101
|
Affiliation(s)
- Adam P Silverman
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
102
|
Jacobsen MF, Cló E, Mokhir A, Gothelf KV. Model Systems for Activation of Nucleic Acid Encoded Prodrugs. ChemMedChem 2007; 2:793-9. [PMID: 17436260 DOI: 10.1002/cmdc.200700013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of more selective chemotherapeutic agents for benign treatments of malicious diseases is highly desirable. In recent years model systems for the release of small molecule drugs from nucleic acid conjugates by templated chemical or photochemical reactions have been designed. Common for these systems is that the stoichiometric or catalytic drug release is controlled by the highly selective hybridization between complementary strands of nucleic acids. Herein, the concepts of the new field of nucleic acid templated release reactions are outlined.
Collapse
Affiliation(s)
- Mikkel F Jacobsen
- Centre for DNA Nanotechnology, Center for Catalysis and Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, University of Aarhus, Langelandsgade 140, 8000 Aarhus C, Denmark
| | | | | | | |
Collapse
|
103
|
Yang CJ, Wang L, Wu Y, Kim Y, Medley CD, Lin H, Tan W. Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Res 2007; 35:4030-41. [PMID: 17557813 PMCID: PMC1919502 DOI: 10.1093/nar/gkm358] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance. It was found that the LNA bases in a MB stem sequence had a significant effect on the stability of the hair-pin structure. The hybridization rates of LNA-MBs were significantly improved by lowering the DNA/LNA ratio in the probe, and most significantly, by having a shared-stem design for the LNA-MB to prevent sticky-end pairing. It was found that only MB sequences with DNA/LNA alternating bases or all LNA bases were able to resist nonspecific protein binding and DNase I digestion. Additional results showed that a sequence consisting of a DNA stretch less than three bases between LNA bases was able to block RNase H function. This study suggested that a shared-stem MB with a 4 base-pair stem and alternating DNA/LNA bases is desirable for intracellular applications as it ensures reasonable hybridization rates, reduces protein binding and resists nuclease degradation for both target and probes. These findings have implications on the design of LNA molecular probes for intracellular monitoring application, disease diagnosis and basic biological studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Weihong Tan
- *To whom correspondence should be addressed. +1 352 846 2410+1 352 846 2410
| |
Collapse
|
104
|
Zhang S, Liu G, Liu X, Yin D, Dou S, He J, Rusckowski M, Hnatowich DJ. Comparison of several linear fluorophore- and quencher-conjugated oligomer duplexes for stability, fluorescence quenching, and kinetics in vitro and in vivo in mice. Bioconjug Chem 2007; 18:1170-5. [PMID: 17511492 PMCID: PMC2553699 DOI: 10.1021/bc070021j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A useful property of optical imaging is the potential to modulate the detectable signal to improve target/nontarget ratios. When administered as a dimer of a fluorophore- and a quencher-conjugated duplex arranged to inhibit fluorescence but designed to dissociate only in the presence of its target, the fluorescence signal should in principle appear only in the target. This laboratory has demonstrated the feasibility of this approach by using a duplex consisting of a linear oligomer conjugated with Cy5.5 (emitter) hybridized to another linear oligomer conjugated with Iowa Black (quencher) in a pretargeting optical study. Now eight duplexes consisting of combinations of 18 mer linear phosphodiester (PO) and phosphorothioate (PS) DNAs and phosphorodiamidate morpholinos (MORFs) conjugated with Cy5.5 (emitter) and Iowa Black (quencher) were variously screened for in vitro duplex stability. The MORF/PO duplex was selected for further study based on evidence of stability in 37 degrees C serum. Simultaneously, the kinetics of quenching were investigated in vitro and in vivo in mice. Thereafter, mice were implanted in one thigh with MORF/PO Cy 5.5 microspheres and the complementary PS Iowa Black administered iv to measure the extent and kinetics of duplex formation in the target. While all duplexes were stable in buffer, only the MORF/PO duplexes and possibly all PS containing duplexes were stable in 37 degrees C serum for at least 4 h. The kinetics of quenching were found to be rapid in vitro, with a 80-90% decrease in Cy5.5 fluorescence immediately following formation of a PS/PS homoduplex, and in vivo, with a 27 to 38% decrease in target thigh/nontarget ratio within 1 h following administration of the complementary PS Iowa Black complementary DNA but not the random control DNA to mice implanted with MORF/PO Cy5.5 microspheres. This investigation has provided additional evidence that Cy5.5 may be efficiently and rapidly quenched by Iowa Black when both are conjugated to complementary oligomers and that the resulting inhibition of fluorescence is sufficiently persistent for imaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Donald J. Hnatowich
- For correspondence contact: Donald J. Hnatowich, Ph.D., Department of Radiology, H2-579, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA. Tel: (508) 856-4256; Fax: (508) 856-4572.
| |
Collapse
|
105
|
He J, Rusckowski M, Wang Y, Dou S, Liu X, Zhang S, Liu G, Hnatowich DJ. Optical pretargeting of tumor with fluorescent MORF oligomers. Mol Imaging Biol 2007; 9:17-23. [PMID: 17171474 DOI: 10.1007/s11307-006-0071-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Pretargeting with radioactivity has significantly improved tumor to normal tissue radioactivity ratios over conventional antibody imaging in both animal studies and clinical trials. This laboratory is investigating DNA analogues such as phosphorodiamidate morpholinos (MORFs) for pretargeting using technetium-99m ((99m)Tc) for detection. However, the unique properties of fluorescence activation and quenching combined with oligomers with their unique properties of hybridization may be particularly useful when used together for pretargeting with optical detection. The use of linear fluorophore-conjugated oligomer duplexes have been little used in animals, and to our knowledge, have not previously been considered for pretargeting applications. METHODS A MORF/cDNA pair was selected such that when hybridized, the fluorescence of the Cy5.5-conjugated 25 mer MORF (Cy5.5-MORF25) is inhibited with a BHQ3-conjugated 18 mer complementary DNA (BHQ3-cDNA18). The short BHQ3-cDNA18 was selected to dissociate in the presence of a long cMORF25 in the pretargeted tumor, thus releasing the inhibitor from the Cy5.5 emitter. In this manner, the Cy5.5 fluorescence will be inhibited everywhere but in the target. The dissociation was first examined in vitro by adding the duplex to the cMORF25 both in solution and immobilized on polystyrene microspheres and by surface plasmon resonance (SPR). Thereafter, biotinylated cMORF25 immobilized on streptavidin polystyrene microspheres were administered intramuscularly in one thigh of hairless SKH-1 mice as target while an identical weight of the identical microspheres but without the cMORF25 was administered in the contralateral thigh as control. The animals then received IV the Cy5.5-MORF25/BHQ3-cDNA18 duplex or equal molar dosage of single-chain Cy5.5-MORF25 and were imaged. RESULTS The SPR studies showed that the immobilized cDNA18 rapidly captured the flowing MORF25 to provide a duplex with a slow dissociation rate constant. Furthermore, when cMORF25 was next allowed to flow over the now immobilized duplex, the cDNA18 was unable to prevent dissociation of the heteroduplex and the formation and release of the cMORF25-MORF25 homoduplex. Images of animals obtained soon after receiving the Cy5.5-MORF25 singlet showed intense whole body fluorescence obscuring the target thigh. However, only 5 minutes after receiving the Cy5.5-MORF25/BHQ3-cDNA18 duplex, the target thigh was clearly visible along with only the kidneys. CONCLUSIONS This first study of optical pretargeting provides a proof of concept that oligomer pretargeting found to be useful with radioactivity detection is applicable with fluorescent detection as well. In addition, our results demonstrate that by using linear oligomers for optical pretargeting, chain lengths (and base sequences) may be manipulated to provide duplexes with stabilities and fluorescence inhibition optimized for pretargeting and other in vivo applications of optical imaging.
Collapse
Affiliation(s)
- Jiang He
- Department of Radiology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Rodriguez AJ, Condeelis J, Singer RH, Dictenberg JB. Imaging mRNA movement from transcription sites to translation sites. Semin Cell Dev Biol 2007; 18:202-8. [PMID: 17376719 PMCID: PMC4956988 DOI: 10.1016/j.semcdb.2007.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA localization is one mechanism to temporally and spatially restrict protein synthesis to specific subcellular compartments in response to extracellular stimuli. To understand the mechanisms of mRNA localization, a number of methods have been developed to follow the path of these molecules in living cells including direct labeling of target mRNAs, the MS2-GFP system, and molecular beacons. We review advances in these methods with the goal of identifying the particular strengths and weaknesses of the various approaches in their ability to follow the movements of mRNAs from transcription sites to translation sites.
Collapse
Affiliation(s)
| | | | - Robert H. Singer
- Corresponding author. Tel.: +1 718 430 8646; fax: +1 718 430 8697. (R.H. Singer)
| | | |
Collapse
|
107
|
Abstract
We report on synthesis of new fluorescent probes suitable for site-specific incorporation into oligonucleotides. Coumarin derivatives were used as sensitive fluorescent labels and were attached to glycerol unit by two types of linkers as potential building blocks for oligonucleotide synthesis. Spectral characteristics of the functionalized coumarin building blocks were measured.
Collapse
|
108
|
|
109
|
Dirks RW, Tanke HJ. Advances in fluorescent tracking of nucleic acids in living cell. Biotechniques 2006; 40:489-96. [PMID: 16629396 DOI: 10.2144/000112121] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Nucleic acids are typically detected in morphologically preserved fixed cells and tissues using in situ hybridization techniques. This review discusses a variety of established and more challenging fluorescence-based methods for the detection and tracking of DNA or RNA sequences in living cells. Over the past few years, various fluorescent in vivo labeling methods have been developed, and dedicated microscope and image analysis tools have been designed. These advances in technologies indicate that live-cell imaging of nucleic acids is likely to become a standard research tool for understanding genome organization and gene expression regulation in the near future. Recent live-cell imaging studies have already provided important insights into the dynamic behaviors of chromatin and RNAs in the cell.
Collapse
Affiliation(s)
- Roeland W Dirks
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | |
Collapse
|
110
|
Kumar P, Verma A, Maiti S, Gargallo R, Chowdhury S. Tetraplex DNA transitions within the human c-myc promoter detected by multivariate curve resolution of fluorescence resonance energy transfer. Biochemistry 2006; 44:16426-34. [PMID: 16342935 DOI: 10.1021/bi051452x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nuclease hypersensitive element (NHE) III(I) of the c-myc promoter regulates the expression of oncogene c-myc and hence is an important anti-cancer target. Paranemic secondary structure formation within the promoter has been implicated in mechanistic regulation models. Here, it is shown that two monomeric tetraplexes form within the c-myc promoter, which coexist in solution. The development and application of a new experimental approach for detection of conformation transitions in nucleic acids [which exploits the sensitivity of fluorescence resonance energy transfer (FRET) for theoretical spectral resolution by multivariate curve resolution-alternating least-squares (MCR-ALS) method] has been used for this study. The pK(a) for tetraplex transitions are centered around 5.9 +/- 0.2 (between two intercalation topologies) and 6.8 +/- 0.1 (tetraplex to random coil). The presence of two tetraplexes has been further confirmed by S1 nuclease digestion. Finally, it is established that MCR-ALS analysis of FRET at different temperatures, pH, and salt concentrations allows resolution of pure species. Results are discussed in the light of recent observations implicating paranemic DNA motifs within the c-myc NHE in regulation of the oncogene. This method has several advantages over other methods vis-à-vis, high sensitivity and linear detection over a wide concentration range and, particularly, potential applications in intracellular probing.
Collapse
Affiliation(s)
- Praveen Kumar
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110007, India
| | | | | | | | | |
Collapse
|
111
|
Santangelo P, Nitin N, Bao G. Nanostructured Probes for RNA Detection in Living Cells. Ann Biomed Eng 2006; 34:39-50. [PMID: 16463087 DOI: 10.1007/s10439-005-9003-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 09/30/2005] [Indexed: 01/29/2023]
Abstract
The ability to visualize in real-time the expression level and localization of specific RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we review the recent development of nanostructured oligonucleotide probes for living cell RNA detection, and discuss the biological and engineering issues and challenges of quantifying gene expression in vivo. In particular, we describe methods that use dual FRET (fluorescence resonance energy transfer) or single molecular beacons in combination with peptide-based or membrane-permeabilization-based delivery, to image the relative level, localization, and dynamics of RNA in live cells. Examples of detecting endogenous mRNAs, as well as imaging their subcellular localization and colocalization are given to illustrate the biological applications, and issues in molecular beacon design, probe delivery, and target accessibility are discussed. The nanostructured probes promise to open new and exciting opportunities in sensitive gene detection for a wide range of biological and medical applications.
Collapse
Affiliation(s)
- Philip Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
112
|
Santangelo P, Nitin N, LaConte L, Woolums A, Bao G. Live-cell characterization and analysis of a clinical isolate of bovine respiratory syncytial virus, using molecular beacons. J Virol 2006; 80:682-8. [PMID: 16378971 PMCID: PMC1346841 DOI: 10.1128/jvi.80.2.682-688.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Understanding viral pathogenesis is critical for prevention of outbreaks, development of antiviral drugs, and biodefense. Here, we utilize molecular beacons to directly detect the viral genome and characterize a clinical isolate of bovine respiratory syncytial virus (bRSV) in living cells. Molecular beacons are dual-labeled, hairpin oligonucleotide probes with a reporter fluorophore at one end and a quencher at the other; they are designed to fluoresce only when hybridizing to a complementary target. By imaging the fluorescence signal of molecular beacons, the spread of bRSV was monitored for 7 days with a signal-to-noise ratio of 50 to 200, and the measured time course of infection was quantified with a mathematical model for viral growth. We found that molecular beacon signal could be detected in single living cells infected with a viral titer of 2 x 10(3.6) 50% tissue culture infective doses/ml diluted 1,000 fold, demonstrating high detection sensitivity. Low background in uninfected cells and simultaneous staining of fixed cells with molecular beacons and antibodies showed high detection specificity. Furthermore, using confocal microscopy to image the viral genome in live, infected cells, we observed a connected, highly three-dimensional, amorphous inclusion body structure not seen in fixed cells. Taken together, the use of molecular beacons for active virus imaging provides a powerful tool for rapid viral infection detection, the characterization of RNA viruses, and the design of new antiviral drugs.
Collapse
Affiliation(s)
- Philip Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Dr., Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
113
|
Abe H, Kool ET. Flow cytometric detection of specific RNAs in native human cells with quenched autoligating FRET probes. Proc Natl Acad Sci U S A 2005; 103:263-8. [PMID: 16384914 PMCID: PMC1326184 DOI: 10.1073/pnas.0509938103] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We describe the use of modified fluorescent-labeled oligonucleotide probes in the sequence-specific detection of messenger RNAs in live human cells. To make this detection possible, we developed a previously undescribed probe design that combines earlier quenched autoligation chemistry with a previously undescribed fluorescence resonance energy transfer (FRET) strategy to lower background signals. The probe pairs consisted of a nucleophilic 3'-phosphorothioate probe carrying a Cy5 FRET acceptor, and an electrophilic probe containing the combination of a 5' end electrophile/quencher and a fluorescein FRET donor. Probes were introduced to HL-60 cells by use of the streptolysin O pore-forming peptide. Signals from three different messenger RNAs, as well as 28S ribosomal RNA, could be detected and quantitated by flow cytometry. Probes targeted to ribosomal sequences and beta-actin mRNA also could be detected over background by confocal fluorescence microscopy. Varying the target site and probe backbone chemistry were found to have large effects on signal. The data suggest that quenched autoligating probes may be of general utility as biological tools in following localization, transcription, and processing of eukaryotic cellular messages and may have applications in diagnostic or prognostic analysis of disease-related RNAs in human tissues.
Collapse
Affiliation(s)
- Hiroshi Abe
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
114
|
Silverman AP, Kool ET. Quenched autoligation probes allow discrimination of live bacterial species by single nucleotide differences in rRNA. Nucleic Acids Res 2005; 33:4978-86. [PMID: 16284198 PMCID: PMC1199560 DOI: 10.1093/nar/gki814] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Quenched autoligation (QUAL) probes are a class of self-reacting nucleic acid probes that give strong fluorescence signal in the presence of fully complementary RNAs and selectivity against single nucleotide differences in solution. Here, we describe experiments designed to test whether QUAL probes can discriminate between bacterial species by the detection of small differences in their 16S rRNA sequences. Probes were introduced into live cells using small amounts of detergent, thus eliminating the need for fixation, and fluorescence signal was monitored both by microscopy and by flow cytometry without any washing steps. The effects of probe length, modified backbone, probe concentration and growth state of the bacteria were investigated. The data demonstrate specific fluorescence discrimination between three closely related bacteria, Escherichia coli, Salmonella enterica and Pseudomonas putida, based on single nucleotide differences in their 16S rRNA. Discrimination was possible with cells in mid-log phase or in lag phase. These results suggest that QUAL probes may be useful for rapid identification of microorganisms in laboratory and clinical settings.
Collapse
Affiliation(s)
| | - Eric T. Kool
- To whom correspondence should be addressed. Tel: +1 650 724 4741; Fax: +1 650 725 0259;
| |
Collapse
|
115
|
Abstract
Nucleic acid-based RNA detection is a promising field in molecular biotechnology that is leading to the rapid and accurate identification of microorganisms, diagnosis of infections and imaging of gene expression. The specificity of short synthetic DNA probes raises the hope of distinguishing small differences in sequence, ultimately achieving single nucleotide resolution. Recent work using quenched fluorescently labeled oligonucleotide probes as sensors for RNA in bacterial and human cells has overcome several difficult hurdles on the way to these goals, including delivery of probes to live cells, accessing RNA sites containing a high degree of secondary structure, and eliminating many sources of background. Two new classes of quenched oligonucleotide probes, molecular beacons and quenched auto-ligation probes, have shown the most promise for in situ RNA detection. High-specificity detection, at the single-nucleotide resolution level, is now possible in solution with these classes of probes. However, for applications in intact cells, signal and background issues still need to be addressed before the full potential of these methods is achieved.
Collapse
Affiliation(s)
- Adam P Silverman
- Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
| | | |
Collapse
|
116
|
Santangelo PJ, Nitin N, Bao G. Direct visualization of mRNA colocalization with mitochondria in living cells using molecular beacons. JOURNAL OF BIOMEDICAL OPTICS 2005; 10:44025. [PMID: 16178658 DOI: 10.1117/1.2011402] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The intracellular localization and specific organelle association of mRNA may reflect essential functions, stages, and stability of mRNA. We report the direct visualization of subcellular localization of K-ras and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) mRNAs in live HDF cells using molecular beacons together with membrane-permeabilization and peptide-based delivery. Unexpectedly, we found that both K-ras and GAPDH mRNAs colocalize with mitochondria. Extensive control studies are performed, including the use of fluorescence in-situ hybridization (FISH), negative-control beacons, and the detection of colocalization of 28S ribosomal RNA with the rough endoplasmic reticulum (ER), suggesting that the mRNA localization and colocalization patterns observed in our study are true and specific. Our observation reveals intriguing subcellular associations of mRNA with organelles such as mitochondria, which may provide new insight into the transport, dynamics, and functions of mRNA and mRNA-protein interactions.
Collapse
Affiliation(s)
- Philip J Santangelo
- Georgia Institute of Technology and Emory University, Department of Biomedical Engineering, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
117
|
Tanke HJ, Dirks RW, Raap T. FISH and immunocytochemistry: towards visualising single target molecules in living cells. Curr Opin Biotechnol 2005; 16:49-54. [PMID: 15722015 DOI: 10.1016/j.copbio.2004.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Knowledge of how molecules interact in space and time is crucial for understanding cellular processes. A host of novel techniques have been developed for the visualisation of single target molecules in living cells, many based on fluorescence in situ hybridisation (FISH) or immunocytochemistry (IC). To extend the applicability of FISH to living cells, special backbone-modified probes and specific conformations (molecular beacons) have been designed. In the case of IC, conventional immunoreagents have been fine-tuned with respect to size and affinity or replaced with new protein scaffolds based on ankyrin repeat proteins. Other key advances include the use of proximity ligation to confirm vicinity binding and the use of quantum dots, which have proven potential for cellular labelling.
Collapse
Affiliation(s)
- Hans J Tanke
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, The Netherlands.
| | | | | |
Collapse
|
118
|
Cui ZQ, Zhang ZP, Zhang XE, Wen JK, Zhou YF, Xie WH. Visualizing the dynamic behavior of poliovirus plus-strand RNA in living host cells. Nucleic Acids Res 2005; 33:3245-52. [PMID: 15942027 PMCID: PMC1143693 DOI: 10.1093/nar/gki629] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dynamic analysis of viral nucleic acids in host cells is important for understanding virus–host interaction. By labeling endogenous RNA with molecular beacon, we have realized the direct visualization of viral nucleic acids in living host cells and have studied the dynamic behavior of poliovirus plus-strand RNA. Poliovirus plus-strand RNA was observed to display different distribution patterns in living Vero cells at different post-infection time points. Real-time imaging suggested that the translocation of poliovirus plus-strand RNA is a characteristic rearrangement process requiring intact microtubule network of host cells. Confocal-FRAP measurements showed that 49.4 ± 3.2% of the poliovirus plus-strand RNA molecules diffused freely (with a D-value of 9.6 ± 1.6 × 10−10 cm2/s) within their distribution region, while the remaining (50.5 ± 2.9%) were almost immobile and moved very slowly only with change of the RNA distribution region. Under the electron microscope, it was found that virus-induced membrane rearrangement is microtubule-associated in poliovirus-infected Vero cells. These results reveal an entrapment and diffusion mechanism for the movement of poliovirus plus-strand RNA in living mammalian cells, and demonstrate that the mechanism is mainly associated with microtubules and virus-induced membrane structures.
Collapse
Affiliation(s)
- Zong-Qiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- Graduate School, Chinese Academy SciencesBeijing 100039, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Xian-En Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijing 100101, China
- To whom correspondence should be addressed. Tel: + 86 10 58881508; Fax: +86 10 58881559;
| | - Ji-Kai Wen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Ya-Feng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| | - Wei-Hong Xie
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of SciencesWuhan 430071, China
| |
Collapse
|
119
|
Piunno PAE, Krull UJ. Trends in the development of nucleic acid biosensors for medical diagnostics. Anal Bioanal Chem 2005; 381:1004-11. [PMID: 15702308 DOI: 10.1007/s00216-004-3024-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/06/2004] [Accepted: 12/09/2004] [Indexed: 12/20/2022]
Abstract
Some of the recent advances in the field of biosensors for nucleic acid analysis in medical diagnostic applications are highlighted. Particular attention is paid in this review to the progress made in two key areas of development: (i) enhancements achieved in device selectivity, and (ii) enhancements achieved in device sensitivity.
Collapse
Affiliation(s)
- Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada
| | | |
Collapse
|
120
|
Brunner J, Kraemer R. Copper(II)-quenched oligonucleotide probes for fluorescent DNA sensing. J Am Chem Soc 2004; 126:13626-7. [PMID: 15493914 DOI: 10.1021/ja047252a] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper(II)-quenched molecular beacon was prepared by attaching fluorescein to the 3'-end and a copper(II) complex to the 5'-end of DNA. In the presence of complementary DNA, copper(II) and dye are spatially separated in the duplex and fluorescence increases up to 15-fold, with excellent discrimination of single base mismatches.
Collapse
Affiliation(s)
- Jens Brunner
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | | |
Collapse
|
121
|
Molenaar C, Abdulle A, Gena A, Tanke HJ, Dirks RW. Poly(A)+ RNAs roam the cell nucleus and pass through speckle domains in transcriptionally active and inactive cells. ACTA ACUST UNITED AC 2004; 165:191-202. [PMID: 15117966 PMCID: PMC2172041 DOI: 10.1083/jcb.200310139] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many of the protein factors that play a role in nuclear export of mRNAs have been identified, but still little is known about how mRNAs are transported through the cell nucleus and which nuclear compartments are involved in mRNA transport. Using fluorescent 2'O-methyl oligoribonucleotide probes, we investigated the mobility of poly(A)+ RNA in the nucleoplasm and in nuclear speckles of U2OS cells. Quantitative analysis of diffusion using photobleaching techniques revealed that the majority of poly(A)+ RNA move throughout the nucleus, including in and out of speckles (also called SC-35 domains), which are enriched for splicing factors. Interestingly, in the presence of the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole, the association of poly(A)+ RNA with speckles remained dynamic. Our results show that RNA movement is energy dependent and that the proportion of nuclear poly(A)+ RNA that resides in speckles is a dynamic population that transiently interacts with speckles independent of the transcriptional status of the cell. Rather than the poly(A)+ RNA within speckles serving a stable structural role, our findings support the suggestion of a more active role of these regions in nuclear RNA metabolism and/or transport.
Collapse
Affiliation(s)
- Chris Molenaar
- Dept. of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, Netherlands
| | | | | | | | | |
Collapse
|
122
|
Paroo Z, Corey DR. Imaging gene expression using oligonucleotides and peptide nucleic acids. J Cell Biochem 2004; 90:437-42. [PMID: 14523977 DOI: 10.1002/jcb.10626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of methods for non-invasive, real-time imaging of gene expression would provide powerful tools for biomedical research and medical diagnostics. A broadly applicable strategy for achieving this goal is the use of complementary oligonucleotide probes for recognition of mRNA. The major challenge for molecular imaging is the development of specific and efficient transducers for signaling probe-target interaction. This review summarizes the strengths and limitations of reported molecular approaches for imaging of mRNA expression and discusses the challenges to development of in vivo methods.
Collapse
Affiliation(s)
- Zain Paroo
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-9041, USA
| | | |
Collapse
|
123
|
Sando S, Abe H, Kool ET. Quenched auto-ligating DNAs: multicolor identification of nucleic acids at single nucleotide resolution. J Am Chem Soc 2004; 126:1081-7. [PMID: 14746476 DOI: 10.1021/ja038665z] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the synthesis and study of multicolor quenched autoligating (QUAL) probes for identification and discrimination of closely related RNA and DNA sequences in solution and in bacteria. In these probes, a dabsyl quencher doubles as an activator in the oligonucleotide-joining reaction. The oligonucleotides remain dark until they bind at adjacent sites, and "light up" on nucleophilic displacement of the dabsyl probe by the phosphorothioate probe. Four fluorescent dye conjugates were prepared and tested with probes and targets that differ by one nucleotide. Experiments on polymer beads show clear color-based discrimination of DNAs added in solution. Two-color quenched probe pairs were then tested in the discrimination of 16S rRNA sequences in Escherichia coli. Single nucleotide resolution was achieved in the cells with green/red QUAL probes, allowing identification of a one-base sequencing error in the 16S rRNA database. Finally, QUAL probes were successfully applied in live bacterial cells. The method requires only incubation followed by fluorescence imaging, and requires no enzymes, added reagents, cross-linking, fixing, or washes. Because probes must bind side-by-side to generate signal, there is little or no interference from unintended protein binding, which can occur with other probe types. The results suggest that QUAL probes may be of general use in the detection and identification of sequences in solution, on microarrays, and in microorganisms.
Collapse
Affiliation(s)
- Shinsuke Sando
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | |
Collapse
|
124
|
Santangelo PJ, Nix B, Tsourkas A, Bao G. Dual FRET molecular beacons for mRNA detection in living cells. Nucleic Acids Res 2004; 32:e57. [PMID: 15084672 PMCID: PMC390379 DOI: 10.1093/nar/gnh062] [Citation(s) in RCA: 290] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2003] [Revised: 03/24/2004] [Accepted: 03/24/2004] [Indexed: 12/18/2022] Open
Abstract
The ability to visualize in real-time the expression level and localization of specific endogenous RNAs in living cells can offer tremendous opportunities for biological and disease studies. Here we demonstrate such a capability using a pair of molecular beacons, one with a donor and the other with an acceptor fluorophore that hybridize to adjacent regions on the same mRNA target, resulting in fluorescence resonance energy transfer (FRET). Detection of the FRET signal significantly reduced false positives, leading to sensitive imaging of K-ras and survivin mRNAs in live HDF and MIAPaCa-2 cells. FRET detection gave a ratio of 2.25 of K-ras mRNA expression in stimulated and unstimulated HDF, comparable to the ratio of 1.95 using RT-PCR, and in contrast to the single-beacon result of 1.2. We further revealed intriguing details of K-ras and survivin mRNA localization in living cells. The dual FRET molecular beacons approach provides a novel technique for sensitive RNA detection and quantification in living cells.
Collapse
Affiliation(s)
- Philip J Santangelo
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
125
|
Nitin N, Santangelo PJ, Kim G, Nie S, Bao G. Peptide-linked molecular beacons for efficient delivery and rapid mRNA detection in living cells. Nucleic Acids Res 2004; 32:e58. [PMID: 15084673 PMCID: PMC390380 DOI: 10.1093/nar/gnh063] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Real-time visualization of specific endogenous mRNA expression in vivo has the potential to revolutionize medical diagnosis, drug discovery, developmental and molecular biology. However, conventional liposome- or dendrimer-based cellular delivery of molecular probes is inefficient, slow, and often detrimental to the probes. Here we demonstrate the rapid and sensitive detection of RNA in living cells using peptide-linked molecular beacons that possess self-delivery, targeting and reporting functions. We conjugated the TAT peptide to molecular beacons using three different linkages and demonstrated that, at relatively low concentrations, these molecular beacon constructs were internalized into living cells within 30 min with nearly 100% efficiency. Further, peptide-based delivery did not interfere with either specific targeting by or hybridization-induced fluorescence of the probes. We could therefore detect human GAPDH and survivin mRNAs in living cells fluorescently, revealing intriguing intracellular localization patterns of mRNA. We clearly demonstrated that cellular delivery of molecular beacons using the peptide-based approach has far better performance compared with conventional transfection methods. The peptide-linked molecular beacons approach promises to open new and exciting opportunities in sensitive gene detection and quantification in vivo.
Collapse
Affiliation(s)
- Nitin Nitin
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
126
|
Molenaar C, Wiesmeijer K, Verwoerd NP, Khazen S, Eils R, Tanke HJ, Dirks RW. Visualizing telomere dynamics in living mammalian cells using PNA probes. EMBO J 2004; 22:6631-41. [PMID: 14657034 PMCID: PMC291828 DOI: 10.1093/emboj/cdg633] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chromosome ends are protected from degradation by the presence of the highly repetitive hexanucleotide sequence of TTAGGG and associated proteins. These so-called telomeric complexes are suggested to play an important role in establishing a functional nuclear chromatin organization. Using peptide nucleic acid (PNA) probes, we studied the dynamic behavior of telomeric DNA repeats in living human osteosarcoma U2OS cells. A fluorescent cy3-labeled PNA probe was introduced in living cells by glass bead loading and was shown to specifically associate with telomeric DNA shortly afterwards. Telomere dynamics were imaged for several hours using digital fluorescence microscopy. While the majority of telomeres revealed constrained diffusive movement, individual telomeres in a human cell nucleus showed significant directional movements. Also, a subfraction of telomeres were shown to associate and dissociate, suggesting that in vivo telomere clusters are not stable but dynamic structures. Furthermore, telomeres were shown to associate with promyelocytic leukemia (PML) bodies in a dynamic manner.
Collapse
Affiliation(s)
- Chris Molenaar
- Department of Molecular Cell Biology, Leiden University Medical Center, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
We have designed a reversible fluorescent DNA probe that can be used to determine the concentration of single-stranded DNA in solution by a ratiometric fluorescence measurement. The probe consists of a single-stranded dual fluorescently labeled DNA molecule that adopts a stem-loop conformation in its nonhybridized state. The stem length and the length of the loop region complementary to the target were chosen to allow for reversible binding. The excitation and emission wavelengths of the two labels Cy3 and Cy5 allow for fluorescence resonance energy transfer in the closed state. Upon hybridization, the probe opens up resulting in a fluorescence intensity increase of the donor and a fluorescence intensity decrease of the acceptor. The ratio of the acceptor-to-donor fluorescence intensities is independent of the amount of probe and provides a quantitative measure of the free target concentration.
Collapse
Affiliation(s)
- Jörn Ueberfeld
- The Max Tishler Laboratory for Organic Chemistry, Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
128
|
Massardo DR, Esposito B, Veneziano A, Wolf K, Alifano P, Del Giudice L. Hyper-expression of small nucleolar RNAs (snoRNAs) in female inflorescences of hazelnut (Corylus avellana L.) supports rRNA aggregation in vitro. PLANT & CELL PHYSIOLOGY 2003; 44:884-892. [PMID: 14519769 DOI: 10.1093/pcp/pcg111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Under certain in vitro (salt and temperature) conditions rRNA aggregation occurs in female inflorescences but not in leaves or pollen RNA preparations from hazelnut (Corylus avellana L.), a species of economic interest. This paper describes experiments addressing an explanation of this phenomenon. The experiments demonstrate that: (i) trans-acting factors induce rRNA aggregate formation in female inflorescences RNA preparations; (ii) these factors support aggregation also of heterologous rRNA; (iii) aggregation is a function of temperature pre-treatment of rRNA and not of source 18S rRNA; (iv) the factors inducing rRNA aggregates are sensitive to RNase; (v) antisense small nucleolar RNAs (snoRNAs) participate in rRNA aggregate formation. snoRNAs are involved in pre-rRNA spacer cleavages, and are required for the two most common types of rRNA modifications: 2'-O-ribose methylation and pseudouridylation. Even though it is questionable whether rRNA aggregation really happens in female inflorescence in vivo, the phenomenon observed in vitro may reflect the abundance of snoRNAs in these reproductive structures. In fact the level of accumulation of three tested snoRNAs, R1, U14 and U3, is much higher in female inflorescence than in leaves or pollen of hazelnut. This finding opens the possibility of studying the role of snoRNAs in tissue development in plants.
Collapse
Affiliation(s)
- Domenica Rita Massardo
- Istituto di Genetica e Biofisica Adriano Buzzati-Traverso--C.N.R., Via G. Marconi 10, I-80125 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
129
|
Tsourkas A, Behlke MA, Xu Y, Bao G. Spectroscopic Features of Dual Fluorescence/Luminescence Resonance Energy-Transfer Molecular Beacons. Anal Chem 2003; 75:3697-703. [PMID: 14572032 DOI: 10.1021/ac034295l] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular beacons have the potential to become a powerful tool in gene detection and quantification in living cells. Here we report a novel dual molecular beacons approach to reduce false-positive signals in detecting target nucleic acids in homogeneous assays. A pair of molecular beacons, each containing a fluorescence quencher and a reporter fluorophore, one with a donor and a second with an acceptor fluorophore, hybridize to adjacent regions on the same target resulting in fluorescence resonance energy transfer (FRET). The detection of a FRET signal leads to a substantially increased signal-to-background ratio compared with that seen in single molecular beacon assays and enables discrimination between fluorescence due to specific probe/target hybridization and a variety of possible false-positive events. Further, when a lanthanide chelate is used as a donor in a dual-probe assay, extremely high signal-to-background ratios can be achieved owing to the long lifetime and sharp emission peaks of the donor and the time-gated detection of acceptor fluorescence emission. These new approaches allow for the ultrasensitive detection of target molecules in a way that could be readily applied to real-time imaging of gene expression in living cells.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | | | | | | |
Collapse
|
130
|
Wagner M, Horn M, Daims H. Fluorescence in situ hybridisation for the identification and characterisation of prokaryotes. Curr Opin Microbiol 2003; 6:302-9. [PMID: 12831908 DOI: 10.1016/s1369-5274(03)00054-7] [Citation(s) in RCA: 209] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluorescence in situ hybridisation with rRNA-targeted nucleic acid probes can be used to directly identify microorganisms within complex samples in a few hours and therefore has widespread application in environmental and medical microbiology. The past year has seen significant methodological improvements in fluorescence in situ hybridisation, as well as in the combination of this method with other techniques for inferring functional traits of microorganisms within their environment.
Collapse
Affiliation(s)
- Michael Wagner
- Department of Microbial Ecology, Institute of Ecology and Conservation Biology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| | | | | |
Collapse
|
131
|
Hartshorn C, Rice JE, Wangh LJ. Differential pattern of Xist RNA accumulation in single blastomeres isolated from 8-cell stage mouse embryos following laser zona drilling. Mol Reprod Dev 2003; 64:41-51. [PMID: 12420298 DOI: 10.1002/mrd.10223] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Xist gene expression begins at the late 2-cell stage in female mouse embryos and by the third division results in the accumulation of an average 100 copies of Xist RNA per cell, as measured by real-time reverse transcription-polymerase chain reaction (RT-PCR). In the blastocyst, the trophectoderm maintains the paternally imprinted pattern of Xist expression present during early development, while either the maternal or the paternal X chromosome can express Xist among cells of the inner mass. Fluorescent in situ hybridization (FISH) has previously established that Xist transcripts are localized on the silenced X chromosome, forming aggregates of variable dimensions in blastomeres of 8-cell embryos. This observation and the fact that Xist RNA accumulation per cell sharply decreases after morula stage raise the possibility that cells of cleaving embryos contain different levels of Xist RNA, perhaps linked to their subsequent developmental fates. We show here that Xist RNA is efficiently recovered from single blastomeres isolated from 8-cell embryos following laser zona drilling. Sexing of the samples and simultaneous quantification of Xist RNA in individual cells is achieved with a multiplex Xist/Sry real-time RT-PCR assay sensitive to the single-copy level. This analysis reveals that Xist RNA is indeed accumulated to substantially different levels in individual blastomeres of the same 8-cell embryo and that two blastomeres contain most of the molecules per embryo. These results support the conclusion that cells of the early mammalian embryo are not all functionally equivalent. Differential Xist gene expression could arise from differences in DNA methylation, or the order in which cells divide.
Collapse
Affiliation(s)
- Cristina Hartshorn
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
132
|
Abstract
Fluorescence in situ hybridization is a widely used technique in cell biology providing insight into the spatial organization of specific RNA transcripts in the cell nucleus. However, to further investigate the dynamics of the transcription process and the transport rates of RNAs through the nucleus, RNAs need to be visualized and tracked in the living cell. In past years, various methods have been developed with the aim of tagging specific RNAs with a fluorescent moiety without interfering with cell vitality. These methods include the delivery of probes into a living cell, the in vivo hybridization of fluorescent oligonucleotide probes to endogenous RNAs, and the microscopic imaging of the tagged RNAs in living cells. In this article, we review a number of methods for tagging and visualizing endogenous RNAs in living cells. In addition, a protocol is described that allows detection of various RNA types using fluorochrome-labeled 2(')-O-methyl oligoribonucleotide (2(')-OMe RNA) probes. Compared with conventional oligodeoxynucleotide probes, 2(')-OMe RNA probes are not degraded by nucleases, form stable hybrids with structured RNAs, and do not interfere with cell vitality.
Collapse
Affiliation(s)
- Roeland W Dirks
- Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL, Leiden, The Netherlands.
| | | | | |
Collapse
|
133
|
Tsourkas A, Behlke MA, Bao G. Hybridization of 2'-O-methyl and 2'-deoxy molecular beacons to RNA and DNA targets. Nucleic Acids Res 2002; 30:5168-74. [PMID: 12466541 PMCID: PMC137950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
Molecular beacons are stem-loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2'-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2'-O-methyl and 2'-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2'-O-methyl/RNA > 2'-deoxy/RNA > 2'-deoxy/DNA > 2'-O-methyl/DNA. The improved stability of the 2'-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2'-deoxy molecular beacons and RNA targets. However, the 2'-O-methyl molecular beacons hybridized to RNA more quickly than 2'-deoxy molecular beacons. For the pairs tested, the 2'-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
134
|
Kundu LM, Burgdorf LT, Kleiner O, Batschauer A, Carell T. Cleavable substrate containing molecular beacons for the quantification of DNA-photolyase activity. Chembiochem 2002; 3:1053-60. [PMID: 12404629 DOI: 10.1002/1439-7633(20021104)3:11<1053::aid-cbic1053>3.0.co;2-#] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In order to gain deeper insight into the function and interplay of proteins in cells it is essential to develop methods that allow the profiling of protein function in real time, in solution, in cells, and in cell organelles. Here we report the development of a U-type oligonucleotide (molecular beacon) that contains a fluorophore and a quencher at the tips, and in addition a substrate analogue in the loop structure. This substrate analogue induces a hairpin cleavage in response to enzyme action, which is translated into a fluorescence signal. The molecular beacon developed here was used to characterize DNA-photolyase activity. These enzymes represent a challenge for analytical methods because of their low abundance in cells. The molecular beacon made it possible to measure the activity of purified class I and class II photolyases. Photolyase activity was even detectable in crude cell extracts.
Collapse
Affiliation(s)
- Lal Mohan Kundu
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
135
|
Tsourkas A, Behlke MA, Bao G. Structure-function relationships of shared-stem and conventional molecular beacons. Nucleic Acids Res 2002; 30:4208-15. [PMID: 12364599 PMCID: PMC140536 DOI: 10.1093/nar/gkf536] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular beacons are oligonucleotide probes capable of forming a stem-loop hairpin structure with a reporter dye at one end and a quencher at the other end. Conventional molecular beacons are designed with a target-binding domain flanked by two complementary short arm sequences that are independent of the target sequence. Here we report the design of shared-stem molecular beacons with one arm participating in both stem formation when the beacon is closed and target hybridization when it is open. We performed a systematic study to compare the behavior of conventional and shared-stem molecular beacons by conducting thermodynamic and kinetic analyses. Shared-stem molecular beacons form more stable duplexes with target molecules than conventional molecular beacons; however, conventional molecular beacons may discriminate between targets with a higher specificity. For both conventional and shared-stem molecular beacons, increasing stem length enhanced the ability to differentiate between wild-type and mutant targets over a wider range of temperatures. Interestingly, probe-target hybridization kinetics were similar for both classes of molecular beacons and were influenced primarily by the length and sequence of the stem. These findings should enable better design of molecular beacons for various applications.
Collapse
Affiliation(s)
- Andrew Tsourkas
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 315 Ferst Drive, Suite 2306, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
136
|
Abstract
We report on the application of a new class of oligonucleotide reporter probes, QUAL probes, that "light up" when a nucleophilic phosphorothioate probe binds adjacent to a dabsyl-quenched probe. These self-ligating DNA probes were used for sequence-specific detection of 16S rRNA in Escherichia coli cells. Strong fluorescence was observed only when the phosphorothioate and quenched dabsyl probes bind side-by-side on a 16S rRNA target. The results demonstrate the use of QUAL probes to detect specific RNA sequences in bacterial cells without enzymes and without washing steps.
Collapse
Affiliation(s)
- Shinsuke Sando
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | |
Collapse
|
137
|
Vijayanathan V, Thomas T, Sigal LH, Thomas TJ. Direct measurement of the association constant of HER2/neu antisense oligonucleotide to its target RNA sequence using a molecular beacon. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 2002; 12:225-33. [PMID: 12238811 DOI: 10.1089/108729002320351548] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A molecular beacon approach was developed to directly determine the association constant of RNA-DNA hybrid formation. The molecular beacon was composed of a 15-nt loop structure containing the antisense sequence that can hybridize with the AUG translational start site of the HER2/neu gene, which is overexpressed in a significant proportion of breast, ovarian, and lung tumors. The equilibrium association constant (Ka) of DNA binding to the RNA oligonucleotide was 6.4 +/- 0.14 x 10(7) M(-1) in the presence of 150 mM NaCl at 22 degrees C. The free energy change (AG) associated with RNA-DNA hybrid formation was -10.7 kcal/mole. The melting temperature (Tm) of RNA-DNA hybrid was 64.4 degrees C +/- 1 degree C in the presence of 150 mM NaCl. The RNA-DNA hybrid was more stable than the corresponding DNA-DNA duplex in 150 mM NaCl, as judged by both Ka and Tm data. We also determined the Ka, deltaG, and Tm values of RNA-DNA and DNA-DNA duplex formation in the presence of three monovalent cations, Li+, K+, and Cs+. The feasibility of this method was also investigated using a phosphorothioate molecular beacon. The information generated through this new approach for thermodynamic measurements might be useful for the design of oligonucleotides for antisense therapeutics.
Collapse
Affiliation(s)
- Veena Vijayanathan
- Department of Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, New Brunswick 08903, USA
| | | | | | | |
Collapse
|
138
|
Vet JAM, Van der Rijt BJM, Blom HJ. Molecular beacons: colorful analysis of nucleic acids. Expert Rev Mol Diagn 2002; 2:77-86. [PMID: 11963813 DOI: 10.1586/14737159.2.1.77] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The completion of the Humane Genome Project has resulted in an exponential rise in the demand for molecular diagnostic assays. To meet this demand, several innovative technologies have become available for performing homogeneous genetic analyses. For this type of assay, special detector probes are necessary. In 1996, Tyagi and Kramer described fluorogenic hairpin-shaped detector probes, called 'molecular beacons', which are extraordinarily specific. Since they characterize alleles by the generation of fluorescent signals, they are perfectly suited for homogeneous genetic analysis. Molecular beacons assays are simple, fast, inexpensive, sensitive, utilize a high-throughput format, enable the testing of many samples simultaneously and allow the detection of a series of different agents in the same assay tube. This review is designed to give the reader a greater understanding of the exciting applications of molecular beacons in DNA, RNA and protein studies.
Collapse
|
139
|
|