101
|
WUSCHEL Overexpression Promotes Callogenesis and Somatic Embryogenesis in Medicago truncatula Gaertn. PLANTS 2021; 10:plants10040715. [PMID: 33917135 PMCID: PMC8067838 DOI: 10.3390/plants10040715] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/15/2022]
Abstract
The induction of plant somatic embryogenesis is often a limiting step for plant multiplication and genetic manipulation in numerous crops. It depends on multiple signaling developmental processes involving phytohormones and the induction of specific genes. The WUSCHEL gene (WUS) is required for the production of plant embryogenic stem cells. To explore a different approach to induce somatic embryogenesis, we have investigated the effect of the heterologous ArabidopsisWUS gene overexpression under the control of the jasmonate responsive vsp1 promoter on the morphogenic responses of Medicago truncatula explants. WUS expression in leaf explants increased callogenesis and embryogenesis in the absence of growth regulators. Similarly, WUS expression enhanced the embryogenic potential of hairy root fragments. The WUS gene represents thus a promising tool to develop plant growth regulator-free regeneration systems or to improve regeneration and transformation efficiency in recalcitrant crops.
Collapse
|
102
|
Moreau C, Gautrat P, Frugier F. Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. PLANT PHYSIOLOGY 2021; 185:1216-1228. [PMID: 33793938 PMCID: PMC8133669 DOI: 10.1093/plphys/kiaa094] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/09/2020] [Indexed: 05/26/2023]
Abstract
Legume plants form nitrogen (N)-fixing symbiotic nodules when mineral N is limiting in soils. As N fixation is energetically costly compared to mineral N acquisition, these N sources, and in particular nitrate, inhibit nodule formation and N fixation. Here, in the model legume Medicago truncatula, we characterized a CLAVATA3-like (CLE) signaling peptide, MtCLE35, the expression of which is upregulated locally by high-N environments and relies on the Nodule Inception-Like Protein (NLP) MtNLP1. MtCLE35 inhibits nodule formation by affecting rhizobial infections, depending on the Super Numeric Nodules (MtSUNN) receptor. In addition, high N or the ectopic expression of MtCLE35 represses the expression and accumulation of the miR2111 shoot-to-root systemic effector, thus inhibiting its positive effect on nodulation. Conversely, ectopic expression of miR2111 or downregulation of MtCLE35 by RNA interference increased miR2111 accumulation independently of the N environment, and thus partially bypasses the nodulation inhibitory action of nitrate. Overall, these results demonstrate that the MtNLP1-dependent, N-induced MtCLE35 signaling peptide acts through the MtSUNN receptor and the miR2111 systemic effector to inhibit nodulation.
Collapse
Affiliation(s)
- Corentin Moreau
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. d’Evry, University of Paris, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Gautrat
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. d’Evry, University of Paris, University of Paris-Saclay, Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. d’Evry, University of Paris, University of Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
103
|
Jarzyniak K, Banasiak J, Jamruszka T, Pawela A, Di Donato M, Novák O, Geisler M, Jasiński M. Early stages of legume-rhizobia symbiosis are controlled by ABCG-mediated transport of active cytokinins. NATURE PLANTS 2021; 7:428-436. [PMID: 33753904 DOI: 10.1038/s41477-021-00873-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/05/2021] [Indexed: 05/04/2023]
Abstract
Growing evidence has highlighted the essential role of plant hormones, notably, cytokinins (CKs), in nitrogen-fixing symbiosis, both at early and late nodulation stages1,2. Despite numerous studies showing the central role of CK in nodulation, the importance of CK transport in the symbiosis is unknown. Here, we show the role of ABCG56, a full-size ATP-binding cassette (ABC) transporter in the early stages of the nodulation. MtABCG56 is expressed in roots and nodules and its messenger RNA levels increase upon treatment with symbiotic bacteria, isolated Nod factor and CKs, accumulating within the epidermis and root cortex. MtABCG56 exports bioactive CKs in an ATP-dependent manner over the plasma membrane and its disruption results in an impairment of nodulation. Our data indicate that ABCG-mediated cytokinin transport is important for proper establishment of N-fixing nodules.
Collapse
Affiliation(s)
- Karolina Jarzyniak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Aleksandra Pawela
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Martin Di Donato
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
104
|
Lv A, Su L, Wen W, Fan N, Zhou P, An Y. Analysis of the Function of the Alfalfa Mslea-D34 Gene in Abiotic Stress Responses and Flowering Time. PLANT & CELL PHYSIOLOGY 2021; 62:28-42. [PMID: 32976554 DOI: 10.1093/pcp/pcaa121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/10/2020] [Indexed: 05/14/2023]
Abstract
A novel late embryogenesis abundant (LEA) gene, MsLEA-D34, was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression (OE) and RNA interference (RNAi) of the gene in Arabidopsis and in hairy roots of alfalfa, as well as via analyzing key genes related to MsLEA-D34 during developmental phases in alfalfa. The results showed that MsLEA-D34 was a typical intrinsically disordered protein with a high capability for protein protection. Overexpression of MsLEA-D34 increased plant tolerance to osmotic and salt stresses, and caused Arabidopsis early flowering under drought and well-watered conditions. Overexpressing MsLEA-D34 induced up-regulation of FLOWERING LOCUS T (FT) and GIGANTEA (GI) at the flowering phase of Arabidopsis and hairy roots of alfalfa, but only FT was down-regulated in MsLEA-D34-RNAi lines. A positive effect of MsLEA-D34 on FT accumulation was demonstrated in alfalfa hairy roots. An ABA-responsive element (ABRE)-binding transcription factor (MsABF2), a novel transcription factor cloned from alfalfa, directly bound to the RY element in the MsLEA-D34 promoter and activated MsLEA-D34 expression. The above results indicate that MsLEA-D34 can regulate abiotic stress response in plants and influence flowering time of Arabidopsis.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai 201101, China
| |
Collapse
|
105
|
A Root Tip-Specific Expressing Anthocyanin Marker for Direct Identification of Transgenic Tissues by the Naked Eye in Symbiotic Studies. PLANTS 2021; 10:plants10030605. [PMID: 33806858 PMCID: PMC8004629 DOI: 10.3390/plants10030605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
The Agrobacterium rhizogenes hairy root transformation system is widely used in symbiotic studies of model legumes. It typically relies on fluorescent reporters, such as DsRed, for identification of transgenic roots. The MtLAP1 transcription factor has been utilized as a reporter system in Medicago truncatula based on production of anthocyanin pigment. Here, we describe a version of this reporter driven by a root-cap specific promoter for direct observation of anthocyanin accumulation in root tips, which allows the identification of transgenic hairy roots by the naked eye. Results from our analysis suggest that the reporter had no significant effects on nodulation of M. truncatula. This approach, by virtue of its strong and specific expression in root cap cells, greatly reduces false positives and false negatives, and its use of an easily scored visible pigment should allow greater versatility and efficiency in root biology studies.
Collapse
|
106
|
Mens C, Hastwell AH, Su H, Gresshoff PM, Mathesius U, Ferguson BJ. Characterisation of Medicago truncatula CLE34 and CLE35 in nitrate and rhizobia regulation of nodulation. THE NEW PHYTOLOGIST 2021; 229:2525-2534. [PMID: 33067828 DOI: 10.1111/nph.17010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/10/2020] [Indexed: 05/25/2023]
Abstract
Legumes form a symbiosis with atmospheric nitrogen (N2 )-fixing soil rhizobia, resulting in new root organs called nodules that enable N2 -fixation. Nodulation is a costly process that is tightly regulated by the host through autoregulation of nodulation (AON) and nitrate-dependent regulation of nodulation. Both pathways require legume-specific CLAVATA/ESR-related (CLE) peptides. Nitrogen-induced nodulation-suppressing CLE peptides have not previously been investigated in Medicago truncatula, for which only rhizobia-induced MtCLE12 and MtCLE13 have been characterised. Here, we report on novel peptides MtCLE34 and MtCLE35 in nodulation control. The nodulation-suppressing CLE peptides of five legume species were classified into three clades based on sequence homology and phylogeny. This approached identified MtCLE34 and MtCLE35 and four new CLE peptide orthologues of Pisum sativum. Whereas MtCLE12 and MtCLE13 are induced by rhizobia, MtCLE34 and MtCLE35 respond to both rhizobia and nitrate. MtCLE34 was identified as a pseudogene lacking a functional CLE-domain. MtCLE35 was found to inhibit nodulation in a SUNN- and RDN1-dependent manner via overexpression analysis. Together, our findings indicate that MtCLE12 and MtCLE13 have a specific role in AON, while MtCLE35 regulates nodule numbers in response to both rhizobia and nitrate. MtCLE34 likely had a similar role to MtCLE35, but its function was lost due to a premature nonsense mutation.
Collapse
Affiliation(s)
- Celine Mens
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Huanan Su
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
- National Navel Orange Engineering Research Center, School of Life Science, Gannan Normal University, Ganzhou, 341000, China
| | - Peter M Gresshoff
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Qld, 4072, Australia
| |
Collapse
|
107
|
Nguyen NNT, Clua J, Vetal PV, Vuarambon DJ, De Bellis D, Pervent M, Lepetit M, Udvardi M, Valentine AJ, Poirier Y. PHO1 family members transport phosphate from infected nodule cells to bacteroids in Medicago truncatula. PLANT PHYSIOLOGY 2021; 185:196-209. [PMID: 33631809 PMCID: PMC8133656 DOI: 10.1093/plphys/kiaa016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/14/2020] [Indexed: 05/20/2023]
Abstract
Legumes play an important role in the soil nitrogen availability via symbiotic nitrogen fixation (SNF). Phosphate (Pi) deficiency severely impacts SNF because of the high Pi requirement of symbiosis. Whereas PHT1 transporters are involved in Pi uptake into nodules, it is unknown how Pi is transferred from the plant infected cells to nitrogen-fixing bacteroids. We hypothesized that Medicago truncatula genes homologous to Arabidopsis PHO1, encoding a vascular apoplastic Pi exporter, are involved in Pi transfer to bacteroids. Among the seven MtPHO1 genes present in M. truncatula, we found that two genes, namely MtPHO1.1 and MtPHO1.2, were broadly expressed across the various nodule zones in addition to the root vascular system. Expressions of MtPHO1.1 and MtPHO1.2 in Nicotiana benthamiana mediated specific Pi export. Plants with nodule-specific downregulation of both MtPHO1.1 and MtPHO1.2 were generated by RNA interference (RNAi) to examine their roles in nodule Pi homeostasis. Nodules of RNAi plants had lower Pi content and a three-fold reduction in SNF, resulting in reduced shoot growth. Whereas the rate of 33Pi uptake into nodules of RNAi plants was similar to control, transfer of 33Pi from nodule cells into bacteroids was reduced and bacteroids activated their Pi-deficiency response. Our results implicate plant MtPHO1 genes in bacteroid Pi homeostasis and SNF via the transfer of Pi from nodule infected cells to bacteroids.
Collapse
Affiliation(s)
- Nga N T Nguyen
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Joaquin Clua
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Pallavi V Vetal
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Dominique Jacques Vuarambon
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
- Electron Microscopy Facility, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
| | - Marjorie Pervent
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR 1342 INRAE-IRD-CIRAD-UM-Montpellier SupAgro, Montpellier, France
| | - Marc Lepetit
- Laboratoire des Symbioses Tropicales et Méditerranéennes UMR 1342 INRAE-IRD-CIRAD-UM-Montpellier SupAgro, Montpellier, France
| | - Michael Udvardi
- The Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Alexander J Valentine
- Botany & Zoology Department, University of Stellenbosch, Matieland 7602, South Africa
| | - Yves Poirier
- Department of Plant Molecular Biology, Biophore Building, University of Lausanne, Lausanne 1015, Switzerland
- Author for communication:
| |
Collapse
|
108
|
Castro-Rodríguez R, Abreu I, Reguera M, Novoa-Aponte L, Mijovilovich A, Escudero V, Jiménez-Pastor FJ, Abadía J, Wen J, Mysore KS, Álvarez-Fernández A, Küpper H, Imperial J, González-Guerrero M. The Medicago truncatula Yellow Stripe1-Like3 gene is involved in vascular delivery of transition metals to root nodules. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7257-7269. [PMID: 32841350 DOI: 10.1093/jxb/eraa390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Symbiotic nitrogen fixation carried out in legume root nodules requires transition metals. These nutrients are delivered by the host plant to the endosymbiotic nitrogen-fixing bacteria living within the nodule cells, a process in which vascular transport is essential. As members of the Yellow Stripe-Like (YSL) family of metal transporters are involved in root to shoot transport, they should also be required for root to nodule metal delivery. The genome of the model legume Medicago truncatula encodes eight YSL proteins, four of them with a high degree of similarity to Arabidopsis thaliana YSLs involved in long-distance metal trafficking. Among them, MtYSL3 is a plasma membrane protein expressed by vascular cells in roots and nodules and by cortical nodule cells. Reducing the expression level of this gene had no major effect on plant physiology when assimilable nitrogen was provided in the nutrient solution. However, nodule functioning was severely impaired, with a significant reduction of nitrogen fixation capabilities. Further, iron and zinc accumulation and distribution changed. Iron was retained in the apical region of the nodule, while zinc became strongly accumulated in the nodule veins in the ysl3 mutant. These data suggest a role for MtYSL3 in vascular delivery of iron and zinc to symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Česke Budějovice, Czech Republic
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Francisco J Jiménez-Pastor
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | - Javier Abadía
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | | | | | - Ana Álvarez-Fernández
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, Zaragoza, Spain
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Department of Plant Biophysics and Biochemistry, Česke Budějovice, Czech Republic
- University of South Bohemia, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), Serrano, 115 bis, 28006 Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223 Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| |
Collapse
|
109
|
Cui ML, Liu C, Piao CL, Liu CL. A Stable Agrobacterium rhizogenes-Mediated Transformation of Cotton ( Gossypium hirsutum L.) and Plant Regeneration From Transformed Hairy Root via Embryogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:604255. [PMID: 33381137 PMCID: PMC7767857 DOI: 10.3389/fpls.2020.604255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 06/01/2023]
Abstract
Genetic transformation is a powerful tool to study gene function, secondary metabolism pathways, and molecular breeding in crops. Cotton (Gossypium hirsutum L.) is one of the most important economic crops in the world. Current cotton transformation methods take at least seven to culture and are labor-intensive and limited to some cultivars. In this study, we first time achieved plantlet regeneration of cotton via embryogenesis from transformed hairy roots. We inoculated the cotyledon explants of a commercial cultivar Zhongmian-24 with Agrobacterium rhizogenes strain AR1193, harboring a binary vector pBI-35S::GFP that contained the NPT II (neomycin phosphotransferase) gene and the GFP (green fluorescent protein) gene as a fluorescent marker in the T-DNA region. 82.6% explants produced adventitious roots, of which 53% showed GFP expression after transformation. 82% of transformed hairy roots produced embryonic calli, 12% of which regenerated into stable transformed cotton plants after 7 months of culture. The integration of GFP in the transformed cotton genomes were confirmed by PCR (Polymerase chain reaction) and Southern blot analysis as well as the stable expression of GFP were also detected by semi-quantitative RT-PCR analysis. The resultant transformed plantlets were phenotypically, thus avoiding Ri syndrome. Here we report a stable and reproducible method for A. rhizogenes-mediated transformation of cotton using cotyledon as explants, which provides a useful and reliable platform for gene function analysis of cotton.
Collapse
Affiliation(s)
- Min-Long Cui
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chun-Lan Piao
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chuan-Liang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
110
|
An SHR-SCR module specifies legume cortical cell fate to enable nodulation. Nature 2020; 589:586-590. [PMID: 33299183 DOI: 10.1038/s41586-020-3016-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/19/2020] [Indexed: 11/08/2022]
Abstract
Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.
Collapse
|
111
|
Granado-Rodríguez S, Bolaños L, Reguera M. MtNIP5;1, a novel Medicago truncatula boron diffusion facilitator induced under deficiency. BMC PLANT BIOLOGY 2020; 20:552. [PMID: 33297962 PMCID: PMC7724820 DOI: 10.1186/s12870-020-02750-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Legumes comprise important crops that offer major agronomic benefits, including the capacity of establishing symbiosis with rhizobia, fixing atmospheric N2. It has been proven that legumes are particularly susceptible to boron (B) stress, which leads to important yield penalties. Boron (B) deficiency or toxicity in plants causes the inhibition of growth and an altered development. Under such conditions, the participation of two distinct protein families (the major intrinsic protein family MIP and the Boron transporter family BOR) is required to minimize detrimental effects caused by B stress. However, in legumes, little is known about the transport mechanisms responsible for B uptake and distribution, especially under deficiency. RESULTS A Medicago truncatula protein, MtNIP5;1 (Medtr1g097840) (homologous to the Arabidopsis thaliana AtNIP5;1) was identified as a novel legume B transporter involved in B uptake under deficiency. Further analyses revealed that this M. truncatula aquaporin expression was boron-regulated in roots, being induced under deficiency and repressed under toxicity. It localizes at the plasma membrane of root epidermal cells and in nodules, where B plays pivotal roles in symbiosis. Furthermore, the partial complementation of the nip5;1-1 A. thaliana mutant phenotype under B deficiency supports a functional role of MtNIP5;1 as a B transporter in this legume model plant. CONCLUSIONS The results here presented support a functional role of MtNIP5;1 in B uptake under deficiency and provides new insights into B transport mechanisms in legume species.
Collapse
Affiliation(s)
- Sara Granado-Rodríguez
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Maria Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
112
|
Senovilla M, Abreu I, Escudero V, Cano C, Bago A, Imperial J, González-Guerrero M. MtCOPT2 is a Cu + transporter specifically expressed in Medicago truncatula mycorrhizal roots. MYCORRHIZA 2020; 30:781-788. [PMID: 32914374 DOI: 10.1007/s00572-020-00987-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Arbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown. In this work, MtCOPT2 has been identified as the only member of the copper transporter family COPT in the model legume Medicago truncatula to be specifically expressed in mycorrhizal roots. Fusing a C-terminal GFP tag to MtCOPT2 expressed under its own promoter showed a distribution pattern that corresponds with arbuscule distribution in the roots. When expressed in tobacco leaves, MtCOPT2-GFP co-localizes with a plasma membrane marker. MtCOPT2 is intimately related to the rhizobial nodule-specific MtCOPT1, which is suggestive of a shared evolutionary lineage that links transition metal nutrition in the two main root endosymbioses in legumes.
Collapse
Affiliation(s)
- Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain.
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK.
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Custodia Cano
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Alberto Bago
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008, Granada, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón (Madrid), Spain.
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
113
|
Zinsmeister J, Berriri S, Basso DP, Ly-Vu B, Dang TT, Lalanne D, da Silva EAA, Leprince O, Buitink J. The seed-specific heat shock factor A9 regulates the depth of dormancy in Medicago truncatula seeds via ABA signalling. PLANT, CELL & ENVIRONMENT 2020; 43:2508-2522. [PMID: 32683703 DOI: 10.1111/pce.13853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 05/15/2023]
Abstract
During the later stages of seed maturation, two key adaptive traits are acquired that contribute to seed lifespan and dispersal, longevity and dormancy. The seed-specific heat shock transcription factor A9 is an important hub gene in the transcriptional network of late seed maturation. Here, we demonstrate that HSFA9 plays a role in thermotolerance rather than in ex situ seed conservation. Storage of hsfa9 seeds of Medicago truncatula and Arabidopsis had comparable lifespan at moderate storage relative humidity (RH), whereas at high RH, hsfa9 seeds lost their viability much faster than wild type seeds. Furthermore, we show that in M. truncatula, Mthsfa9 seeds acquired more dormancy during late maturation than wild type. Transient expression of MtHSFA9 in hairy roots and transcriptome analysis of Mthsfa9 Tnt1 insertion mutants identified a deregulation of genes involved in ABA biosynthesis, catabolism and signalling. Consistent with these results, Mthsfa9 seeds exhibited increased ABA levels and higher sensitivity to ABA. These data suggest that in legumes, HSFA9 acts as a negative regulator of the depth of seed dormancy during seed development via the modulation of hormonal balance.
Collapse
Affiliation(s)
- Julia Zinsmeister
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Souha Berriri
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Denise Puntel Basso
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, Brazil
| | - Benoit Ly-Vu
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Thi-Thu Dang
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - David Lalanne
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | | | - Olivier Leprince
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Julia Buitink
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
114
|
Escudero V, Abreu I, Tejada-Jiménez M, Rosa-Núñez E, Quintana J, Prieto RI, Larue C, Wen J, Villanova J, Mysore KS, Argüello JM, Castillo-Michel H, Imperial J, González-Guerrero M. Medicago truncatula Ferroportin2 mediates iron import into nodule symbiosomes. THE NEW PHYTOLOGIST 2020; 228:194-209. [PMID: 32367515 DOI: 10.1111/nph.16642] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Julia Quintana
- Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
| | - Camille Larue
- EcoLab, CNRS, Université de Toulouse, Toulouse, 31326, France
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, 73401, USA
| | - Julie Villanova
- ID16 Beamline. European Synchrotron Radiation Facility, Grenoble, 38043, France
| | | | | | | | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón (Madrid), 28223, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, 28040, Spain
| |
Collapse
|
115
|
Genome-Wide Characterization, Evolution, and Expression Analysis of the Leucine-Rich Repeat Receptor-Like Protein Kinase (LRR-RLK) Gene Family in Medicago truncatula. Life (Basel) 2020; 10:life10090176. [PMID: 32899802 PMCID: PMC7555646 DOI: 10.3390/life10090176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022] Open
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases (RLKs) in plants. They play roles in plant growth and developmental and physiological processes, but less is known about the functions of LRR-RLKs in Medicago truncatula. Our genome-wide analysis revealed 329 LRR-RLK genes in the M.truncatula genome. Phylogenetic and classification analysis suggested that these genes could be classified into 15 groups and 24 subgroups. A total of 321 genes were mapped onto all chromosomes, and 23 tandem duplications (TDs) involving 56 genes were distributed on each chromosome except 4. Twenty-seven M.truncatula LRR-RLK segmental duplication gene pairs were colinearly related. The exon/intron organization, motif composition and arrangements were relatively conserved among members of the same groups or subgroups. Using publicly available RNAseq data and quantitative real-time polymerase chain reaction (qRT-PCR), expression profiling suggested that LRR-RLKs were differentially expressed among different tissues, while some were expressed specifically in the roots and nodules. The expression of LRR-RLKs in A17 and 4 nodule mutants under rhizobial infection showed that 36 LRR-RKLs were highly upregulated in the sickle (skl) mutant [an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant] after 12 h of rhizobium inoculation. Among these LRR-RLKs, six genes were also expressed specifically in the roots and nodules, which might be specific to the Nod factor and involved in autoregulation of the nodulation signal. Our results provide information on the LRR-RLK gene family in M. truncatula and serve as a guide for functional research of the LRR-RLKs.
Collapse
|
116
|
Garagounis C, Beritza K, Georgopoulou ME, Sonawane P, Haralampidis K, Goossens A, Aharoni A, Papadopoulou KK. A hairy-root transformation protocol for Trigonella foenum-graecum L. as a tool for metabolic engineering and specialised metabolite pathway elucidation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:451-462. [PMID: 32659648 DOI: 10.1016/j.plaphy.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
The development of genetic transformation methods is critical for enabling the thorough characterization of an organism and is a key step in exploiting any species as a platform for synthetic biology and metabolic engineering approaches. In this work we describe the development of an Agrobacterium rhizogenes-mediated hairy root transformation protocol for the crop and medicinal legume fenugreek (Trigonella foenum-graecum). Fenugreek has a rich and diverse content in bioactive specialised metabolites, notably diosgenin, which is a common precursor for synthetic human hormone production. This makes fenugreek a prime target for identification and engineering of specific biosynthetic pathways for the production of triterpene and steroidal saponins, phenolics, and galactomanans. Through this transformation protocol, we identified a suitable promoter for robust transgene expression in fenugreek. Finally, we establish the proof of principle for the utility of the fenugreek system for metabolic engineering programs, by heterologous expression of known triterpene saponin biosynthesis regulators from the related legume Medicago truncatula in fenugreek hairy roots.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| | - Konstantina Beritza
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Maria-Eleni Georgopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| | - Prashant Sonawane
- Faculty of Biochemistry, Department of Plant Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Kosmas Haralampidis
- Faculty of Botany, Department of Biology, National and Kapodistrian University of Athens, 15701, Athens, Greece
| | - Alain Goossens
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium; VIB-UGent Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Asaph Aharoni
- Faculty of Biochemistry, Department of Plant Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, University of Thessaly, Biopolis, 41500, Larissa, Greece
| |
Collapse
|
117
|
Fan Y, Wang X, Li H, Liu S, Jin L, Lyu Y, Shi M, Liu S, Yang X, Lyu S. Anthocyanin, a novel and user-friendly reporter for convenient, non-destructive, low cost, directly visual selection of transgenic hairy roots in the study of rhizobia-legume symbiosis. PLANT METHODS 2020; 16:94. [PMID: 32647533 PMCID: PMC7339386 DOI: 10.1186/s13007-020-00638-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/03/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated hairy root transformation provides a powerful tool for investigating the functions of plant genes involved in rhizobia-legume symbiosis. However, in the traditional identification methods of transgenic hairy roots based on reporter genes, an expensive chemical substrate or equipment is required. RESULTS Here, we report a novel, low cost, and robust reporter for convenient, non-destructive, and directly visual selection of transgenic hairy roots by naked eye, which can be used in the study of rhizobia-legume symbiosis. The reporter gene AtMyb75 in Arabidopsis, encoding an R2R3 type MYB transcription factor, was ectopically expressed in hairy roots-mediated by A. rhizogenes, which induced purple/red colored anthocyanin accumulation in crop species like soybean (Glycine max (L.) Merr.) and two model legume species, Lotus japonicas and Medicago truncatula. Transgenic hairy roots of legumes containing anthocyanin can establish effective symbiosis with rhizobia. We also demonstrated the reliability of AtMyb75 as a reporter gene by CRISPR/Cas9-targeted mutagenesis of the soybean resistance to nodulation Rfg1 gene in the soybean PI377578 (Nod-) inoculated with Sinorhizobium fredii USDA193. Without exception, mature nitrogen-fixation nodules, were formed on purple transgenic hairy roots containing anthocyanin. CONCLUSIONS Anthocyanin is a reliable, user-friendly, convenient, non-destructive, low cost, directly visual reporter for studying symbiotic nitrogen-fixing nodule development and could be widely applied in broad leguminous plants.
Collapse
Affiliation(s)
- Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiuyuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Haiyun Li
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shuang Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liangshen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Yanyan Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Mengdi Shi
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Sirui Liu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xinyue Yang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
118
|
Berger A, Guinand S, Boscari A, Puppo A, Brouquisse R. Medicago truncatula Phytoglobin 1.1 controls symbiotic nodulation and nitrogen fixation via the regulation of nitric oxide concentration. THE NEW PHYTOLOGIST 2020; 227:84-98. [PMID: 32003030 PMCID: PMC7317445 DOI: 10.1111/nph.16462] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/19/2020] [Indexed: 05/04/2023]
Abstract
In legumes, phytoglobins (Phytogbs) are known to regulate nitric oxide (NO) during early phase of the nitrogen-fixing symbiosis and to buffer oxygen in functioning nodules. However, their expression profile and respective role in NO control at each stage of the symbiosis remain little-known. We first surveyed the Phytogb genes occurring in Medicago truncatula genome. We analyzed their expression pattern and NO production from inoculation with Sinorhizobium meliloti up to 8 wk post-inoculation. Finally, using overexpression and silencing strategy, we addressed the role of the Phytogb1.1-NO couple in the symbiosis. Three peaks of Phytogb expression and NO production were detected during the symbiotic process. NO upregulates Phytogbs1 expression and downregulates Lbs and Phytogbs3 ones. Phytogb1.1 silencing and overexpression experiments reveal that Phytogb1.1-NO couple controls the progression of the symbiosis: high NO concentration promotes defense responses and nodular organogenesis, whereas low NO promotes the infection process and nodular development. Both NO excess and deficiency provoke a 30% inhibition of nodule establishment. In mature nodules, Phytogb1.1 regulates NO to limit its toxic effects while allowing the functioning of Phytogb-NO respiration to maintain the energetic state. This work highlights the regulatory role played by Phytogb1.1-NO couple in the successive stages of symbiosis.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Sophie Guinand
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alexandre Boscari
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Alain Puppo
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| | - Renaud Brouquisse
- Institut Sophia AgrobiotechUMR INRAE 1355CNRS 7254Université Côte d'Azur400 route des Chappes, BP 16706903Sophia AntipolisFrance
| |
Collapse
|
119
|
Jacott CN, Charpentier M, Murray JD, Ridout CJ. Mildew Locus O facilitates colonization by arbuscular mycorrhizal fungi in angiosperms. THE NEW PHYTOLOGIST 2020; 227:343-351. [PMID: 32012282 PMCID: PMC7317859 DOI: 10.1111/nph.16465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 05/03/2023]
Abstract
Loss of barley Mildew Resistance Locus O (MLO) is known to confer durable and robust resistance to powdery mildew (Blumeria graminis), a biotrophic fungal leaf pathogen. Based on the increased expression of MLO in mycorrhizal roots and its presence in a clade of the MLO family that is specific to mycorrhizal-host species, we investigated the potential role of MLO in arbuscular mycorrhizal interactions. Using mutants from barley (Hordeum vulgare), wheat (Triticum aestivum), and Medicago truncatula, we demonstrate a role for MLO in colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Early mycorrhizal colonization was reduced in mlo mutants of barley, wheat, and M. truncatula, and this was accompanied by a pronounced decrease in the expression of many of the key genes required for intracellular accommodation of arbuscular mycorrhizal fungi. These findings show that clade IV MLOs are involved in the establishment of symbiotic associations with beneficial fungi, a role that has been appropriated by powdery mildew.
Collapse
Affiliation(s)
- Catherine N. Jacott
- Crop Genetics DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Myriam Charpentier
- Cell and Developmental Biology DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Jeremy D. Murray
- Cell and Developmental Biology DepartmentJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
- National Key Laboratory of Plant Molecular GeneticsCAS‐JIC Centre of Excellence for Plant and Microbial Science (CEPAMS)CAS Centre for Excellence in Molecular and Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | | |
Collapse
|
120
|
Laffont C, Ivanovici A, Gautrat P, Brault M, Djordjevic MA, Frugier F. The NIN transcription factor coordinates CEP and CLE signaling peptides that regulate nodulation antagonistically. Nat Commun 2020; 11:3167. [PMID: 32576831 PMCID: PMC7311451 DOI: 10.1038/s41467-020-16968-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 05/31/2020] [Indexed: 12/14/2022] Open
Abstract
Legumes tightly regulate nodule number to balance the cost of supporting symbiotic rhizobia with the benefits of nitrogen fixation. C-terminally Encoded Peptides (CEPs) and CLAVATA3-like (CLE) peptides positively and negatively regulate nodulation, respectively, through independent systemic pathways, but how these regulations are coordinated remains unknown. Here, we show that rhizobia, Nod Factors, and cytokinins induce a symbiosis-specific CEP gene, MtCEP7, which positively regulates rhizobial infection. Via grafting and split root studies, we reveal that MtCEP7 increases nodule number systemically through the MtCRA2 receptor. MtCEP7 and MtCLE13 expression in rhizobia-inoculated roots rely on the MtCRE1 cytokinin receptor and on the MtNIN transcription factor. MtNIN binds and transactivates MtCEP7 and MtCLE13, and a NIN Binding Site (NBS) identified within the proximal MtCEP7 promoter is required for its symbiotic activation. Overall, these results demonstrate that a cytokinin-MtCRE1-MtNIN regulatory module coordinates the expression of two antagonistic, symbiosis-related, peptide hormones from different families to fine-tune nodule number.
Collapse
Affiliation(s)
- Carole Laffont
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ d'Evry, Université de Paris; Université Paris-Saclay, Gif-sur-Yvette, France
| | - Ariel Ivanovici
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Pierre Gautrat
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ d'Evry, Université de Paris; Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mathias Brault
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ d'Evry, Université de Paris; Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michael Anthony Djordjevic
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ d'Evry, Université de Paris; Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
121
|
Drain A, Thouin J, Wang L, Boeglin M, Pauly N, Nieves-Cordones M, Gaillard I, Véry AA, Sentenac H. Functional characterization and physiological roles of the single Shaker outward K + channel in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1249-1265. [PMID: 31958173 DOI: 10.1111/tpj.14697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/29/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The model legume Medicago truncatula possesses a single outward Shaker K+ channel, whereas Arabidopsis thaliana possesses two channels of this type, named AtSKOR and AtGORK, with AtSKOR having been shown to play a major role in K+ secretion into the xylem sap in the root vasculature and with AtGORK being shown to mediate the efflux of K+ across the guard cell membrane, leading to stomatal closure. Here we show that the expression pattern of the single M. truncatula outward Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells and root hairs. As shown by patch-clamp experiments on root hair protoplasts, besides the Shaker-type slowly activating outwardly rectifying K+ conductance encoded by MtGORK, a second K+ -permeable conductance, displaying fast activation and weak rectification, can be expressed by M. truncatula. A knock-out (KO) mutation resulting in an absence of MtGORK activity is shown to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, but to strongly affect the control of stomatal aperture and transpirational water loss. In legumes, the early electrical signaling pathway triggered by Nod-factor perception is known to comprise a short transient depolarization of the root hair plasma membrane. In the absence of the functional expression of MtGORK, the rate of the membrane repolarization is found to be decreased by a factor of approximately two. This defect was without any consequence on infection thread development and nodule production in plants grown in vitro, but a decrease in nodule production was observed in plants grown in soil.
Collapse
Affiliation(s)
- Alice Drain
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Julien Thouin
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Limin Wang
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Martin Boeglin
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Nicolas Pauly
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, UMR 1355-7254 Institut Sophia Agrobiotech, Université Nice Sophia Antipolis, Sophia Antipolis, France
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Manuel Nieves-Cordones
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Apartado de Correos 164, Murcia, 30100, Spain
| | - Isabelle Gaillard
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Anne-Aliénor Véry
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| | - Hervé Sentenac
- Biochimie et Physiologie Moléculaire des Plantes, UMR BPMP, Univ Montpellier, CNRS, INRAE, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
122
|
Ramírez-Ordorica A, Valencia-Cantero E, Flores-Cortez I, Carrillo-Rayas MT, Elizarraraz-Anaya MIC, Montero-Vargas J, Winkler R, Macías-Rodríguez L. Metabolomic effects of the colonization of Medicago truncatula by the facultative endophyte Arthrobacter agilis UMCV2 in a foliar inoculation system. Sci Rep 2020; 10:8426. [PMID: 32439840 PMCID: PMC7242375 DOI: 10.1038/s41598-020-65314-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Biofertilizer production and application for sustainable agriculture is already a reality. The methods for biofertilizers delivery in crop fields are diverse. Although foliar spray is gaining wide acceptance, little is known about the influence that the biochemical features of leaves have on the microbial colonization. Arthrobacter agilis UMCV2 is a rhizospheric and endophytic bacteria that promotes plant growth and health. In this study, we determined the capacity of the UMCV2 strain to colonize different leaves from Medicago truncatula in a foliar inoculation system. By using two powerful analytical methods based on mass spectrometry, we determined the chemical profile of the leaves in 15-d old plants. The metabolic signatures between the unifoliate leaf (m1) and the metameric units developing above (m2 and m3) were different, and interestingly, the highest colony forming units (CFU) was found in m1. The occurrence of the endophyte strongly affects the sugar composition in m1 and m2 leaves. Our results suggest that A. agilis UMCV2 colonize the leaves under a foliar inoculation system independently of the phenological age of the leaf and it is capable of modulating the carbohydrate metabolism without affecting the rest of the metabolome.
Collapse
Affiliation(s)
- Arturo Ramírez-Ordorica
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Idolina Flores-Cortez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - María Teresa Carrillo-Rayas
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Ma Isabel Cristina Elizarraraz-Anaya
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Josaphat Montero-Vargas
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato. Km. 9.6 Libramiento Norte Carr. Irapuato-León. C. P. 36824, Irapuato, Guanajuato, México
| | - Lourdes Macías-Rodríguez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México.
| |
Collapse
|
123
|
Plant terpenoid metabolism co-opts a component of the cell wall biosynthesis machinery. Nat Chem Biol 2020; 16:740-748. [PMID: 32424305 DOI: 10.1038/s41589-020-0541-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/03/2020] [Indexed: 01/06/2023]
Abstract
Glycosylation is one of the most prevalent molecular modifications in nature. Single or multiple sugars can decorate a wide range of acceptors from proteins to lipids, cell wall glycans and small molecules, dramatically affecting their activity. Here, we discovered that by 'hijacking' an enzyme of the cellulose synthesis machinery involved in cell wall assembly, plants evolved cellulose synthase-like enzymes (Csls) and acquired the capacity to glucuronidate specialized metabolites, that is, triterpenoid saponins. Apparently, endoplasmic reticulum-membrane localization of Csls and of other pathway proteins was part of evolving a new glycosyltransferase function, as plant metabolite glycosyltransferases typically act in the cytosol. Discovery of glucuronic acid transferases across several plant orders uncovered the long-pursued enzymatic reaction in the production of a low-calorie sweetener from licorice roots. Our work opens the way for engineering potent saponins through microbial fermentation and plant-based systems.
Collapse
|
124
|
Fan YL, Zhang XH, Zhong LJ, Wang XY, Jin LS, Lyu SH. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC PLANT BIOLOGY 2020; 20:208. [PMID: 32397958 PMCID: PMC7333419 DOI: 10.1186/s12870-020-02421-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated (ARM) transformation is a highly efficient technique for generating composite plants composed of transgenic roots and wild-type shoot, providing a powerful tool for studying root biology. The ARM transformation has been established in many plant species, including soybean. However, traditional transformation of soybean, transformation efficiency is low. Additionally, the hairy roots were induced in a medium, and then the generated composite plants were transplanted into another medium for growth. This two-step operation is not only time-consuming, but aggravates contamination risk in the study of plant-microbe interactions. RESULTS Here, we report a one-step ARM transformation method with higher transformation efficiency for generating composite soybean plants. Both the induction of hairy roots and continuous growth of the composite plants were conducted in a single growth medium. The primary root of a 7-day-old seedling was decapitated with a slanted cut, the residual hypocotyl (maintained 0.7-1 cm apical portion) was inoculated with A. rhizogenes harboring the gene construct of interest. Subsequently, the infected seedling was planted into a pot with wet sterile vermiculite. Almost 100% of the infected seedlings could produce transgenic positive roots 16 days post-inoculation in 7 tested genotypes. Importantly, the transgenic hairy roots in each composite plant are about three times more than those of the traditional ARM transformation, indicating that the one-step method is simpler in operation and higher efficiency in transformation. The reliability of the one-step method was verified by CRISPR/Cas9 system to knockout the soybean Rfg1, which restricts nodulation in Williams 82 (Nod-) by Sinorhizobium fredii USDA193. Furthermore, we applied this method to analyze the function of Arabidopsis YAO promoter in soybean. The activity of YAO promoter was detected in whole roots and stronger in the root tips. We also extended the protocol to tomato. CONCLUSIONS We established a one-step ARM transformation method, which is more convenient in operation and higher efficiency (almost 100%) in transformation for generating composite soybean plants. This method has been validated in promoter functional analysis and rhizobia-legume interactions. We anticipate a broad application of this method to analyze root-related events in tomato and other plant species besides soybean.
Collapse
Affiliation(s)
- Ying-lun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xing-hui Zhang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Li-jing Zhong
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiu-yuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liang-shen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shan-hua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
125
|
Sós‐Hegedűs A, Domonkos Á, Tóth T, Gyula P, Kaló P, Szittya G. Suppression of NB-LRR genes by miRNAs promotes nitrogen-fixing nodule development in Medicago truncatula. PLANT, CELL & ENVIRONMENT 2020; 43:1117-1129. [PMID: 31834628 PMCID: PMC7317971 DOI: 10.1111/pce.13698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 05/29/2023]
Abstract
Plant genomes contain two major classes of innate immune receptors to recognize different pathogens. The pattern recognition receptors perceive conserved pathogen-associated molecular patterns and the resistance genes with nucleotide-binding (NB) and leucine-rich repeat (LRR) domains recognize specific pathogen effectors. The precise regulation of resistance genes is important since the unregulated expression of NB-LRR genes can inhibit growth and may result in autoimmunity in the absence of pathogen infection. It was shown that a subset of miRNAs could target NB-LRR genes and act as an important regulator of plant immunity in the absence of pathogens. Plants not only interact with pathogens, but they can also establish symbiotic interactions with microbes. Nitrogen-fixing symbiotic interaction and nodule formation of legumes may also require the suppression of host defence to prevent immune responses. We found that upon symbiotic interactions, miRNAs repressing NB-LRR expression are upregulated in the developing nodules of Medicago truncatula. Furthermore, we show that the suppression of the activity of the NB-LRR genes targeted by these miRNAs is important during nodule development. Our results suggest that the downregulation of NB-LRR resistance genes in the developing nodule produces a suitable niche that facilitates bacterial colonization and the development of an N-fixing nodule.
Collapse
Affiliation(s)
- Anita Sós‐Hegedűs
- Department of Plant BiotechnologyAgricultural Biotechnology Institute, National Agricultural Research and Innovation CenterGödöllőHungary
| | - Ágota Domonkos
- Department of GeneticsAgricultural Biotechnology Institute, National Agricultural Research and Innovation CenterGödöllőHungary
| | - Tamás Tóth
- Department of Plant BiotechnologyAgricultural Biotechnology Institute, National Agricultural Research and Innovation CenterGödöllőHungary
| | - Péter Gyula
- Department of Plant BiotechnologyAgricultural Biotechnology Institute, National Agricultural Research and Innovation CenterGödöllőHungary
| | - Péter Kaló
- Department of GeneticsAgricultural Biotechnology Institute, National Agricultural Research and Innovation CenterGödöllőHungary
- Institute of Plant BiologyBiological Research CentreSzegedHungary
| | - György Szittya
- Department of Plant BiotechnologyAgricultural Biotechnology Institute, National Agricultural Research and Innovation CenterGödöllőHungary
| |
Collapse
|
126
|
Erickson BJ, Staples NC, Hess N, Staples MA, Weissert C, Finkelstein RR, Cooper JB. PRPs localized to the middle lamellae are required for cortical tissue integrity in Medicago truncatula roots. PLANT MOLECULAR BIOLOGY 2020; 102:571-588. [PMID: 31927659 DOI: 10.1007/s11103-019-00960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
A family of repetitive proline-rich proteins interact with acidic pectins and play distinct roles in legume root cell walls affecting cortical and vascular structure. A proline-rich protein (PRP) family, composed of tandemly repeated Pro-Hyp-Val-X-Lys pentapeptide motifs, is found primarily in the Leguminosae. Four distinct size classes within this family are encoded by seven tightly linked genes: MtPRP1, MtPRP2 and MtPRP3, and four nearly identical MtPRP4 genes. Promoter fusions to β-glucuronidase showed strong expression in the stele of hairy roots for all 4 PRP genes tested, with additional expression in the cortex for PRP1, PRP2 and PRP4. All except MtPRP4 are strongly expressed in non-tumorous roots, and secreted and ionically bound to root cell walls. These PRPs are absent from root epidermal cell walls, and PRP accumulation is highly localized within the walls of root cortical and vascular tissues. Within xylem tissue, PRPs are deposited in secondary thickenings where it is spatially exclusive to lignin. In newly differentiating xylem, PRPs are deposited in the regularly spaced paired-pits and pit membranes that hydraulically connect neighboring xylem elements. Hairpin-RNA knock-down constructs reducing PRP expression in Medicago truncatula hairy root tumors disrupted cortical and vascular patterning. Immunoblots showed that the knockdown tumors had potentially compensating increases in the non-targeted PRPs, all of which cross-react with the anti-PRP antibodies. However, PRP3 knockdown differed from knockdown of PRP1 and PRP2 in that it greatly reduced viability of hairy root tumors. We hypothesize that repetitive PRPs interact with acidic pectins to form block-copolymer gels that can play distinct roles in legume root cell walls.
Collapse
Affiliation(s)
- B Joy Erickson
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biological Sciences Department, Santa Rosa Junior College, Santa Rosa, CA, 95401, USA
| | - Nathan C Staples
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biological Sciences Department, Cañada College, Redwood City, CA, 94061, USA
| | - Nicole Hess
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Michelle A Staples
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Christian Weissert
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biology Department, Universität Hamburg, 22609, Hamburg, Germany
| | - Ruth R Finkelstein
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| | - James B Cooper
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
127
|
Yang L, El Msehli S, Benyamina S, Lambert A, Hopkins J, Cazareth J, Pierre O, Hérouart D, Achi-Smiti S, Boncompagni E, Frendo P. Glutathione Deficiency in Sinorhizobium meliloti Does Not Impair Bacteroid Differentiation But Induces Early Senescence in the Interaction With Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2020; 11:137. [PMID: 32194584 PMCID: PMC7063052 DOI: 10.3389/fpls.2020.00137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/29/2020] [Indexed: 06/10/2023]
Abstract
Under nitrogen-limiting conditions, legumes are able to interact symbiotically with bacteria of the Rhizobiaceae family. This interaction gives rise to a new organ, named a root nodule. Root nodules are characterized by an increased glutathione (GSH) and homoglutathione (hGSH) content compared to roots. These low molecular thiols are very important in the biological nitrogen fixation. In order to characterize the modification of nodule activity induced by the microsymbiont glutathione deficiency, physiological, biochemical, and gene expression modifications were analyzed in nodules after the inoculation of Medicago truncatula with the SmgshB mutant of Sinorhizobium meliloti which is deficient in GSH production. The decline in nitrogen fixation efficiency was correlated to the reduction in plant shoot biomass. Flow cytometry analysis showed that SmgshB bacteroids present a higher DNA content than free living bacteria. Live/dead microscopic analysis showed an early bacteroid degradation in SmgshB nodules compared to control nodules which is correlated to a lower bacteroid content at 20 dpi. Finally, the expression of two marker genes involved in nitrogen fixation metabolism, Leghemoglobin and Nodule Cysteine Rich Peptide 001, decreased significantly in mutant nodules at 20 dpi. In contrast, the expression of two marker genes involved in the nodule senescence, Cysteine Protease 6 and Purple Acid Protease, increased significantly in mutant nodules at 10 dpi strengthening the idea that an early senescence process occurs in SmgshB nodules. In conclusion, our results showed that bacterial GSH deficiency does not impair bacterial differentiation but induces an early nodule senescence.
Collapse
Affiliation(s)
- Li Yang
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Sarra El Msehli
- Laboratoire de Physiologie Végétale, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | | | - Annie Lambert
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Hopkins
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Julie Cazareth
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR 7275, Université Côte d'Azur, Valbonne, France
| | - Olivier Pierre
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Didier Hérouart
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Samira Achi-Smiti
- Laboratoire de Physiologie Végétale, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | - Eric Boncompagni
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| | - Pierre Frendo
- Université Côte d'Azur, INRA, CNRS, ISA, Sophia-Antipolis, France
| |
Collapse
|
128
|
Gautrat P, Laffont C, Frugier F. Compact Root Architecture 2 Promotes Root Competence for Nodulation through the miR2111 Systemic Effector. Curr Biol 2020; 30:1339-1345.e3. [PMID: 32109394 DOI: 10.1016/j.cub.2020.01.084] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Nitrogen-deprived legume plants form new root organs, the nodules, following a symbiosis with nitrogen-fixing rhizobial bacteria [1]. Because this interaction is beneficial for the plant but has a high energetic cost, nodulation is tightly controlled by host plants through systemic pathways (acting at long distance) to promote or limit rhizobial infections and nodulation depending on earlier infections and on nitrogen availability [2]. In the Medicago truncatula model legume, CLE12 (Clavata3/Embryo surrounding region 12) and CLE13 signaling peptides produced in nodulated roots act in shoots through the SUNN (Super Numeric Nodule) receptor to negatively regulate nodulation and therefore autoregulate nodule number [3-5]. Conversely, CEP (C-terminally Encoded Peptide) signaling peptides produced in nitrogen-starved roots act in shoots through the CRA2 (Compact Root Architecture 2) receptor to promote nodulation already in the absence of rhizobia [6-9]. We show in this study that a downstream shoot-to-root signaling effector of these systemic pathways is the shoot-produced miR2111 microRNA [10] that negatively regulates TML1 (Too Much Love 1) and TML2 [11] transcripts accumulation in roots, ultimately promoting nodulation. Low nitrogen conditions and CEP1 signaling peptides induce in the absence of rhizobia the production of miR2111 depending on CRA2 activity in shoots, thus favoring root competence for nodulation. Together with the SUNN pathway negatively regulating the same miR2111 systemic effector when roots are nodulated, this allows a dynamic fine-tuning of the nodulation capacity of legume roots by nitrogen availability and rhizobial cues.
Collapse
Affiliation(s)
- Pierre Gautrat
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, U. Paris-Sud, INRA, U. Paris-Diderot, U. d'Evry, Université Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, 91190 Gif-sur-Yvette, France
| | - Carole Laffont
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, U. Paris-Sud, INRA, U. Paris-Diderot, U. d'Evry, Université Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, 91190 Gif-sur-Yvette, France
| | - Florian Frugier
- Institute of Plant Sciences - Paris Saclay (IPS2), CNRS, U. Paris-Sud, INRA, U. Paris-Diderot, U. d'Evry, Université Paris-Saclay, Bâtiment 630, rue de Noetzlin, Plateau du Moulon, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
129
|
Das D, Torabi S, Chapman P, Gutjahr C. A Flexible, Low-Cost Hydroponic Co-Cultivation System for Studying Arbuscular Mycorrhiza Symbiosis. FRONTIERS IN PLANT SCIENCE 2020; 11:63. [PMID: 32174928 PMCID: PMC7057232 DOI: 10.3389/fpls.2020.00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiosis between plant roots and fungi of the Glomeromycotina, which improves nutrient uptake by plants. The molecular mechanisms underlying development and function of the symbiosis are subject to increasing research activity. Since AM occurs in the soil, most studies targeting a molecular understanding of AM development and function, use solid substrates for co-cultivating plants and AM fungi. However, for some experiments very clean roots, highly controlled nutrient conditions or applications of defined concentrations of signaling molecules (such as hormones) or other small chemicals (such as synthetic inhibitors or signaling agonists) are needed. To this end, hydroponics has been widely used in research on mechanisms of plant nutrition and some hydroponic systems were developed for AM fungal spore amplification. Here, we present a hydroponics set-up, which can be successfully utilized for experimental root colonization assays. We established a "tip-wick" system based on pipette tips and rock wool wicks for co-cultivation of AM fungi with small model plants such as Lotus japonicus. A larger "Falcon-wick" system using Falcon tubes and rockwool wicks was developed for larger model plants such as rice. The hydroponic system can also be employed for growing L. japonicus hairy roots after transformation by Agrobacterium rhizogenes, thus circumventing the laborious cultivation on agar medium-containing Petri dishes during hairy root development. The tip-wick and Falcon-wick systems are easy to use and can be built with low cost, conventional and reusable lab plastic ware and a simple aquarium pump.
Collapse
Affiliation(s)
- Debatosh Das
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Salar Torabi
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Philipp Chapman
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Martinsried, Germany
- Plant Genetics, TUM School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Freising, Germany
| |
Collapse
|
130
|
Ng JLP, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1562-1573. [PMID: 31738415 DOI: 10.1093/jxb/erz510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The development of root nodules leads to an increased auxin response in early nodule primordia, which is mediated by changes in acropetal auxin transport in some legumes. Here, we investigated the role of root basipetal auxin transport during nodulation. Rhizobia inoculation significantly increased basipetal auxin transport in both Medicago truncatula and Lotus japonicus. In M. truncatula, this increase was dependent on functional Nod factor signalling through NFP, NIN, and NSP2, as well as ethylene signalling through SKL. To test whether increased basipetal auxin transport is required for nodulation, we examined a loss-of-function mutant of the M. truncatula PIN2 gene. The Mtpin2 mutant exhibited a reduction in basipetal auxin transport and an agravitropic phenotype. Inoculation of Mtpin2 roots with rhizobia still led to a moderate increase in basipetal auxin transport, but the mutant nodulated normally. No clear differences in auxin response were observed during nodule development. Interestingly, inoculation of wild-type roots increased lateral root numbers, whereas inoculation of Mtpin2 mutants resulted in reduced lateral root numbers compared with uninoculated roots. We conclude that the MtPIN2 auxin transporter is involved in basipetal auxin transport, that its function is not essential for nodulation, but that it plays an important role in the control of lateral root development.
Collapse
Affiliation(s)
- Jason L P Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Astrid Welvaert
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| | - Jiangqi Wen
- Noble Research Institute LLC, Ardmore, OK, USA
| | - Rujin Chen
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
131
|
Escudero V, Abreu I, del Sastre E, Tejada-Jiménez M, Larue C, Novoa-Aponte L, Castillo-González J, Wen J, Mysore KS, Abadía J, Argüello JM, Castillo-Michel H, Álvarez-Fernández A, Imperial J, González-Guerrero M. Nicotianamine Synthase 2 Is Required for Symbiotic Nitrogen Fixation in Medicago truncatula Nodules. FRONTIERS IN PLANT SCIENCE 2020; 10:1780. [PMID: 32082345 PMCID: PMC7003136 DOI: 10.3389/fpls.2019.01780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/20/2019] [Indexed: 05/07/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and diazotrophic bacteria known as rhizobia requires relatively large levels of transition metals. These elements are cofactors of many key enzymes involved in this process. Metallic micronutrients are obtained from soil by the roots and directed to sink organs by the vasculature, in a process mediated by a number of metal transporters and small organic molecules that facilitate metal delivery in the plant fluids. Among the later, nicotianamine is one of the most important. Synthesized by nicotianamine synthases (NAS), this molecule forms metal complexes participating in intracellular metal homeostasis and long-distance metal trafficking. Here we characterized the NAS2 gene from model legume Medicago truncatula. MtNAS2 is located in the root vasculature and in all nodule tissues in the infection and fixation zones. Symbiotic nitrogen fixation requires of MtNAS2 function, as indicated by the loss of nitrogenase activity in the insertional mutant nas2-1, phenotype reverted by reintroduction of a wild-type copy of MtNAS2. This would result from the altered iron distribution in nas2-1 nodules shown with X-ray fluorescence. Moreover, iron speciation is also affected in these nodules. These data suggest a role of nicotianamine in iron delivery for symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Eric del Sastre
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Camille Larue
- EcoLab, Université de Toulouse, CNRS, Toulouse, France
| | - Lorena Novoa-Aponte
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Jorge Castillo-González
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jiangqi Wen
- Noble Research Institute, Ardmore, OK, United States
| | | | - Javier Abadía
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - José M. Argüello
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA, United States
| | | | - Ana Álvarez-Fernández
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
132
|
Villar I, Larrainzar E, Milazzo L, Pérez-Rontomé C, Rubio MC, Smulevich G, Martínez JI, Wilson MT, Reeder B, Huertas R, Abbruzzetti S, Udvardi M, Becana M. A Plant Gene Encoding One-Heme and Two-Heme Hemoglobins With Extreme Reactivities Toward Diatomic Gases and Nitrite. FRONTIERS IN PLANT SCIENCE 2020; 11:600336. [PMID: 33329665 PMCID: PMC7710986 DOI: 10.3389/fpls.2020.600336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/16/2020] [Indexed: 05/11/2023]
Abstract
In plants, symbiotic hemoglobins act as carriers and buffers of O2 in nodules, whereas nonsymbiotic hemoglobins or phytoglobins (Glbs) are ubiquitous in tissues and may perform multiple, but still poorly defined, functions related to O2 and/or nitric oxide (NO). Here, we have identified a Glb gene of the model legume Medicago truncatula with unique properties. The gene, designated MtGlb1-2, generates four alternative splice forms encoding Glbs with one or two heme domains and 215-351 amino acid residues. This is more than double the size of any hemoglobin from plants or other organisms described so far. A combination of molecular, cellular, biochemical, and biophysical methods was used to characterize these novel proteins. RNA-sequencing showed that the four splice variants are expressed in plant tissues. MtGlb1-2 is transcriptionally activated by hypoxia and its expression is further enhanced by an NO source. The gene is preferentially expressed in the meristems and vascular bundles of roots and nodules. Two of the proteins, bearing one or two hemes, were characterized using mutants in the distal histidines of the hemes. The Glbs are extremely reactive toward the physiological ligands O2, NO, and nitrite. They show very high O2 affinities, NO dioxygenase activity (in the presence of O2), and nitrite reductase (NiR) activity (in the absence of O2) compared with the hemoglobins from vertebrates and other plants. We propose that these Glbs act as either NO scavengers or NO producers depending on the O2 tension in the plant tissue, being involved in the fast and fine tuning of NO concentration in the cytosol in response to sudden changes in O2 availability.
Collapse
Affiliation(s)
- Irene Villar
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Estíbaliz Larrainzar
- Department of Sciences, Institute for Multidisciplinary Applied Biology, Campus Arrosadía, Universidad Pública de Navarra, Pamplona, Spain
| | - Lisa Milazzo
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Florence, Italy
| | - Carmen Pérez-Rontomé
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Maria C. Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Florence, Italy
| | - Jesús I. Martínez
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Zaragoza, Spain
| | - Michael T. Wilson
- School of Life Sciences, Essex University, Wivenhoe Park, Colchester, United Kingdom
| | - Brandon Reeder
- School of Life Sciences, Essex University, Wivenhoe Park, Colchester, United Kingdom
| | - Raul Huertas
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parma, Italy
| | | | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
- *Correspondence: Manuel Becana,
| |
Collapse
|
133
|
Optimization of Hairy Root Transformation for the Functional Genomics in Chickpea: A Platform for Nodule Developmental Studies. Methods Mol Biol 2020; 2107:335-348. [PMID: 31893457 DOI: 10.1007/978-1-0716-0235-5_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chickpea is a major protein source in low socio-economic classes and cultivated in marginal soil without fertilizer or irrigation. As a result of its root nodule formation capacity chickpea can directly use atmospheric nitrogen. Chickpea is recalcitrant to stable transformation, particularly root regeneration efficiency of chickpea is low. The composite plant-based system with a non-transformed shoot and transformed root is particularly important for root biologist and this approach has already been used successfully for root nodule symbiosis, arbuscular mycorrhizal symbiosis, and other root-related studies. Use of fluorescent marker-based approach can accurately identify the transformed root from its non-transgenic counterpart. RNAi-based gene knockout, overexpression of genes, promoter GUS analysis to understand tissue specific expression and localization of protein can be achieved using the hairy root-based system. We have already published a hairy root-based transformation and composite plant regeneration protocol of chickpea. Here we are describing the recent modification that we have made to increase the transformation frequency and nodule morphology. Further, we have developed a pouch based artificial system, large number of plants can be scored for its nodule developmental phenotype, by using this system.
Collapse
|
134
|
The Mycorrhizal Donor Plant (MDP) In Vitro Culture System for the Efficient Colonization of Whole Plants. Methods Mol Biol 2020; 2146:19-31. [PMID: 32415592 DOI: 10.1007/978-1-0716-0603-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mycorrhizal donor plant (MDP) in vitro culture system allows the fast and homogeneous colonization of a wide range of photosynthetically active plants. Here we detailed the setup of the system and its potential applications for basic studies as well as mass production and applied purposes.
Collapse
|
135
|
de Bang L, Paez-Garcia A, Cannon AE, Chin S, Kolape J, Liao F, Sparks JA, Jiang Q, Blancaflor EB. Brassinosteroids Inhibit Autotropic Root Straightening by Modifying Filamentous-Actin Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:5. [PMID: 32117357 PMCID: PMC7010715 DOI: 10.3389/fpls.2020.00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/06/2020] [Indexed: 05/12/2023]
Abstract
When positioned horizontally, roots grow down toward the direction of gravity. This phenomenon, called gravitropism, is influenced by most of the major plant hormones including brassinosteroids. Epi-brassinolide (eBL) was previously shown to enhance root gravitropism, a phenomenon similar to the response of roots exposed to the actin inhibitor, latrunculin B (LatB). This led us to hypothesize that eBL might enhance root gravitropism through its effects on filamentous-actin (F-actin). This hypothesis was tested by comparing gravitropic responses of maize (Zea mays) roots treated with eBL or LatB. LatB- and eBL-treated roots displayed similar enhanced downward growth compared with controls when vertical roots were oriented horizontally. Moreover, the effects of the two compounds on root growth directionality were more striking on a slowly-rotating two-dimensional clinostat. Both compounds inhibited autotropism, a process in which the root straightened after the initial gravistimulus was withdrawn by clinorotation. Although eBL reduced F-actin density in chemically-fixed Z. mays roots, the impact was not as strong as that of LatB. Modification of F-actin organization after treatment with both compounds was also observed in living roots of barrel medic (Medicago truncatula) seedlings expressing genetically encoded F-actin reporters. Like in fixed Z. mays roots, eBL effects on F-actin in living M. truncatula roots were modest compared with those of LatB. Furthermore, live cell imaging revealed a decrease in global F-actin dynamics in hypocotyls of etiolated M. truncatula seedlings treated with eBL compared to controls. Collectively, our data indicate that eBL-and LatB-induced enhancement of root gravitropism can be explained by inhibited autotropic root straightening, and that eBL affects this process, in part, by modifying F-actin organization and dynamics.
Collapse
Affiliation(s)
- Louise de Bang
- Noble Research Institute LLC, Ardmore, OK, United States
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ashley E. Cannon
- Noble Research Institute LLC, Ardmore, OK, United States
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Sabrina Chin
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Jaydeep Kolape
- Noble Research Institute LLC, Ardmore, OK, United States
- Center for Biotechnology, University of Nebraska—Lincoln, Lincoln, NE, United States
| | - Fuqi Liao
- Noble Research Institute LLC, Ardmore, OK, United States
| | - J. Alan Sparks
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Qingzhen Jiang
- Noble Research Institute LLC, Ardmore, OK, United States
| | - Elison B. Blancaflor
- Noble Research Institute LLC, Ardmore, OK, United States
- *Correspondence: Elison B. Blancaflor,
| |
Collapse
|
136
|
Hartmann M, Voß S, Requena N. Host-Induced Gene Silencing of Arbuscular Mycorrhizal Fungal Genes via Agrobacterium rhizogenes-Mediated Root Transformation in Medicago truncatula. Methods Mol Biol 2020; 2146:239-248. [PMID: 32415608 DOI: 10.1007/978-1-0716-0603-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Host-induced gene silencing (HIGS) is a methodology that allows the downregulation of genes in organisms living in close association with a host and that are not amenable or recalcitrant to genetic modifications. This method has been particularly used for oomycetes and for filamentous fungi interacting with plants, including the fungi of the arbuscular mycorrhizal symbiosis. Here, we present a protocol developed in our laboratory to downregulate genes from the obligate symbiont Rhizophagus irregularis in symbiosis with Medicago truncatula plants.
Collapse
Affiliation(s)
- Meike Hartmann
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Stefanie Voß
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalia Requena
- Molecular Phytopathology, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| |
Collapse
|
137
|
Berger A, Boscari A, Horta Araújo N, Maucourt M, Hanchi M, Bernillon S, Rolin D, Puppo A, Brouquisse R. Plant Nitrate Reductases Regulate Nitric Oxide Production and Nitrogen-Fixing Metabolism During the Medicago truncatula-Sinorhizobium meliloti Symbiosis. FRONTIERS IN PLANT SCIENCE 2020; 11:1313. [PMID: 33013954 PMCID: PMC7500168 DOI: 10.3389/fpls.2020.01313] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Nitrate reductase (NR) is the first enzyme of the nitrogen reduction pathway in plants, leading to the production of ammonia. However, in the nitrogen-fixing symbiosis between legumes and rhizobia, atmospheric nitrogen (N2) is directly reduced to ammonia by the bacterial nitrogenase, which questions the role of NR in symbiosis. Next to that, NR is the best-characterized source of nitric oxide (NO) in plants, and NO is known to be produced during the symbiosis. In the present study, we first surveyed the three NR genes (MtNR1, MtNR2, and MtNR3) present in the Medicago truncatula genome and addressed their expression, activity, and potential involvement in NO production during the symbiosis between M. truncatula and Sinorhizobium meliloti. Our results show that MtNR1 and MtNR2 gene expression and activity are correlated with NO production throughout the symbiotic process and that MtNR1 is particularly involved in NO production in mature nodules. Moreover, NRs are involved together with the mitochondrial electron transfer chain in NO production throughout the symbiotic process and energy regeneration in N2-fixing nodules. Using an in vivo NMR spectrometric approach, we show that, in mature nodules, NRs participate also in the regulation of energy state, cytosolic pH, carbon and nitrogen metabolism under both normoxia and hypoxia. These data point to the importance of NR activity for the N2-fixing symbiosis and provide a first explanation of its role in this process.
Collapse
Affiliation(s)
- Antoine Berger
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
- Department of Horticultural Science, University of Florida, Gainesville, FL, United States
| | - Alexandre Boscari
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Natasha Horta Araújo
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Mickaël Maucourt
- Univ. Bordeaux INRAE, UMR Biologie du Fruit et Pathologie, Villenave d’Ornon, France
| | - Mohamed Hanchi
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Stéphane Bernillon
- PMB-Metabolome, INRAE, Bordeaux Metabolome Facility, Villenave d’Ornon, France
| | - Dominique Rolin
- Univ. Bordeaux INRAE, UMR Biologie du Fruit et Pathologie, Villenave d’Ornon, France
- PMB-Metabolome, INRAE, Bordeaux Metabolome Facility, Villenave d’Ornon, France
| | - Alain Puppo
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
| | - Renaud Brouquisse
- Institut Sophia Agrobiotech, UMR INRAE 1355, Université Côte d’Azur, CNRS, Sophia Antipolis, France
- *Correspondence: Renaud Brouquisse,
| |
Collapse
|
138
|
Garagounis C, Georgopoulou ME, Beritza K, Papadopoulou KK. An Agrobacterium rhizogenes mediated hairy root transformation protocol for fenugreek. MethodsX 2020; 7:101098. [PMID: 33102159 PMCID: PMC7569215 DOI: 10.1016/j.mex.2020.101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022] Open
Abstract
This work describes a protocol for hairy root transformation of the medicinal crop legume fenugreek (Trigonella foenum-graecum L.). Hairy root plant transformation mediated by Agrobacterium rhizogenes is an established method for the rapid genetic transformation of various dicotyledonous plants. We have adapted a hairy root transformation protocol from the model legume Medicago truncatula for use in this metabolically rich non-model crop legume. Considering the great variety and abundance of phytochemicals in fenugreek and its established use in traditional medicine, we aim for this method to become a resource for metabolic pathway identification and for production of valuable specialised metabolites via metabolic engineering approaches. Development rapid transformation (2.5–3 weeks) of fenugreek roots via A. rhizogenes. Marker gene cassette with suitable promoter for visual detection of transformed fenugreek roots
Collapse
|
139
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Faccio A, Bonfante P, Chabaud M, Chiapello M, Van Damme D, Genre A. TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions. FRONTIERS IN PLANT SCIENCE 2019; 10:1628. [PMID: 31921269 PMCID: PMC6934022 DOI: 10.3389/fpls.2019.01628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/19/2019] [Indexed: 06/02/2023]
Abstract
Introduction: Arbuscular mycorrhizal (AM) symbiosis between soil fungi and the majority of plants is based on a mutualistic exchange of organic and inorganic nutrients. This takes place inside root cortical cells that harbor an arbuscule: a highly branched intracellular fungal hypha enveloped by an extension of the host cell membrane-the perifungal membrane-which outlines a specialized symbiotic interface compartment. The perifungal membrane develops around each intracellular hypha as the symbiotic fungus proceeds across the root tissues; its biogenesis is the result of an extensive exocytic process and shows a few similarities with cell plate insertion which occurs at the end of somatic cytokinesis. Materials and Methods: We here analyzed the subcellular localization of a GFP fusion with TPLATE, a subunit of the endocytic TPLATE complex (TPC), a central actor in plant clathrin-mediated endocytosis with a role in cell plate anchoring with the parental plasma membrane. Results: Our observations demonstrate that Daucus carota and Medicago truncatula root organ cultures expressing a 35S::AtTPLATE-GFP construct accumulate strong fluorescent green signal at sites of symbiotic interface construction, along recently formed perifungal membranes and at sites of cell-to-cell hyphal passage between adjacent cortical cells, where the perifungal membrane fuses with the plasmalemma. Discussion: Our results strongly suggest that TPC-mediated endocytic processes are active during perifungal membrane interface biogenesis-alongside exocytic transport. This novel conclusion, which might be correlated to the accumulation of late endosomes in the vicinity of the developing interface, hints at the involvement of TPC-dependent membrane remodeling during the intracellular accommodation of AM fungi.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Mireille Chabaud
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council, Torino, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Department of Plant Systems Biology, Ghent University, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
140
|
He J, Zhang C, Dai H, Liu H, Zhang X, Yang J, Chen X, Zhu Y, Wang D, Qi X, Li W, Wang Z, An G, Yu N, He Z, Wang YF, Xiao Y, Zhang P, Wang E. A LysM Receptor Heteromer Mediates Perception of Arbuscular Mycorrhizal Symbiotic Signal in Rice. MOLECULAR PLANT 2019; 12:1561-1576. [PMID: 31706032 DOI: 10.1016/j.molp.2019.10.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Symbiotic microorganisms improve nutrient uptake by plants. To initiate mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, plants perceive Myc factors, including lipochitooligosaccharides (LCOs) and short-chain chitooligosaccharides (CO4/CO5), secreted by AM fungi. However, the molecular mechanism of Myc factor perception remains elusive. In this study, we identified a heteromer of LysM receptor-like kinases consisting of OsMYR1/OsLYK2 and OsCERK1 that mediates the perception of AM fungi in rice. CO4 directly binds to OsMYR1, promoting the dimerization and phosphorylation of this receptor complex. Compared with control plants, Osmyr1 and Oscerk1 mutant rice plants are less sensitive to Myc factors and show decreased AM colonization. We engineered transgenic rice by expressing chimeric receptors that respectively replaced the ectodomains of OsMYR1 and OsCERK1 with those from the homologous Nod factor receptors MtNFP and MtLYK3 of Medicago truncatula. Transgenic plants displayed increased calcium oscillations in response to Nod factors compared with control rice. Our study provides significant mechanistic insights into AM symbiotic signal perception in rice. Expression of chimeric Nod/Myc receptors achieves a potentially important step toward generating cereals that host nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Jiangman He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Huiling Dai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huan Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xi Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yayun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dapeng Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Xiaofeng Qi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weichao Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhihui Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Guoyong An
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Fei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Youli Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
141
|
Feng Z, Zhang L, Wu Y, Wang L, Xu M, Yang M, Li Y, Wei G, Chou M. The Rpf84 gene, encoding a ribosomal large subunit protein, RPL22, regulates symbiotic nodulation in Robinia pseudoacacia. PLANTA 2019; 250:1897-1910. [PMID: 31485773 DOI: 10.1007/s00425-019-03267-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
A homologue of the ribosomal protein L22e, Rpf84, regulates root nodule symbiosis by mediating the infection process of rhizobia and preventing bacteroids from degradation in Robinia pseudoacacia. Ribosomal proteins (RPs) are known to have extraribosomal functions, including developmental regulation and stress responses; however, the effects of RPs on symbiotic nodulation of legumes are still unclear. Ribosomal protein 22 of the large 60S subunit (RPL22), a non-typical RP that is only found in eukaryotes, has been shown to function as a tumour suppressor in animals. Here, a homologue of RPL22, Rpf84, was identified from the leguminous tree R. pseudoacacia. Subcellular localization assays showed that Rpf84 was expressed in the cytoplasm and nucleus. Knockdown of Rpf84 by RNA interference (RNAi) technology impaired the infection process and nodule development. Compared with the control, root and stem length, dry weight and nodule number per plant were drastically decreased in Rpf84-RNAi plants. The numbers of root hair curlings, infection threads and nodule primordia were also significantly reduced. Ultrastructure analyses showed that Rpf84-RNAi nodules contained fewer infected cells with fewer bacteria. In particular, remarkable deformation of bacteroids and fusion of multiple symbiosomes occurred in infected cells. By contrast, overexpression of Rpf84 promoted nodulation, and the overexpression nodules maintained a larger infection/differentiation region and had more infected cells filled with bacteroids than the control at 45 days post inoculation, suggesting a retarded ageing process in nodules. These results indicate for the first time that RP regulates the symbiotic nodulation of legumes and that RPL22 may function in initiating the invasion of rhizobia and preventing bacteroids from degradation in R. pseudoacacia.
Collapse
Affiliation(s)
- Zhao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
- College of Medical Technology, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yuanyuan Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mingying Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Mo Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
142
|
Feike D, Korolev AV, Soumpourou E, Murakami E, Reid D, Breakspear A, Rogers C, Radutoiu S, Stougaard J, Harwood WA, Oldroyd GED, Miller J. Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2234-2245. [PMID: 31022324 PMCID: PMC6835126 DOI: 10.1111/pbi.13135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 04/18/2019] [Indexed: 05/20/2023]
Abstract
Plant synthetic biology and cereal engineering depend on the controlled expression of transgenes of interest. Most engineering in plant species to date has relied heavily on the use of a few, well-established constitutive promoters to achieve high levels of expression; however, the levels of transgene expression can also be influenced by the use of codon optimization, intron-mediated enhancement and varying terminator sequences. Most of these alternative approaches for regulating transgene expression have only been tested in small-scale experiments, typically testing a single gene of interest. It is therefore difficult to interpret the relative importance of these approaches and to design engineering strategies that are likely to succeed in different plant species, particularly if engineering multigenic traits where the expression of each transgene needs to be precisely regulated. Here, we present data on the characterization of 46 promoters and 10 terminators in Medicago truncatula, Lotus japonicus, Nicotiana benthamiana and Hordeum vulgare, as well as the effects of codon optimization and intron-mediated enhancement on the expression of two transgenes in H. vulgare. We have identified a core set of promoters and terminators of relevance to researchers engineering novel traits in plant roots. In addition, we have shown that combining codon optimization and intron-mediated enhancement increases transgene expression and protein levels in barley. Based on our study, we recommend a core set of promoters and terminators for broad use and also propose a general set of principles and guidelines for those engineering cereal species.
Collapse
Affiliation(s)
- Doreen Feike
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
EMBL HeidelbergMeyerhofstraße 169117HeidelbergGermany
| | | | - Eleni Soumpourou
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Eiichi Murakami
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- Present address:
GRA&GREEN Inc., Incubation Center 106Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐0814Japan
| | - Dugald Reid
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Christian Rogers
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - Simona Radutoiu
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | - Jens Stougaard
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
| | | | - Giles E. D. Oldroyd
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Sainsbury LaboratoryUniversity of Cambridge47 Bateman StreetCambridgeCB2 1LRUK
| | - J. Benjamin Miller
- John Innes CentreNorwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East Anglia, Norwich Research ParkNorwichUK
| |
Collapse
|
143
|
Ge L, Zhang K, Cao X, Weng Y, Liu B, Mao P, Ma X. Sequence characteristics of Medicago truncatula cyclophilin family members and function analysis of MsCYP20-3B involved in axillary shoot development. Mol Biol Rep 2019; 47:907-919. [PMID: 31741262 DOI: 10.1007/s11033-019-05183-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022]
Abstract
Cyclophilins (CYPs) belonging to the immunophilin family are present in all organisms and widely distributed in various cells associated with the activity of peptidyl-prolyl cis/trans isomerase. Plant CYPs are members of a multi-gene family and are involved in a series of biological processes. However, little is known about their structure, evolution, developmental expression and functional analysis in Medicago truncatula. In this study, a total of 33 CYP genes were identified and found to be unevenly distributed on eight chromosomes. Among them, 21 are single-domain and 12 are multi-domain proteins, and most were predicted to be localized in the cytosol, nucleus or chloroplast. Phylogenetic and gene structure analysis revealed seven segmental gene pairs, indicating that segmental duplication probably made a large contribution to the expansion of MtCYP gene family. Furthermore, gene expression analysis revealed that about 10 MtCYP genes (were) highly expressed involved in vegetative and reproduction tissues in M. truncatula, and MsCYP20-3B was mainly upregulated in stems, leaves and flower buds in alfalfa (Medicago sativa). Overexpression of MsCYP20-3B was shown to regulate axillary shoot development associated with higher jasmonic acid and abscisic acid contents in M. truncatula. Our study suggests the importance of the CYP genes family in development, reproduction and stress responses, and provides a reference for future studies and application of CYP genes for alfalfa genetic improvement.
Collapse
Affiliation(s)
- Lingqiao Ge
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Kun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xiaohui Cao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yinyin Weng
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Bei Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xiqing Ma
- College of Grassland Science and Technology, China Agricultural University, Beijing, China. .,Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
144
|
Schiessl K, Lilley JLS, Lee T, Tamvakis I, Kohlen W, Bailey PC, Thomas A, Luptak J, Ramakrishnan K, Carpenter MD, Mysore KS, Wen J, Ahnert S, Grieneisen VA, Oldroyd GED. NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula. Curr Biol 2019; 29:3657-3668.e5. [PMID: 31543454 PMCID: PMC6839406 DOI: 10.1016/j.cub.2019.09.005] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/02/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023]
Abstract
To overcome nitrogen deficiencies in the soil, legumes enter symbioses with rhizobial bacteria that convert atmospheric nitrogen into ammonium. Rhizobia are accommodated as endosymbionts within lateral root organs called nodules that initiate from the inner layers of Medicago truncatula roots in response to rhizobial perception. In contrast, lateral roots emerge from predefined founder cells as an adaptive response to environmental stimuli, including water and nutrient availability. CYTOKININ RESPONSE 1 (CRE1)-mediated signaling in the pericycle and in the cortex is necessary and sufficient for nodulation, whereas cytokinin is antagonistic to lateral root development, with cre1 showing increased lateral root emergence and decreased nodulation. To better understand the relatedness between nodule and lateral root development, we undertook a comparative analysis of these two root developmental programs. Here, we demonstrate that despite differential induction, lateral roots and nodules share overlapping developmental programs, with mutants in LOB-DOMAIN PROTEIN 16 (LBD16) showing equivalent defects in nodule and lateral root initiation. The cytokinin-inducible transcription factor NODULE INCEPTION (NIN) allows induction of this program during nodulation through activation of LBD16 that promotes auxin biosynthesis via transcriptional induction of STYLISH (STY) and YUCCAs (YUC). We conclude that cytokinin facilitates local auxin accumulation through NIN promotion of LBD16, which activates a nodule developmental program overlapping with that induced during lateral root initiation.
Collapse
Affiliation(s)
- Katharina Schiessl
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jodi L S Lilley
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Tak Lee
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Ioannis Tamvakis
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Wouter Kohlen
- Laboratory for Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Paul C Bailey
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Aaron Thomas
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jakub Luptak
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Karunakaran Ramakrishnan
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Matthew D Carpenter
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Sebastian Ahnert
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | - Veronica A Grieneisen
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Giles E D Oldroyd
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK; Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| |
Collapse
|
145
|
Lindsay PL, Williams BN, MacLean A, Harrison MJ. A Phosphate-Dependent Requirement for Transcription Factors IPD3 and IPD3L During Arbuscular Mycorrhizal Symbiosis in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1277-1290. [PMID: 31070991 DOI: 10.1094/mpmi-01-19-0006-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During arbuscular mycorrhizal (AM) symbiosis, activation of a symbiosis signaling pathway induces gene expression necessary for accommodation of AM fungi. Here, we focus on pathway components Medicago truncatula INTERACTING PROTEIN OF DOES NOT MAKE INFECTIONS 3 (IPD3) and IPD3 LIKE (IPD3L), which are potential orthologs of Lotus japonicus CYCLOPS, a transcriptional regulator essential for AM symbiosis. In the double mutant ipd3 ipd3l, hyphal entry through the epidermis and overall colonization levels are reduced relative to the wild type but fully developed arbuscules are present in the cortex. In comparison with the wild type, colonization of ipd3 ipd3l is acutely sensitive to higher phosphate levels in the growth medium, with a disproportionate decrease in epidermal penetration, overall colonization, and symbiotic gene expression. When constitutively expressed in ipd3 ipd3l, an autoactive DOES NOT MAKE INFECTIONS 3 induces the expression of transcriptional regulators REDUCED ARBUSCULAR MYCORRHIZA 1 and REQUIRED for ARBUSCULE DEVELOPMENT 1, providing a possible avenue for arbuscule development in the absence of IPD3 and IPD3L. An increased sensitivity of ipd3 ipd3l to GA3 suggests an involvement of DELLA. The data reveal partial redundancy in the symbiosis signaling pathway, which may ensure robust signaling in low-phosphorus environments, while IPD3 and IPD3L maintain signaling in higher-phosphorus environments. The latter may buffer the pathway from short-term variation in phosphorus levels encountered by roots during growth in heterogeneous soil environments.
Collapse
Affiliation(s)
- Penelope L Lindsay
- Boyce Thompson Institute, Tower Road, Ithaca, NY 14853
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY
| | | | | | | |
Collapse
|
146
|
Zhang S, Kondorosi É, Kereszt A. An anthocyanin marker for direct visualization of plant transformation and its use to study nitrogen-fixing nodule development. JOURNAL OF PLANT RESEARCH 2019; 132:695-703. [PMID: 31325057 PMCID: PMC6713694 DOI: 10.1007/s10265-019-01126-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 05/22/2023]
Abstract
The development and functioning of the nitrogen fixing symbiosis between legume plants and soil bacteria collectively called rhizobia requires continuous chemical dialogue between the partners using different molecules such as flavonoids, lipo-chitooligosaccharides, polysaccharides and peptides. Agrobacterium rhizogenes mediated hairy root transformation of legumes is widely used to study the function of plant genes involved in the process. The identification of transgenic plant tissues is based on antibiotics/herbicide selection and/or the detection of different reporter genes that usually require special equipment such as fluorescent microscopes or destructive techniques and chemicals to visualize enzymatic activity. Here, we developed and efficiently used in hairy root experiments binary vectors containing the MtLAP1 gene driven by constitutive and tissue-specific promoters that facilitate the production of purple colored anthocyanins in transgenic tissues and thus allowing the identification of transformed roots by naked eye. Anthocyanin producing roots were able to establish effective symbiosis with rhizobia. Moreover, it was shown that species-specific allelic variations and a mutation preventing posttranslational acetyl modification of an essential nodule-specific cysteine-rich peptide, NCR169, do not affect the symbiotic interaction of Medicago truncatula cv. Jemalong with Sinorhizobium medicae strain WSM419. Based on the experiments, it could be concluded that it is preferable to use the vectors with tissue-specific promoters that restrict anthocyanin production to the root vasculature for studying biotic interactions of the roots such as symbiotic nitrogen fixation or mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Senlei Zhang
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári körút 62, 6726, Szeged, Hungary.
| |
Collapse
|
147
|
Geddes BA, Paramasivan P, Joffrin A, Thompson AL, Christensen K, Jorrin B, Brett P, Conway SJ, Oldroyd GED, Poole PS. Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria. Nat Commun 2019; 10:3430. [PMID: 31366919 PMCID: PMC6668481 DOI: 10.1038/s41467-019-10882-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/07/2019] [Indexed: 01/10/2023] Open
Abstract
The root microbiota is critical for agricultural yield, with growth-promoting bacteria able to solubilise phosphate, produce plant growth hormones, antagonise pathogens and fix N2. Plants control the microorganisms in their immediate environment and this is at least in part through direct selection, the immune system, and interactions with other microorganisms. Considering the importance of the root microbiota for crop yields it is attractive to artificially regulate this environment to optimise agricultural productivity. Towards this aim we express a synthetic pathway for the production of the rhizopine scyllo-inosamine in plants. We demonstrate the production of this bacterial derived signal in both Medicago truncatula and barley and show its perception by rhizosphere bacteria, containing bioluminescent and fluorescent biosensors. This study lays the groundwork for synthetic signalling networks between plants and bacteria, allowing the targeted regulation of bacterial gene expression in the rhizosphere for delivery of useful functions to plants. The root microbiota is critical for promoting crop yield. Here, the authors create a synthetic pathway for the production of the rhizopine scyllo-inosamine in Medicago truncatula and barley, and show its perception by rhizosphere bacteria for targeted regulation of bacterial gene expression.
Collapse
Affiliation(s)
- Barney A Geddes
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Ponraj Paramasivan
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Amelie Joffrin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Amber L Thompson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Kirsten Christensen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Beatriz Jorrin
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Stuart J Conway
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
148
|
Li X, Liu Q, Feng H, Deng J, Zhang R, Wen J, Dong J, Wang T. Dehydrin MtCAS31 promotes autophagic degradation under drought stress. Autophagy 2019; 16:862-877. [PMID: 31362589 PMCID: PMC7144882 DOI: 10.1080/15548627.2019.1643656] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Drought stress seriously affects crop yield, and the mechanism underlying plant resistance to drought stress via macroautophagy/autophagy is not clear. Here, we show that a dehydrin, Medicago truncatula MtCAS31 (cold acclimation-specific 31), a positive regulator of drought response, plays a key role in autophagic degradation. A GFP cleavage assay and treatment with an autophagy-specific inhibitor indicated that MtCAS31 participates in the autophagic degradation pathway and that overexpressing MtCAS31 promotes autophagy under drought stress. Furthermore, we discovered that MtCAS31 interacts with the autophagy-related protein ATG8a in the AIM-like motif YXXXI, supporting its function in autophagic degradation. In addition, we identified a cargo protein of MtCAS31, the aquaporin MtPIP2;7, by screening an M. truncatula cDNA library. We found that MtPIP2;7 functions as a negative regulator of drought response. Under drought stress, MtCAS31 facilitated the autophagic degradation of MtPIP2;7 and reduced root hydraulic conductivity, thus reducing water loss and improving drought tolerance. Taken together, our results reveal a novel function of dehydrins in promoting the autophagic degradation of proteins, which extends our knowledge of the function of dehydrins.Abbreviations: AIM: ATG8-interacting motif; ATG: autophagy-related; ATI1: ATG8-interacting protein1; BiFC: Biomolecular fluorescence complementation; CAS31: cold acclimation-specific 31; ConcA: concanamycin A; DSK2: dominant suppressor of KAR2; ER: endoplasmic reticulum; ERAD: ER-associated degradation; NBR1: next to BRCA1 gene 1; PM: plasma membrane; PIPs: plasma membrane intrinsic proteins; TALEN: transcription activator-like effector nuclease; TSPO: tryptophan-rich sensory protein/translocator; UPR: unfolded protein response; VC: vector control.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianwen Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Rongxue Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Research Institute, Ardmore, OK, USA
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
149
|
Liu CW, Breakspear A, Stacey N, Findlay K, Nakashima J, Ramakrishnan K, Liu M, Xie F, Endre G, de Carvalho-Niebel F, Oldroyd GED, Udvardi MK, Fournier J, Murray JD. A protein complex required for polar growth of rhizobial infection threads. Nat Commun 2019; 10:2848. [PMID: 31253759 PMCID: PMC6599036 DOI: 10.1038/s41467-019-10029-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
During root nodule symbiosis, intracellular accommodation of rhizobia by legumes is a prerequisite for nitrogen fixation. For many legumes, rhizobial colonization initiates in root hairs through transcellular infection threads. In Medicago truncatula, VAPYRIN (VPY) and a putative E3 ligase LUMPY INFECTIONS (LIN) are required for infection thread development but their cellular and molecular roles are obscure. Here we show that LIN and its homolog LIN-LIKE interact with VPY and VPY-LIKE in a subcellular complex localized to puncta both at the tip of the growing infection thread and at the nuclear periphery in root hairs and that the punctate accumulation of VPY is positively regulated by LIN. We also show that an otherwise nuclear and cytoplasmic exocyst subunit, EXO70H4, systematically co-localizes with VPY and LIN during rhizobial infection. Genetic analysis shows that defective rhizobial infection in exo70h4 is similar to that in vpy and lin. Our results indicate that VPY, LIN and EXO70H4 are part of the symbiosis-specific machinery required for polar growth of infection threads.
Collapse
Affiliation(s)
- Cheng-Wu Liu
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Nicola Stacey
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kim Findlay
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jin Nakashima
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | - Miaoxia Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, Szeged, 6726, Hungary
| | | | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Michael K Udvardi
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Joëlle Fournier
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France.
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
150
|
Billault-Penneteau B, Sandré A, Folgmann J, Parniske M, Pawlowski K. Dryas as a Model for Studying the Root Symbioses of the Rosaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:661. [PMID: 31214211 PMCID: PMC6558151 DOI: 10.3389/fpls.2019.00661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/02/2019] [Indexed: 05/28/2023]
Abstract
The nitrogen-fixing root nodule symbiosis is restricted to four plant orders: Fabales (legumes), Fagales, Cucurbitales and Rosales (Elaeagnaceae, Rhamnaceae, and Rosaceae). Interestingly all of the Rosaceae genera confirmed to contain nodulating species (i.e., Cercocarpus, Chamaebatia, Dryas, and Purshia) belong to a single subfamily, the Dryadoideae. The Dryas genus is particularly interesting from an evolutionary perspective because it contains closely related nodulating (Dryas drummondii) and non-nodulating species (Dryas octopetala). The close phylogenetic relationship between these two species makes Dryas an ideal model genus to study the genetic basis of nodulation by whole genome comparison and classical genetics. Therefore, we established methods for plant cultivation, transformation and DNA extraction for these species. We optimized seed surface sterilization and germination methods and tested growth protocols ranging from pots and Petri dishes to a hydroponic system. Transgenic hairy roots were obtained by adapting Agrobacterium rhizogenes-based transformation protocols for Dryas species. We compared several DNA extraction protocols for their suitability for subsequent molecular biological analysis. Using CTAB extraction, reproducible PCRs could be performed, but CsCl gradient purification was essential to obtain DNA in sufficient purity for high quality de novo genome sequencing of both Dryas species. Altogether, we established a basic toolkit for the culture, transient transformation and genetic analysis of Dryas sp.
Collapse
Affiliation(s)
| | - Aline Sandré
- Institute of Genetics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Jessica Folgmann
- Institute of Genetics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Martin Parniske
- Institute of Genetics, Faculty of Biology, LMU Munich, Martinsried, Germany
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|