101
|
Shekhar R, Priyanka P, Kumar P, Ghosh T, Khan MM, Nagarajan P, Saxena S. The microRNAs miR-449a and miR-424 suppress osteosarcoma by targeting cyclin A2 expression. J Biol Chem 2019; 294:4381-4400. [PMID: 30679313 DOI: 10.1074/jbc.ra118.005778] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs of the miR-16 and miR-34 families have been reported to inhibit cell cycle progression, and their loss has been linked to oncogenic transformation. Utilizing a high-throughput, genome-wide screen for miRNAs and mRNAs that are differentially regulated in osteosarcoma (OS) cell lines, we report that miR-449a and miR-424, belonging to the miR-34 and miR-16 families, respectively, target the major S/G2 phase cyclin, cyclin A2 (CCNA2), in a bipartite manner. We found that the 3'-UTR of CCNA2 is recognized by miR-449a, whereas the CCNA2 coding region is targeted by miR-424. Of note, we observed loss of both miR-449a and miR-424 in OS, resulting in derepression of CCNA2 and appearance of aggressive cancer phenotypes. Ectopic expression of miR-449a and miR-424 significantly decreased cyclin A2 levels and inhibited proliferation rate, migratory potential, and colony-forming ability of OS cells. To further probe the roles of miR-449a and miR-424 in OS, we developed an OS mouse model by intraosseous injection of U2OS cells into the tibia bone of NOD-scid mice, which indicated that miR-449a and miR-424 co-expression suppresses tumor growth. On the basis of this discovery, we analyzed the gene expression of human OS biopsy samples, revealing that miR-449a and miR-424 are both down-regulated, whereas cyclin A2 is significantly up-regulated in these OS samples. In summary, the findings in our study highlight that cyclin A2 repression by miRNAs of the miR-16 and miR-34 families is lost in aggressive OS.
Collapse
Affiliation(s)
- Ritu Shekhar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Priyanka Priyanka
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Tanushree Ghosh
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Md Muntaz Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Perumal Nagarajan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandeep Saxena
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
102
|
Wen J, Hu Y, Liu Q, Ling Y, Zhang S, Luo K, Xie X, Fu J, Yang H. miR-424 coordinates multilayered regulation of cell cycle progression to promote esophageal squamous cell carcinoma cell proliferation. EBioMedicine 2018; 37:110-124. [PMID: 30361064 PMCID: PMC6284509 DOI: 10.1016/j.ebiom.2018.10.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Dysregulation of the cell cycle has been implicated in esophageal squamous cell carcinoma (ESCC) progression. This study aimed to evaluate the role of miR-424 in cell cycle regulation and ESCC proliferation. METHODS The role of miR-424 in cell proliferation was evaluated in vitro and in vivo. Transcriptional activation of miR-424 was determined using chromatin immunoprecipitation, and binding of miR-424 to targets was verified using miRNA ribonucleoprotein complex immunoprecipitation. FINDINGS miR-424 was upregulated and correlated with poor survival in ESCC patients. Repression or overexpression of miR-424 respectively decreased or increased ESCC cell proliferation in vitro and in vivo. miR-424 expression is transcriptionally regulated by E2F1 and increased during G1/S transition. Knockdown or overexpression of miR-424 respectively inhibited or promoted both G1/S and G2/M cell cycle transitions in ESCC cells, and these effects were mediated by two newly identified miR-424 targets, PRKCD and WEE1, respectively. Consequently, elevation of PRKCD by miR-424 knockdown led to enhanced stability of the p21Cip1 protein via increased activation of PRKCD and downstream p38 MAPK and JNK signaling to block CDK2 activation and G1/S transition, while elevated WEE1 maintained CDC2 in an inactive state to block G2/M transition. However, circLARP4 could sponge the binding of miR-424 to PRKCD, thus compromising the regulation of G1/S progression by miR-424. INTERPRETATION miR-424 coordinates a previously unknown, multilayered regulation of ESCC cell cycle progression to promote ESCC proliferation, and may be used as a novel prognostic marker and an effective therapeutic target for ESCCs. FUND: National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yi Hu
- Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China; Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Qianwen Liu
- Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China; Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Yihong Ling
- Department of Pathology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Second Road, Guangzhou 510080, China
| | - Kongjia Luo
- Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China; Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Xiuying Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Jianhua Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China; Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Hong Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China; Guangdong Esophageal Cancer Institute, 651 Dongfeng East Road, Guangzhou 510060, China; Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| |
Collapse
|
103
|
Jin L, Hu S, Tu T, Huang Z, Tang Q, Ma J, Wang X, Li X, Zhou X, Shuai S, Li M. Global Long Noncoding RNA and mRNA Expression Changes between Prenatal and Neonatal Lung Tissue in Pigs. Genes (Basel) 2018; 9:genes9090443. [PMID: 30189656 PMCID: PMC6162397 DOI: 10.3390/genes9090443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 12/29/2022] Open
Abstract
Lung tissue plays an important role in the respiratory system of mammals after birth. Early lung development includes six key stages, of which the saccular stage spans the pre- and neonatal periods and prepares the distal lung for alveolarization and gas-exchange. However, little is known about the changes in gene expression between fetal and neonatal lungs. In this study, we performed transcriptomic analysis of messenger RNA (mRNA) and long noncoding RNA (lncRNA) expressed in the lung tissue of fetal and neonatal piglets. A total of 19,310 lncRNAs and 14,579 mRNAs were identified and substantially expressed. Furthermore, 3248 mRNAs were significantly (FDR-adjusted p value ≤ 0.05, FDR: False Discovery Rate) differentially expressed and were mainly enriched in categories related to cell proliferation, immune response, hypoxia response, and mitochondrial activation. For example, CCNA2, an important gene involved in the cell cycle and DNA replication, was upregulated in neonatal lungs. We also identified 452 significantly (FDR-adjusted p value ≤ 0.05) differentially expressed lncRNAs, which might function in cell proliferation, mitochondrial activation, and immune response, similar to the differentially expressed mRNAs. These results suggest that differentially expressed mRNAs and lncRNAs might co-regulate lung development in early postnatal pigs. Notably, the TU64359 lncRNA might promote distal lung development by up-regulating the heparin-binding epidermal growth factor-like (HB-EGF) expression. Our research provides basic lung development datasets and will accelerate clinical researches of newborn lung diseases with pig models.
Collapse
Affiliation(s)
- Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Silu Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Teng Tu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xun Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xuan Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Surong Shuai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
104
|
Hu Z, Tie Y, Lv G, Zhu J, Fu H, Zheng X. Transcriptional activation of miR-320a by ATF2, ELK1 and YY1 induces cancer cell apoptosis under ionizing radiation conditions. Int J Oncol 2018; 53:1691-1702. [PMID: 30066913 DOI: 10.3892/ijo.2018.4497] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play important roles in numerous cellular processes, including development, proliferation, tumorigenesis and apoptosis. It has been reported that miRNA expression is induced by ionizing radiation (IR) in cancer cells. However, the underlying molecular mechanisms are not yet fully understood. In this study, endogenous miR‑320a and its primary precursor (pri‑miR‑320a) were assayed by reverse transcription‑quantitative PCR (RT‑qPCR). Luciferase activities were measured using a dual‑luciferase reporter assay system. Western blot analysis was used to determine the protein expressions of upstream and downstream genes of miR‑320a. Cell apoptosis was evaluated by Annexin V apoptosis assay and cell proliferation was measured using the trypan blue exclusion method. The results revealed that miR‑320a expression increased linearly with the IR dose and treatment duration. Three transcription factors, activating transcription factor 2 (ATF2), ETS transcription factor (ELK1) and YY1 transcription factor (YY1), were activated by p38 mitogen‑activated protein kinase (MAPK) and mitogen‑activated protein kinase 8 (JNK) and by upregulated miR‑320a expression under IR conditions. In addition, it was identified that X‑linked inhibitor of apoptosis (XIAP) was an miR‑320a target gene during the IR response. By targeting XIAP, miR‑320a induced apoptosis and inhibited the proliferation of the cancer cells. On the whole, the results of this study demonstrated that miRNA‑320a, regulated by the p38 MAPK/JNK pathway, enhanced the radiosensitivity of cancer cells by inhibiting XIAP and this may thus prove to be a potential therapeutic approach with which to overcome radioresistance in cancer treatment.
Collapse
Affiliation(s)
- Zheng Hu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Yi Tie
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Guixiang Lv
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Jie Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Hanjiang Fu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| | - Xiaofei Zheng
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
105
|
Min KH, Yang WM, Lee W. Saturated fatty acids-induced miR-424-5p aggravates insulin resistance via targeting insulin receptor in hepatocytes. Biochem Biophys Res Commun 2018; 503:1587-1593. [PMID: 30033101 DOI: 10.1016/j.bbrc.2018.07.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
The excessive intake of saturated fatty acids (SFA) causes obesity and liver steatosis, which are major risk factors for insulin resistance and type 2 diabetes. Although the expression of certain microRNAs (miRNAs) targeting the insulin signaling molecules are regulated aberrantly in SFA-induced obesity, their implications on hepatic insulin resistance are largely unknown. This study examined the associations of miR-424-5p, which is induced by SFA, with the development of insulin resistance. SFA palmitate (PA)-treated HepG2 cells and high fat diet (HFD)-induced obese mouse livers showed an impairment of insulin signaling due to a significant decrease in INSR and IRS-1 expression. Based on expression profiling and qRT-PCR analysis, miR-424-5p, which presumably targets the 3'UTR of INSR, was upregulated in both PA-treated HepG2 cells and the liver of HFD-fed mice. miR-424-5p was found to target the 3'UTR of INSR directly and downregulated INSR expression at the post-transcriptional step. Furthermore, the overexpression of miR-424-5p suppressed INSR expression significantly, leading to impaired insulin signaling and glycogen synthesis in hepatocytes. A novel mechanism for how SFA-induced miR-424-5p impairs insulin signaling through the targeting of INSR is reported. In addition, the crucial role and underlying mechanism of miR-424-5p in the obesity-induced hepatic insulin resistance is explained.
Collapse
Affiliation(s)
- Kyung-Ho Min
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea
| | - Won-Mo Yang
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
106
|
Abstract
Viruses masterfully regulate host gene expression during infection. Many do so, in part, by expressing non-coding RNAs. Recent work has shown that HSUR 2, a viral non-coding RNA expressed by the oncogenic Herpesvirus saimiri, regulates mRNA expression through a novel mechanism. HSUR 2 base pairs with both target mRNAs and host miRNAs in infected cells. This results in HSUR 2-dependent recruitment of host miRNAs and associated Ago proteins to target mRNAs, and the subsequent destabilization of target mRNAs. Using this mechanism, this virus regulates key cellular pathways during viral infection. Here I discuss the evolution of our thinking about HSUR function and explore the implications of recent findings in relation to the current views on the functions of interactions between miRNAs and other classes of non-coding RNAs, the potential advantages of this mechanism of regulation of gene expression, and the evolutionary origin of HSUR 2.
Collapse
Affiliation(s)
- Demián Cazalla
- a Department of Biochemistry , University of Utah School of Medicine , Salt Lake City , UT , USA
| |
Collapse
|
107
|
Tumor suppressor miR-1 inhibits tumor growth and metastasis by simultaneously targeting multiple genes. Oncotarget 2018; 8:42043-42060. [PMID: 28159933 PMCID: PMC5522048 DOI: 10.18632/oncotarget.14927] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022] Open
Abstract
Cancer progression depends on tumor growth and metastasis, which are activated or suppressed by multiple genes. An individual microRNA may target multiple genes, suggesting that a miRNA may suppress tumor growth and metastasis via simultaneously targeting different genes. However, thus far, this issue has not been explored. In the present study, the findings showed that miR-1 could simultaneously inhibit tumor growth and metastasis of gastric and breast cancers by targeting multiple genes. The results indicated that miR-1 was significantly downregulated in cancer tissues compared with normal tissues. The miR-1 overexpression led to cell cycle arrest in the G1 phase in gastric and breast cancer cells but not in normal cells. Furthermore, the miR-1 overexpression significantly inhibited the metastasis of gastric and breast cancer cells. An analysis of the underlying mechanism revealed that the simultaneous inhibition of tumor growth and metastasis mediated by miR-1 was due to the synchronous targeting of 6 miR-1 target genes encoding cyclin dependent kinase 4, twinfilin actin binding protein 1, calponin 3, coronin 1C, WAS protein family member 2 and thymosin beta 4, X-linked. In vivo assays demonstrated that miR-1 efficiently inhibited tumor growth and metastasis of gastric and breast cancers in nude mice. Therefore, our study contributed novel insights into the miR-1′s roles in tumorigenesis of gastric and breast cancers.
Collapse
|
108
|
Sam MR, Tavakoli-Mehr M, Safaralizadeh R. Omega-3 fatty acid DHA modulates p53, survivin, and microRNA-16-1 expression in KRAS-mutant colorectal cancer stem-like cells. GENES & NUTRITION 2018; 13:8. [PMID: 29619114 PMCID: PMC5879572 DOI: 10.1186/s12263-018-0596-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/05/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND The presence of chemotherapy-resistant colorectal cancer stem cells (CCSCs) with KRAS mutation is thought to be one of the primary causes for treatment failure in colorectal cancer (CRC). P53, survivin, and microRNA-16-1 are challenging targets for anticancer drugs which are associated with chemoresistance in CRC. Yet, no p53-, survivin-, and microRNA-16-1-modulating drug with low toxicity but high efficacy against KRAS-mutant CCSCs have been approved for clinical application in CRC. Here, we investigated whether in vitro concentrations of DHA equal to human plasma levels, are able to modulate, Wt-p53, survivin, and microRNA-16-1 in CRC cells with stem cell-like properties. METHODS Wt-p53/KRAS-mutant CRC cells (HCT-116) with stem cell-like properties were treated with 100-, 150- and 200-μM/L DHA, after which cell number, viability, growth inhibition, Wt-p53, survivin and microRNA-16-1 expression, caspase-3 activation and apoptotic-rate were evaluated by different cellular and molecular techniques. RESULTS After 24-, 48-, and 72-h treatments with 100- to 200-μM/L DHA, growth inhibition- rates were measured to be 54.7% to 59.7%, 73.% to 75.8%, and 63.3% to 97.7%, respectively. Treatment for 48 h with indicated DHA concentrations decreased cell number and viability. In addition, we observed a decrease in both the transcript and protein levels of survivin followed by 1.3- to 1.7- and 1.1- to 4.7-fold increases in the Wt-p53 accumulation and caspase-3 activation levels respectively. Treatment with 100 and 150 μM/L DHA increased microRNA-16-1 expression levels by 1.3- to 1.7-fold and enhanced the microRNA-16-1/survivin mRNA, p53/survivin, and caspase-3/survivin protein ratios by 1.7- to 1.8-, 1.3- to 2.6-, and 1.3- to 2-fold increases respectively. A decrease in the number of live cells and an increase in the number of apoptotic cells were also observed with increasing DHA concentrations. CONCLUSION Wt-p53, survivin, and microRNA-16-1 appear to be promising molecular targets of DHA. Thus, DHA might represent an attractive anti-tumor agent directed against KRAS-mutant CCSCs.
Collapse
Affiliation(s)
- Mohammad Reza Sam
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Mohammad Tavakoli-Mehr
- Department of Cellular and Molecular Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
109
|
Murgoci AN, Cizkova D, Majerova P, Petrovova E, Medvecky L, Fournier I, Salzet M. Brain-Cortex Microglia-Derived Exosomes: Nanoparticles for Glioma Therapy. Chemphyschem 2018; 19:1205-1214. [PMID: 29327816 DOI: 10.1002/cphc.201701198] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/03/2018] [Indexed: 12/19/2022]
Abstract
The function and integrity of the nervous system require interactive exchanges among neurons and glial cells. Exosomes and other extracellular vesicles (EVs) are emerging as a key mediator of intercellular communication, capable of transferring nucleic acids, proteins and lipids influencing numerous functional and pathological aspects of both donor and recipient cells. The immune response mediated by microglia-derived exosomes is most prominently involved in the spread of neuroinflammation, neurodegenerative disorders, and brain cancer. Therefore, in the present study we describe a reproducible and highly efficient method for yielding purified primary microglia cells, followed by exosome isolation and their characterization. An in vitro biological assay demonstrates that microglia-derived exosomes tested on a 3D spheroid glioma culture were able to inhibit tumor invasion in time course. These results evidence that brain microglia-derived exosomes could be used as nanotherapeutic agents against glioma cells.
Collapse
Affiliation(s)
- Adriana-Natalia Murgoci
- Univ. Lille, Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia.,Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.,Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia.,Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
| | - Eva Petrovova
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81, Košice, Slovakia
| | - Lubomir Medvecky
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Košice, Slovakia
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192-Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| |
Collapse
|
110
|
Tang X, Jin L, Cao P, Cao K, Huang C, Luo Y, Ma J, Shen S, Tan M, Li X, Zhou M. MicroRNA-16 sensitizes breast cancer cells to paclitaxel through suppression of IKBKB expression. Oncotarget 2018; 7:23668-83. [PMID: 26993770 PMCID: PMC5029655 DOI: 10.18632/oncotarget.8056] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
Paclitaxel (Taxol) is an effective chemotherapeutic agent for treating breast cancer patients. However, chemoresistance is a major obstacle in cancer treatment. Here, we showed that overexpression of miR-16 promoted Taxol-induced cytotoxicity and apoptosis in breast cancer cells. Furthermore, IκB kinase β (IKBKB) was identified as a direct target of miR-16. Up-regulation of IKBKB suppressed Taxol-induced apoptosis and led to an increased resistance to Taxol, and restoring IKBKB expression in miR-16-overexpressing breast cancer cells recovered Taxol resistance. Moreover, miR-16 was highly expressed in Taxol-sensitive breast cancer tissues compared with Taxol-resistant tissues, and there was an inverse correlation between miR-16 expression and IKBKB expression in breast cancer tissues. The expression levels of miR-16 were negatively associated with T stages, whereas the expression of IKBKB was positively correlated with T stages, lymph node metastasis and clinical stages. Taken together, our data demonstrates that miR-16 sensitizes breast cancer cells to Taxol through the suppression of IKBKB expression, and targeting miR-16/IKBKB axis will be a promising strategy for overcoming Taxol resistance in breast cancer.
Collapse
Affiliation(s)
- Xueyuan Tang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Long Jin
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Peiguo Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chenghui Huang
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanwei Luo
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Ma
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shourong Shen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Xiayu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health and The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
111
|
Poudyal D, Herman A, Adelsberger JW, Yang J, Hu X, Chen Q, Bosche M, Sherman BT, Imamichi T. A novel microRNA, hsa-miR-6852 differentially regulated by Interleukin-27 induces necrosis in cervical cancer cells by downregulating the FoxM1 expression. Sci Rep 2018; 8:900. [PMID: 29343703 PMCID: PMC5772045 DOI: 10.1038/s41598-018-19259-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/13/2017] [Indexed: 01/16/2023] Open
Abstract
We have previously demonstrated that Interleukin-27 differentially regulates the expression of seven novel microRNAs. Here we elucidate the functional significance of these novel microRNAs. Of the seven microRNAs, over expression of miRNA-6852 (miR-SX4) mimic induces cell cycle arrest at G2/M phase and induces necrosis in HEK293 and panel of cervical cancer cells (Human Papilloma Virus (HPV) infected cell lines; HeLa, CaSki and SiHa cells). To define the mechanism of the miR-SX4-mediated G2/M arrest, a microarray gene chip array and western blot analysis were performed. FoxM1, a transcription factor is identified as a key protein down-regulated by miR-SX4, even though the miR-SX4 does not target 3’UTR of FoxM1. Knock down of FoxM1 using si-RNA demonstrate that FoxM1 silenced cell induces G2/M cell cycle arrest and necrosis. Our data demonstrated for the first time that miR-SX4 could be a potent anti-cancer microRNA.
Collapse
Affiliation(s)
- Deepak Poudyal
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Andrew Herman
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Joseph W Adelsberger
- AIDS Monitoring Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Xiaojun Hu
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Marjorie Bosche
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, USA.
| |
Collapse
|
112
|
Stojkovic S, Jurisic M, Kopp CW, Koppensteiner R, Huber K, Wojta J, Gremmel T. Circulating microRNAs identify patients at increased risk of in-stent restenosis after peripheral angioplasty with stent implantation. Atherosclerosis 2018; 269:197-203. [PMID: 29366993 DOI: 10.1016/j.atherosclerosis.2018.01.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/24/2017] [Accepted: 01/12/2018] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND AIMS Target lesion restenosis is the most frequent complication after angioplasty and stenting for peripheral artery disease (PAD). MicroRNAs (miRs) regulate crucial pathophysiological processes leading to in-stent restenosis and thrombosis. The aim of this study was to investigate the predictive value of 11 miRs for the composite endpoint of target lesion restenosis and atherothrombotic events (primary endpoint), and target vessel revascularization (TVR, secondary endpoint) in 62 consecutive PAD patients after infrainguinal angioplasty with stent implantation. METHODS Circulating miRs were assessed using quantitative real-time polymerase chain reactions. RESULTS Within the 2 years of follow-up, the primary endpoint occurred in 26 patients (41.9%), and 21 patients (33.9%) underwent TVR. miR-92a and miR-195 were identified as independent predictors of the primary endpoint after adjustment for age, sex and clinical risk factors with respective HR per 1 increase of standard deviation (1-SD) of 0.55 (95% CI: 0.34-0.88, p = 0.013) and HR per 1-SD of 0.40 (95% CI: 0.23-0.68, p = 0.001). MiR-195 independently predicted TVR with HR per 1-SD of 0.40 (95% CI: 0.22-0.75, p = 0.005). Adding miR-195 to clinical risk factors improved Harrell's C-index to 0.75 (95% CI: 0.66-0.85, p = 0.03) and was superior to a model with miR-92a (C-index: 0.70, 95% CI: 0.60-0.80, p for comparison =0 .012). Assessment of both miR-92a and miR-195 had no incremental value when compared to miR-195 alone (C-index: 0.79, 95% CI: 0.69-0.88, p = 0.313). CONCLUSIONS Circulating miR-195 predicts adverse ischemic events and TVR after infrainguinal angioplasty with stent implantation. MiR-195 could improve risk stratification after peripheral endovascular revascularizations.
Collapse
Affiliation(s)
- Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Magdalena Jurisic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christoph W Kopp
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Renate Koppensteiner
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kurt Huber
- 3rd Medical Department for Cardiology and Emergency Medicine, Wilhelminen Hospital, Vienna, Austria; Sigmund Freud Private University, Medical School, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
113
|
Kangas R, Morsiani C, Pizza G, Lanzarini C, Aukee P, Kaprio J, Sipilä S, Franceschi C, Kovanen V, Laakkonen EK, Capri M. Menopause and adipose tissue: miR-19a-3p is sensitive to hormonal replacement. Oncotarget 2018; 9:2279-2294. [PMID: 29416771 PMCID: PMC5788639 DOI: 10.18632/oncotarget.23406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Tissue-specific effects of 17β-estradiol are delivered via both estrogen receptors and microRNAs (miRs). Menopause is known to affect the whole-body fat distribution in women. This investigation aimed at identifying menopause- and hormone replacement therapy (HRT)-associated miR profiles and miR targets in subcutaneous abdominal adipose tissue and serum from the same women. A discovery phase using array technology was performed in 13 women, including monozygotic twin pairs discordant for HRT and premenopausal young controls. Seven miRs, expressed in both adipose tissue and serum, were selected for validation phase in 34 women from a different cohort. An age/menopause-related increase of miRs-16-5p, -451a, -223-3p, -18a-5p, -19a-3p,-486-5p and -363-3p was found in the adipose tissue, but not in serum. MiR-19a-3p, involved in adipocyte development and estrogen signaling, resulted to be higher in HRT users in comparison with non-users. Among the identified targets, AKT1, BCL-2 and BRAF proteins showed lower expression in both HRT and No HRT users in comparison with premenopausal women. Unexpectedly, ESR1 protein expression was not modified although its mRNA was lower in No HRT users compared to premenopausal women and HRT users. Thus, both HRT and menopause appear to affect adipose tissue homeostasis via miR-mediated mechanism.
Collapse
Affiliation(s)
- Reeta Kangas
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Grazia Pizza
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Epigenetics Program, Babraham Institute, Cambridge, United Kingdom
| | - Catia Lanzarini
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pauliina Aukee
- Department of Obstetrics and Gynecology, Pelvic Floor Research and Therapy Unit, Central Finland Central Hospital, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM) and Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Claudio Franceschi
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Vuokko Kovanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Eija K. Laakkonen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam Capri
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- CIG- Interdepartmental Centre “Galvani”, Via Petronio Vecchi, University of Bologna, Bologna, Italy
| |
Collapse
|
114
|
Aval SF, Zarghami N, Alizadeh E, Mohammadi SA. The effect of ketorolac and triamcinolone acetonide on adipogenic and hepatogenic differentiation through miRNAs 16/15/195: Possible clinical application in regenerative medicine. Biomed Pharmacother 2018; 97:675-683. [DOI: 10.1016/j.biopha.2017.10.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 12/26/2022] Open
|
115
|
MiR-16-5p mediates a positive feedback loop in EV71-induced apoptosis and suppresses virus replication. Sci Rep 2017; 7:16422. [PMID: 29180670 PMCID: PMC5703983 DOI: 10.1038/s41598-017-16616-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/15/2017] [Indexed: 01/29/2023] Open
Abstract
Enterovirus 71 (EV71) is the predominant causative pathogen of hand-foot-and-mouth disease (HFMD). Contrary to other HFMD-causing enterovirus, EV71 can lead to severe neurological complications, even death. MicroRNAs (miRNAs) are small non-coding RNAs that constitute the largest family of gene regulators participating in numerous biological or pathological processes. We previously reported that miR-16-5p increases with severity of HFMD by investigating the expression patterns of host miRNAs in patients with HFMD. However, the mechanisms by which EV71 induces miR-16-5p expression are not clear, and the interaction between EV71 and miR-16-5p is not yet fully understood. Here, we confirmed EV71-induced expression of miR-16-5p both in vitro and in vivo and show that upregulation of miR-16-5p by EV71 infection may occur at the posttranscriptional level. Moreover, EV71-induced caspase activation facilitates the processing of pri-miR-16-1. We also revealed that miR-16-5p can promote EV71-induced nerve cells apoptosis through activating caspase-3. In addition, we found that miR-16-5p can inhibit EV71 replication. CCNE1 and CCND1, two important cell cycle regulators, play an important role in the suppression of EV71 replication by miR-16-5p. Therefore, miR-16-5p is a positive feedback regulator in EV71-induced apoptosis and a suppressor of virus replication. These results help in understanding the interaction network between miRNA and EV71 infection and provide a potential target for the development of antiviral therapy.
Collapse
|
116
|
Hydbring P, Wang Y, Bogorad RL, Yin H, Anderson DG, Li C, Sicinski P. Identification of cell cycle-targeting microRNAs through genome-wide screens. Cell Cycle 2017; 16:2241-2248. [PMID: 29099267 PMCID: PMC5788471 DOI: 10.1080/15384101.2017.1380132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
By performing nine genome-wide microRNA (miRNA) screens, we recently uncovered a new class of miRNAs, which target multiple cyclins and cyclin-dependent kinases (CDKs). Systemic delivery of selected cell cycle-targeting miRNAs to mouse xenograft models resulted in potent anti-tumorigenic effects without affecting animals' health. Here, we provide an in-depth description of our miRNA screening methodology, analyses of selected cell cycle-targeting miRNAs, and discuss why miRNA therapy might be a viable therapeutic option for cancer patients.
Collapse
Affiliation(s)
- Per Hydbring
- a Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics , Harvard Medical School , Boston , MA , USA.,b Department of Oncology-Pathology , Karolinska Institutet , Stockholm , Sweden
| | - Yinan Wang
- c Peking-Tsinghua Center for Life Sciences , Academy for Advanced Interdisciplinary Studies , School of Life Sciences and Center for Statistical Science , Peking University , Beijing , China
| | - Roman L Bogorad
- d David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Hao Yin
- d David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Daniel G Anderson
- d David H. Koch Institute for Integrative Cancer Research , Massachusetts Institute of Technology , Cambridge , MA , USA.,e Department of Chemical Engineering and Institute for Medical Engineering and Science and Harvard-MIT Division of Health Sciences & Technology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - Cheng Li
- c Peking-Tsinghua Center for Life Sciences , Academy for Advanced Interdisciplinary Studies , School of Life Sciences and Center for Statistical Science , Peking University , Beijing , China
| | - Piotr Sicinski
- a Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Genetics , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
117
|
Ghosh T, Varshney A, Kumar P, Kaur M, Kumar V, Shekhar R, Devi R, Priyanka P, Khan MM, Saxena S. MicroRNA-874-mediated inhibition of the major G 1/S phase cyclin, CCNE1, is lost in osteosarcomas. J Biol Chem 2017; 292:21264-21281. [PMID: 29109143 DOI: 10.1074/jbc.m117.808287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/24/2017] [Indexed: 01/26/2023] Open
Abstract
The tumor microenvironment is characterized by nutrient-deprived conditions in which the cancer cells have to adapt for survival. Serum starvation resembles the growth factor deprivation characteristic of the poorly vascularized tumor microenvironment and has aided in the discovery of key growth regulatory genes and microRNAs (miRNAs) that have a role in the oncogenic transformation. We report here that miR-874 down-regulates the major G1/S phase cyclin, cyclin E1 (CCNE1), during serum starvation. Because the adaptation of cancer cells to the tumor microenvironment is vital for subsequent oncogenesis, we tested for miR-874 and CCNE1 interdependence in osteosarcoma cells. We observed that miR-874 inhibits CCNE1 expression in primary osteoblasts, but in aggressive osteosarcomas, miR-874 is down-regulated, leading to elevated CCNE1 expression and appearance of cancer-associated phenotypes. We established that loss of miR-874-mediated control of cyclin E1 is a general feature of osteosarcomas. The down-regulation of CCNE1 by miR-874 is independent of E2F transcription factors. Restoration of miR-874 expression impeded S phase progression, suppressing aggressive growth phenotypes, such as cell invasion, migration, and xenograft tumors, in nude mice. In summary, we report that miR-874 inhibits CCNE1 expression during growth factor deprivation and that miR-874 down-regulation in osteosarcomas leads to CCNE1 up-regulation and more aggressive growth phenotypes.
Collapse
Affiliation(s)
- Tanushree Ghosh
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Akhil Varshney
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Praveen Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Manpreet Kaur
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Vipin Kumar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ritu Shekhar
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Raksha Devi
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Priyanka Priyanka
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Md Muntaz Khan
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Sandeep Saxena
- From the National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
118
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
119
|
A non-coding function of TYRP1 mRNA promotes melanoma growth. Nat Cell Biol 2017; 19:1348-1357. [PMID: 28991221 DOI: 10.1038/ncb3623] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
Competition among RNAs to bind miRNA is proposed to influence biological systems. However, the role of this competition in disease onset is unclear. Here, we report that TYRP1 mRNA, in addition to encoding tyrosinase-related protein 1 (TYRP1), indirectly promotes cell proliferation by sequestering miR-16 on non-canonical miRNA response elements. Consequently, the sequestered miR-16 is no longer able to repress its mRNA targets, such as RAB17, which is involved in melanoma cell proliferation and tumour growth. Restoration of miR-16 tumour-suppressor function can be achieved in vitro by silencing TYRP1 or increasing miR-16 expression. Importantly, TYRP1-dependent miR-16 sequestration can also be overcome in vivo by using small oligonucleotides that mask miR-16-binding sites on TYRP1 mRNA. Together, our findings assign a pathogenic non-coding function to TYRP1 mRNA and highlight miRNA displacement as a promising targeted therapeutic approach for melanoma.
Collapse
|
120
|
Issler MVC, Mombach JCM. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS One 2017; 12:e0185794. [PMID: 28968438 PMCID: PMC5624635 DOI: 10.1371/journal.pone.0185794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/19/2017] [Indexed: 01/30/2023] Open
Abstract
Cell fate regulation is an open problem whose comprehension impacts several areas of the biosciences. DNA damage induces cell cycle checkpoints that activate the p53 pathway to regulate cell fate mechanisms such as apoptosis or senescence. Experiments with different cell types show that the p53 pathway regulates cell fate through a switch behavior in its dynamics. For low DNA damage the pathway presents an oscillatory pattern associated with intense DNA damage repair while for high damage there are no oscillations and either p53 concentration increases inducing apoptosis or the cell enters a senescence state. Apoptosis and senescence phenotypes seem to have compensatory functions in tissues and the microRNA 16-1 (miR-16) is involved in the regulation of the fate between both phenotypes in cancer cells. To investigate the regulation of cell fate we developed a logical model of the G1/S checkpoint in DNA damage response that takes into account different levels of damage and contemplates the influence of miR-16 through its positive feedback loop formed with p53 and Wip1. The model reproduces the observed cellular phenotypes in experiments: oscillatory (for low DNA damage) regulated by negative feedback loops involving mainly p53 and Mdm2 and apoptotic or senescent (for high DNA damage) regulated by the positive p53/Wip1/miR-16 feedback loop. We find good agreement between the level of DNA damage and the probability of the phenotype produced according to experiments. We also find that this positive feedback makes senescent and apoptotic phenotypes to be determined stochastically (bistable), however controlling the expression level of miR-16 allows the control of fate determination as observed experimentally.
Collapse
Affiliation(s)
- Maria Vitória C Issler
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José Carlos M Mombach
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
121
|
Alamoudi AA, Alnoury A, Gad H. miRNA in tumour metabolism and why could it be the preferred pathway for energy reprograming. Brief Funct Genomics 2017; 17:157-169. [DOI: 10.1093/bfgp/elx023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
122
|
Kassambara A, Jourdan M, Bruyer A, Robert N, Pantesco V, Elemento O, Klein B, Moreaux J. Global miRNA expression analysis identifies novel key regulators of plasma cell differentiation and malignant plasma cell. Nucleic Acids Res 2017; 45:5639-5652. [PMID: 28459970 PMCID: PMC5449613 DOI: 10.1093/nar/gkx327] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/14/2017] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that attenuate expression of their mRNA targets. Here, we developed a new method and an R package, to easily infer candidate miRNA–mRNA target interactions that could be functional during a given biological process. Using this method, we described, for the first time, a comprehensive integrated analysis of miRNAs and mRNAs during human normal plasma cell differentiation (PCD). Our results reveal 63 miRNAs with significant temporal changes in their expression during normal PCD. We derived a high-confidence network of 295 target relationships comprising 47 miRNAs and 141 targets. These relationships include new examples of miRNAs that appear to coordinately regulate multiple members of critical pathways associated with PCD. Consistent with this, we have experimentally validated a role for the miRNA-30b/c/d-mediated regulation of key PCD factors (IRF4, PRDM1, ELL2 and ARID3A). Furthermore, we found that 24 PCD stage-specific miRNAs are aberrantly overexpressed in multiple myeloma (MM) tumor plasma cells compared to their normal counterpart, suggesting that MM cells frequently acquired expression changes in miRNAs already undergoing dynamic expression modulation during normal PCD. Altogether, our analysis identifies candidate novel key miRNAs regulating networks of significance for normal PCD and malignant plasma cell biology.
Collapse
Affiliation(s)
- Alboukadel Kassambara
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France
| | - Michel Jourdan
- Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France
| | - Angélique Bruyer
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France
| | - Nicolas Robert
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France
| | | | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Bernard Klein
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France.,University of Montpellier 1, UFR de Médecine, 34000 Montpellier, France
| | - Jérôme Moreaux
- Department of Biological Hematology, CHRU Montpellier, 34000 Montpellier, France.,Institute of Human Genetics, CNRS-UPR1142, 34000 Montpellier, France.,University of Montpellier 1, UFR de Médecine, 34000 Montpellier, France
| |
Collapse
|
123
|
Lindner SE, Lohmüller M, Kotkamp B, Schuler F, Knust Z, Villunger A, Herzog S. The miR-15 family reinforces the transition from proliferation to differentiation in pre-B cells. EMBO Rep 2017; 18:1604-1617. [PMID: 28705801 PMCID: PMC5579393 DOI: 10.15252/embr.201643735] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Precursor B lymphocytes expand upon expression of a pre-B cell receptor (pre-BCR), but then transit into a resting state in which immunoglobulin light chain gene recombination is initiated. This bi-phasic sequence is orchestrated by the IL-7 receptor (IL-7R) and pre-BCR signaling, respectively, but little is known about microRNAs fine-tuning these events. Here, we show that pre-B cells lacking miR-15 family functions exhibit prolonged proliferation due to aberrant expression of the target genes cyclin E1 and D3. As a consequence, they fail to trigger the transcriptional reprogramming normally accompanying their differentiation, resulting in a developmental block at the pre-B cell stage. Intriguingly, our data indicate that the miR-15 family is suppressed by both IL-7R and pre-BCR signaling, suggesting it is actively integrated into the regulatory circuits of developing B cells. These findings identify the miR-15 family as a novel element required to promote the switch from pre-B cell proliferation to differentiation.
Collapse
Affiliation(s)
- Silke E Lindner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Lohmüller
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Bianka Kotkamp
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Zeynep Knust
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Sebastian Herzog
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
124
|
Panda AC, Grammatikakis I, Kim KM, De S, Martindale JL, Munk R, Yang X, Abdelmohsen K, Gorospe M. Identification of senescence-associated circular RNAs (SAC-RNAs) reveals senescence suppressor CircPVT1. Nucleic Acids Res 2017; 45:4021-4035. [PMID: 27928058 PMCID: PMC5397146 DOI: 10.1093/nar/gkw1201] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022] Open
Abstract
Using RNA sequencing (RNA-Seq), we compared the expression patterns of circular RNAs in proliferating (early-passage) and senescent (late-passage) human diploid WI-38 fibroblasts. Among the differentially expressed senescence-associated circRNAs (which we termed ‘SAC-RNAs’), we identified CircPVT1, generated by circularization of an exon of the PVT1 gene, as a circular RNA showing markedly reduced levels in senescent fibroblasts. Reducing CircPVT1 levels in proliferating fibroblasts triggered senescence, as determined by a rise in senescence-associated β-galactosidase activity, higher abundance of CDKN1A/P21 and TP53, and reduced cell proliferation. Although several microRNAs were predicted to bind CircPVT1, only let-7 was found enriched after pulldown of endogenous CircPVT1, suggesting that CircPVT1 might selectively modulate let-7 activity and hence expression of let-7-regulated mRNAs. Reporter analysis revealed that CircPVT1 decreased the cellular pool of available let-7, and antagonizing endogenous let-7 triggered cell proliferation. Importantly, silencing CircPVT1 promoted cell senescence and reversed the proliferative phenotype observed after let-7 function was impaired. Consequently, the levels of several proliferative proteins that prevent senescence, such as IGF2BP1, KRAS and HMGA2, encoded by let-7 target mRNAs, were reduced by silencing CircPVT1. Our findings indicate that the SAC-RNA CircPVT1, elevated in dividing cells and reduced in senescent cells, sequesters let-7 to enable a proliferative phenotype.
Collapse
Affiliation(s)
- Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
125
|
Paneru BD, Al-Tobasei R, Kenney B, Leeds TD, Salem M. RNA-Seq reveals MicroRNA expression signature and genetic polymorphism associated with growth and muscle quality traits in rainbow trout. Sci Rep 2017; 7:9078. [PMID: 28831113 PMCID: PMC5567286 DOI: 10.1038/s41598-017-09515-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023] Open
Abstract
The role of microRNA expression and genetic variation in microRNA-binding sites of target genes on growth and muscle quality traits is poorly characterized. We used RNA-Seq approach to investigate their importance on 5 growth and muscle quality traits: whole body weight (WBW), muscle yield, muscle crude-fat content, muscle shear force and whiteness. Phenotypic data were collected from 471 fish, representing 98 families (~5 fish/family) from a growth-selected line. Muscle microRNAs and mRNAs were sequenced from 22 families showing divergent phenotypes. Ninety microRNAs showed differential expression between families with divergent phenotypes, and their expression was strongly associated with variation in phenotypes. A total of 204 single nucleotide polymorphisms (SNPs) present in 3′ UTR of target genes either destroyed or created novel illegitimate microRNA target sites; of them, 78 SNPs explained significant variation in the aforementioned 5 muscle traits. Majority of the phenotype-associated SNPs were present in microRNA-binding sites of genes involved in energy metabolism and muscle structure. These findings suggest that variation in microRNA expression and/or sequence variation in microRNA binding sites in target genes play an important role in mediating differences in fish growth and muscle quality phenotypes.
Collapse
Affiliation(s)
- Bam Dev Paneru
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States
| | - Rafet Al-Tobasei
- Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States
| | - Brett Kenney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, 26506-6108, West Virginia, United States
| | - Timothy D Leeds
- The National Center for Cool and Cold Water Aquaculture, USDA Agricultural Research Service, Kearneysville, WV, 25430, United States
| | - Mohamed Salem
- Department of Biology and Molecular Biosciences Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States. .,Computational Science Program, Middle Tennessee State University, Murfreesboro, TN, 37132, United States.
| |
Collapse
|
126
|
Abstract
Human cancers are characterized by a number of hallmarks, including sustained proliferative signaling, evasion of growth suppressors, activated invasion and metastasis, replicative immortality, angiogenesis, resistance to cell death, and evasion of immune destruction. As microRNAs (miRNAs) are deregulated in virtually all human cancers, they show involvement in each of the cancer hallmarks as well. In this chapter, we describe the involvement of miRNAs in cancer from a cancer hallmarks and targeted therapeutics point of view. As no miRNA-based cancer therapeutics are available to date, and the only clinical trial on miRNA-based cancer therapeutics (MRX34) was terminated prematurely due to serious adverse events, we are focusing on protein-coding miRNA targets for which targeted therapeutics in oncology are already approved by the FDA. For each of the cancer hallmarks, we selected major protein-coding players and describe the miRNAs that target them.
Collapse
Affiliation(s)
| | - George A Calin
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
127
|
Lin J, Chuang CC, Zuo L. Potential roles of microRNAs and ROS in colorectal cancer: diagnostic biomarkers and therapeutic targets. Oncotarget 2017; 8:17328-17346. [PMID: 28061475 PMCID: PMC5370044 DOI: 10.18632/oncotarget.14461] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 12/16/2016] [Indexed: 02/06/2023] Open
Abstract
As one of the most commonly diagnosed cancers worldwide, colorectal adenocarcinoma often occurs sporadically in individuals aged 50 or above and there is an increase among younger patients under 50. Routine screenings are recommended for this age group to improve early detection. The multifactorial etiology of colorectal cancer consists of both genetic and epigenetic factors. Recently, studies have shown that the development and progression of colorectal cancer can be attributed to aberrant expression of microRNA. Reactive oxygen species (ROS) that play a key role in cancer cell survival, can also lead to carcinogenesis and cancer exacerbations. Given the rapid accumulating knowledge in the field, an updated review regarding microRNA and ROS in colorectal cancer is necessary. An extensive literature search has been conducted in PubMed/Medline databases to review the roles of microRNAs and ROS in colorectal cancer. Unique microRNA expression in tumor tissue, peripheral blood, and fecal samples from patients with colorectal cancer is outlined. Therapeutic approaches focusing on microRNA and ROS in colorectal cancer treatment is also delineated. This review aims to summarize the newest knowledge on the pathogenesis of colorectal cancer in the hopes of discovering novel diagnostic biomarkers and therapeutic techniques.
Collapse
Affiliation(s)
- Jingmei Lin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, Columbus, OH, USA.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
128
|
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in Prostate Cancer Radiotherapy. Theranostics 2017; 7:3243-3259. [PMID: 28900507 PMCID: PMC5595129 DOI: 10.7150/thno.19934] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most important treatment options for localized early-stage or advanced-stage prostate cancer (CaP). Radioresistance (relapse after radiotherapy) is a major challenge for the current radiotherapy. There is great interest in investigating mechanisms of radioresistance and developing novel treatment strategies to overcome radioresistance. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level, participating in numerous physiological and pathological processes including cancer invasion, progression, metastasis and therapeutic resistance. Emerging evidence indicates that miRNAs play a critical role in the modulation of key cellular pathways that mediate response to radiation, influencing the radiosensitivity of the cancer cells through interplaying with other biological processes such as cell cycle checkpoints, apoptosis, autophagy, epithelial-mesenchymal transition and cancer stem cells. Here, we summarize several important miRNAs in CaP radiation response and then discuss the regulation of the major signalling pathways and biological processes by miRNAs in CaP radiotherapy. Finally, we emphasize on microRNAs as potential predictive biomarkers and/or therapeutic targets to improve CaP radiosensitivity.
Collapse
|
129
|
MiR-19b and miR-16 cooperatively signaling target the regulator ADRA1A in Hypertensive heart disease. Biomed Pharmacother 2017; 91:1178-1183. [DOI: 10.1016/j.biopha.2017.04.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
|
130
|
Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, Zhou D, Xu N. MicroRNA‑21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep 2017; 16:2522-2528. [PMID: 28656242 PMCID: PMC5548018 DOI: 10.3892/mmr.2017.6862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/03/2017] [Indexed: 11/23/2022] Open
Abstract
Altered expression levels of microRNA-21 (miRNA-21) have been observed in a series of pathological processes, including cancer and central nervous system injury; however, the involvement of miRNA-21 in the molecular pathophysiology of spinal cord injury (SCI) has not been well documented. The present study examined the expression levels of miRNA-21 and its predicted target genes, programmed cell death 4 (PDCD4) and phosphatase and tensin homolog (PTEN), in rats using quantitative polymerase chain reaction and western blotting to further understand the role of miRNA-21 and the mechanisms underlying repair following SCI. The present study demonstrated that compared with uninjured spinal cords, miRNA-21 expression levels were significantly downregulated in injured spinal cords 4 and 8 h, and 1 day post-SCI, and were significantly upregulated after 3 and 7 days. Conversely, expression levels of PDCD4 and PTEN were significantly decreased at days 3 and 7 post-SCI compared with the control group. miRNA-21 overexpression in monolayer-cultured postnatal rat spinal cord neurons promoted neurite outgrowth and downregulated protein expression levels of PDCD4; however, PTEN protein expression levels were unaltered. To confirm that miRNA-21 directly targets PDCD4, a pRL-CMV luciferase reporter construct was used to detect miRNA-21 interactions with the PDCD4 3′-untranslated region. The results demonstrated that miRNA-21 decreased luciferase activity compared with a rat PDCD4 control reporter. The results of the present study suggested that increased miRNA-21 expression levels following SCI may promote the repair of injured spinal cords by inhibiting the expression of its target gene PDCD4.
Collapse
Affiliation(s)
- Yuqing Jiang
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Shujie Zhao
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Yin Ding
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Luming Nong
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Haibo Li
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Gongming Gao
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Dong Zhou
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| | - Nanwei Xu
- Department of Orthopedics, Nanjing Medical University Affiliated Changzhou No. 2 People's Hospital, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
131
|
Yang Y, Liu Q, Lu J, Adah D, Yu S, Zhao S, Yao Y, Qin L, Qin L, Chen X. Exosomes from Plasmodium-infected hosts inhibit tumor angiogenesis in a murine Lewis lung cancer model. Oncogenesis 2017. [PMID: 28650446 PMCID: PMC5519199 DOI: 10.1038/oncsis.2017.52] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous research to investigate the interaction between malaria infection and tumor progression has revealed that malaria infection can potentiate host immune response against tumor in tumor-bearing mice. Exosomes may play key roles in disseminating pathogenic host-derived molecules during infection because several studies have shown the involvement and roles of extracellular vesicles in cell–cell communication. However, the role of exosomes generated during Plasmodium infection in tumor growth, progression and angiogenesis has not been studied either in animals or in the clinics. To test this hypothesis, we designed an animal model to generate and isolate exosomes from mice which were subsequently used to treat the tumor. Intra-tumor injection of exosomes derived from the plasma of Plasmodium-infected mice provided significantly reduced Lewis lung cancer growth in mice. We further co-cultured the isolated exosomes with endothelial cells and observed significantly reduced expression of VEGFR2 and migration in the endothelial cells. Interestingly, high level of micro-RNA (miRNA) 16/322/497/17 was detected in the exosomes derived from the plasma of mice infected with Plasmodium compared with those from control mice. We observed that overexpression of the miRNA 16/322/497/17 in endothelial cell corresponded with decreased expression of VEGFR2, inhibition of angiogenesis and inhibition of the miRNA 16/322/497/17 significantly alleviated these effects. These data provide novel scientific evidence of the interaction between Plasmodium infection and lung cancer growth and angiogenesis.
Collapse
Affiliation(s)
- Y Yang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Q Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - J Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - D Adah
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - S Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - S Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - Y Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - L Qin
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - L Qin
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| | - X Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, PR China
| |
Collapse
|
132
|
Tian R, Wang J, Yan H, Wu J, Xu Q, Zhan X, Gui Z, Ding M, He J. Differential expression of miR16 in glioblastoma and glioblastoma stem cells: their correlation with proliferation, differentiation, metastasis and prognosis. Oncogene 2017. [PMID: 28628119 PMCID: PMC5658672 DOI: 10.1038/onc.2017.182] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The function of miR16 in multiforme glioblastoma multiforme (GBM) and its stem cells (GSCs) remains elusive. To this end, we investigated the patterns of miR16 expression in these cells and their correlation with malignant behaviors and clinical outcomes. The levels of miR16 and its targeted genes in tumor tissue of GBM and GBM SGH44, U87, U251 cells as well as their stem cell counterparts were measured by qRT–PCR or western blot or immunohistochemistry. Luciferase reporter assay was used to confirm the binding of miR16 to 3′-UTR of its target genes. The effects of miR16 on malignant behaviors were investigated, including tumor cell viability, soft-agar colony formation, GSCs Matrigel colony forming and migration and invasion as well as nude mice xenograft model. Differentially expression patterns of miR16 in glioblastoma cells and GSCs cells were found in this study. Changes of miR16 targeted genes, Bcl2 (B cell lymphoma 2), CDK6 (Cyclin-dependent kinase 6), CCND1 (cyclin D1), CCNE1 (cyclin E1) and SOX5 were confirmed in glioblastoma cell lines and tissue specimens. In vitro and in vivo studies showed that tumor cell proliferation was inhibited by miR16 mimic, but enhanced by miR16 inhibitor. The expression level of miR16 positively correlates with GSCs differentiation, but negatively with the abilities of migration, motility, invasion and colony formation in glioblastoma cells. The inhibitory effects of miR16 on its target genes were also found in nude mice xenograft model. Our findings revealed that the miR16 functions as a tumor suppressor in GSCs and its association with prognosis in GBM.
Collapse
Affiliation(s)
- R Tian
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - J Wang
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - H Yan
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - J Wu
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - Q Xu
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - X Zhan
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - Z Gui
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - M Ding
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| | - J He
- Department of Pathology, Anhui Provincial Hospital affiliated to Anhui Medical University and Anhui Provincial Cancer Hospital, Hefei, China
| |
Collapse
|
133
|
Shen Y, Liu S, Yuan H, Ying X, Fu H, Zheng X. A long non-coding RNA lncRNA-PE promotes invasion and epithelial-mesenchymal transition in hepatocellular carcinoma through the miR-200a/b-ZEB1 pathway. Tumour Biol 2017; 39:1010428317705756. [PMID: 28488544 DOI: 10.1177/1010428317705756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Long non-coding RNAs have been revealed to play important roles in the progression of hepatocellular carcinoma. However, the detailed mechanisms underlying their activities are not fully understood. Using microarray technology, a number of long non-coding RNAs were previously identified to be aberrantly expressed in hepatocellular carcinoma. In this study, one of these long non-coding RNAs, designated lncRNA-PE (lncRNA promotes epithelial-mesenchymal transition), was further explored to study its expression profile and function. A cohort of human hepatocellular carcinoma tissue samples combined with benign controls and established human hepatocellular carcinoma cell lines were examined for the expression of lncRNA-PE. The biological functions of lncRNA-PE were examined by wound-healing and Transwell assays, which revealed that lncRNA-PE promotes cell invasion and migration. By detecting the level of epithelial-mesenchymal transition markers, lncRNA-PE was revealed to promote epithelial-mesenchymal transition in hepatocellular carcinoma cells. Further study suggested that lncRNA-PE downregulated miR-200a/b by repressing the primary transcript expression, enhanced ZEB1 expression, and promoted epithelial-mesenchymal transition of hepatocellular carcinoma cells. All these data imply that lncRNA-PE might play an important role in hepatocellular carcinoma development via the miR-200a/b-ZEB1 pathway.
Collapse
Affiliation(s)
- Yuan Shen
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- 2 Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Shanshan Liu
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
- 3 Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hanyu Yuan
- 2 Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaomin Ying
- 2 Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hanjiang Fu
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiaofei Zheng
- 1 Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
134
|
Bertero T, Rezzonico R, Pottier N, Mari B. Impact of MicroRNAs in the Cellular Response to Hypoxia. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:91-158. [PMID: 28729029 DOI: 10.1016/bs.ircmb.2017.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In mammalian cells, hypoxia, or inadequate oxygen availability, regulates the expression of a specific set of MicroRNAs (MiRNAs), termed "hypoxamiRs." Over the past 10 years, the appreciation of the importance of hypoxamiRs in regulating the cellular adaptation to hypoxia has grown dramatically. At the cellular level, each hypoxamiR, including the master hypoxamiR MiR-210, can simultaneously regulate expression of multiple target genes in order to fine-tune the adaptive response of cells to hypoxia. This review addresses the complex molecular regulation of MiRNAs in both physiological and pathological conditions of low oxygen adaptation and the multiple functions of hypoxamiRs in various hypoxia-associated biological processes, including apoptosis, survival, proliferation, angiogenesis, inflammation, and metabolism. From a clinical perspective, we also discuss the potential use of hypoxamiRs as new biomarkers and/or therapeutic targets in cancer and aging-associated diseases including cardiovascular and fibroproliferative disorders.
Collapse
Affiliation(s)
- Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IRCAN, FHU-OncoAge, Nice, France
| | - Roger Rezzonico
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Sophia-Antipolis, France.
| |
Collapse
|
135
|
Rodriguez-Barrueco R, Nekritz EA, Bertucci F, Yu J, Sanchez-Garcia F, Zeleke TZ, Gorbatenko A, Birnbaum D, Ezhkova E, Cordon-Cardo C, Finetti P, Llobet-Navas D, Silva JM. miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. Genes Dev 2017; 31:553-566. [PMID: 28404630 PMCID: PMC5393051 DOI: 10.1101/gad.292318.116] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
In this study, Rodriguez-Barrueco et al. analyzed ∼3000 primary tumors and show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers; they then describe the genetic aberrations that inactivate its expression. Their data show that miR-424(322)/503 is a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance. The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.
Collapse
Affiliation(s)
- Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Erin A Nekritz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Jiyang Yu
- St. Jude Children's Research Hospital, Kay Research and Care Center, IA6053, Memphis, Tennessee 38105, USA
| | - Felix Sanchez-Garcia
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Tizita Z Zeleke
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - David Llobet-Navas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
136
|
Differential processing of small RNAs during endoplasmic reticulum stress. Sci Rep 2017; 7:46080. [PMID: 28452371 PMCID: PMC5408347 DOI: 10.1038/srep46080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/10/2017] [Indexed: 12/30/2022] Open
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) lumen due to the disruption of the homeostatic system of the ER leads to the induction of the ER stress response. Cellular stress-induced pathways globally transform genes expression on both the transcriptional and post-transcriptional levels with small RNA involvement as regulators of the stress response. The modulation of small RNA processing might represent an additional layer of a complex stress response program. However, it is poorly understood. Here, we studied changes in expression and small RNAs processing upon ER stress in Jurkat T-cells. Induced by ER-stress, depletion of miRNAs among small RNA composition was accompanied by a global decrease of 3′ mono-adenylated, mono-cytodinylated and a global increase of 3′ mono-uridinylated miRNA isoforms. We observed the specific subset of differentially expressed microRNAs, and also the dramatic induction of 32-nt tRNA fragments precisely phased to 5′ and 3′ ends of tRNA from a subset of tRNA isotypes. The induction of these tRNA fragments was linked to Angiogenin RNase, which mediates translation inhibition. Overall, the global perturbations of the expression and processing of miRNAs and tiRNAs were the most prominent features of small RNA transcriptome changes upon ER stress.
Collapse
|
137
|
De Mariano M, Stigliani S, Moretti S, Parodi F, Croce M, Bernardi C, Pagano A, Tonini GP, Ferrini S, Longo L. A genome-wide microRNA profiling indicates miR-424-5p and miR-503-5p as regulators of ALK expression in neuroblastoma. Oncotarget 2017; 8:56518-56532. [PMID: 28915608 PMCID: PMC5593579 DOI: 10.18632/oncotarget.17033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
The discovery of missense mutations of ALK gene identified this receptor tyrosine kinase as a therapeutic target in neuroblastoma (NB). Moreover, a high level of ALK protein has been associated with metastatic NB cases and with a worse prognosis, suggesting that also ALK overexpression is involved in NB tumorigenesis. Since miRNAs play key roles in the regulation of gene expression we aimed at identifying those miRNAs that can regulate ALK in NB. We therefore analyzed the genome-wide expression profile of miRNAs in two sample sets of 16 NB cell lines and 22 NB samples by using miRNA microarrays. Both sample sets were then divided into two subgroups showing high (ALK+) or low/absent (ALK-) expression of ALK. Results showed a down-regulation of 30 and 23 miRNAs (p-value <0.05) in the ALK+ group in NB cell lines and samples, respectively. Validation analysis indicated that miR-424-5p and miR-503-5p, belonging to the same cluster, were differentially expressed in both NB cell lines and tumor samples. Although only miR-424-5p showed a direct binding to ALK 3′-UTR, both miRNAs led to a remarkable decreasing of ALK protein as well as to the inhibition of cell viability in ALK+ NB cell lines. In conclusion, our data indicate that both miR-424-5p and miR-503-5p are involved in regulating ALK expression in NB, either by directly targeting ALK receptor or indirectly, and may thus serve as potential therapeutic tools in ALK dependent NBs.
Collapse
Affiliation(s)
- Marilena De Mariano
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Sara Stigliani
- UOS Fisiopatologia della Riproduzione Umana, Dipartimento di Chirurgia Generale, Specialistica ed Oncologica, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Stefano Moretti
- Université Paris-Dauphine, PSL Research University, CNRS, Department UMR [7243], LAMSADE, Paris, France
| | - Federica Parodi
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Michela Croce
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Cinzia Bernardi
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Aldo Pagano
- Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, Padua, Italy
| | - Silvano Ferrini
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Luca Longo
- UOC Bioterapie, Dipartimento di Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
138
|
Abstract
Freeze tolerance is an amazing winter survival strategy used by various amphibians and reptiles living in seasonally cold environments. These animals may spend weeks or months with up to ∼65% of their total body water frozen as extracellular ice and no physiological vital signs, and yet after thawing they return to normal life within a few hours. Two main principles of animal freeze tolerance have received much attention: the production of high concentrations of organic osmolytes (glucose, glycerol, urea among amphibians) that protect the intracellular environment, and the control of ice within the body (the first putative ice-binding protein in a frog was recently identified), but many other strategies of biochemical adaptation also contribute to freezing survival. Discussed herein are recent advances in our understanding of amphibian and reptile freeze tolerance with a focus on cell preservation strategies (chaperones, antioxidants, damage defense mechanisms), membrane transporters for water and cryoprotectants, energy metabolism, gene/protein adaptations, and the regulatory control of freeze-responsive hypometabolism at multiple levels (epigenetic regulation of DNA, microRNA action, cell signaling and transcription factor regulation, cell cycle control, and anti-apoptosis). All are providing a much more complete picture of life in the frozen state.
Collapse
Affiliation(s)
| | - Janet M. Storey
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
139
|
Gu Q, Zhao G, Wang Y, Xu B, Yue J. Silencing miR-16 Expression Promotes Angiotensin II Stimulated Vascular Smooth Muscle Cell Growth. ACTA ACUST UNITED AC 2017; 6. [PMID: 29104843 DOI: 10.4172/2168-9296.1000181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
miRNAs are a class of non-coding endogenous small RNAs that control gene expression at the posttranscriptional level and involved in cell proliferation, migration and differentiation. Dysregulation of miRNA expression is involved in a variety of human diseases including cardiovascular diseases. miRNAs have been shown to regulate vascular smooth muscle cell (VSMC) function and play vital roles in hypertension, restenosis and atherosclerosis. Here we reported that miR-16 as one of miRNAs in the miR-15 family was highly expressed in vascular smooth muscle cells (VSMCs) and involved in angiotensin II (Ang II) mediated VSMC signaling pathways. Ang II downregulated miR-16 expression in VSMCs. Lentiviral vector mediated miR-16 knockdown promoted Ang II-induced cell proliferation and migration. Moreover, silencing miR-16 enhanced Ang II induced cell cycle associated gene expression and promoted Ang II-activated cell proliferative pathways ERK1/2 and p38. Our finding demonstrated for the first time that miR-16 was a potential therapeutic target by participating in the Ang II-associated multiple signaling pathways in cardiovascular diseases.
Collapse
Affiliation(s)
- Qingqing Gu
- Department of Cardiology, the Affiliated Hospital of Nantong University, Nantong, Jiangsu.,Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| | - Guannan Zhao
- Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| | - Yinan Wang
- Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, P. R. China
| | - Junming Yue
- Department of Pathology, the University of Tennessee Health Science Center, TN, Memphis, USA
| |
Collapse
|
140
|
Golden RJ, Chen B, Li T, Braun J, Manjunath H, Chen X, Wu J, Schmid V, Chang TC, Kopp F, Ramirez-Martinez A, Tagliabracci VS, Chen ZJ, Xie Y, Mendell JT. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 2017; 542:197-202. [PMID: 28114302 PMCID: PMC5302127 DOI: 10.1038/nature21025] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/25/2016] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) perform critical functions in normal physiology and disease by associating with Argonaute proteins and downregulating partially complementary messenger RNAs (mRNAs). To identify new regulators of the miRNA pathway, we employed CRISPR-Cas9 genome-wide loss-of-function screening coupled with a fluorescent reporter of miRNA activity in human cells. Iterative rounds of screening revealed a novel mechanism whereby target engagement by Argonaute 2 (AGO2) triggers its hierarchical, multi-site phosphorylation by CSNK1A1 on a set of highly conserved residues (S824-S834), followed by rapid dephosphorylation by the ANKRD52-PPP6C phosphatase complex. Although genetic and biochemical studies demonstrated that AGO2 phosphorylation on these residues inhibits target mRNA binding, inactivation of this phosphorylation cycle globally impairs miRNA-mediated silencing. Analysis of the transcriptome-wide binding profile of non-phosphorylatable AGO2 revealed a dramatic expansion of the target repertoire bound at steady-state, effectively reducing the active pool of AGO2 on a per target basis. These findings support a model in which an AGO2 phosphorylation cycle stimulated by target engagement regulates miRNA:target interactions to maintain the global efficiency of miRNA-mediated silencing.
Collapse
Affiliation(s)
- Ryan J Golden
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Beibei Chen
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Juliane Braun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hema Manjunath
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xiang Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jiaxi Wu
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94143, USA
| | - Vanessa Schmid
- Eugene McDermott Center for Human Growth &Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Kopp
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Andres Ramirez-Martinez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yang Xie
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
141
|
MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-κB1 (p50). Biosci Rep 2017; 37:BSR20160239. [PMID: 27986864 PMCID: PMC5240588 DOI: 10.1042/bsr20160239] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/27/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Inflammation is the body’s normal self-protection mechanism to eliminate pathogens and resist pathogen invasion. The excessive inflammatory response may lead to inflammatory lesions. The mechanisms accounting for inflammation remain hazy. miRNAs have been proposed to have crucial effects on inflammation. In the present study, we reported that lipopolysaccharide (LPS)-stimulation increased the expression levels of inflammatory cytokines and the cell-cycle progression was suppressed in RAW264.7 cells. Meanwhile, the expression of miR-322 was significantly down-regulated after LPS treatment. Bioinformatics predictions revealed a potential binding site of miR-322 in 3′-UTR of NF-κB1 (p50) and it was further confirmed by luciferase assay. Moreover, both the mRNA and protein levels of NF-κB1 (p50) were down-regulated by miR-322 in RAW264.7 cells. Subsequently, we demonstrated that miR-322 mimics decrease in the expression levels of inflammatory cytokines and cell-cycle repression can be rescued following LPS treatment in RAW264.7 cells. The anti-inflammatory cytokines expression including IL-4 and IL-10 were significantly up-regulated. Furthermore, miR-322 could also promote RAW264.7 cells proliferation. These results demonstrate that miR-322 is a negative regulator of inflammatory response by targeting NF-κB1 (p50).
Collapse
|
142
|
He Q, Ren X, Chen J, Li Y, Tang X, Wen X, Yang X, Zhang J, Wang Y, Ma J, Liu N. miR-16 targets fibroblast growth factor 2 to inhibit NPC cell proliferation and invasion via PI3K/AKT and MAPK signaling pathways. Oncotarget 2016; 7:3047-58. [PMID: 26655091 PMCID: PMC4823089 DOI: 10.18632/oncotarget.6504] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/21/2015] [Indexed: 12/14/2022] Open
Abstract
Dysregulation of miRNAs has been shown to contribute to the carcinogenesis and progression of nasopharyngeal carcinoma (NPC). Our previous microarray data showed that miR-16 expression is significantly decreased in archived NPC tissues. Here, we confirmed that miR-16 was reduced in NPC cell lines and freshly-frozen samples. Ectopic expression of miR-16 suppressed NPC cell proliferation, migration, and invasion in vitro and inhibited tumor growth and metastatic colonization in the lung in vivo. Furthermore, fibroblast growth factor 2 (FGF2) was identified as a direct target of miR-16, and both phosphoinositide-3- kinase/AKT (PI3K/AKT) and mitogen-activated protein kinase (MAPK) signaling pathways were repressed after miR-16 overexpression. In addition, the restoration of FGF2 reversed the suppressive effects of miR-16. Together, these results indicated that miR-16 suppresses NPC carcinogenesis and progression by targeting FGF2, thereby representing a potential target for miRNA-based therapy for NPC in the future.
Collapse
Affiliation(s)
- Qingmei He
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xianyue Ren
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jiewei Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Yingqin Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xinran Tang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xin Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Xiaojing Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jian Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Yaqin Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Ma
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Na Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
143
|
Bukhari SIA, Vasudevan S. FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biol 2016; 14:137-145. [PMID: 27911187 DOI: 10.1080/15476286.2016.1265197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic protein synthesis is a multifaceted process that requires coordination of a set of translation factors in a particular cellular state. During normal growth and proliferation, cells generally make their proteome via conventional translation that utilizes canonical translation factors. When faced with environmental stress such as growth factor deprivation, or in response to biological cues such as developmental signals, cells can reduce canonical translation. In this situation, cells adapt alternative modes of translation to make specific proteins necessary for required biological functions under these distinct conditions. To date, a number of alternative translation mechanisms have been reported, which include non-canonical, cap dependent translation and cap independent translation such as IRES mediated translation. Here, we discuss one of the alternative modes of translation mediated by a specialized microRNA complex, FXR1a-microRNP that promotes non-canonical, cap dependent translation in quiescent conditions, where canonical translation is reduced due to low mTOR activity.
Collapse
Affiliation(s)
- Syed I A Bukhari
- a Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Shobha Vasudevan
- a Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
144
|
Fu L, Shi J, Liu A, Zhou L, Jiang M, Fu H, Xu K, Li D, Deng A, Zhang Q, Pang Y, Guo Y, Hu K, Zhou J, Wang Y, Huang W, Jing Y, Dou L, Wang L, Xu K, Ke X, Nervi C, Li Y, Yu L. A minicircuitry of microRNA-9-1 and RUNX1-RUNX1T1 contributes to leukemogenesis in t(8;21) acute myeloid leukemia. Int J Cancer 2016; 140:653-661. [PMID: 27770540 DOI: 10.1002/ijc.30481] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 09/13/2016] [Accepted: 10/11/2016] [Indexed: 01/28/2023]
Abstract
MicroRNA-9-1(miR-9-1) plays an important role in the mechanism that regulates the lineage fate of differentiating hematopoietic cells. Recent studies have shown that miR-9-1 is downregulated in t (8; 21) AML. However, the pathogenic mechanisms underlying miR-9-1 downregulation and the RUNX1-RUNX1T1 fusion protein, generated from the translocation of t (8; 21) in AML, remain unclear. RUNX1-RUNX1T1 can induce leukemogenesis through resides in and functions as a stable RUNX1-RUNX1T1-containing transcription factor complex. In this study, we demonstrate that miR-9-1 expression increases significantly after the treatment of RUNX1-RUNX1T1 (+) AML cell lines with decitabine (a DNMT inhibitor) and trichostatin A (an HDAC inhibitor). In addition, we show that RUNX1-RUNX1T1 triggers the heterochromatic silencing of miR-9-1 by binding to RUNX1-binding sites in the promoter region of miR-9-1 and recruiting chromatin-remodeling enzymes, DNMTs, and HDACs, contributing to hypermethylation of miR-9-1 in t (8; 21) AML. Furthermore, because RUNX1, RUNX1T1, and RUNX1-RUNX1T1 are all regulated by miR-9-1, the silencing of miR-9-1 enhances the oncogenic activity of these genes. Besides, overexpression of miR-9-1 induces differentiation and inhibits proliferation in t (8; 21) AML cell lines. In conclusion, our results indicate a feedback circuitry involving miR-9-1 and RUNX1-RUNX1T1, contributing to leukemogenesis in RUNX1-RUNX1T1 (+) AML cell lines.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.,Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Jinlong Shi
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China
| | - Anqi Liu
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengmeng Jiang
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Huaping Fu
- Department of nuclear medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Keman Xu
- College of medical laboratory science and technology, Harbin Medical University, Daqing, 163319, China
| | - Dandan Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ailing Deng
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingyi Zhang
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073
| | - Yujie Guo
- College of Science, North China University of Technology, Beijing, 100144, China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Jiansuo Zhou
- Department of clinical laboratory, Peking University, Third Hospital, Beijing, 100191, China
| | - Yapeng Wang
- Department of reproduction center, Peking University, Third Hospital, Beijing, 100191, China
| | - Wenrong Huang
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yu Jing
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Liping Dou
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lili Wang
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Clara Nervi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome "La Sapienza" Polo Pontino, Latina, 04100, Italy
| | - Yonghui Li
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Li Yu
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
145
|
Aguilar CA, Pop R, Shcherbina A, Watts A, Matheny RW, Cacchiarelli D, Han WM, Shin E, Nakhai SA, Jang YC, Carrigan CT, Gifford CA, Kottke MA, Cesana M, Lee J, Urso ML, Meissner A. Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma. Stem Cell Reports 2016; 7:983-997. [PMID: 27773702 PMCID: PMC5106515 DOI: 10.1016/j.stemcr.2016.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023] Open
Abstract
Following injury, adult skeletal muscle undergoes a well-coordinated sequence of molecular and physiological events to promote repair and regeneration. However, a thorough understanding of the in vivo epigenomic and transcriptional mechanisms that control these reparative events is lacking. To address this, we monitored the in vivo dynamics of three histone modifications and coding and noncoding RNA expression throughout the regenerative process in a mouse model of traumatic muscle injury. We first illustrate how both coding and noncoding RNAs in tissues and sorted satellite cells are modified and regulated during various stages after trauma. Next, we use chromatin immunoprecipitation followed by sequencing to evaluate the chromatin state of cis-regulatory elements (promoters and enhancers) and view how these elements evolve and influence various muscle repair and regeneration transcriptional programs. These results provide a comprehensive view of the central factors that regulate muscle regeneration and underscore the multiple levels through which both transcriptional and epigenetic patterns are regulated to enact appropriate repair and regeneration.
Collapse
Affiliation(s)
- Carlos A Aguilar
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA.
| | - Ramona Pop
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Anna Shcherbina
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA
| | - Alain Watts
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA
| | - Ronald W Matheny
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Davide Cacchiarelli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eunjung Shin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shadi A Nakhai
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher T Carrigan
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Casey A Gifford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Melissa A Kottke
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Marcella Cesana
- Department of Biological Chemistry and Molecular Pharmacology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jackson Lee
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA
| | - Maria L Urso
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
146
|
A short insertion mutation disrupts genesis of miR-16 and causes increased body weight in domesticated chicken. Sci Rep 2016; 6:36433. [PMID: 27808177 PMCID: PMC5093740 DOI: 10.1038/srep36433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/17/2016] [Indexed: 11/26/2022] Open
Abstract
Body weight is one of the most important quantitative traits with high heritability in chicken. We previously mapped a quantitative trait locus (QTL) for body weight by genome-wide association study (GWAS) in an F2 chicken resource population. To identify the causal mutations linked to this QTL, expression profiles were determined on livers of high-weight and low-weight chicken lines by microarray. Combining the expression pattern with SNP effects by GWAS, miR-16 was identified as the most likely potential candidate with a 3.8-fold decrease in high-weight lines. Re-sequencing revealed that a 54-bp insertion mutation in the upstream region of miR-15a-16 displayed high allele frequencies in high-weight commercial broiler line. This mutation resulted in lower miR-16 expression by introducing three novel splicing sites instead of the missing 5′ terminal splicing of mature miR-16. Elevating miR-16 significantly inhibited DF-1 chicken embryo cell proliferation, consistent with a role in suppression of cellular growth. The 54-bp insertion was significantly associated with increased body weight, bone size and muscle mass. Also, the insertion mutation tended towards fixation in commercial broilers (Fst > 0.4). Our findings revealed a novel causative mutation for body weight regulation that aids our basic understanding of growth regulation in birds.
Collapse
|
147
|
Cyclin E as a potential therapeutic target in high grade serous ovarian cancer. Gynecol Oncol 2016; 143:152-158. [DOI: 10.1016/j.ygyno.2016.07.111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 11/18/2022]
|
148
|
Kawasaki Y, Komiya M, Matsumura K, Negishi L, Suda S, Okuno M, Yokota N, Osada T, Nagashima T, Hiyoshi M, Okada-Hatakeyama M, Kitayama J, Shirahige K, Akiyama T. MYU, a Target lncRNA for Wnt/c-Myc Signaling, Mediates Induction of CDK6 to Promote Cell Cycle Progression. Cell Rep 2016; 16:2554-2564. [PMID: 27568568 DOI: 10.1016/j.celrep.2016.08.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 06/06/2016] [Accepted: 08/05/2016] [Indexed: 01/05/2023] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling is a major driving force in colon cancer. Wnt/β-catenin signaling induces the expression of the transcription factor c-Myc, leading to cell proliferation and tumorigenesis. c-Myc regulates multiple biological processes through its ability to directly modulate gene expression. Here, we identify a direct target of c-Myc, termed MYU, and show that MYU is upregulated in most colon cancers and required for the tumorigenicity of colon cancer cells. Furthermore, we demonstrate that MYU associates with the RNA binding protein hnRNP-K to stabilize CDK6 expression and thereby promotes the G1-S transition of the cell cycle. These results suggest that the MYU/hnRNP-K/CDK6 pathway functions downstream of Wnt/c-Myc signaling and plays a critical role in the proliferation and tumorigenicity of colon cancer cells.
Collapse
Affiliation(s)
- Yoshihiro Kawasaki
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Mimon Komiya
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Kosuke Matsumura
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Lumi Negishi
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Sakiko Suda
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masumi Okuno
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Naoko Yokota
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tomoya Osada
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takeshi Nagashima
- Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaya Hiyoshi
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Mariko Okada-Hatakeyama
- Laboratory for Cellular Systems Modeling, RIKEN Research Center for Allergy and Immunology, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Joji Kitayama
- Department of Surgical Oncology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tetsu Akiyama
- Laboratory of Molecular and Genetic Information, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
149
|
Xiong XR, Lan DL, Li J, Zi XD, Li MY. Identification of candidate miRNAs and expression profile of yak oocytes before and after in vitro maturation by high-throughput sequencing. Reprod Domest Anim 2016; 51:886-894. [PMID: 27562759 DOI: 10.1111/rda.12754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/11/2016] [Indexed: 11/28/2022]
Abstract
Small RNA represents several unique non-coding RNA classes that have important function in a wide range of biological processes including development of germ cells and early embryonic, cell differentiation, cell proliferation and apoptosis in diverse organisms. However, little is known about their expression profiles and effects in yak oocytes maturation and early development. To investigate the function of small RNAs in the maturation process of yak oocyte and early development, two small RNA libraries of oocytes were constructed from germinal vesicle stage (GV) and maturation in vitro to metaphase II-arrested stage (M II) and then sequenced using small RNA high-throughput sequencing technology. A total of 9,742,592 and 12,168,523 clean reads were obtained from GV and M II oocytes, respectively. In total, 801 and 1,018 known miRNAs were acquired from GV and M II oocytes, and 75 miRNAs were found to be significantly differentially expressed: 47 miRNAs were upregulated and 28 miRNAs were downregulated in the M II oocytes compared to the GV stage. Among the upregulated miRNAs, miR-342 has the largest fold change (9.25-fold). Six highly expressed miRNAs (let-7i, miR-10b, miR-10c, miR-143, miR-146b and miR-148) were validated by real-time quantitative PCR (RT-qPCR) and consistent with the sequencing results. Furthermore, the expression patterns of two miRNAs and their potential targets were analysed in different developmental stages of oocytes and early embryos. This study provides the first miRNA profile in the mature process of yak oocyte. Seventy-five miRNAs are expressed differentially in GV and M II oocytes as well as among different development stages of early embryos, suggesting miRNAs involved in regulating oocyte maturation and early development of yak. These results showed specific miRNAs in yak oocytes had dynamic changes during meiosis. Further functional and mechanistic studies on the miRNAs during meiosis may beneficial to understanding the role of miRNAs on meiotic division.
Collapse
Affiliation(s)
- X R Xiong
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China.,College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - D L Lan
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - J Li
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - X D Zi
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | - M Y Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
150
|
Vellasamy S, Tong CK, Azhar NA, Kodiappan R, Chan SC, Veerakumarasivam A, Ramasamy R. Human mesenchymal stromal cells modulate T-cell immune response via transcriptomic regulation. Cytotherapy 2016; 18:1270-83. [PMID: 27543068 DOI: 10.1016/j.jcyt.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) have been identified as pan-immunosuppressant in various in vitro and in vivo inflammatory models. Although the immunosuppressive activity of MSCs has been explored in various contexts, the precise molecular signaling pathways that govern inhibitory functions remain poorly elucidated. METHODS By using a microarray-based global gene expression profiling system, this study aimed to decipher the underlying molecular pathways that may mediate the immunosuppressive activity of umbilical cord-derived MSCs (UC-MSCs) on activated T cells. RESULTS In the presence of UC-MSCs, the proliferation of activated T cells was suppressed in a dose-depended manner by cell-to-cell contact mode via an active cell-cycle arrest at the G0/G1 phase of the cell cycle. The microarray analysis revealed that particularly, IFNG, CXCL9, IL2, IL2RA and CCND3 genes were down-regulated, whereas IL11, VSIG4, GFA1, TIMP3 and BBC3 genes were up-regulated by UC-MSCs. The dysregulated gene clusters associated with immune-response-related ontologies, namely, lymphocyte proliferation or activation, apoptosis and cell cycle, were further analyzed. CONCLUSIONS Among the nine canonical pathways identified, three pathways (namely T-helper cell differentiation, cyclins and cell cycle regulation, and gap/tight junction signalling pathways) were highly enriched with these dysregulated genes. The pathways represent putative molecular pathways through which UC-MSCs elicit immunosuppressive activity toward activated T cells. This study provides a global snapshot of gene networks and pathways that contribute to the ability of UC-MSCs to suppress activated T cells.
Collapse
Affiliation(s)
- Shalini Vellasamy
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chih Kong Tong
- Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nur Atiqah Azhar
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Radha Kodiappan
- Perdana University-Royal College of Surgeons in Ireland, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia; Medical Genetics Laboratory, Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Soon Choy Chan
- Perdana University Graduate School of Medicine, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia
| | - Abhi Veerakumarasivam
- Perdana University Graduate School of Medicine, Perdana University, Jalan MAEPS Perdana, Serdang, Selangor Darul Ehsan, Malaysia; Medical Genetics Laboratory, Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia
| | - Rajesh Ramasamy
- Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Stem Cell Research Laboratory, Genetics & Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|