12.5. Our results show that the lens and possibly vasculature play important roles in Col4a1-related ASD and that the pathogenic events occur at mid-embryogenesis in mice, during early stages of ocular development. Summary: Key pathogenic events in anterior segment dysgenesis, a congenital ocular disease with complex etiology, are recapitulated in a mouse model of Col4a1-related ASD.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Márton Kiss
- Department of Genetics, University of Szeged, Középfasor 52, Szeged H-6726, Hungary
| | - Yvonne Ou
- Department of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Douglas B Gould
- Department of Ophthalmology, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA .,Department of Anatomy, Institute for Human Genetics, UCSF School of Medicine, San Francisco, CA 94143, USA
| |
Collapse
|
108
|
Abstract
Purpose of review Glomerular filtration occurs in specialized, microscopic organelles. Each glomerulus contains unique cells and these cooperate to maintain normal filtration. Phenomenal adaptation is required for the glomerulus to respond to variable mechanical loads and this adaptation requires efficient communication between the resident cells. This review will focus on the latest discoveries related to signalling events that mediate the crosstalk between glomerular cells, and detail how disease processes can influence normal regulation. Recent findings New data indicate that the crosstalk between glomerular cells involves an increasing number of secreted signalling ligands that act in an autocrine or paracrine fashion. Furthermore, extended roles for some of the classical signalling molecules have been described and there is emerging evidence of therapeutic strategies to manipulate cellular crosstalk. The glomerular extracellular matrix harbours many of these signalling ligands, acting as a reservoir and presenting ligands to cell surface receptors. Signals can also be transferred between cells by extracellular vesicles and this is an emerging concept in cellular crosstalk. Summary Recent discoveries are building our understanding about glomerular cell crosstalk, and this review focuses on growth factors and signalling peptides, methods of delivery to target cells, and the potential for developing new therapies for glomerular disease.
Collapse
|
109
|
Randles MJ, Humphries MJ, Lennon R. Proteomic definitions of basement membrane composition in health and disease. Matrix Biol 2017; 57-58:12-28. [PMID: 27553508 DOI: 10.1016/j.matbio.2016.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/11/2022]
Abstract
Basement membranes are formed from condensed networks of extracellular matrix (ECM) proteins. These structures underlie all epithelial, mesothelial and endothelial sheets and provide an essential structural scaffold. Candidate-based investigations have established that predominant components of basement membranes are laminins, collagen type IV, nidogens and heparan sulphate proteoglycans. More recently, global proteomic approaches have been applied to investigate ECM and these analyses confirm tissue-specific ECM proteomes with a high degree of complexity. The proteomes consist of structural as well as regulatory ECM proteins such as proteases and growth factors. This review is focused on the proteomic analysis of basement membranes and illustrates how this approach can be used to build our understanding of ECM regulation in health and disease.
Collapse
Affiliation(s)
- Michael J Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, UK; Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK; Department of Paediatric Nephrology, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK.
| |
Collapse
|
110
|
Peña-González L, Guerra-García P, Sánchez-Calvín MT, Delgado-Ledesma F, de Alba-Romero C. New genetic mutation associated with Pierson syndrome. An Pediatr (Barc) 2016. [DOI: 10.1016/j.anpede.2016.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
111
|
Nueva mutación genética asociada con el síndrome de Pierson. An Pediatr (Barc) 2016; 85:321-322. [DOI: 10.1016/j.anpedi.2016.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/30/2015] [Accepted: 01/04/2016] [Indexed: 11/24/2022] Open
|
112
|
Abstract
PURPOSE OF REVIEW In this review, we take a combined membrane biologist's and geneticist's view of the podocyte, to examine how genetics have informed our understanding of membrane receptors, channels, and other signaling molecules affecting podocyte health and disease. RECENT FINDINGS An integral part of the kidney, the glomerulus, is responsible for the kidney's filter function. Within the glomerulus, the podocyte is a unique cell serving a critically important role: it is exposed to signals from the urinary space in Bowman's capsule, it receives and transmits signals to/from the basement membrane upon which it elaborates, and it receives signals from the vascular space with which it also communicates, thus exposed to toxins, viruses, chemicals, proteins, and cellular components or debris that flow in the blood stream. Our understanding of how podocytes perform their important role has been largely informed by human genetics, and the recent revolution afforded by exome sequencing has brought a tremendous wealth of new genetic data to light. SUMMARY Genetically defined, rare/orphan podocytopathies, as reviewed here, are critically important to study as they may reveal the next generation targets for precision medicine in nephrology.
Collapse
|
113
|
Lim BJ, Yang JW, Do WS, Fogo AB. Pathogenesis of Focal Segmental Glomerulosclerosis. J Pathol Transl Med 2016; 50:405-410. [PMID: 27744657 PMCID: PMC5122732 DOI: 10.4132/jptm.2016.09.21] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/21/2016] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is characterized by focal and segmental obliteration of glomerular capillary tufts with increased matrix. FSGS is classified as collapsing, tip, cellular, perihilar and not otherwise specified variants according to the location and character of the sclerotic lesion. Primary or idiopathic FSGS is considered to be related to podocyte injury, and the pathogenesis of podocyte injury has been actively investigated. Several circulating factors affecting podocyte permeability barrier have been proposed, but not proven to cause FSGS. FSGS may also be caused by genetic alterations. These genes are mainly those regulating slit diaphragm structure, actin cytoskeleton of podocytes, and foot process structure. The mode of inheritance and age of onset are different according to the gene involved. Recently, the role of parietal epithelial cells (PECs) has been highlighted. Podocytes and PECs have common mesenchymal progenitors, therefore, PECs could be a source of podocyte repopulation after podocyte injury. Activated PECs migrate along adhesion to the glomerular tuft and may also contribute to the progression of sclerosis. Markers of activated PECs, including CD44, could be used to distinguish FSGS from minimal change disease. The pathogenesis of FSGS is very complex; however, understanding basic mechanisms of podocyte injury is important not only for basic research, but also for daily diagnostic pathology practice.
Collapse
Affiliation(s)
- Beom Jin Lim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Woo Sung Do
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
114
|
Rogers RS, Nishimune H. The role of laminins in the organization and function of neuromuscular junctions. Matrix Biol 2016; 57-58:86-105. [PMID: 27614294 DOI: 10.1016/j.matbio.2016.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/10/2016] [Accepted: 08/17/2016] [Indexed: 01/11/2023]
Abstract
The synapse between motor neurons and skeletal muscle is known as the neuromuscular junction (NMJ). Proper alignment of presynaptic and post-synaptic structures of motor neurons and muscle fibers, respectively, is essential for efficient motor control of skeletal muscles. The synaptic cleft between these two cells is filled with basal lamina. Laminins are heterotrimer extracellular matrix molecules that are key members of the basal lamina. Laminin α4, α5, and β2 chains specifically localize to NMJs, and these laminin isoforms play a critical role in maintenance of NMJs and organization of synaptic vesicle release sites known as active zones. These individual laminin chains exert their role in organizing NMJs by binding to their receptors including integrins, dystroglycan, and voltage-gated calcium channels (VGCCs). Disruption of these laminins or the laminin-receptor interaction occurs in neuromuscular diseases including Pierson syndrome and Lambert-Eaton myasthenic syndrome (LEMS). Interventions to maintain proper level of laminins and their receptor interactions may be insightful in treating neuromuscular diseases and aging related degeneration of NMJs.
Collapse
Affiliation(s)
- Robert S Rogers
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| |
Collapse
|
115
|
Borza DB. Glomerular basement membrane heparan sulfate in health and disease: A regulator of local complement activation. Matrix Biol 2016; 57-58:299-310. [PMID: 27609404 DOI: 10.1016/j.matbio.2016.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022]
Abstract
The glomerular basement membrane (GBM) is an essential component of the glomerular filtration barrier. Heparan sulfate proteoglycans such as agrin are major components of the GBM, along with α345(IV) collagen, laminin-521 and nidogen. A loss of GBM heparan sulfate chains is associated with proteinuria in several glomerular diseases and may contribute to the underlying pathology. As the major determinants of the anionic charge of the GBM, heparan sulfate chains have been thought to impart charge selectivity to the glomerular filtration, a view challenged by the negligible albuminuria in mice that lack heparan sulfate in the GBM. Recent studies provide increasing evidence that heparan sulfate chains modulate local complement activation by recruiting complement regulatory protein factor H, the major inhibitor of the alternative pathway in plasma. Factor H selectively inactivates C3b bound to surfaces bearing host-specific polyanions such as heparan sulfate, thus limiting complement activation on self surfaces such as the GBM, which are not protected by cell-bound complement regulators. We discuss mechanisms whereby the acquired loss of GBM heparan sulfate can impair the local regulation of the alternative pathway, exacerbating complement activation and glomerular injury in immune-mediated kidney diseases such as membranous nephropathy and lupus nephritis.
Collapse
Affiliation(s)
- Dorin-Bogdan Borza
- Department of Microbiology and Immunology, Meharry Medical College, 1005 Dr. D. B. Todd, Jr., Blvd., Nashville, TN 37208, USA.
| |
Collapse
|
116
|
Nyström A, Bornert O, Kühl T. Cell therapy for basement membrane-linked diseases. Matrix Biol 2016; 57-58:124-139. [PMID: 27609402 DOI: 10.1016/j.matbio.2016.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
Abstract
For most disorders caused by mutations in genes encoding basement membrane (BM) proteins, there are at present only limited treatment options available. Genetic BM-linked disorders can be viewed as especially suited for treatment with cell-based therapy approaches because the proteins that need to be restored are located in the extracellular space. In consequence, complete and permanent engraftment of cells does not necessarily have to occur to achieve substantial causal therapeutic effects. For these disorders cells can be used as transient vehicles for protein replacement. In addition, it is becoming evident that BM-linked genetic disorders are modified by secondary diseases mechanisms. Cell-based therapies have also the ability to target such disease modifying mechanisms. Thus, cell therapies can simultaneously provide causal treatment and symptomatic relief, and accordingly hold great potential for treatment of BM-linked disorders. However, this potential has for most applications and diseases so far not been realized. Here, we will present the state of cell therapies for BM-linked diseases. We will discuss use of both pluripotent and differentiated cells, the limitation of the approaches, their challenges, and the way forward to potential wider implementation of cell therapies in the clinics.
Collapse
Affiliation(s)
- Alexander Nyström
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.
| | - Olivier Bornert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Kühl
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
117
|
Marshall CB. Rethinking glomerular basement membrane thickening in diabetic nephropathy: adaptive or pathogenic? Am J Physiol Renal Physiol 2016; 311:F831-F843. [PMID: 27582102 DOI: 10.1152/ajprenal.00313.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/21/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years before clinical manifestations, including microalbuminuria and declining glomerular filtration rate (GFR), are evident. During the clinically silent period, structural lesions develop, including glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be warranted. Observed within one to two years following the onset of diabetes, GBM thickening precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in modifying the GBM, synthesizing and assembling matrix components, both in physiological and pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal GBM structure and function, injured podocytes likely have a fundamental role in upsetting the balance between the GBM's synthetic and degradative pathways. This article will explore the biological significance of GBM thickening in DN by reviewing what is known about the GBM's formation, its maintenance during health, and its disruption in DN.
Collapse
Affiliation(s)
- Caroline B Marshall
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
118
|
Autoimmunity against laminins. Clin Immunol 2016; 170:39-52. [PMID: 27464450 DOI: 10.1016/j.clim.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/30/2016] [Accepted: 07/22/2016] [Indexed: 12/12/2022]
Abstract
Laminins are ubiquitous constituents of the basement membranes with major architectural and functional role as supported by the fact that absence or mutations of laminins lead to either lethal or severely impairing phenotypes. Besides genetic defects, laminins are involved in a wide range of human diseases including cancer, infections, and inflammatory diseases, as well as autoimmune disorders. A growing body of evidence implicates several laminin chains as autoantigens in blistering skin diseases, collagenoses, vasculitis, or post-infectious autoimmunity. The current paper reviews the existing knowledge on autoimmunity against laminins referring to both experimental and clinical data, and on therapeutic implications of anti-laminin antibodies. Further investigation of relevant laminin epitopes in pathogenic autoimmunity would facilitate the development of appropriate diagnostic tools for thorough characterization of patients' antibody specificities and should decisively contribute to designing more specific therapeutic interventions.
Collapse
|
119
|
Ohno K, Ohkawara B, Ito M. Recent advances in congenital myasthenic syndromes. ACTA ACUST UNITED AC 2016. [DOI: 10.1111/cen3.12316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Bisei Ohkawara
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Mikako Ito
- Division of Neurogenetics; Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
120
|
New insight into the pathogenesis of minimal change nephrotic syndrome: Role of the persistence of respiratory tract virus in immune disorders. Autoimmun Rev 2016; 15:632-7. [DOI: 10.1016/j.autrev.2016.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/31/2022]
|
121
|
Sampson MG, Gillies CE, Robertson CC, Crawford B, Vega-Warner V, Otto EA, Kretzler M, Kang HM. Using Population Genetics to Interrogate the Monogenic Nephrotic Syndrome Diagnosis in a Case Cohort. J Am Soc Nephrol 2016; 27:1970-83. [PMID: 26534921 PMCID: PMC4926977 DOI: 10.1681/asn.2015050504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/06/2015] [Indexed: 01/02/2023] Open
Abstract
To maximize clinical benefits of genetic screening of patients with nephrotic syndrome (NS) to diagnose monogenic causes, reliably distinguishing NS-causing variants from the background of rare, noncausal variants prevalent in all genomes is vital. To determine the prevalence of monogenic NS in a North American case cohort while accounting for background prevalence of genetic variation, we sequenced 21 implicated monogenic NS genes in 312 participants from the Nephrotic Syndrome Study Network and 61 putative controls from the 1000 Genomes Project (1000G). These analyses were extended to available sequence data from approximately 2500 subjects from the 1000G. A typical pathogenicity filter identified causal variants for NS in 4.2% of patients and 5.8% of subjects from the 1000G. We devised a more stringent pathogenicity filtering strategy, reducing background prevalence of causal variants to 1.5%. When applying this stringent filter to patients, prevalence of monogenic NS was 2.9%; of these patients, 67% were pediatric, and 44% had FSGS on biopsy. The rate of complete remission did not associate with monogenic classification. Thus, we identified factors contributing to inaccurate monogenic classification of NS and developed a more accurate variant filtering strategy. The prevalence and clinical correlates of monogenic NS in this sporadically affected cohort differ substantially from those reported for patients referred for genetic analysis. Particularly in unselected, population-based cases, considering putative causal variants in known NS genes from a probabilistic rather than a deterministic perspective may be more precise. We also introduce GeneVetter, a web tool for monogenic assessment of rare disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Edgar A Otto
- Departments of Pediatrics and Communicable Diseases, and
| | - Matthias Kretzler
- Internal Medicine, Division of Nephrology and Department of Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Hyun Min Kang
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| |
Collapse
|
122
|
Sampson MG, Pollak MR. Opportunities and Challenges of Genotyping Patients With Nephrotic Syndrome in the Genomic Era. Semin Nephrol 2016. [PMID: 26215859 DOI: 10.1016/j.semnephrol.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Both targeted and genome-wide linkage and association studies have identified a number of genes and genetic variants associated with nephrotic syndrome (NS). Genotype-phenotype studies of patients with these variants have identified correlations of clear clinical significance. Combined with improved genomic technologies, this has resulted in increasing, and justifiable, enthusiasm for incorporating our patients' genomic information into our clinical management decisions. Here, we summarize our understanding of NS-associated genetic factors, namely rare causal mutations or common risk alleles in apolipoprotein L1. We discuss the complexities inherent in trying to ascribe risk or causality to these variants, particularly as we seek to extend genetic testing to a broader group of patients, including many with sporadic disease. Overall, the thoughtful application and interpretation of these genetic tests will maximize the benefits to our patients with NS in the form of more precise clinical care.
Collapse
Affiliation(s)
- Matthew G Sampson
- Department of Pediatrics, Division of Nephrology, University of Michigan School of Medicine, Ann Arbor, MI.
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
123
|
Wang JJ, Mao JH. The etiology of congenital nephrotic syndrome: current status and challenges. World J Pediatr 2016; 12:149-58. [PMID: 26961288 DOI: 10.1007/s12519-016-0009-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/11/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS), defined as heavy proteinuria, hypoalbuminemia, hyperlipidemia and edema presenting in the first 0-3 months of life, may be caused by congenital syphilis, toxoplasmosis, or congenital viral infections (such as cytomegalovirus). However, the majority of CNS cases are caused by monogenic defects of structural proteins that form the glomerular filtration barrier in the kidneys. Since 1998, an increasing number of genetic defects have been identified for their involvements in the pathogenesis of CNS, including NPHS1, NPHS2, WT1, PLCE1, and LAMB2. DATA SOURCES We searched databases such as PubMed, Elsevier and Wanfang with the following key words: congenital nephrotic syndrome, proteinuria, infants, neonate, congenital infection, mechanism and treatment; and we selected those publications written in English that we judged to be relevant to the topic of this review. RESULTS Based on the data present in the literature, we reviewed the following topics: 1) Infection associated CNS including congenital syphilis, congenital toxoplasmosis, and congenital cytomegalovirus infection; 2) genetic CNS including mutation of NPHS1 (Nephrin), NPHS2 (Podocin), WT1, LAMB2 (Laminin-β2), PLCE1 (NPHS3); 3) Other forms of CNS including maternal systemic lupus erythematosus, mercury poisoning, renal vein thrombosis, neonatal alloimmunization against neutral endopeptidase. CONCLUSION At present, the main challenge in CNS is to identify the cause of disease for individual patients. To make a definitive diagnosis, with the exclusion of infection-related CNS and maternal-associated disorders, pathology, family history, inheritance mode, and other accompanying congenital malformations are sometimes, but not always, useful indicators for diagnosing genetic CNS. Next-generation sequencing would be a more effective method for diagnosing genetic CNS in some patients, however, there are still some challenges with next-generation sequencing that need to be resolved in the future.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Hua Mao
- Department of Nephrology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou, China. .,Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
124
|
Zemrani B, Cachat F, Bonny O, Giannoni E, Durig J, Fellmann F, Chehade H. A novel LAMB2 gene mutation associated with a severe phenotype in a neonate with Pierson syndrome. Eur J Med Res 2016; 21:19. [PMID: 27130041 PMCID: PMC4851796 DOI: 10.1186/s40001-016-0215-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/21/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Pierson syndrome (PS) is a rare autosomal recessive disorder, caused by mutations in the laminin β2 (LAMB2) gene. It is characterized by congenital nephrotic syndrome, microcoria, and neurodevelopmental deficits. Several mutations with genotype-phenotype correlations have been reported, often with great clinical variability. We hereby report a novel homozygous nonsense mutation in the LAMB2 gene, associated with a severe phenotype presentation. CASE DIAGNOSIS We describe a term male infant born from consanguineous parents. The mother previously lost three children in the neonatal period, secondary to undefined renal disease, had two spontaneous abortions, and gave birth to one healthy daughter. The index case presented at birth with bilateral microcoria, severe hypotonia, respiratory distress, and congenital nephrotic syndrome associated with anuria and severe renal failure requiring peritoneal dialysis. The patients' clinical follow-up was unfavorable, and the newborn died at 7 days of life, after withdrawal of life support. Genetic analysis revealed a homozygous nonsense mutation at position c.2890C>T causing a premature stop codon (p.R964*) in LAMB2 gene. CONCLUSION We here describe a novel nonsense homozygous mutation in LAMB2 gene causing a severe neonatal presentation of Pierson syndrome. This new mutation expands the genotype-phenotype spectrum of this rare disease and confirms that truncating mutations might be associated with severe clinical features.
Collapse
Affiliation(s)
- Boutaina Zemrani
- Division of Pediatric Nephrology, Department of Pediatrics, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| | - François Cachat
- Division of Pediatric Nephrology, Department of Pediatrics, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Olivier Bonny
- Service of Nephrology, Lausanne University Hospital, Rue du Bugnon 21, 1011, Lausanne, Switzerland
| | - Eric Giannoni
- Service of Neonatology, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Jacques Durig
- Service of Ophthalmology, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Florence Fellmann
- Service of Medical Genetics, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| | - Hassib Chehade
- Division of Pediatric Nephrology, Department of Pediatrics, Lausanne University Hospital, Rue du Bugnon 46, 1011, Lausanne, Switzerland
| |
Collapse
|
125
|
Attanasio C, Latancia MT, Otterbein LE, Netti PA. Update on Renal Replacement Therapy: Implantable Artificial Devices and Bioengineered Organs. TISSUE ENGINEERING PART B-REVIEWS 2016; 22:330-40. [PMID: 26905099 DOI: 10.1089/ten.teb.2015.0467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recent advances in the fields of artificial organs and regenerative medicine are now joining forces in the areas of organ transplantation and bioengineering to solve continued challenges for patients with end-stage renal disease. The waiting lists for those needing a transplant continue to exceed demand. Dialysis, while effective, brings different challenges, including quality of life and susceptibility to infection. Unfortunately, the majority of research outputs are far from delivering satisfactory solutions. Current efforts are focused on providing a self-standing device able to recapitulate kidney function. In this review, we focus on two remarkable innovations that may offer significant clinical impact in the field of renal replacement therapy: the implantable artificial renal assist device (RAD) and the transplantable bioengineered kidney. The artificial RAD strategy utilizes micromachining techniques to fabricate a biohybrid system able to mimic renal morphology and function. The current trend in kidney bioengineering exploits the structure of the native organ to produce a kidney that is ready to be transplanted. Although these two systems stem from different technological approaches, they are both designed to be implantable, long lasting, and free standing to allow patients with kidney failure to be autonomous. However, for both of them, there are relevant issues that must be addressed before translation into clinical use and these are discussed in this review.
Collapse
Affiliation(s)
- Chiara Attanasio
- 1 Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia , Napoli, Italy
| | - Marcela T Latancia
- 2 Department of Surgery, Transplant Institute , Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Leo E Otterbein
- 2 Department of Surgery, Transplant Institute , Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Paolo A Netti
- 1 Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia , Napoli, Italy
| |
Collapse
|
126
|
Qiu L, Zhou J. Simultaneous mutations of LAMB2 and NPHP1genes in a Chinese girl with isolated congenital nephrotic syndrome: a case report. BMC Pediatr 2016; 16:44. [PMID: 27004562 PMCID: PMC4802576 DOI: 10.1186/s12887-016-0583-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/14/2016] [Indexed: 12/16/2022] Open
Abstract
Background LAMB2 mutations cause Pierson syndrome (OMIM 609049), an autosomal recessive genetic disease typically characterized by congenital nephrotic syndrome (CNS) and early onset renal failure, as well as bilateral microcoria. NPHP1 mutations cause familial juvenile nephronophthisis type 1 (NPHP1, OMIM 256100), another autosomal recessive renal disease that usually occurs years after birth. Both Pierson syndrome and nephronophthisis cause end-stage renal disease and rare kidney diseases in children. We report an extremely rare case of concurrent mutations of LAMB2 and NPHP1 in a Chinese girl with isolated CNS and the association of the phenotype with novel non-truncating mutations of LAMB2. Case presentation A-34-day-old girl presented with CNS but no eye abnormalities, and mild hyperechogenicity of kidneys. A novel c.1176_1178delTCT mutation caused deletion of a glycine in exon 9 of LAMB2, and another mutation c.4923 + 2 T > G led to a splicing error. In addition, compound heterozygous mutations of NPHP1 were identified in this child using next generation sequencing, and confirmed by Sanger sequencing. Conclusion Mutations of the LAMB2 and NPHP1 are present in infants with isolated CNS. Next generation sequencing enabled high-throughput screening for mutant genes promptly, with clinically significant outcomes. In addition, our results expand the phenotype spectrum of LAMB2 mutations as the only renal manifestation.
Collapse
Affiliation(s)
- Liru Qiu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China
| | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, 430030, China.
| |
Collapse
|
127
|
Mao M, Smith RS, Alavi MV, Marchant JK, Cosma M, Libby RT, John SWM, Gould DB. Strain-Dependent Anterior Segment Dysgenesis and Progression to Glaucoma in Col4a1 Mutant Mice. Invest Ophthalmol Vis Sci 2016; 56:6823-31. [PMID: 26567795 DOI: 10.1167/iovs.15-17527] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Mutations in the gene encoding collagen type IV alpha 1 (COL4A1) cause multisystem disorders including anterior segment dysgenesis (ASD) and optic nerve hypoplasia. The penetrance and severity of individual phenotypes depends on genetic context. Here, we tested the effects of a Col4a1 mutation in two different genetic backgrounds to compare how genetic context influences ocular dysgenesis, IOP, and progression to glaucoma. METHODS Col4a1 mutant mice maintained on a C57BL/6J background were crossed to either 129S6/SvEvTac or CAST/EiJ and the F1 progeny were analyzed by slit-lamp biomicroscopy and optical coherence tomography. We also measured IOPs and compared tissue sections of eyes and optic nerves. RESULTS We found that the CAST/EiJ inbred strain has a relatively uniform and profound suppression on the effects of Col4a1 mutation and that mutant CASTB6F1 mice were generally only very mildly affected. In contrast, mutant 129B6F1 mice had more variable and severe ASD and IOP dysregulation that were associated with glaucomatous signs including lost or damaged retinal ganglion cell axons and excavation of the optic nerve head. CONCLUSIONS Ocular defects in Col4a1 mutant mice model ASD and glaucoma that are observed in a subset of patients with COL4A1 mutations. We demonstrate that different inbred strains of mice give graded severities of ASD and we detected elevated IOP and glaucomatous damage in 129B6F1, but not CASTB6F1 mice that carried a Col4a1 mutation. These data demonstrate that genetic context differences are one factor that may contribute to the variable penetrance and severity of ASD and glaucoma in patients with COL4A1 mutations.
Collapse
Affiliation(s)
- Mao Mao
- Departments of Ophthalmology and Anatomy Institute for Human Genetics, UCSF School of Medicine, San Francisco, California, United States
| | | | - Marcel V Alavi
- Departments of Ophthalmology and Anatomy Institute for Human Genetics, UCSF School of Medicine, San Francisco, California, United States
| | - Jeffrey K Marchant
- The Jackson Laboratory, Bar Harbor, Maine, United States 3Department of Anatomy and Cell Biology, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Mihai Cosma
- The Jackson Laboratory, Bar Harbor, Maine, United States
| | - Richard T Libby
- Flaum Eye Institute, Department of Biomedical Genetics, The Center for Visual Sciences, University of Rochester Medical Center, Rochester, New York, United States
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, Maine, United States 3Department of Anatomy and Cell Biology, Department of Ophthalmology, Tufts University School of Medicine, Boston, Massachusetts, United States 5The Howard Hughes Medical Institute, Bar Harbor, Main
| | - Douglas B Gould
- Departments of Ophthalmology and Anatomy Institute for Human Genetics, UCSF School of Medicine, San Francisco, California, United States
| |
Collapse
|
128
|
Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, Lovric S, Ashraf S, Braun DA, Halbritter J, Fang H, Airik R, Vega-Warner V, Cho KJ, Chan TA, Morris LGT, ffrench-Constant C, Allen N, McNeill H, Büscher R, Kyrieleis H, Wallot M, Gaspert A, Kistler T, Milford DV, Saleem MA, Keng WT, Alexander SI, Valentini RP, Licht C, Teh JC, Bogdanovic R, Koziell A, Bierzynska A, Soliman NA, Otto EA, Lifton RP, Holzman LB, Sibinga NES, Walz G, Tufro A, Hildebrandt F. FAT1 mutations cause a glomerulotubular nephropathy. Nat Commun 2016; 7:10822. [PMID: 26905694 PMCID: PMC4770090 DOI: 10.1038/ncomms10822] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 01/25/2016] [Indexed: 01/12/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
Collapse
Affiliation(s)
- Heon Yung Gee
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Carolin E Sadowski
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pardeep K Aggarwal
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Jonathan D Porath
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Toma A Yakulov
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Markus Schueler
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Svjetlana Lovric
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Shazia Ashraf
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniela A Braun
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jan Halbritter
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Humphrey Fang
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rannar Airik
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Virginia Vega-Warner
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Kyeong Jee Cho
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Luc G T Morris
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles ffrench-Constant
- MRC Centre for Regenerative Medicine, Multiple Sclerosis Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Nicholas Allen
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Helen McNeill
- Department of Molecular Genetics, Samuel Lunenfeld-Tanenbaum Research Institute, University of Toronto, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Rainer Büscher
- Department of Pediatrics II, University Hospital of Essen, Essen 45147, Germany
| | | | - Michael Wallot
- Department of Pediatrics, Bethanien Hospital, Moers 47441, Germany
| | - Ariana Gaspert
- Institute of Surgical Pathology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Thomas Kistler
- Division of Nephrology, Kantonsspital Winterthur, Winterthur 8401, Switzerland
| | - David V Milford
- Department of Paediatric Nephrology, Birmingham Children's Hospital, Birmingham B4 6NH, UK
| | - Moin A Saleem
- Children's and Academic Renal Unit, University of Bristol, Bristol BS1 5NB, UK
| | - Wee Teik Keng
- Department of Genetics, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead 2145, Australia
| | - Rudolph P Valentini
- Department of Pediatrics, Division of Pediatric Nephrology, Children's Hospital of Michigan/Wayne State University, Detroit, Michigan 48201, USA
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Jun C Teh
- Division of Nephrology, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada M5G 1X8
| | - Radovan Bogdanovic
- Institute for Mother and Child Health Care of Serbia "Dr Vukan Čupić", Department of Nephrology, University of Belgrade, Faculty of Medicine, Belgrade 11000, Serbia
| | - Ania Koziell
- Department of Experimental Immunobiology, Division of Transplantation Immunology &Mucosal Biology, King's College London, Faculty of Life Sciences &Medicine, 5th floor Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology &Transplantation, Kasr Al Ainy School of Medicine, Cairo University, Cairo 11562, Egypt.,Egyptian Group for Orphan Renal Diseases, Cairo 11562, Egypt
| | - Edgar A Otto
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Nicholas E S Sibinga
- Wilf Family Cardiovascular Research Institute and Department of Medicine/Cardiology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Gerd Walz
- University Freiburg Medical Center, Freiburg 79106, Germany
| | - Alda Tufro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
129
|
Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Adv Drug Deliv Rev 2016; 97:4-27. [PMID: 26562801 DOI: 10.1016/j.addr.2015.11.001] [Citation(s) in RCA: 1512] [Impact Index Per Article: 168.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network composed of collagens, proteoglycans/glycosaminoglycans, elastin, fibronectin, laminins, and several other glycoproteins. Matrix components bind each other as well as cell adhesion receptors forming a complex network into which cells reside in all tissues and organs. Cell surface receptors transduce signals into cells from ECM, which regulate diverse cellular functions, such as survival, growth, migration, and differentiation, and are vital for maintaining normal homeostasis. ECM is a highly dynamic structural network that continuously undergoes remodeling mediated by several matrix-degrading enzymes during normal and pathological conditions. Deregulation of ECM composition and structure is associated with the development and progression of several pathologic conditions. This article emphasizes in the complex ECM structure as to provide a better understanding of its dynamic structural and functional multipotency. Where relevant, the implication of the various families of ECM macromolecules in health and disease is also presented.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Chrysostomi Gialeli
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece; Division of Medical Protein Chemistry, Department of Translational Medicine Malmö, Lund University, S-20502 Malmö, Sweden
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
130
|
Vivante A, Hildebrandt F. Exploring the genetic basis of early-onset chronic kidney disease. Nat Rev Nephrol 2016; 12:133-46. [PMID: 26750453 DOI: 10.1038/nrneph.2015.205] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The primary causes of chronic kidney disease (CKD) in children differ from those of CKD in adults. In the USA the most common diagnostic groups of renal disease that manifest before the age of 25 years are congenital anomalies of the kidneys and urinary tract, steroid-resistant nephrotic syndrome, chronic glomerulonephritis and renal cystic ciliopathies, which together encompass >70% of early-onset CKD diagnoses. Findings from the past decade suggest that early-onset CKD is caused by mutations in any one of over 200 different monogenic genes. Developments in high-throughput sequencing in the past few years has rendered identification of causative mutations in this high number of genes feasible. Use of genetic analyses in patients with early onset-CKD will provide patients and their families with a molecular genetic diagnosis, generate new insights into disease mechanisms, facilitate aetiology-based classifications of patient cohorts for clinical studies, and might have consequences for personalized approaches to the prevention and treatment of CKD. In this Review, we discuss the implications of next-generation sequencing in clinical genetic diagnostics and the discovery of novel genes in early-onset CKD. We also delineate the resulting opportunities for deciphering disease mechanisms and the therapeutic implications of these findings.
Collapse
Affiliation(s)
- Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
131
|
Hillen LM, Kamsteeg EJ, Schoots J, Tiebosch AT, Speel EJ, Roemen GM, Peutz-Koostra CJ, Stumpel CTRM. Refining the Diagnosis of Congenital Nephrotic Syndrome on Long-term Stored Tissue: c.1097G>A (p.(Arg366His)) WT1 Mutation Causing Denys Drash Syndrome. Fetal Pediatr Pathol 2016; 35:112-9. [PMID: 26882358 DOI: 10.3109/15513815.2016.1139018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Congenital nephrotic syndrome (CNS) caused by a mutation in the Wilms tumor 1 suppressor gene (WT1) is part of Denys Drash Syndrome or Frasier syndrome. In the framework of genetic counseling, the diagnosis of CNS can be refined with gene mutation studies on long-term stored formalin-fixed paraffin-embedded tissue from postmortem examination. We report a case of diffuse mesangial sclerosis with perinatal death caused by a de novo mutation in the WT1 gene in a girl with an XY-genotype. This is the first case of Denys Drash Syndrome with the uncommon missense c.1097G>A [p.(Arg366His)] mutation in the WT1 gene which has been diagnosed on long-term stored formalin-fixed paraffin-embedded tissue in 1993. This emphasizes the importance of retained and adequately stored tissue as a resource in the ongoing medical care and counseling.
Collapse
Affiliation(s)
- Lisa Maria Hillen
- a Department of Pathology , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Erik Jan Kamsteeg
- b Department of Clinical Genetics , University Medical Center , Nijmegen , The Netherlands
| | - Jeroen Schoots
- b Department of Clinical Genetics , University Medical Center , Nijmegen , The Netherlands
| | - Anton Tom Tiebosch
- c Department of Pathology , Martini Ziekenhuis Groningen , Groningen , The Netherlands
| | - Ernst Jan Speel
- a Department of Pathology , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Guido M Roemen
- a Department of Pathology , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Carine J Peutz-Koostra
- a Department of Pathology , Maastricht University Medical Center , Maastricht , The Netherlands
| | - Constance T R M Stumpel
- d Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW) , Maastricht University Medical Center , Maastricht , The Netherlands
| |
Collapse
|
132
|
|
133
|
Lovric S, Ashraf S, Tan W, Hildebrandt F. Genetic testing in steroid-resistant nephrotic syndrome: when and how? Nephrol Dial Transplant 2015; 31:1802-1813. [PMID: 26507970 DOI: 10.1093/ndt/gfv355] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/08/2015] [Indexed: 01/15/2023] Open
Abstract
Steroid-resistant nephrotic syndrome (SRNS) represents the second most frequent cause of chronic kidney disease in the first three decades of life. It manifests histologically as focal segmental glomerulosclerosis (FSGS) and carries a 33% risk of relapse in a renal transplant. No efficient treatment exists. Identification of single-gene (monogenic) causes of SRNS has moved the glomerular epithelial cell (podocyte) to the center of its pathogenesis. Recently, mutations in >30 recessive or dominant genes were identified as causing monogenic forms of SRNS, thereby revealing the encoded proteins as essential for glomerular function. These findings helped define protein interaction complexes and functional pathways that could be targeted for treatment of SRNS. Very recently, it was discovered that in the surprisingly high fraction of ∼30% of all individuals who manifest with SRNS before 25 years of age, a causative mutation can be detected in one of the ∼30 different SRNS-causing genes. These findings revealed that SRNS and FSGS are not single disease entities but rather are part of a spectrum of distinct diseases with an identifiable genetic etiology. Mutation analysis should be offered to all individuals who manifest with SRNS before the age of 25 years, because (i) it will provide the patient and families with an unequivocal cause-based diagnosis, (ii) it may uncover a form of SRNS that is amenable to treatment (e.g. coenzyme Q10), (iii) it may allow avoidance of a renal biopsy procedure, (iv) it will further unravel the puzzle of pathogenic pathways of SRNS and (v) it will permit personalized treatment options for SRNS, based on genetic causation in way of 'precision medicine'.
Collapse
Affiliation(s)
- Svjetlana Lovric
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shazia Ashraf
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weizhen Tan
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
134
|
Phua YL, Chu JYS, Marrone AK, Bodnar AJ, Sims-Lucas S, Ho J. Renal stromal miRNAs are required for normal nephrogenesis and glomerular mesangial survival. Physiol Rep 2015; 3:3/10/e12537. [PMID: 26438731 PMCID: PMC4632944 DOI: 10.14814/phy2.12537] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs are small noncoding RNAs that post-transcriptionally regulate mRNA levels. While previous studies have demonstrated that miRNAs are indispensable in the nephron progenitor and ureteric bud lineage, little is understood about stromal miRNAs during kidney development. The renal stroma (marked by expression of FoxD1) gives rise to the renal interstitium, a subset of peritubular capillaries, and multiple supportive vascular cell types including pericytes and the glomerular mesangium. In this study, we generated FoxD1GC;Dicerfl/fl transgenic mice that lack miRNA biogenesis in the FoxD1 lineage. Loss of Dicer activity resulted in multifaceted renal anomalies including perturbed nephrogenesis, expansion of nephron progenitors, decreased renin-expressing cells, fewer smooth muscle afferent arterioles, and progressive mesangial cell loss in mature glomeruli. Although the initial lineage specification of FoxD1+ stroma was not perturbed, both the glomerular mesangium and renal interstitium exhibited ectopic apoptosis, which was associated with increased expression of Bcl2l11 (Bim) and p53 effector genes (Bax, Trp53inp1, Jun, Cdkn1a, Mmp2, and Arid3a). Using a combination of high-throughput miRNA profiling of the FoxD1+-derived cells and mRNA profiling of differentially expressed transcripts in FoxD1GC;Dicerfl/fl kidneys, at least 72 miRNA:mRNA target interactions were identified to be suppressive of the apoptotic program. Together, the results support an indispensable role for stromal miRNAs in the regulation of apoptosis during kidney development.
Collapse
Affiliation(s)
- Yu Leng Phua
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica Y S Chu
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - April K Marrone
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Rangos Research Center, School of Medicine, Children's Hospital of Pittsburgh of UPMC University of Pittsburgh, Pittsburgh, Pennsylvania Department of Pediatrics, Division of Nephrology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
135
|
Rheault MN, Gbadegesin RA. The Genetics of Nephrotic Syndrome. J Pediatr Genet 2015; 5:15-24. [PMID: 27617138 DOI: 10.1055/s-0035-1557109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022]
Abstract
Nephrotic syndrome (NS) is a common pediatric kidney disease and is defined as massive proteinuria, hypoalbuminemia, and edema. Dysfunction of the glomerular filtration barrier, which is made up of endothelial cells, glomerular basement membrane, and visceral epithelial cells known as podocytes, is evident in children with NS. While most children have steroid-responsive nephrotic syndrome (SSNS), approximately 20% have steroid-resistant nephrotic syndrome (SRNS) and are at risk for progressive kidney dysfunction. While the cause of SSNS is still not well understood, there has been an explosion of research into the genetic causes of SRNS in the past 15 years. More than 30 proteins regulating the function of the glomerular filtration barrier have been associated with SRNS including podocyte slit diaphragm proteins, podocyte actin cytoskeletal proteins, mitochondrial proteins, adhesion and glomerular basement membrane proteins, transcription factors, and others. A genetic cause of SRNS can be found in approximately 70% of infants presenting in the first 3 months of life and 50% of infants presenting between 4 and 12 months, with much lower likelihood for older patients. Identification of the underlying genetic etiology of SRNS is important in children because it allows for counseling of other family members who may be at risk, predicts risk of recurrent disease after kidney transplant, and predicts response to immunosuppressive therapy. Correlations between genetic mutation and clinical phenotype as well as genetic risk factors for SSNS and SRNS are reviewed in this article.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Nephrology, University of Minnesota Masonic Children's Hospital, Minneapolis, Minnesota, United States
| | - Rasheed A Gbadegesin
- Division of Nephrology and Center for Human Genetics, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
136
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
137
|
Chen YM, Liapis H. Focal segmental glomerulosclerosis: molecular genetics and targeted therapies. BMC Nephrol 2015; 16:101. [PMID: 26156092 PMCID: PMC4496884 DOI: 10.1186/s12882-015-0090-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/16/2015] [Indexed: 12/18/2022] Open
Abstract
Recent advances show that human focal segmental glomerulosclerosis (FSGS) is a primary podocytopathy caused by podocyte-specific gene mutations including NPHS1, NPHS2, WT-1, LAMB2, CD2AP, TRPC6, ACTN4 and INF2. This review focuses on genes discovered in the investigation of complex FSGS pathomechanisms that may have implications for the current FSGS classification scheme. It also recounts recent recommendations for clinical management of FSGS based on translational studies and clinical trials. The advent of next-generation sequencing promises to provide nephrologists with rapid and novel approaches for the diagnosis and treatment of FSGS. A stratified and targeted approach based on the underlying molecular defects is evolving.
Collapse
Affiliation(s)
- Ying Maggie Chen
- Renal Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
| | - Helen Liapis
- , Nephropath, Little Rock, Arkansas
- Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
138
|
Yurchenco PD. Integrating Activities of Laminins that Drive Basement Membrane Assembly and Function. CURRENT TOPICS IN MEMBRANES 2015; 76:1-30. [PMID: 26610910 DOI: 10.1016/bs.ctm.2015.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies on extracellular matrix proteins, cells, and genetically modified animals have converged to reveal mechanisms of basement membrane self-assembly as mediated by γ1 subunit-containing laminins, the focus of this chapter. The basic model is as follows: A member of the laminin family adheres to a competent cell surface and typically polymerizes followed by laminin binding to the extracellular adaptor proteins nidogen, perlecan, and agrin. Assembly is completed by the linking of nidogen and heparan sulfates to type IV collagen, allowing it to form a second stabilizing network polymer. The assembled matrix provides structural support, anchoring the extracellular matrix to the cytoskeleton, and acts as a signaling platform. Heterogeneity of function is created in part by the isoforms of laminin that vary in their ability to polymerize and to interact with integrins, dystroglycan, and other receptors. Mutations in laminin subunits, affecting expression or LN domain-specific functions, are a cause of human diseases that include those of muscle, nerve, brain, and kidney.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
139
|
Singh L, Singh G, Dinda AK. Understanding podocytopathy and its relevance to clinical nephrology. Indian J Nephrol 2015; 25:1-7. [PMID: 25684864 PMCID: PMC4323905 DOI: 10.4103/0971-4065.134531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Podocytopathies are the most common group of glomerular disorder leading to proteinuria. On the basis of pathophysiology, light microscopic and ultrastructural evaluation, the podocytopathies include minimal change disease, diffuse mesangial sclerosis, focal segmental glomerulosclerosis and collapsing glomerulopathy. The present review summarizes the basic etiopathogenesis of podocytopthies, highlights the common genetic and acquired factors in its causation, puts forth various diagnostic modalities and discusses the role of emerging agents or treatment.
Collapse
Affiliation(s)
- L Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - G Singh
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - A K Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
140
|
Genetic causes of proteinuria and nephrotic syndrome: impact on podocyte pathobiology. Pediatr Nephrol 2015; 30:221-33. [PMID: 24584664 PMCID: PMC4262721 DOI: 10.1007/s00467-014-2753-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/31/2013] [Accepted: 01/02/2014] [Indexed: 12/11/2022]
Abstract
In the past 20 years, multiple genetic mutations have been identified in patients with congenital nephrotic syndrome (CNS) and both familial and sporadic focal segmental glomerulosclerosis (FSGS). Characterization of the genetic basis of CNS and FSGS has led to the recognition of the importance of podocyte injury to the development of glomerulosclerosis. Genetic mutations induce injury due to effects on the podocyte's structure, actin cytoskeleton, calcium signaling, and lysosomal and mitochondrial function. Transgenic animal studies have contributed to our understanding of podocyte pathobiology. Podocyte endoplasmic reticulum stress response, cell polarity, and autophagy play a role in maintenance of podocyte health. Further investigations related to the effects of genetic mutations on podocytes may identify new pathways for targeting therapeutics for nephrotic syndrome.
Collapse
|
141
|
Saleem MA. One hundred ways to kill a podocyte. Nephrol Dial Transplant 2015; 30:1266-71. [PMID: 25637640 DOI: 10.1093/ndt/gfu363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022] Open
Abstract
The podocyte is a highly specialized cell, forming within the developing glomerulus from a mesenchymal origin, acquiring some but not complete features of an epithelial cell as it matures. Once mature, this cell has the potential to receive signals from several different directions and sits within a dynamic microenvironment. By taking an overview of many lines of evidence, it is clear that we already know many signals that are tightly controlled in keeping the podocyte healthy. For example, vascular endothelial growth factor, insulin and integrins are all known to have bidirectional effects on podocyte functionality, depending on whether there is too much or too little. It is of little surprise therefore that disrupting this delicate balance can result in a dramatic loss of function, and manifestation of glomerular disease originating from many different primary insults. The cues directing podocyte phenotype and functionality for the purpose of this review will be divided into four main sources: (i) genetic, (ii) paracrine signals from endothelial and mesangial cells, (iii) direct contact signals to/from the glomerular basement membrane and (iv) signals from circulating plasma. Of course there are other influences, which we still know little about, such as flow and shear stresses, signals from the urinary space that should all be considered in the overall healthy environment.
Collapse
Affiliation(s)
- Moin A Saleem
- Bristol Children's Hospital, University of Bristol, Bristol, UK
| |
Collapse
|
142
|
Lennon R, Stuart HM, Bierzynska A, Randles MJ, Kerr B, Hillman KA, Batra G, Campbell J, Storey H, Flinter FA, Koziell A, Welsh GI, Saleem MA, Webb NJA, Woolf AS. Coinheritance of COL4A5 and MYO1E mutations accentuate the severity of kidney disease. Pediatr Nephrol 2015; 30:1459-65. [PMID: 25739341 PMCID: PMC4536279 DOI: 10.1007/s00467-015-3067-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mutations in podocyte and basement membrane genes are associated with a growing spectrum of glomerular disease affecting adults and children. Investigation of familial cases has helped to build understanding of both normal physiology and disease. METHODS We investigated a consanguineous family with a wide clinical phenotype of glomerular disease using clinical, histological, and new genetic studies. RESULTS We report striking variability in severity of nephropathy within an X-linked Alport syndrome (XLAS) family. Four siblings each carried a mutant COL4A5 allele, p.(Gly953Val) and p.(Gly1033Arg). Two boys had signs limited to hematuria and mild/moderate proteinuria. In striking contrast, a sister presented with end-stage renal disease (ESRD) at 8 years of age and an infant brother presented with nephrotic syndrome, progressing to ESRD by 3 years of age. Both were subsequently found to have homozygous variants in MYO1E, p.(Lys118Glu) and p.(Thr876Arg). MYO1E is a gene implicated in focal segmental glomerulosclerosis and it encodes a podocyte-expressed non-muscle myosin. Bioinformatic modeling demonstrated that the collagen IV-alpha3,4,5 extracellular network connected via known protein-protein interactions to intracellular myosin 1E. CONCLUSIONS COL4A5 and MYO1E mutations may summate to perturb common signaling pathways, resulting in more severe disease than anticipated independently. We suggest screening for MYO1E and other non-COL4 'podocyte gene' mutations in XLAS when clinical nephropathy is more severe than expected for an individual's age and sex.
Collapse
Affiliation(s)
- Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, M13 9PT, Manchester, UK,
| | | | | | - Michael J. Randles
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, M13 9PT Manchester, UK ,Institute of Human Development, Faculty of Human Sciences, University of Manchester, Manchester, UK
| | - Bronwyn Kerr
- Manchester Centre for Genomic Medicine, Manchester, UK
| | | | - Gauri Batra
- Department of Paediatric Histopathology, CMFT, Manchester, UK
| | | | - Helen Storey
- Molecular Genetics, Viapath, Guy’s Hospital, London, UK
| | - Frances A. Flinter
- Clinical Genetics Department, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Ania Koziell
- Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | | | | | - Nicholas J. A. Webb
- Department of Paediatric Nephrology, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| | - Adrian S. Woolf
- Institute of Human Development, Faculty of Human Sciences, University of Manchester, Manchester, UK ,Department of Paediatric Nephrology, Central Manchester University Hospitals NHS Foundation Trust (CMFT), Manchester Academic Health Science Centre (MAHSC), Manchester, UK
| |
Collapse
|
143
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
144
|
Borza CM, Chen X, Zent R, Pozzi A. Cell Receptor-Basement Membrane Interactions in Health and Disease: A Kidney-Centric View. CURRENT TOPICS IN MEMBRANES 2015; 76:231-53. [PMID: 26610916 PMCID: PMC4913201 DOI: 10.1016/bs.ctm.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published works on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Xiwu Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| |
Collapse
|
145
|
Lionel AP, Joseph LK, Simon A. Pierson syndrome - a rare cause of congenital nephrotic syndrome. Indian J Pediatr 2014; 81:1416-7. [PMID: 24944146 DOI: 10.1007/s12098-014-1507-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/05/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Arul Premanand Lionel
- Department of Pediatrics Unit 1, Christian Medical College and Hospital, Vellore, Tamil Nadu, 632004, India,
| | | | | |
Collapse
|
146
|
Abstract
Glomerular disorders in infancy can include nephrotic and nephritic syndromes. Congenital nephrotic syndrome (CNS) is most commonly caused by single gene mutations in kidney proteins, but may also be due to congenital infections or passive transfer of maternal antibodies that target kidney proteins. Prenatal findings of increased maternal serum α-fetoprotein and enlarged placenta suggest CNS. Neonatal nephritis is rare; its causes may overlap with those of CNS and include primary glomerulonephritis, systemic disease, infections, and transplacental transfer of maternal antibodies. These syndromes in the neonate can cause significant morbidity and mortality, making urgent diagnosis and treatment necessary.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Pediatric Nephrology, University of Minnesota Children's Hospital, 2450 Riverside Avenue, MB680, Minneapolis, MN 55454, USA.
| |
Collapse
|
147
|
Uechi G, Sun Z, Schreiber EM, Halfter W, Balasubramani M. Proteomic View of Basement Membranes from Human Retinal Blood Vessels, Inner Limiting Membranes, and Lens Capsules. J Proteome Res 2014; 13:3693-3705. [DOI: 10.1021/pr5002065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guy Uechi
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Zhiyuan Sun
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Emanuel M. Schreiber
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Willi Halfter
- Department
of Neurobiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, Pennsylvania 15261, United States
| | - Manimalha Balasubramani
- Proteomics
Core, Genomics and Proteomics Core laboratories, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
148
|
Abstract
Nephrotic syndrome (NS) is characterized by heavy proteinuria, hypoalbuminemia, and edema. The underlying causes of NS are diverse and are tied to inheritable and environmental factors. A common diagnostic marker for NS is effacement of podocyte foot processes. The formation and maintenance of foot processes are under the control of many signalling molecules including Rho-GTPases. Our knowledge of Rho-GTPases is based largely on the functions of three prototypic members: RhoA, Rac1, and Cdc42. In the event of podocyte injury, the rearrangement to the actin cytoskeleton is orchestrated largely by this family of proteins. The importance of maintaining proper actin dynamics in podocytes has led to much investigation as to how Rho-GTPases and their regulatory molecules form and maintain foot processes as a critical component of the kidney’s filtration barrier. Modern sequencing techniques have allowed for the identification of novel disease causing mutations in genes such as ARHGDIA, encoding Rho-GDIα. Continued use of whole exome sequencing has the potential to lead to the identification of new mutations in genes encoding Rho-GTPases or their regulatory proteins. Expanding our knowledge of the dynamic regulation of the actin network by Rho-GTPases in podocytes will pave the way for effective therapeutic options for NS patients.
Collapse
|
149
|
Pollak MR, Quaggin SE, Hoenig MP, Dworkin LD. The glomerulus: the sphere of influence. Clin J Am Soc Nephrol 2014; 9:1461-9. [PMID: 24875196 DOI: 10.2215/cjn.09400913] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The glomerulus, the filtering unit of the kidney, is a unique bundle of capillaries lined by delicate fenestrated endothelia, a complex mesh of proteins that serve as the glomerular basement membrane and specialized visceral epithelial cells that form the slit diaphragms between interdigitating foot processes. Taken together, this arrangement allows continuous filtration of the plasma volume. The dynamic physical forces that determine the single nephron glomerular filtration are considered. In addition, new insights into the cellular and molecular components of the glomerular tuft and their contribution to glomerular disorders are explored.
Collapse
Affiliation(s)
- Martin R Pollak
- Beth Israel Deaconess Medical Center, Boston, Massachusetts;
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and
| | | | - Lance D Dworkin
- Brown Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
150
|
Bull KR, Mason T, Rimmer AJ, Crockford TL, Silver KL, Bouriez-Jones T, Hough TA, Chaudhry S, Roberts ISD, Goodnow CC, Cornall RJ. Next-generation sequencing to dissect hereditary nephrotic syndrome in mice identifies a hypomorphic mutation in Lamb2 and models Pierson's syndrome. J Pathol 2014; 233:18-26. [PMID: 24293254 PMCID: PMC4241031 DOI: 10.1002/path.4308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 01/11/2023]
Abstract
The study of mutations causing the steroid-resistant nephrotic syndrome in children has greatly advanced our understanding of the kidney filtration barrier. In particular, these genetic variants have illuminated the roles of the podocyte, glomerular basement membrane and endothelial cell in glomerular filtration. However, in a significant number of familial and early onset cases, an underlying mutation cannot be identified, indicating that there are likely to be multiple unknown genes with roles in glomerular permeability. We now show how the combination of N-ethyl-N-nitrosourea mutagenesis and next-generation sequencing could be used to identify the range of mutations affecting these pathways. Using this approach, we isolated a novel mouse strain with a viable nephrotic phenotype and used whole-genome sequencing to isolate a causative hypomorphic mutation in Lamb2. This discovery generated a model for one part of the spectrum of human Pierson's syndrome and provides a powerful proof of principle for accelerating gene discovery and improving our understanding of inherited forms of renal disease.
Collapse
Affiliation(s)
- Katherine R Bull
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
| | - Thomas Mason
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
| | - Andrew J Rimmer
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
| | - Tanya L Crockford
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Oxford UniversityUK
| | - Karlee L Silver
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
| | - Tiphaine Bouriez-Jones
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
| | - Tertius A Hough
- MRC Harwell, Harwell Science and Innovation CampusOxfordshire, UK
| | - Shirine Chaudhry
- Australian Phenomics Facility, Australian National UniversityCanberra, Australia
| | - Ian SD Roberts
- Oxford University Hospitals NHS Trust, John Radcliffe Hospital, Headington, OxfordUK
| | - Christopher C Goodnow
- Department of Immunology, John Curtin School of Medical Research, Australian National UniversityCanberra, Australia
| | - Richard J Cornall
- Nuffield Department of Medicine and Wellcome Trust Centre for Human Genetics, Oxford UniversityUK
- MRC Human Immunology Unit, Weatherall Institute for Molecular Medicine, Oxford UniversityUK
| |
Collapse
|