101
|
Bodart L, Tumanov N, Wouters J. Structural variety of clofaziminium salts: effect of the counter-ion on clofaziminium conformation and crystal packing. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2019; 75:674-686. [DOI: 10.1107/s2052520619007649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/26/2019] [Indexed: 11/11/2022]
Abstract
Clofazimine is a water-insoluble antimycobacterial agent gaining attention as a treatment for multi-drug resistant and extensively drug-resistant tuberculosis. Novel salts of clofazimine are reported with fumaric, succinic, 2,4-dihydroxybenzoic and terephthalic acids and with saccharin. The salt structures were obtained by single-crystal X-ray diffraction. The salts with 2,4-dihydroxybenzoic acid and with saccharin are solvated (methanol and acetonitrile, respectively). The reaction of clofazimine with terephthalic acid led to two salt cocrystals, one solvated and one non-solvated. These new clofaziminium salts are compared with the currently known ones in terms of crystal packing and clofazimine/ium conformation. Clofaziminium hydrogen succinate presents isostructurality with clofaziminium hydrogen malonate, an already described salt. In the structure of clofaziminium terephthalate terephthalic acid salt cocrystal, solvent evaporation leads to packing and hydrogen-bonding modifications. In all the new structures, the clofaziminium conformation is quite well conserved and steric hindrance is observed around the protonated site. Conformational optimization of clofaziminium reveals that this steric-hindrance energy penalty is compensated for by hydrogen-bond interactions with the salt counter-ions.
Collapse
|
102
|
Mycobacterium avium complex pulmonary disease: new epidemiology and management concepts. Curr Opin Infect Dis 2019; 31:199-207. [PMID: 29346118 DOI: 10.1097/qco.0000000000000437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW The prevalence of Mycobacterium avium complex (MAC)-related pulmonary disease has been increasing because of environmental factors, changes in organism virulence, and evolving host susceptibility. Treatment is often complicated by adverse effects, development of drug resistance, and refractory disease, with recurrence rates as high as 25-45%. RECENT FINDINGS Aerosolization of water, soil, or dusts are the likely sources of MAC-related pulmonary disease in susceptible individuals. The management of MAC-related pulmonary disease requires a multimodality approach, including antimicrobial therapy in appropriate patients, employment of mucus clearance techniques, instituting changes in the individual's home environment and personal habits to reduce environmental exposure to MAC, prevention of reflux, and maintenance of a healthy body weight. When the standard treatment for MAC-related pulmonary disease is not possible because of drug intolerance, antibiotic resistance, or progression of disease, second-line agents such as inhaled amikacin, clofazimine, bedaquiline, and delamanid must be considered, despite limited experience and few studies to guide their use. SUMMARY Individuals who have proven to be susceptible to MAC-related pulmonary disease should institute measures to reduce exposure to environmental sources of infection. Further research is needed to assess the impact of such preventive strategies on the incidence of new infection and disease recurrence. The efficacy of new medications for MAC-related pulmonary disease and their use in different combinations also requires further study.
Collapse
|
103
|
Photoacoustic imaging of clofazimine hydrochloride nanoparticle accumulation in cancerous vs normal prostates. PLoS One 2019; 14:e0219655. [PMID: 31306463 PMCID: PMC6629155 DOI: 10.1371/journal.pone.0219655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/28/2019] [Indexed: 11/19/2022] Open
Abstract
Prostate cancer was the most common form and had the second highest death rate of male cancer in the United States in 2015. Current diagnosis techniques, such as prostate-specific antigen tests, transrectal ultrasound scans, and biopsies, are often inconclusive, and in the latter case, invasive. Here, we explore the use of clofazimine hydrochloride nanoparticles (CFZ-HCl NPs), a repurposed formulation from an FDA-approved antimycobacterial agent, as a photoacoustic contrast agent for the evaluation of prostate cancer due to its macrophage-targeting capabilities and high optical absorbance at 495 nm. Using a transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse model, our results indicate a preferential accumulation of intravenously injected CFZ-HCl NPs in cancerous prostates over normal prostates. Differences in accumulation of CFZ-HCl NPs between cancerous and normal prostates were determined using a two-wavelength unmixing technique via ex vivo photoacoustic imaging. Thus, intravenous injection of CFZ-HCl NPs leads to differences in the interactions of the particles with cancerous vs normal prostates, while allowing for photoacoustic detection and analysis of prostate cancer. These findings could lead to the development of a new noninvasive technique for the detection and monitoring of prostate cancer progression in an animal model that can potentially be translated to human patients.
Collapse
|
104
|
Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev 2019; 40:263-292. [PMID: 31254295 DOI: 10.1002/med.21602] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis and more recently totally drug-resistant strains of M. tuberculosis, display unique mechanisms to survive in the host. A four-drug treatment regimen was introduced 40 years ago but the emergence of multidrug-resistance and more recently TDR necessitates the identification of new targets and drugs for the cure of M. tuberculosis infection. The current efforts in the drug development process are insufficient to completely eradicate the TB epidemic. For almost five decades the TB drug development process remained stagnant. The last 10 years have made sudden progress giving some new and highly promising drugs including bedaquiline, delamanid, and pretomanid. Many of the candidates are repurposed compounds, which were developed to treat other infections but later, exhibited anti-TB properties also. Each class of drug has a specific target and a definite mode of action. These targets are either involved in cell wall biosynthesis, protein synthesis, DNA/RNA synthesis, or metabolism. This review discusses recent progress in the discovery of newly developed and Food and Drug Administration approved drugs as well as repurposed drugs, their targets, mode of action, drug-target interactions, and their structure-activity relationship.
Collapse
Affiliation(s)
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
105
|
Antibiotic resistance genes in the Actinobacteria phylum. Eur J Clin Microbiol Infect Dis 2019; 38:1599-1624. [PMID: 31250336 DOI: 10.1007/s10096-019-03580-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
The Actinobacteria phylum is one of the oldest bacterial phyla that have a significant role in medicine and biotechnology. There are a lot of genera in this phylum that are causing various types of infections in humans, animals, and plants. As well as antimicrobial agents that are used in medicine for infections treatment or prevention of infections, they have been discovered of various genera in this phylum. To date, resistance to antibiotics is rising in different regions of the world and this is a global health threat. The main purpose of this review is the molecular evolution of antibiotic resistance in the Actinobacteria phylum.
Collapse
|
106
|
Li G, Xu Z, Jiang Y, Liu H, Zhao LL, Li M, Xu D, Zhao X, Liu Z, Wang R, Wan K. Synergistic activities of clofazimine with moxifloxacin or capreomycin against Mycobacterium tuberculosis in China. Int J Antimicrob Agents 2019; 54:642-646. [PMID: 31200023 DOI: 10.1016/j.ijantimicag.2019.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/19/2019] [Accepted: 06/02/2019] [Indexed: 11/25/2022]
Abstract
Clofazimine (CFZ) is a promising candidate drug for use in the management of multidrug-resistant tuberculosis (MDR-TB) patients. In this study, the minimum inhibitory concentration (MIC) method and checkerboard method were used to investigate potential synergies between CFZ and moxifloxacin (MOX) or capreomycin (CAP). Thirty Mycobacterium tuberculosis strains were collected, including 13 MDR strains, 2 extensively drug-resistant (XDR) strains, 3 pan-sensitive strains and 12 strains resistant to other drugs. When the minimum fractional inhibitory concentration indexes (FICIs) were calculated, synergy was found in 21 (70.00%) M. tuberculosis strains against the CFZ/CAP combination and 29 (96.67%) against the CFZ/MOX combination. When the maximum FICIs were calculated, 10 of 15 MDR/XDR strains and 2 of 15 other drug-resistant or pan-sensitive strains showed antagonism against the CFZ/CAP combination, whilst 8 of 15 MDR/XDR strains and 1 of 15 other drug-resistant or pan-sensitive strains showed antagonism against the CFZ/MOX combination, respectively. In conclusion, these findings demonstrate that the combination of CFZ and MOX shows better synergism than the combination of CFZ and CAP. The MDR/XDR isolates are more likely to show antagonism than the other drug-resistant or pan-sensitive strains in both the CFZ/MOX and CFZ/CAP combinations. CFZ in combination with MOX may be a promising drug regimen for the treatment of MDR-TB, particularly for susceptible M. tuberculosis infections.
Collapse
Affiliation(s)
- Guilian Li
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhengquan Xu
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Yi Jiang
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Haican Liu
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Li-Li Zhao
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Machao Li
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Donglei Xu
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiuqin Zhao
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhiguang Liu
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Ruibai Wang
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Kanglin Wan
- Tuberculosis branch, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
107
|
Al-Ghafli H, Al-Hajoj S. Clinical Management of Drug-resistant Mycobacterium tuberculosis Strains: Pathogen-targeted Versus Host-directed Treatment Approaches. Curr Pharm Biotechnol 2019; 20:272-284. [DOI: 10.2174/1389201019666180731120544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/19/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
Background:
Despite exerted efforts to control and treat Mycobacterium tuberculosis (MTB)
strains, Tuberculosis (TB) remains a public health menace. The emergence of complex drug-resistant profiles,
such as multi-drug resistant and extensively drug-resistant MTB strains, emphasizes the need for
early diagnosis of resistant cases, shorter treatment options, and effective medical interventions.
Objective:
Solutions for better clinical management of drug-resistant cases are either pathogencentered
(novel chemotherapy agents) or host-directed approaches (modulating host immune response
to prevent MTB invasion and pathogenesis).
Results:
Despite the overall potentiality of several chemotherapy agents, it is feared that their effectiveness
could be challenged by sequential pathogen adaptation tactics. On the contrary, host-directed
therapy options might offer a long-term conceivable solution.
Conclusion:
This review discusses the main suggestions proposed so far to resolve the clinical challenges
associated with drug resistance, in the context of TB. These suggestions include novel drug delivery approaches
that could optimize treatment outcome and increase patients’ compliance to the treatment.
Collapse
Affiliation(s)
- Hawra Al-Ghafli
- Department of Infections and Immunity, King Faisal Specialist Hospital and Research Center, P.O. Box. 3354 Riyadh 11211 MBC:03, Riyadh, Saudi Arabia
| | - Sahal Al-Hajoj
- Department of Infections and Immunity, King Faisal Specialist Hospital and Research Center, P.O. Box. 3354 Riyadh 11211 MBC:03, Riyadh, Saudi Arabia
| |
Collapse
|
108
|
Wu S, Lan L, Jiang J, Ding X, Ho CM, Lou Y, Fan G. Simultaneous determination of the potent anti-tuberculosis regimen-Pyrazinamide, ethambutol, protionamide, clofazimine in beagle dog plasma using LC-MS/MS method coupled with 96-well format plate. J Pharm Biomed Anal 2019; 168:44-54. [PMID: 30784889 PMCID: PMC6447767 DOI: 10.1016/j.jpba.2019.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/03/2019] [Accepted: 02/04/2019] [Indexed: 11/05/2022]
Abstract
LC–MS/MS method for determination of Pyrazinamide, Ethambutol, Protionamide and Clofazimine in Beagle Dog Plasma. Method validation was conducted according to FDA and NMPA guidelines. Hemolysis effect was investigated in detail. The method is robust and high throughput cooperated with 96-well format plates.
Tuberculosis is one of the top concerns in the world and acutely threatens human health. A new potent candidate regimen containing pyrazinamide (PZA), ethambutol (EMB), protionamide (PTO) and clofazimine (CFZ) was proposed by Parabolic Response Surface/Feedback System Control (FSC/PRS) system and showed excellent outcomes in vitro and vivo studies. Here, a convenient liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method was developed for the simultaneously determination of four compounds in beagle dog plasma. The plasma samples, 50 μL for each, were pretreated by methanol on 96-well format plates and a further dilution step was designed to reduce predictable matrix effect and lessen the burden of subsequent analysis. The chromatographic separation was achieved on an Agilent SB-Aq column (4.6 mm × 150 mm, 5 μm) at 30 °C by a gradient elution within 6 min. The mobile phase was a mixture of 0.2% formic acid-5 mM ammonium acetate aqueous solution (phase A) and 0.2% formic acid methanol (phase B) with a total flow rate of 1 mL/min. The 30% of post-column eluant was injected into mass spectrometer, equipped with electrospray ionization (ESI) source under positive mode and multiple-reaction monitoring (MRM). This quantification method was proved to be satisfied in selectivity, accuracy, precision, linearity (r2 > 0.998), recovery, matrix effect and stability. Under the specialized conditions, the calibration curves ranged from 20 to 5000 ng/mL for PZA, 1 to 500 ng/mL for EMB, 1 to 500 ng/mL for PTO, and 1 to 200 ng/mL for CFZ. The quantitative accuracy was further assessed under different degrees of hemolyses in detail. This method was proved to be robust and efficient, and successfully applied to the pharmacokinetic study of the new regimen in Beagle dogs.
Collapse
Affiliation(s)
- Shengyuan Wu
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China
| | - Liai Lan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China
| | - Jingjing Jiang
- Department of Pharmacy, Shanghai Fourth People's Hospital, Tongji University, No. 1878 North Sichuan Road, Shanghai 200081, PR China
| | - Xianting Ding
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai 200030, PR China
| | - Chih-Ming Ho
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital, Tongji University, No. 1878 North Sichuan Road, Shanghai 200081, PR China.
| | - Guorong Fan
- School of Medicine, Tongji University, No. 1239 Siping Road, Shanghai 200092, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, No. 325 Guohe Road, Shanghai 200433, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200025, PR China.
| |
Collapse
|
109
|
Salim M, Ramirez G, Clulow AJ, Zhang Y, Ristroph KD, Feng J, McManus SA, Hawley A, Prud'homme RK, Boyd BJ. Solid-State Behavior and Solubilization of Flash Nanoprecipitated Clofazimine Particles during the Dispersion and Digestion of Milk-Based Formulations. Mol Pharm 2019; 16:2755-2765. [PMID: 31038976 PMCID: PMC6549212 DOI: 10.1021/acs.molpharmaceut.9b00276] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
Clofazimine, a drug previously used
to treat leprosy, has recently
been identified as a potential new drug for the treatment for cryptosporidiosis:
a diarrheal disease that contributes to 500 000 infant deaths
a year in developing countries. Rapid dissolution and local availability
of the drug in the small intestine is considered key to the treatment
of the infection. However, the commercially available clofazimine
formulation (Lamprene) is not well-suited to pediatric use, and therefore
reformulation of clofazimine is desirable. Development of clofazimine
nanoparticles through the process of flash nanoprecipitation (FNP)
has been previously shown to provide fast and improved drug dissolution
rates compared to clofazimine crystals and Lamprene. In this study,
we investigate the effects of milk-based formulations (as possible
pediatric-friendly vehicles) on the in vitro solubilization of clofazimine
formulated as either lecithin- or zein/casein-stabilized nanoparticles.
Milk and infant formula were used as the lipid vehicles, and time-resolved
synchrotron X-ray scattering was used to monitor the presence of crystalline
clofazimine in suspension during in vitro lipolysis under intestinal
conditions. The study confirmed faster dissolution of clofazimine
from all the FNP formulations after the digestion of infant formula
was initiated, and a reduced quantity of fat was required to achieve
similar levels of drug solubilization compared to the reference drug
material and the commercial formulation. These attributes highlight
not only the potential benefits of the FNP approach to prepare drug
particles but also the fact that enhanced dissolution rates can be
complemented by considering the amount of co-administered fat in lipid-based
formulations to drive the solubilization of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | - Yingyue Zhang
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Kurt D Ristroph
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Jie Feng
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Simon A McManus
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | - Adrian Hawley
- SAXS/WAXS Beamline, Australian Synchrotron, ANSTO , 800 Blackburn Rd , Clayton , Victoria 3169 , Australia
| | - Robert K Prud'homme
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08540 , United States
| | | |
Collapse
|
110
|
In Vitro and In Vivo Activities of the Riminophenazine TBI-166 against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2019; 63:AAC.02155-18. [PMID: 30782992 DOI: 10.1128/aac.02155-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/01/2019] [Indexed: 12/20/2022] Open
Abstract
The riminophenazine agent clofazimine (CFZ) is repurposed as an important component of the new short-course multidrug-resistant tuberculosis regimen and significantly shortens first-line regimen for drug-susceptible tuberculosis in mice. However, CFZ use is hampered by its unwelcome skin discoloration in patients. A new riminophenazine analog, TBI-166, was selected as a potential next-generation antituberculosis riminophenazine following an extensive medicinal chemistry effort. Here, we evaluated the activity of TBI-166 against Mycobacterium tuberculosis and its potential to accumulate and discolor skin. The in vitro activity of TBI-166 against both drug-sensitive and drug-resistant M. tuberculosis is more potent than that of CFZ. Spontaneous mutants resistant to TBI-166 were found at a frequency of 2.3 × 10-7 in wild strains of M. tuberculosis TBI-166 demonstrates activity at least equivalent to that of CFZ against intracellular M. tuberculosis and in low-dose aerosol infection models of acute and chronic murine tuberculosis. Most importantly, TBI-166 causes less skin discoloration than does CFZ despite its higher tissue accumulation. The efficacy of TBI-166, along with its decreased skin pigmentation, warrants further study and potential clinical use.
Collapse
|
111
|
Hong X, Rzeczycki PM, Keswani RK, Murashov MD, Fan Z, Deng CX, Rosania GR. Acoustic tweezing cytometry for mechanical phenotyping of macrophages and mechanopharmaceutical cytotripsy. Sci Rep 2019; 9:5702. [PMID: 30952950 PMCID: PMC6450871 DOI: 10.1038/s41598-019-42180-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/25/2019] [Indexed: 11/15/2022] Open
Abstract
Macrophages are immune cells responsible for tissue debridement and fighting infection. Clofazimine, an FDA-approved antibiotic, accumulates and precipitates as rod-shaped, crystal-like drug inclusions within macrophage lysosomes. Drug treatment as well as pathophysiological states could induce changes in macrophage mechanical property which in turn impact their phenotype and function. Here we report the use of acoustic tweezing cytometry as a new approach for in situ mechanical phenotyping of macrophages and for targeted macrophage cytotripsy. Acoustic tweezing cytometry applies ultrasound pulses to exert controlled forces to individual cells via integrin-bound microbubbles, enabling a creep test for measuring cellular mechanical property or inducing irreversible changes to the cells. Our results revealed that macrophages with crystal-like drug inclusions became significantly softer with higher cell compliance, and behaved more elastic with faster creep and recovery time constants. On the contrary, phagocytosis of solid polyethylene microbeads or treatment with soluble clofazimine rendered macrophages stiffer. Most notably, application of ultrasound pulses of longer duration and higher amplitude in ATC actuated the integrin-bound microbubbles to mobilize the crystal-like drug inclusions inside macrophages, turning the rod-shaped drug inclusions into intracellular microblender that effectively destructed the cells. This phenomenon of acoustic mechanopharmaceutical cytotripsy may be exploited for ultrasound activated, macrophage-directed drug release and delivery.
Collapse
Affiliation(s)
- Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillip M Rzeczycki
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rahul K Keswani
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhenzhen Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
112
|
Savarino E, Bertani L, Ceccarelli L, Bodini G, Zingone F, Buda A, Facchin S, Lorenzon G, Marchi S, Marabotto E, De Bortoli N, Savarino V, Costa F, Blandizzi C. Antimicrobial treatment with the fixed-dose antibiotic combination RHB-104 for Mycobacterium avium subspecies paratuberculosis in Crohn's disease: pharmacological and clinical implications. Expert Opin Biol Ther 2019; 19:79-88. [PMID: 30574820 DOI: 10.1080/14712598.2019.1561852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Crohn's disease (CD) is an inflammatory bowel disease of unknown etiology. However, increasing evidence suggests Mycobacterium avium subspecies paratuberculosis (MAP) as a putative causative agent: 1) MAP is the etiological agent of Johne's disease, a granulomatous enteritis affecting ruminants, which shares clinical and pathological features with CD; 2) MAP has been detected in tissues and blood samples from CD patients; 3) case reports have documented a favorable therapeutic response to anti-MAP antibiotics. Area covered: This review provides an appraisal of current information on MAP characteristics, diagnostic methodologies and emerging drug treatments. The authors focus on RHB-104, a novel oral formulation containing a fixed-dose combination of clarithromycin, clofazimine and rifabutin, endowed with synergistic inhibitory activity on MAP strains isolated from CD patients. Expert opinion: Based on encouraging in vitro data, RHB-104 has entered recently the clinical phase of its development, and is being investigated in a randomized, placebo-controlled phase III trial aimed at evaluating its efficacy and safety in CD. Provided that the overall clinical development will support the suitability of RHB-104 for inducing disease remission in CD patients with documented MAP infection, this novel antibiotic combination will likely take a relevant position in the therapeutic armamentarium for CD management.
Collapse
Affiliation(s)
- Edoardo Savarino
- a Gastrointestinal Unit, Department of Surgery, Oncology and Gastroenterology , University of Padua , Padua , Italy
| | - Lorenzo Bertani
- b Gastrointestinal Unit, Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery , University of Pisa , Pisa , Italy
| | - Linda Ceccarelli
- b Gastrointestinal Unit, Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery , University of Pisa , Pisa , Italy
| | - Giorgia Bodini
- c Gastrointestinal Unit, Department of Internal Medicine and Medical Specialties , University of Genoa , Genoa , Italy
| | - Fabiana Zingone
- a Gastrointestinal Unit, Department of Surgery, Oncology and Gastroenterology , University of Padua , Padua , Italy
| | - Andrea Buda
- a Gastrointestinal Unit, Department of Surgery, Oncology and Gastroenterology , University of Padua , Padua , Italy
| | - Sonia Facchin
- a Gastrointestinal Unit, Department of Surgery, Oncology and Gastroenterology , University of Padua , Padua , Italy
| | - Greta Lorenzon
- a Gastrointestinal Unit, Department of Surgery, Oncology and Gastroenterology , University of Padua , Padua , Italy
| | - Santino Marchi
- b Gastrointestinal Unit, Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery , University of Pisa , Pisa , Italy
| | - Elisa Marabotto
- c Gastrointestinal Unit, Department of Internal Medicine and Medical Specialties , University of Genoa , Genoa , Italy
| | - Nicola De Bortoli
- b Gastrointestinal Unit, Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery , University of Pisa , Pisa , Italy
| | - Vincenzo Savarino
- c Gastrointestinal Unit, Department of Internal Medicine and Medical Specialties , University of Genoa , Genoa , Italy
| | - Francesco Costa
- b Gastrointestinal Unit, Division of Gastroenterology, Department of Translational Research and New Technologies in Medicine and Surgery , University of Pisa , Pisa , Italy
| | - Corrado Blandizzi
- d Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine , University of Pisa , Pisa , Italy
| |
Collapse
|
113
|
Leanza L, Checchetto V, Biasutto L, Rossa A, Costa R, Bachmann M, Zoratti M, Szabo I. Pharmacological modulation of mitochondrial ion channels. Br J Pharmacol 2019; 176:4258-4283. [PMID: 30440086 DOI: 10.1111/bph.14544] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/15/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.
Collapse
Affiliation(s)
- Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Lucia Biasutto
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Andrea Rossa
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Roberto Costa
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mario Zoratti
- CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
114
|
van Zyl L, Viljoen JM, Haynes RK, Aucamp M, Ngwane AH, du Plessis J. Topical Delivery of Artemisone, Clofazimine and Decoquinate Encapsulated in Vesicles and Their In vitro Efficacy Against Mycobacterium tuberculosis. AAPS PharmSciTech 2019; 20:33. [PMID: 30604176 DOI: 10.1208/s12249-018-1251-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/18/2018] [Indexed: 12/21/2022] Open
Abstract
Vesicles are widely investigated as carrier systems for active pharmaceutical ingredients (APIs). For topical delivery, they are especially effective since they create a "depot-effect" thereby concentrating the APIs in the skin. Artemisone, clofazimine and decoquinate were selected as a combination therapy for the topical treatment of cutaneous tuberculosis. Delivering APIs into the skin presents various challenges. However, utilising niosomes, liposomes and transferosomes as carrier systems may circumvent these challenges. Vesicles containing 1% of each of the three selected APIs were prepared using the thin-film hydration method. Isothermal calorimetry, differential scanning calorimetry and hot-stage microscopy indicated no to minimal incompatibility between the APIs and the vesicle components. Encapsulation efficiency was higher than 85% for all vesicle dispersions. Vesicle stability decreased and size increased with an increase in API concentration; and ultimately, niosomes were found the least stable of the different vesicle types. Skin diffusion studies were subsequently conducted for 12 h on black human female skin utilising vertical Franz diffusion cells. Transferosomes and niosomes delivered the highest average concentrations of clofazimine and decoquinate into the skin, whereas artemisone was not detected and no APIs were present in the receptor phase. Finally, efficacy against tuberculosis was tested against the Mycobacterium tuberculosis H37Rv laboratory strain. All the dispersions depicted some activity, surprisingly even the blank vesicles portrayed activity. However, the highest percentage inhibition (52%) against TB was obtained with niosomes containing 1% clofazimine.
Collapse
|
115
|
Bannigan P, Stokes K, Kumar A, Madden C, Hudson SP. Investigating the effects of amphipathic gastrointestinal compounds on the solution behaviour of salt and free base forms of clofazimine: An in vitro evaluation. Int J Pharm 2018; 552:180-192. [DOI: 10.1016/j.ijpharm.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 02/02/2023]
|
116
|
Synthesis and Characterization of a Biomimetic Formulation of Clofazimine Hydrochloride Microcrystals for Parenteral Administration. Pharmaceutics 2018; 10:pharmaceutics10040238. [PMID: 30453628 PMCID: PMC6321048 DOI: 10.3390/pharmaceutics10040238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022] Open
Abstract
Clofazimine (CFZ) is a broad spectrum antimycobacterial agent recommended by the World Health Organization as a first line treatment for leprosy and second line treatment for multidrug resistant tuberculosis. Oral administration of CFZ leads to a red skin pigmentation side effect. Since CFZ is a weakly basic, red phenazine dye, the skin pigmentation side effect results from lipophilic partitioning of the circulating, free base (neutral) form of CFZ into the skin. Here, we developed a stable and biocompatible formulation of CFZ-HCl microcrystals that mimics the predominant form of the drug that bioaccumulates in macrophages, following long term oral CFZ administration. In mice, intravenous injection of these biomimetic CFZ-HCl microcrystals led to visible drug accumulation in macrophages of the reticuloendothelial system with minimal skin accumulation or pigmentation. In fact, no skin pigmentation was observed when the total amount of CFZ-HCl administered was equivalent to the total oral dose leading to maximal skin pigmentation. Thus, parenteral (injected or inhaled) biomimetic formulations of CFZ-HCl could be instrumental to avoid the pigmentation side effect of oral CFZ therapy.
Collapse
|
117
|
Rzeczycki P, Woldemichael T, Willmer A, Murashov MD, Baik J, Keswani R, Yoon GS, Stringer KA, Rodriguez-Hornedo N, Rosania GR. An Expandable Mechanopharmaceutical Device (1): Measuring the Cargo Capacity of Macrophages in a Living Organism. Pharm Res 2018; 36:12. [PMID: 30421091 PMCID: PMC6501569 DOI: 10.1007/s11095-018-2539-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022]
Abstract
PURPOSE Clofazimine (CFZ) is an FDA-approved, poorly soluble small molecule drug that precipitates as crystal-like drug inclusions (CLDIs) which accumulate in acidic cytoplasmic organelles of macrophages. In this study, we considered CLDIs as an expandable mechanopharmaceutical device, to study how macrophages respond to an increasingly massive load of endophagolysosomal cargo. METHODS First, we experimentally tested how the accumulation of CFZ in CLDIs impacted different immune cell subpopulations of different organs. Second, to further investigate the mechanism of CLDI formation, we asked whether specific accumulation of CFZ hydrochloride crystals in lysosomes could be explained as a passive, thermodynamic equilibrium phenomenon. A cellular pharmacokinetic model was constructed, simulating CFZ accumulation driven by pH-dependent ion trapping of the protonated drug in the acidic lysosomes, followed by the precipitation of CFZ hydrochloride salt via a common ion effect caused by high chloride concentrations. RESULTS While lower loads of CFZ were mostly accommodated in lung macrophages, increased CFZ loading was accompanied by organ-specific changes in macrophage numbers, size and intracellular membrane architecture, maximizing the cargo storage capabilities. With increasing loads, the total cargo mass and concentrations of CFZ in different organs diverged, while that of individual macrophages converged. The simulation results support the notion that the proton and chloride ion concentrations of macrophage lysosomes are sufficient to drive the massive, cell type-selective accumulation and growth of CFZ hydrochloride biocrystals. CONCLUSION CLDIs effectively function as an expandable mechanopharmaceutical device, revealing the coordinated response of the macrophage population to an increasingly massive, whole-organism endophagolysosomal cargo load.
Collapse
Affiliation(s)
- Phillip Rzeczycki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tehetina Woldemichael
- Biophysics Program, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Willmer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason Baik
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rahul Keswani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gi Sang Yoon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Nair Rodriguez-Hornedo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
118
|
Rzeczycki P, Yoon GS, Keswani RK, Sud S, Baik J, Murashov MD, Bergin IL, Stringer KA, Rosania GR. An Expandable Mechanopharmaceutical Device (2): Drug Induced Granulomas Maximize the Cargo Sequestering Capacity of Macrophages in the Liver. Pharm Res 2018; 36:3. [PMID: 30406478 DOI: 10.1007/s11095-018-2541-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022]
Abstract
PURPOSE Drug-induced liver injuries (DILI) comprise a significant proportion of adverse drug reactions leading to hospitalizations and death. One frequent DILI is granulomatous inflammation from exposure to harmful metabolites that activate inflammatory pathways of immune cells of the liver, which may act as a barrier to isolate the irritating stimulus and limit tissue damage. METHODS Paralleling the accumulation of CFZ precipitates in the liver, granulomatous inflammation was studied to gain insight into its effect on liver structure and function. A structural analog that does not precipitate within macrophages was also studied using micro-analytical approaches. Depleting macrophages was used to inhibit granuloma formation and assess its effect on drug bioaccumulation and toxicity. RESULTS Granuloma-associated macrophages showed a distinct phenotype, differentiating them from non-granuloma macrophages. Granulomas were induced by insoluble CFZ cargo, but not by the more soluble analog, pointing to precipitation being a factor driving granulomatous inflammation. Granuloma-associated macrophages showed increased activation of lysosomal master-regulator transcription factor EB (TFEB). Inhibiting granuloma formation increased hepatic necrosis and systemic toxicity in CFZ-treated animals. CONCLUSIONS Granuloma-associated macrophages are a specialized cell population equipped to actively sequester and stabilize cytotoxic chemotherapeutic agents. Thus, drug-induced granulomas may function as drug sequestering "organoids" -an induced, specialized sub-compartment- to limit tissue damage.
Collapse
Affiliation(s)
- Phillip Rzeczycki
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - Gi Sang Yoon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - Rahul K Keswani
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - Sudha Sud
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - Jason Baik
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, Medical School Office of Research, University of Michigan, 2800 Plymouth Road, Ann Arbor, Michigan, 48109, USA
| | - Kathleen A Stringer
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48104, USA
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, Michigan, 48109, USA.
- University of Michigan College of Pharmacy, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
119
|
Drug targets exploited in Mycobacterium tuberculosis: Pitfalls and promises on the horizon. Biomed Pharmacother 2018; 103:1733-1747. [PMID: 29864964 DOI: 10.1016/j.biopha.2018.04.176] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis is an ever evolving infectious disease that still claims about 1.8 million human lives each year around the globe. Although modern chemotherapy has played a pivotal role in combating TB, the increasing emergence of drug-resistant TB aligned with HIV pandemic threaten its control. This highlights both the need to understand how our current drugs work and the need to develop new and more effective drugs. TB drug discovery is revisiting the clinically validated drug targets in Mycobacterium tuberculosis using whole-cell phenotypic assays in search of better therapeutic scaffolds. Herein, we review the promises of current TB drug regimens, major pitfalls faced, key drug targets exploited so far in M. tuberculosis along with the status of newly discovered drugs against drug resistant forms of TB. New antituberculosis regimens that use lesser number of drugs, require shorter duration of treatment, are equally effective against susceptible and resistant forms of disease, have acceptable toxicity profiles and behave friendly with anti-HIV regimens remains top most priority in TB drug discovery.
Collapse
|
120
|
Bannigan P, Durack E, Mathur H, Rea MC, Ross RP, Hudson SP. Delivery of a hydrophobic drug into the lower gastrointestinal system via an endogenous enzyme-mediated carrier mechanism: An in vitro study. Eur J Pharm Biopharm 2018; 133:12-19. [PMID: 30267836 DOI: 10.1016/j.ejpb.2018.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 11/25/2022]
Abstract
Clofazimine (CFZ) is a hydrophobic antibiotic agent which exhibits poor solubility. This poor solubility was overcome herein by the formulation of CFZ with the digestive enzyme pepsin. It is shown that pepsin can actively bind 11 CFZ molecules in the protein's native gastric environment, forming a CFZ-pepsin complex. A dynamic dissolution system, representing both the gastric and intestinal system, was used to analyze this CFZ-pepsin complex, revealing that only CFZ which binds to pepsin in the gastric environment remains in solution in the intestinal environment. The CFZ-pepsin complex displays adequate solution stability for the delivery of CFZ into the lower intestinal system. In vitro bioactivity assays against Clostridium difficile demonstrated the effectiveness of this CFZ-pepsin complex for the treatment of infectious diseases in the lower intestinal system.
Collapse
Affiliation(s)
- Pauric Bannigan
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Ireland.
| | - Edel Durack
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Ireland.
| | - Harsh Mathur
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - Mary C Rea
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| | - R Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland; College of Science, Engineering and Food Science, University College Cork, Ireland.
| | - Sarah P Hudson
- Department of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, Bernal Institute, University of Limerick, Ireland.
| |
Collapse
|
121
|
Chen W, Cheng CA, Lee BY, Clemens DL, Huang WY, Horwitz MA, Zink JI. Facile Strategy Enabling Both High Loading and High Release Amounts of the Water-Insoluble Drug Clofazimine Using Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31870-31881. [PMID: 30160469 DOI: 10.1021/acsami.8b09069] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The use of nanocarriers to deliver poorly soluble drugs to the sites of diseases is an attractive and general method, and mesoporous silica nanoparticles (MSNs) are increasingly being used as carriers. However, both loading a large amount of drugs into the pores and still being able to release the drug is a challenge. In this paper, we demonstrate a general strategy based on a companion molecule that chaperones the drug into the pores and also aids it in escaping. A common related strategy is to use a miscible co-solvent dimethyl sulfoxide (DMSO), but although loading may be efficient in DMSO, this co-solvent frequently diffuses into an aqueous environment, leaving the drug behind. We demonstrate the method by using acetophenone (AP), an FDA-approved food additive as the chaperone for clofazimine (CFZ), a water-insoluble antibiotic used to treat leprosy and multidrug-resistant tuberculosis. AP enables a high amount of CFZ cargo into the MSNs and also carries CFZ cargo out from the MSNs effectively when they are in an aqueous biorelevant environment. The amount of loading and the CFZ release efficiency from MSNs were optimized; 4.5 times more CFZ was loaded in MSNs with AP than that with DMSO and 2300 times more CFZ was released than that without the assistance of the AP. In vitro treatment of macrophages infected by Mycobacterium tuberculosis with the optimized CFZ-loaded MSNs killed the bacteria in the cells in a dose-dependent manner. These studies demonstrate a highly efficient method for loading nanoparticles with water-insoluble drug molecules and the efficacy of the nanoparticles in delivering drugs into eukaryotic cells in aqueous media.
Collapse
|
122
|
DeStefano MS, Shoen CM, Cynamon MH. Therapy for Mycobacterium kansasii Infection: Beyond 2018. Front Microbiol 2018; 9:2271. [PMID: 30319580 PMCID: PMC6166578 DOI: 10.3389/fmicb.2018.02271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
The current standard of care therapy for pulmonary Mycobacterium kansasii infection is isoniazid (300 mg/day), rifampin (600 mg/day), and ethambutol (15 mg/kg/day) for 12 months after achieving sputum culture negativity. Rifampin is the key drug in this regimen. The contribution of isoniazid is unclear since its in vitro MICs against M. kansasii are near the peak achievable serum levels and more than 100-fold greater than the MICs for Mycobacterium tuberculosis. Ethambutol likely decreases the emergence of rifampin resistant organisms. There are several new drug classes (e.g., quinolones, macrolides, nitroimidazoles, diarylquinolines, and clofazimine) that exhibit antimycobacterial activities against M. tuberculosis but have not yet been adequately studied against M. kansasii infections. The evaluation of in vitro activities of these agents as well as their study in new regimens in comparison to the standard of care regimen in mouse infection models should be undertaken. This knowledge will inform development of human clinical trials of new regimens in comparison to the current standard of care regimen. It is likely that shorter and more effective therapy is achievable with currently available drugs.
Collapse
Affiliation(s)
| | - Carolyn M Shoen
- Central New York Research Corporation, Syracuse, NY, United States
| | - Michael H Cynamon
- Central New York Research Corporation, Syracuse, NY, United States.,Veterans Affairs Medical Center, Syracuse, NY, United States
| |
Collapse
|
123
|
Nachipo P, Hermann D, Quinnan G, Gordon MA, Van Voorhis WC, Iroh Tam PY. Evaluating the safety, tolerability, pharmacokinetics and efficacy of clofazimine in cryptosporidiosis (CRYPTOFAZ): study protocol for a randomized controlled trial. Trials 2018; 19:456. [PMID: 30139372 PMCID: PMC6108095 DOI: 10.1186/s13063-018-2846-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptosporidium infection and diarrhea (cryptosporidiosis) is a life-threatening infection in persons with HIV and also in children of 6-18 months of age in the developing world. To date, only nitazoxanide is licensed for treatment of cryptosporidiosis, and only in persons after the first year of life and with healthy immune systems. Clofazimine (CFZ: Lamprene®), an established drug that has been used for leprosy for more than 50 years, recently has been described as effective against Cryptosporidium in vitro and in mouse infections. The efficacy and pharmacokinetics of CFZ in vivo, in HIV-infected patients with cryptosporidial diarrhea are not known. METHODS CRYPTOFAZ includes a randomized, double-blind, placebo-controlled study of the safety, tolerability and Cryptosporidium inhibitory activity of orally administered CFZ in subjects with HIV infection and chronic diarrhea with Cryptosporidium. An additional open label aspect of the study will compare the pharmacokinetics (PK) of orally administered CFZ in HIV-infected individuals with and without Cryptosporidium-associated diarrhea. The study will recruit a total of 66 subjects. Study participants will be given either CFZ or a placebo for 5 days while in hospital and will be followed up after discharge. Cryptosporidium will be diagnosed by quantitative PCR as the definitive test and by stool ELISA, which will also be used to quantify the shedding of Cryptosporidium in stool. PK will be studied on plasma and stool samples. Primary endpoints include reduction in the number of Cryptosporidium shed in stools over a 5-day period and compared to placebo recipients and the PK of CFZ in plasma assessed by area under the curve, peak plasma concentration, and half-life (T ½) determined after the last dose. DISCUSSION This study provides an opportunity to explore a possible treatment option for HIV-infected patients with cryptosporidial diarrhea, who, as of now in Malawi and most of sub-Saharan Africa, do not have a definitive treatment apart from supportive care. The strength of this study lies in it being a randomized, double-blind, placebo-controlled trial. If shown to be effective and safe, the findings will also lay a foundation for a future study of the use of CFZ in children 6-18 months of age. TRIAL REGISTRATION ClinicalTrials.gov, NCT03341767 . Registered on 14 November 2017.
Collapse
Affiliation(s)
| | | | | | - Melita A Gordon
- University of Malawi College of Medicine, Blantyre, Malawi.,University of Liverpool, Liverpool, UK.,Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | - Pui-Ying Iroh Tam
- University of Malawi College of Medicine, Blantyre, Malawi. .,Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi. .,Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
124
|
Burger C, Aucamp M, du Preez J, Haynes RK, Ngwane A, du Plessis J, Gerber M. Formulation of Natural Oil Nano-Emulsions for the Topical Delivery of Clofazimine, Artemisone and Decoquinate. Pharm Res 2018; 35:186. [DOI: 10.1007/s11095-018-2471-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/01/2018] [Indexed: 01/01/2023]
|
125
|
Machado S, Fernandes SR, Chaves LL, Lima SAC, Silva EMP, Barreiros L, Reis S, Segundo MA. Chromatographic method for the simultaneous quantification of dapsone and clofazimine in nanoformulations. J Sep Sci 2018; 41:3382-3388. [DOI: 10.1002/jssc.201800427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Sandia Machado
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
| | - Sara R. Fernandes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
- Núcleo de Investigação e Intervenção em Farmácia (NIIF), Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde; Instituto Politécnico do Porto; Porto Portugal
| | - Luise L. Chaves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
| | - Sofia A. C. Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
| | - Eduarda M. P. Silva
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
| | - Luísa Barreiros
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
- Núcleo de Investigação e Intervenção em Farmácia (NIIF), Centro de Investigação em Saúde e Ambiente (CISA), Escola Superior de Saúde; Instituto Politécnico do Porto; Porto Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
| | - Marcela A. Segundo
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia; Universidade do Porto; Porto Portugal
| |
Collapse
|
126
|
Wankar J, Bonvicini F, Benkovics G, Marassi V, Malanga M, Fenyvesi E, Gentilomi GA, Reschiglian P, Roda B, Manet I. Widening the Therapeutic Perspectives of Clofazimine by Its Loading in Sulfobutylether β-Cyclodextrin Nanocarriers: Nanomolar IC50 Values against MDR S. epidermidis. Mol Pharm 2018; 15:3823-3836. [DOI: 10.1021/acs.molpharmaceut.8b00321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jitendra Wankar
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, 40129 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | | | - Valentina Marassi
- Department of Chemistry “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Milo Malanga
- CycloLab, Cyclodextrin R&D Ltd., H1097 Budapest, Hungary
| | - Eva Fenyvesi
- CycloLab, Cyclodextrin R&D Ltd., H1097 Budapest, Hungary
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Microbiology Unit, St Orsola Malpighi University Hospital, Via Massarenti 9, 40138 Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- byFlow Srl, Via Caduti della Via Fani 11/b, 40127 Bologna, Italy
| | - Ilse Manet
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
127
|
Costa PDSS, Fraga LR, Kowalski TW, Daxbacher ELR, Schuler-Faccini L, Vianna FSL. Erythema Nodosum Leprosum: Update and challenges on the treatment of a neglected condition. Acta Trop 2018; 183:134-141. [PMID: 29474830 DOI: 10.1016/j.actatropica.2018.02.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/09/2018] [Accepted: 02/11/2018] [Indexed: 01/25/2023]
Abstract
Erythema Nodosum Leprosum (ENL) occurs due to the immunological complication of multibacillary leprosy and is characterized by painful nodules and systemic compromising. It is usually recurrent and/or chronic and has both physical and economic impact on the patient, being a very important cause of disability. In addition, ENL is a major health problem in countries where leprosy is endemic. Therefore, adequate control of this condition is important. The management of ENL aims to control acute inflammation and neuritis and prevent the onset of new episodes. However, all currently available treatment modalities have one or two drawbacks and are not effective for all patients. Corticosteroid is the anti-inflammatory of choice in ENL but may cause dependence, especially for chronic patients. Thalidomide has a rapid action but its use is limited due the teratogenicity and neurotoxicity. Clofazimine and pentoxifylline have slow action and have important adverse effects. Finally, there is no pattern or guidelines for treating these patients, becoming more difficult to evaluate and to control this condition. This review aims to show the main drugs used in the treatment of ENL and the challenges in the management of the reaction.
Collapse
|
128
|
Clofazimine: A useful antibiotic for drug-resistant tuberculosis. Biomed Pharmacother 2018; 105:1353-1359. [PMID: 30021373 DOI: 10.1016/j.biopha.2018.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 11/20/2022] Open
Abstract
Drug resistance is still the major threat to global tuberculosis (TB) control, and drug-resistant (DR) Mycobacterium tuberculosis (M. tuberculosis) strains have become the main challenge worldwide. Currently used antibiotics for treatment of DR-TB are often poorly tolerated and not sufficiently effective. Since the therapeutic options are still limited, the main strategy for treatment of DR-TB is to repurpose existing anti-mycobacterial agents. Clofazimine (CFZ) is one such drug that has recently attracted interest against DR-TB. CFZ is a hydrophobic riminophenazine that was initially synthesized as an anti-TB antibiotic. Although the mechanisms of action of CFZ are not yet entirely understood, it has been suggested that outer membrane is its primary action site, and the respiratory chain and ion transporters are the putative targets. In this review, we will discuss the anti-mycobacterial properties of CFZ, and provide new insights into the clinical use of this drug.
Collapse
|
129
|
Novel Mutations Associated with Clofazimine Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:AAC.00544-18. [PMID: 29712660 DOI: 10.1128/aac.00544-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium abscessus is a major nontuberculous mycobacterial (NTM) pathogen and is responsible for about 80% of all pulmonary infections caused by rapidly growing mycobacteria. Clofazimine is an effective drug active against M. abscessus, but the mechanism of resistance to clofazimine in M. abscessus is unknown. To investigate the molecular basis of clofazimine resistance in M. abscessus, we isolated 29 M. abscessus mutants resistant to clofazimine and subjected them to whole-genome sequencing to identify possible mutations associated with clofazimine resistance. We found that mutations in the MAB_2299c gene (which encodes a possible transcriptional regulatory protein), MAB_1483, and MAB_0540 are most commonly associated with clofazimine resistance. In addition, mutations in MAB_0416c, MAB_4099c, MAB_2613, MAB_0409, and MAB_1426 were also associated with clofazimine resistance but less frequently. Two identical mutations which are likely to be polymorphisms unrelated to clofazimine resistance were found in MAB_4605c and MAB_4323 in 13 mutants. We conclude that mutations in MAB_2299c, MAB_1483, and MAB_0540 are the major mechanisms of clofazimine resistance in M. abscessus Future studies are needed to address the role of the identified mutations in clofazimine resistance in M. abscessus Our findings have implications for understanding mechanisms of resistance to clofazimine and for rapid detection of clofazimine resistance in this organism.
Collapse
|
130
|
Feng J, Zhang Y, McManus SA, Ristroph KD, Lu HD, Gong K, White CE, Prud’homme RK. Rapid Recovery of Clofazimine-Loaded Nanoparticles with Long-Term Storage Stability as Anti- Cryptosporidium Therapy. ACS APPLIED NANO MATERIALS 2018; 1:2184-2194. [PMID: 29911689 PMCID: PMC5999231 DOI: 10.1021/acsanm.8b00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 04/20/2018] [Indexed: 05/16/2023]
Abstract
While the formulation of nanoparticle (NP) suspensions has been widely applied in materials and life science, the recovery of NPs from such a suspension into a solid state is practically important to confer long-term storage stability. However, solidification, while preserving the original nanoscale properties, remains a formidable challenge in the pharmaceutical and biomedical applications of NPs. Herein we combined flash nanoprecipitation (FNP) and spray-drying as a nanofabrication platform for NP formulation and recovery without compromising the dissolution kinetics of the active ingredient. Clofazimine was chosen to be the representative drug, which has been recently repurposed as a potential treatment for cryptosporidiosis. Clofazimine was encapsulated in NPs with low-cost surface coatings, hypromellose acetate succinate (HPMCAS) and lecithin, which were required by the ultimate application to global health. Spray-drying and lyophilization were utilized to produce dried powders with good long-term storage stability for application in hot and humid climatic zones. The particle morphology, yield efficiency, drug loading, and clofazimine crystallinity in the spray-dried powders were characterized. The in vitro release kinetics of spray-dried NP powders were compared to analogous dissolution profiles from standard lyophilized NP samples, crystalline clofazimine powder, and the commercially available formulation Lamprene. The spray-dried powders showed a supersaturation level of up to 60 times the equilibrium solubility and remarkably improved dissolution rates. In addition, the spray-dried powders with both surface coatings showed excellent stability during aging studies with elevated temperature and humidity, in view of the dissolution and release in vitro. Considering oral delivery for pediatric administration, the spray-dried powders show less staining effects with simulated skin than crystalline clofazimine and may be made into minitablets without additional excipients. These results highlight the potential of combining FNP and spray-drying as a feasible and versatile platform to design and rapidly recover amorphous NPs in a solid dosage form, with the advantages of satisfactory long-term storage stability, low cost, and easy scalability.
Collapse
Affiliation(s)
- Jie Feng
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Yingyue Zhang
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Simon A. McManus
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Kurt D. Ristroph
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Hoang D. Lu
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Kai Gong
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Claire E. White
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Department of Civil and Environmental
Engineering, and Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- E-mail:
| |
Collapse
|
131
|
Angiolini L, Valetti S, Cohen B, Feiler A, Douhal A. Fluorescence imaging of antibiotic clofazimine encapsulated within mesoporous silica particle carriers: relevance to drug delivery and the effect on its release kinetics. Phys Chem Chem Phys 2018; 20:11899-11911. [PMID: 29666860 DOI: 10.1039/c7cp08328a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on the encapsulation of the antibiotic clofazimine (CLZ) within the pores of mesoporous silica particles having hydrophilic (CBET value of 137) and more hydrophobic (CBET value of 94 after calcination at 600 °C) surfaces. We studied the effect of pH on the released amount of CLZ in aqueous solutions and observed a maximum at pH 4.1 in correlation with the solubility of the drug. Less release of the drug was observed from the more hydrophobic particles which was attributed to a difference in the affinity of the drug to the carrier particles. Fluorescence lifetime imaging microscopy, emission spectra, and fluorescence lifetimes of single drug loaded particles provided detailed understanding and new knowledge of the physical form of the encapsulated drug and the distribution within the particles. The distribution of CLZ within the particles was independent of the surface chemistry of the particles. The confirmation of CLZ molecules as monomers or aggregates was revealed by controlled removal of the drug with solvent. Additionally, the observed optical "halo effect" in the fluorescent images was interpreted in terms of specific quenching of high concentration of molecules. The emission lifetime experiments suggest stronger interaction of CLZ with the more hydrophobic particles, which is relevant to its release. The results reported in this work demonstrate that tuning the hydrophilicity/hydrophobicity of mesoporous silica particles can be used as a tool to control the release without impacting their loading ability.
Collapse
Affiliation(s)
- Lorenzo Angiolini
- Departamento de Química Física, Facultad de Ciencias del Medio Ambiente y Bioquímica and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | | | | | | | | |
Collapse
|
132
|
Kerry RG, Gouda S, Sil B, Das G, Shin HS, Ghodake G, Patra JK. Cure of tuberculosis using nanotechnology: An overview. J Microbiol 2018; 56:287-299. [PMID: 29721825 DOI: 10.1007/s12275-018-7414-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 02/03/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), a major health issue of the present era. The bacterium inhabits the host macrophage and other immune cells where it modulates the lysosome trafficking protein, hinders the formation of phagolysosome, and blocks the TNF receptor-dependent apoptosis of host macrophage/monocytes. Other limitations such as resistance to and low bioavailability and bio-distribution of conventional drugs aid to their high virulence and human mortality. This review highlights the use of nanotechnology-based approaches for drug formulation and delivery which could open new avenues to limit the pathogenicity of tuberculosis. Moreover phytochemicals, such as alkaloids, phenols, saponins, steroids, tannins, and terpenoids, extracted from terrestrial plants and mangroves seem promising against M. tuberculosis through different molecular mechanisms. Further understanding of the genomics and proteomics of this pathogenic microbe could also help overcome various research gaps in the path of developing a suitable therapy against tuberculosis.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, AMIT College, Khurda, 752057, Odisha, India
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Amity University, Noida, 201313, Uttar Pradesh, India
| | - Bikram Sil
- Department of Biotechnology, AMIT College, Khurda, 752057, Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
133
|
Chao AT, Lee BH, Wan KF, Selva J, Zou B, Gedeck P, Beer DJ, Diagana TT, Bonamy GMC, Manjunatha UH. Development of a Cytopathic Effect-Based Phenotypic Screening Assay against Cryptosporidium. ACS Infect Dis 2018; 4:635-645. [PMID: 29341586 DOI: 10.1021/acsinfecdis.7b00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptosporidiosis is a diarrheal disease predominantly caused by Cryptosporidium parvum ( Cp) and Cryptosporidium hominis ( Ch), apicomplexan parasites which infect the intestinal epithelial cells of their human hosts. The only approved drug for cryptosporidiosis is nitazoxanide, which shows limited efficacy in immunocompromised children, the most vulnerable patient population. Thus, new therapeutics and in vitro infection models are urgently needed to address the current unmet medical need. Toward this aim, we have developed novel cytopathic effect (CPE)-based Cp and Ch assays in human colonic tumor (HCT-8) cells and compared them to traditional imaging formats. Further model validation was achieved through screening a collection of FDA-approved drugs and confirming many previously known anti- Cryptosporidium hits as well as identifying a few novel candidates. Collectively, our data reveals this model to be a simple, functional, and homogeneous gain of signal format amenable to high throughput screening, opening new avenues for the discovery of novel anticryptosporidials.
Collapse
Affiliation(s)
- Alexander T. Chao
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Boon Heng Lee
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Kah Fei Wan
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Jeremy Selva
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Bin Zou
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - David John Beer
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Ghislain M. C. Bonamy
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore, 138669, Singapore
| | - Ujjini H. Manjunatha
- Novartis Institute for Tropical Diseases, 10 Biopolis Road, #05-01 Chromos, Singapore, 138670, Singapore
- Novartis Institute for Tropical Diseases, 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
134
|
Patil TS, Deshpande AS, Deshpande S. Critical Review on the Analytical Methods for the Estimation of Clofazimine in Bulk, Biological Fluids and Pharmaceutical Formulations. Crit Rev Anal Chem 2018; 48:492-502. [DOI: 10.1080/10408347.2018.1451298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tulshidas S. Patil
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India
| | - Ashwini S. Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India
| | - Shirish Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India
| |
Collapse
|
135
|
Zaccagnino A, Managò A, Leanza L, Gontarewitz A, Linder B, Azzolini M, Biasutto L, Zoratti M, Peruzzo R, Legler K, Trauzold A, Kalthoff H, Szabo I. Tumor-reducing effect of the clinically used drug clofazimine in a SCID mouse model of pancreatic ductal adenocarcinoma. Oncotarget 2018; 8:38276-38293. [PMID: 27542263 PMCID: PMC5503532 DOI: 10.18632/oncotarget.11299] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents the most common form of pancreatic cancer with rising incidence in developing countries. Unfortunately, the overall 5-year survival rate is still less than 5%. The most frequent oncogenic mutations in PDAC are loss-of function mutations in p53 and gain-of-function mutations in KRAS. Here we show that clofazimine (Lamprene), a drug already used in the clinic for autoimmune diseases and leprosy, is able to efficiently kill in vitro five different PDAC cell lines harboring p53 mutations. We provide evidence that clofazimine induces apoptosis in PDAC cells with an EC50 in the μM range via its specific inhibitory action on the potassium channel Kv1.3. Intraperitoneal injection of clofazimine resulted in its accumulation in the pancreas of mice 8 hours after administration. Using an orthotopic PDAC xenotransplantation model in SCID beige mouse, we show that clofazimine significantly and strongly reduced the primary tumor weight. Thus, our work identifies clofazimine as a promising therapeutic agent against PDAC and further highlights ion channels as possible oncological targets.
Collapse
Affiliation(s)
- Angela Zaccagnino
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Antonella Managò
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Artur Gontarewitz
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Bernhard Linder
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Michele Azzolini
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Lucia Biasutto
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Mario Zoratti
- Department of Biomedical Sciences, University of Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| | - Roberta Peruzzo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy
| | - Karen Legler
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Anna Trauzold
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Holger Kalthoff
- Institute for Experimental Cancer Research, Medical Faculty, CAU, Kiel, Arnold-Heller-Strasse 3 (Haus 17) D-24105 Kiel, Germany
| | - Ildiko Szabo
- Department of Biology, University of Padova, viale G. Colombo 3. Padova, I-35121 Italy.,CNR Institute of Neuroscience, Padova, Italy
| |
Collapse
|
136
|
Clofazimine for Treatment of Extensively Drug-Resistant Pulmonary Tuberculosis in China. Antimicrob Agents Chemother 2018; 62:AAC.02149-17. [PMID: 29378718 DOI: 10.1128/aac.02149-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
We performed a multicenter, prospective, randomized study to investigate the efficacy and safety of clofazimine (CLO) for treatment of extensively drug-resistant tuberculosis (XDR-TB) in China. Forty-nine patients infected with XDR-TB were randomly assigned to either the control group or the CLO group, both of which received 36 months of individually customized treatment. The primary endpoint was the time to sputum culture conversion on solid medium. Clinical outcomes of patients were evaluated at the time of treatment completion. Of the 22 patients in the experimental group, 7 (31.8%) met the treatment criterion of "cure" and 1 (4.5%) "complete treatment," for a total of 8 (36.4%) exhibiting successful treatment outcomes without relapse. In the control group, 6 patients (22.2%) were cured and 6 (22.2%) completed treatment by the end of the study. Statistical analysis revealed no significant difference in successful outcome rates between the CLO group and the control group. The average sputum culture conversion time for the experimental group was 19.7 months, which was not statistically different from that for the control group (20.3 months; P = 0.57). Of the 22 patients in the CLO group, 12 (54.5%) experienced adverse events after starting CLO treatment. The most frequently observed adverse event was liver damage, with 31.8% of patients (7/22 patients) in the CLO group versus 11.1% (3/27 patients) in the control group exhibiting this adverse event. Our study demonstrates that inclusion of CLO in background treatment regimens for XDR-TB is of limited benefit, especially since hepatic disorders arise as major adverse events with CLO treatment. (This study is registered with the Chinese Clinical Trial Registry [ChiCTR, www.chictr.org.cn] under identifier ChiCTR1800014800.).
Collapse
|
137
|
Recent therapeutic approaches for the management of tuberculosis: Challenges and opportunities. Biomed Pharmacother 2018; 99:735-745. [DOI: 10.1016/j.biopha.2018.01.115] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 11/19/2022] Open
|
138
|
Pharmacokinetics and Drug-Drug Interactions of Lopinavir-Ritonavir Administered with First- and Second-Line Antituberculosis Drugs in HIV-Infected Children Treated for Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother 2018; 62:AAC.00420-17. [PMID: 29133558 DOI: 10.1128/aac.00420-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 10/13/2017] [Indexed: 11/20/2022] Open
Abstract
Lopinavir-ritonavir forms the backbone of current first-line antiretroviral regimens in young HIV-infected children. As multidrug-resistant (MDR) tuberculosis (TB) frequently occurs in young children in high-burden TB settings, it is important to identify potential interactions between MDR-TB treatment and lopinavir-ritonavir. We describe the pharmacokinetics of and potential drug-drug interactions between lopinavir-ritonavir and drugs routinely used for MDR-TB treatment in HIV-infected children. A combined population pharmacokinetic model was developed to jointly describe the pharmacokinetics of lopinavir and ritonavir in 32 HIV-infected children (16 with MDR-TB receiving treatment with combinations of high-dose isoniazid, pyrazinamide, ethambutol, ethionamide, terizidone, a fluoroquinolone, and amikacin and 16 without TB) who were established on a lopinavir-ritonavir-containing antiretroviral regimen. One-compartment models with first-order absorption and elimination for both lopinavir and ritonavir were combined into an integrated model. The dynamic inhibitory effect of the ritonavir concentration on lopinavir clearance was described using a maximum inhibition model. Even after adjustment for the effect of body weight with allometric scaling, a large variability in lopinavir and ritonavir exposure, together with strong correlations between the pharmacokinetic parameters of lopinavir and ritonavir, was detected. MDR-TB treatment did not have a significant effect on the bioavailability, clearance, or absorption rate constants of lopinavir or ritonavir. Most children (81% of children with MDR-TB, 88% of controls) achieved therapeutic lopinavir trough concentrations (>1 mg/liter). The coadministration of lopinavir-ritonavir with drugs routinely used for the treatment of MDR-TB was found to have no significant effect on the key pharmacokinetic parameters of lopinavir or ritonavir. These findings should be considered in the context of the large interpatient variability found in the present study and the study's modest sample size.
Collapse
|
139
|
|
140
|
Chaves LL, Costa Lima SA, Vieira AC, Barreiros L, Segundo MA, Ferreira D, Sarmento B, Reis S. Development of PLGA nanoparticles loaded with clofazimine for oral delivery: Assessment of formulation variables and intestinal permeability. Eur J Pharm Sci 2018; 112:28-37. [DOI: 10.1016/j.ejps.2017.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 11/26/2022]
|
141
|
Bannigan P, Durack E, Madden C, Lusi M, Hudson SP. Role of Biorelevant Dissolution Media in the Selection of Optimal Salt Forms of Oral Drugs: Maximizing the Gastrointestinal Solubility and in Vitro Activity of the Antimicrobial Molecule, Clofazimine. ACS OMEGA 2017; 2:8969-8981. [PMID: 30023597 PMCID: PMC6045360 DOI: 10.1021/acsomega.7b01454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/29/2017] [Indexed: 06/08/2023]
Abstract
Clofazimine is an antimycobacterial agent that is routinely used for the treatment of leprosy. Clofazimine has also been shown to have high clinical potential for the treatment of many Gram-positive pathogens, including those that exhibit high levels of antibiotic resistance in the medical community. The use of clofazimine against these pathogens has largely been limited by the inherently poor water solubility of the drug substance. In this work, the possibility of repurposing and reformulating clofazimine to maximize its clinical potential is investigated. To achieve this, the potential of novel salt forms of clofazimine as supersaturating drug-delivery vehicles to enhance the aqueous solubility and gastrointestinal solubility of the drug substance was explored. The solution properties of seven novel salt forms, identified during an initial screening process, were examined in water and in a gastrointestinal-like media and were compared and contrasted with those of the free base, clofazimine, and the commercial formulation of the drug, Lamprene. The stability of the most promising solid forms was tested, and their bioactivity against Staphylococcus aureus was also compared with that of the clofazimine free base and Lamprene. Salts forms which showed superior stability as well as solubility and activity to the commercial drug formulation were fully characterized using a combination of spectroscopic techniques, including X-ray diffraction, solid-state NMR, and Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Pauric Bannigan
- Department
of Chemical Sciences and Synthesis and Solid State Pharmaceutical
Centre, Bernal Institute, University of
Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Edel Durack
- Department
of Chemical Sciences and Synthesis and Solid State Pharmaceutical
Centre, Bernal Institute, University of
Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Conor Madden
- Department
of Chemical Sciences and Synthesis and Solid State Pharmaceutical
Centre, Bernal Institute, University of
Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Matteo Lusi
- Department
of Chemical Sciences and Synthesis and Solid State Pharmaceutical
Centre, Bernal Institute, University of
Limerick, Castletroy, Limerick V94 T9PX, Ireland
| | - Sarah P. Hudson
- Department
of Chemical Sciences and Synthesis and Solid State Pharmaceutical
Centre, Bernal Institute, University of
Limerick, Castletroy, Limerick V94 T9PX, Ireland
| |
Collapse
|
142
|
Schaaf HS, Garcia-Prats AJ, McKenna L, Seddon JA. Challenges of using new and repurposed drugs for the treatment of multidrug-resistant tuberculosis in children. Expert Rev Clin Pharmacol 2017; 11:233-244. [DOI: 10.1080/17512433.2018.1421067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- H. Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | - James A. Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Centre for International Child Health, Department of Paediatrics, Imperial College London, London, UK
| |
Collapse
|
143
|
Sharma D, Dhuriya YK, Deo N, Bisht D. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis. Front Microbiol 2017; 8:2452. [PMID: 29321768 PMCID: PMC5732208 DOI: 10.3389/fmicb.2017.02452] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 01/15/2023] Open
Abstract
Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB), extensively drug-resistant tuberculosis (XDR-TB) and totally drug resistant tuberculosis (TDR-TB) has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.
Collapse
Affiliation(s)
- Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Yogesh K. Dhuriya
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, India
| | - Nirmala Deo
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India
| |
Collapse
|
144
|
Sousa AC, Conceição Oliveira M, Martins LO, Robalo MP. A Sustainable Synthesis of Asymmetric Phenazines and Phenoxazinones Mediated by CotA-Laccase. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201701228] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ana Catarina Sousa
- Área Departamental de Engenharia Química, ISEL - Instituto Superior de Engenharia de Lisboa; Instituto Politécnico de Lisboa; R. Conselheiro Emídio Navarro, 1 1959-007 Lisboa Portugal
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Lígia O. Martins
- Instituto de Tecnologia Química e Biológica António Xavier; Universidade Nova de Lisboa; Av da República 2780-157 Oeiras Portugal
| | - M. Paula Robalo
- Área Departamental de Engenharia Química, ISEL - Instituto Superior de Engenharia de Lisboa; Instituto Politécnico de Lisboa; R. Conselheiro Emídio Navarro, 1 1959-007 Lisboa Portugal
- Centro de Química Estrutural, Complexo I; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
145
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
146
|
Brunaugh AD, Jan SU, Ferrati S, Smyth HDC. Excipient-Free Pulmonary Delivery and Macrophage Targeting of Clofazimine via Air Jet Micronization. Mol Pharm 2017; 14:4019-4031. [PMID: 29047275 DOI: 10.1021/acs.molpharmaceut.7b00690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ashlee D. Brunaugh
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| | - Syed Umer Jan
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| | - Silvia Ferrati
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| | - Hugh D. C. Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, PHR 4.214, Austin, Texas 78712, United States
| |
Collapse
|
147
|
Zhang Y, Feng J, McManus SA, Lu HD, Ristroph KD, Cho EJ, Dobrijevic EL, Chan HK, Prud’homme RK. Design and Solidification of Fast-Releasing Clofazimine Nanoparticles for Treatment of Cryptosporidiosis. Mol Pharm 2017; 14:3480-3488. [PMID: 28929769 PMCID: PMC5627342 DOI: 10.1021/acs.molpharmaceut.7b00521] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
Clofazimine, a lipophilic (log P = 7.66) riminophenazine antibiotic approved by the US Food and Drug Administration (FDA) with a good safety record, was recently identified as a lead hit for cryptosporidiosis through a high-throughput phenotypic screen. Cryptosporidiosis requires fast-acting treatment as it leads to severe symptoms which, if untreated, result in morbidity for infants and small children. Consequently, a fast-releasing oral formulation of clofazimine in a water-dispersible form for pediatric administration is highly desirable. In this work, clofazimine nanoparticles were prepared with three surface stabilizers, hypromellose acetate succinate (HPMCAS), lecithin, and zein, using the flash nanoprecipitation (FNP) process. Drug encapsulation efficiencies of over 92% were achieved. Lyophilization and spray-drying were applied and optimized to produce redispersible nanoparticle powders. The release kinetics of these clofazimine nanoparticle powders in biorelevant media were measured and compared with those of crystalline clofazimine and the currently marketed formulation Lamprene. Remarkably improved dissolution rates and clofazimine supersaturation levels up to 90 times equilibrium solubility were observed with all clofazimine nanoparticles tested. Differential scanning calorimetry indicated a reduction of crystallinity of clofazimine in nanoparticles. These results strongly suggest that the new clofazimine nanoparticles prepared with affordable materials in this low-cost nanoparticle formulation process can be used as viable cryptosporidiosis therapeutics.
Collapse
Affiliation(s)
- Yingyue Zhang
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Jie Feng
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Simon A. McManus
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Hoang D. Lu
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Kurt D. Ristroph
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Eugene J. Cho
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Ellen L. Dobrijevic
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| | - Hak-Kim Chan
- School
of Pharmacy, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Robert K. Prud’homme
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08854, United States
| |
Collapse
|
148
|
Stjern L, Voittonen S, Weldemichel R, Thuresson S, Agnes M, Benkovics G, Fenyvesi É, Malanga M, Yannakopoulou K, Feiler A, Valetti S. Cyclodextrin-mesoporous silica particle composites for controlled antibiotic release. A proof of concept toward colon targeting. Int J Pharm 2017; 531:595-605. [DOI: 10.1016/j.ijpharm.2017.05.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022]
|
149
|
Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL. Safety and Effectiveness of Clofazimine for Primary and Refractory Nontuberculous Mycobacterial Infection. Chest 2017; 152:800-809. [DOI: 10.1016/j.chest.2017.04.175] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
|
150
|
Peruzzo R, Mattarei A, Romio M, Paradisi C, Zoratti M, Szabò I, Leanza L. Regulation of Proliferation by a Mitochondrial Potassium Channel in Pancreatic Ductal Adenocarcinoma Cells. Front Oncol 2017; 7:239. [PMID: 29034212 PMCID: PMC5626813 DOI: 10.3389/fonc.2017.00239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/19/2017] [Indexed: 12/21/2022] Open
Abstract
Previous results link the mitochondrial potassium channel Kv1.3 (mitoKv1.3) to the regulation of apoptosis. By synthesizing new, mitochondria-targeted derivatives (PAPTP and PCARBTP) of PAP-1, a specific membrane-permeant Kv1.3 inhibitor, we have recently provided evidence that both drugs acting on mitoKv1.3 are able to induce apoptosis and reduce tumor growth in vivo without affecting healthy tissues and cells. In the present article, by exploiting these new drugs, we addressed the question whether mitoKv1.3 contributes to the regulation of cell proliferation as well. When used at low concentrations, which do not compromise cell survival, both drugs slightly increased the percentage of cells in S phase while decreased the population at G0/G1 stage of cells from two different pancreatic ductal adenocarcinoma lines. Our data suggest that the observed modulation is related to ROS levels within the cells, opening the way to link mitochondrial ion channel function to downstream, ROS-related signaling events that might be important for cell cycle progression.
Collapse
Affiliation(s)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Matteo Romio
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Cristina Paradisi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Mario Zoratti
- Institute of Neuroscience, CNR, Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Padova, Italy.,Institute of Neuroscience, CNR, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|