101
|
Peroxisome Proliferator-Activated Receptors Protect against Apoptosis via 14-3-3. PPAR Res 2010; 2010. [PMID: 20862376 PMCID: PMC2938460 DOI: 10.1155/2010/417646] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/14/2010] [Indexed: 01/17/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) were reported to prevent cells from stress-induced apoptosis and protect tissues against ischemia-reperfusion injury. The underlying transcriptional mechanism is unclear. Recent reports indicate that the antiapoptotic actions of ligand-activated PPARδ and PPARγ are mediated through enhanced binding of PPAR to the promoter of 14-3-3ε and upregulation of 14-3-3ε expression. We propose that ligand-activated PPARα exerts its anti-apoptotic actions via the identical pathway. The PPAR to 14-3-3 transcriptional axis plays an important role in protection of cell and tissue integrity and is a target for drug discovery.
Collapse
|
102
|
Differing short-term neuroprotective effects of the fibrates fenofibrate and bezafibrate in MPTP and 6-OHDA experimental models of Parkinson's disease. Behav Pharmacol 2010; 21:194-205. [PMID: 20440202 DOI: 10.1097/fbp.0b013e32833a5c81] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Earlier study from our group indicated that the peroxisome proliferator-activated receptor-alpha agonist fenofibrate prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic cell loss in C57Bl/6 mice. Our objective was to determine whether or not fibratescan improve motor activity in two experimental models of Parkinson's disease: the MPTP C57Bl/6 mouse and the 6-hydroxydopamine (6-OHDA) Wistar rat. Six groups of mice were set up: sham, sham-fenofibrate, sham-bezafibrate, MPTP, MPTP-fenofibrate and MPTP-bezafibrate. Mice were fed a diet containing 0.2% fenofibrate, 0.2% bezafibrate or no hypolipidaemic agent for 2 weeks. Four groups of rats were set up: sham, sham-fenofibrate, 6-OHDA and 6-OHDA-fenofibrate. Rats were fed a diet containing 0.2% fenofibrate or no hypolipidaemic agent for 4 weeks. In mice, motor activity was quantified using actimetry. Nine parameters were recorded. The results were analyzed with a mixed linear model. In rats, behavioural sensitization was studied with repetitive injections of apomorphine. All the actimetry parameters indicated a decrease of locomotion the day after MPTP injections and eight parameters improved in MPTP mice treated with fenofibrate or bezafibrate. The apomorphine-induced rotation behaviour mildly decreased in 6-OHDA rats treated with fenofibrate, but behavioural sensitization was unchanged. The 6-OHDA and MPTP compounds have different toxicity mechanisms, which could explain why we did not observe the same effect in 6-OHDA rats as in MPTP mice. These data suggest that the protective effect of fibrates can be carried through inhibition of inflammation rather than oxidative stress.
Collapse
|
103
|
Therapeutic Implications of PPARgamma in Cardiovascular Diseases. PPAR Res 2010; 2010. [PMID: 20814542 PMCID: PMC2931381 DOI: 10.1155/2010/876049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 07/13/2010] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is the members of the nuclear receptor superfamily as a master transcriptional factor that promotes differentiation of preadipocytes by activating adipose-specific gene expression. Although PPARγ is expressed predominantly in adipose tissue and associated with adipocyte differentiation and glucose homeostasis, PPARγ is also present in a variety of cell types including vascular cells and cardiomyocytes. Activation of PPARγ suppresses production of inflammatory cytokines, and there is accumulating data that PPARγ ligands exert antihypertrophy of cardiomyocytes and anti-inflammatory, antioxidative, and antiproliferative effects on vascular wall cells and cardiomyocytes. In addition, activation of PPARγ is implicated in the regulation of endothelial function, proliferation and migration of vascular smooth muscle cells, and activation of macrophages. Many studies suggest that PPARγ ligands not only ameliorate insulin sensitivity, but also have pleiotropic effects on the pathophysiology of atherosclerosis, cardiac hypertrophy, ischemic heart, and myocarditis.
Collapse
|
104
|
Gamboa J, Blankenship DA, Niemi JP, Landreth GE, Karl M, Hilow E, Sundararajan S. Extension of the neuroprotective time window for thiazolidinediones in ischemic stroke is dependent on time of reperfusion. Neuroscience 2010; 170:846-57. [PMID: 20691766 DOI: 10.1016/j.neuroscience.2010.07.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 07/19/2010] [Accepted: 07/30/2010] [Indexed: 12/23/2022]
Abstract
Stroke is a leading cause of death and disability but has limited therapeutic options. Thiazolidinediones (TZDs), agonists for the nuclear receptor, peroxisome proliferator-activated receptor (PPAR)γ, reduce infarct volume and improve neurologic function following transient middle cerebral artery occlusion (MCAO) in rats. Translation of these findings into clinical therapy will require careful assessment of dosing paradigms and effective time windows for treatment. Understanding the mechanisms by which TZDs protect the brain provides insight into how time windows for neuroprotection might be extended. We find that two TZDs, pioglitazone and rosiglitazone, significantly reduce infarct volume at doses similar to those used clinically (1 mg/kg for pioglitazone and 0.1 mg/kg for rosiglitazone). We also find that pioglitazone reduces infarction volume in a transient, but not a permanent MCAO model suggesting that reperfusion plays an important role in TZD mediated neuroprotection. Since PPARγ agonists reduce inflammation and oxidative stress, both of which are exacerbated by reperfusion, we hypothesized that TZDs would be most effective if administered prior to reperfusion. We administered TZDs 3 h after MCAO and found that infarction volume and neurologic function are significantly improved in animals reperfused at 3 h and 15 min (after TZD treatment), but not in animals reperfused at 2 h (before TZD treatment) when assessed either 24 h or 3 weeks after MCAO. While TZDs reduce intercellular adhesion molecule (ICAM) expression to a similar extent regardless of the time of reperfusion, leukocyte entry into brain parenchyma is more dramatically reduced when reperfusion is delayed until after drug treatment. The finding that delaying reperfusion until after TZD treatment is beneficial despite a longer period of ischemia, is dramatic given the widely held view that duration of ischemia is the most important determinate of injury.
Collapse
Affiliation(s)
- J Gamboa
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Ravingerová T, Adameová A, Kelly T, Antonopoulou E, Pancza D, Ondrejcáková M, Khandelwal VKM, Carnická S, Lazou A. Changes in PPAR gene expression and myocardial tolerance to ischaemia: relevance to pleiotropic effects of statins. Can J Physiol Pharmacol 2010; 87:1028-36. [PMID: 20029539 DOI: 10.1139/y09-071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR), which are key transcriptional regulators of lipid metabolism and energy production, have been suggested to play an important role in myocardial ischaemia-reperfusion (I/R) injury. Their role in cardioprotection, however, is not yet fully elucidated. Statins have shown beneficial effects on I/R damage beyond lipid lowering, and some of their cardioprotective cholesterol-independent effects may be related to the regulation of PPAR. To clarify this issue, we explored a potential link between a response to I/R and changes in cardiac PPARalpha protein and gene expression in simvastatin-treated normocholesterolaemic rats. After 5 days of treatment with simvastatin (10 mg/kg per day, p.o.), Langendorff-perfused hearts were subjected to 30 min regional ischaemia (occlusion of the left anterior descending coronary artery) or global ischaemia and 2 h reperfusion for the evaluation of the infarct size (triphenyltetrazolium chloride and planimetry; as percentage of risk area), ischaemic arrhythmias, and postischaemic contractile recovery. Baseline PPARalpha mRNA and protein levels were increased by 3-fold and 2-fold, respectively, in simvastatin-treated hearts compared with the untreated controls. Simvastatin-treated hearts exhibited smaller size of infarction (11.5% +/- 0.4% vs. 33.7% +/- 4% in controls; p < 0.01), improved postischaemic contractile recovery, and lower severity of arrhythmias during ischaemia and early reperfusion. Enhanced resistance to I/R injury was associated with preservation of mRNA and protein levels of PPARalpha in contrast to their marked downregulation in controls. In conclusion, statin-induced changes in the expression of PPARalpha may contribute to attenuation of myocardial I/R injury and thus suggest the involvement of cardioprotective mechanisms independent of inhibition of HMG-CoA reductase.
Collapse
Affiliation(s)
- Tána Ravingerová
- Institute for Heart Research, Centre of Excellence for Cardiovascular Research of the SAS, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res 2010; 87:535-44. [PMID: 20164119 DOI: 10.1093/cvr/cvq053] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS MicroRNAs (miRNAs) regulate various cardiac processes including cell proliferation and apoptosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, protects against myocardial ischaemia-reperfusion (IR) injury. We assessed the effects of PPAR-gamma activation on myocardial miRNA levels and the role of miRNAs in IR injury. METHODS AND RESULTS We evaluated the expression changes of miRNAs in the rat heart after PIO administration using miRNA arrays and then confirmed the result by northern blot. miR-29a and c levels decreased remarkably after 7-day treatment with PIO. In H9c2 cells, the effects of PIO and rosiglitazone on miR-29 expression levels were blocked by a selective PPAR-gamma inhibitor GW9662. Downregulation of miR-29 by antisense inhibitor or by PIO protected H9c2 cells from simulated IR injury, indicated as increased cell survival and decreased caspase-3 activity. In contrast, overexpressing miR-29 promoted apoptosis and completely blocked the protective effect of PIO. Antagomirs against miR-29a or -29c significantly reduced myocardial infarct size and apoptosis in hearts subjected to IR injury. Western blot analyses demonstrated that Mcl-2, an anti-apoptotic Bcl-2 family member, was increased by miR-29 inhibition. CONCLUSION Downregulation of miR-29 protected hearts against IR injury. The modulation of miRNAs can be achieved by pharmacological intervention. These findings provide a rationale for the development of miRNA-based strategies for the attenuation of IR injury.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, MRB 5:108, 301 University Boulevard, Galveston, TX 77555, USA.
| | | | | | | | | |
Collapse
|
107
|
Li M, Li Z, Sun X, Yang L, Fang P, Liu Y, Li W, Xu J, Lu J, Xie M, Zhang D. Heme oxygenase-1/p21WAF1 mediates peroxisome proliferator-activated receptor-gamma signaling inhibition of proliferation of rat pulmonary artery smooth muscle cells. FEBS J 2010; 277:1543-50. [PMID: 20163460 DOI: 10.1111/j.1742-4658.2010.07581.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Activation of peroxisome proliferator-activated receptor (PPAR)-gamma suppresses proliferation of rat pulmonary artery smooth muscle cells (PASMCs), and therefore ameliorates the development of pulmonary hypertension in animal models. However, the molecular mechanisms underlying this effect remain largely unknown. This study addressed this issue. The PPARgamma agonist rosiglitazone dose-dependently stimulated heme oxygenase (HO)-1 expression in PASMCs, 5 microm rosiglitazone inducing a 12.1-fold increase in the HO-1 protein level. Cells pre-exposed to rosiglitazone showed a dose-dependent reduction in proliferation in response to serotonin; this was abolished by pretransfection of cells with sequence-specific small interfering RNA against HO-1. In addition, rosiglitazone stimulated p21(WAF1) expression in PASMCs, a 2.34-fold increase in the p21(WAF1) protein level being achieved with 5 microm rosiglitazone; again, this effect was blocked by knockdown of HO-1. Like loss of HO-1, loss of p21(WAF1) through siRNA transfection also reversed the inhibitory effect of rosiglitazone on PASMC proliferation triggered by serotonin. Taken together, our findings suggest that activation of PPARgamma induces HO-1 expression, and that this in turn stimulates p21(WAF1) expression to suppress PASMC proliferation. Our study also indicates that rosiglitazone, a medicine widely used in the treatment of type 2 diabetes mellitus, has potential benefits for patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Manxiang Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Lopaschuk GD, Ussher JR, Folmes CDL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev 2010; 90:207-58. [PMID: 20086077 DOI: 10.1152/physrev.00015.2009] [Citation(s) in RCA: 1553] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is a constant high demand for energy to sustain the continuous contractile activity of the heart, which is met primarily by the beta-oxidation of long-chain fatty acids. The control of fatty acid beta-oxidation is complex and is aimed at ensuring that the supply and oxidation of the fatty acids is sufficient to meet the energy demands of the heart. The metabolism of fatty acids via beta-oxidation is not regulated in isolation; rather, it occurs in response to alterations in contractile work, the presence of competing substrates (i.e., glucose, lactate, ketones, amino acids), changes in hormonal milieu, and limitations in oxygen supply. Alterations in fatty acid metabolism can contribute to cardiac pathology. For instance, the excessive uptake and beta-oxidation of fatty acids in obesity and diabetes can compromise cardiac function. Furthermore, alterations in fatty acid beta-oxidation both during and after ischemia and in the failing heart can also contribute to cardiac pathology. This paper reviews the regulation of myocardial fatty acid beta-oxidation and how alterations in fatty acid beta-oxidation can contribute to heart disease. The implications of inhibiting fatty acid beta-oxidation as a potential novel therapeutic approach for the treatment of various forms of heart disease are also discussed.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Group, Mazankowski Alberta Heart Institute, University of Alberta, Alberta T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
109
|
|
110
|
Abstract
Fibrates, one group of peroxisome proliferator-activated receptor (PPAR) activators, are lipid lowering drugs. Fibrates have been shown to attenuate brain tissue injury after focal cerebral ischemia. In this study, we investigated the impact of fenofibrate on cerebral blood flow (CBF) in male wild type and PPARalpha-null mice. Animals were treated for 7 days with fenofibrate and subjected to 2 h of filamentous middle cerebral artery occlusion and reperfusion under isoflurane anesthesia. Cortical surface CBF was measured by laser speckle imaging. Regional CBF (rCBF) in nonischemic animals was measured by (14)C-iodoantipyrine autoradiography. Fenofibrate did not affect rCBF and mean arterial blood pressure in nonischemic animals. In ischemic animals, laser speckle imaging showed delayed expansions of ischemic area, which was attenuated by fenofibrate. Fenofibrate also enhanced CBF recovery after reperfusion. However, such effects of fenofibrate on CBF in the ischemic brain were not observed in PPARalpha-null mice. These findings show that fenofibrate improves CBF in the ischemic hemisphere. Moreover, fenofibrate requires PPARalpha expression for the cerebrovascular protective effects in the ischemic brain.
Collapse
|
111
|
Peroxisome proliferator-activated receptor-gamma ligands 15-deoxy-delta(12,14)-prostaglandin J2 and pioglitazone inhibit hydroxyl peroxide-induced TNF-alpha and lipopolysaccharide-induced CXC chemokine expression in neonatal rat cardiac myocytes. Shock 2009; 32:317-24. [PMID: 19174742 DOI: 10.1097/shk.0b013e31819c374c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ligands for peroxisome proliferator-activated receptor gamma (PPAR-gamma) such as prostaglandin metabolite 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) or thiazolidinedione pioglitazone have been identified as a new class of anti-inflammatory compounds with possible clinical applications. Reactive oxygen species play an important role in the generation of cellular damage by induction of proinflammatory cytokines and chemokines during myocardial I/R. These events were preceded by activation of the transcription factors nuclear factor (NF)-kappaB pathway. It has been suggested that myocardium overproduces TNF-alpha after I/R, and locally produced TNF-alpha is sufficient to cause severe impairment of cardiac function. LPS-induced CXC chemokine (LIX) is a rodent chemokine with potent neutrophil-chemotactic activity. Based on this concept, we examined the effects of 15d-PGJ2 and pioglitazone on oxidative stress-induced TNF-alpha and LIX expression in neonatal rat cardiac myocytes. Pretreatment of myocytes with 15d-PGJ2 or pioglitazone decreased hydrogen peroxide-induced TNF-alpha and LIX production (mRNA and protein) in a concentration-dependent manner. The beneficial effects of both ligands were associated with reduction of hydrogen peroxide-induced NF-kappaB activation. Treatment with 15d-PGJ2, but not pioglitazone, caused dose-dependent activation of heat shock factor 1, which could render cells unresponsive to stimulation of NF-kappaB. The cytoprotection afforded by pioglitazone was attenuated by the PPAR-gamma antagonist GW9662, which failed to affect the beneficial effects afforded by 15d-PGJ2. Taken together, these results demonstrate that treatment with these chemically distinct ligands of PPAR-gamma results in diverse anti-inflammatory mechanisms.
Collapse
|
112
|
Blazer-Yost BL. PPARgamma Agonists: Blood Pressure and Edema. PPAR Res 2009; 2010:785369. [PMID: 20069049 PMCID: PMC2801011 DOI: 10.1155/2010/785369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 11/23/2009] [Indexed: 12/23/2022] Open
Abstract
Peroxisome proliferator activated receptor gamma (PPARgamma) agonists are widely used in the treatment of type 2 diabetes. Side effects of drug treatment include both fluid retention and a lowering of blood pressure. Data from animal and human studies suggest that these effects arise, at least in part, from drug-induced changes in the kidney. In order to capitalize on the positive aspect (lowering of blood pressure) and exclude the negative one (fluid retention), it is necessary to understand the mechanisms of action underlying each of the effects. When interpreted with known physiological principles, current hypotheses regarding potential mechanisms produce enigmas that are difficult to resolve. This paper is a summary of the current understanding of PPARgamma agonist effects on both blood pressure and fluid retention from a renal perspective and concludes with the newest studies that suggest alternative pathways within the kidney that could contribute to the observed drug-induced effects.
Collapse
Affiliation(s)
- Bonnie L. Blazer-Yost
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 West Michigan Street, SL 358 Indianapolis, IN 46202, USA
| |
Collapse
|
113
|
Espira L, Czubryt MP. Emerging concepts in cardiac matrix biologyThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:996-1008. [DOI: 10.1139/y09-105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac extracellular matrix, far from being merely a static support structure for the heart, is now recognized to play central roles in cardiac development, morphology, and cell signaling. Recent studies have better shaped our understanding of the tremendous complexity of this active and dynamic network. By activating intracellular signal cascades, the matrix transduces myocardial physical forces into responses by myocytes and fibroblasts, affecting their function and behavior. In turn, cardiac fibroblasts and myocytes play active roles in remodeling the matrix. Coupled with the ability of the matrix to act as a dynamic reservoir for growth factors and cytokines, this interplay between the support structure and embedded cells has the potential to exert dramatic effects on cardiac structure and function. One of the clearest examples of this occurs when cell–matrix interactions are altered inappropriately, contributing to pathological fibrosis and heart failure. This review will examine some of the recent concepts that have emerged regarding exactly how the cardiac matrix mediates these effects, how our collective vision of the matrix has changed as a result, and the current state of attempts to pharmacologically treat fibrosis.
Collapse
Affiliation(s)
- Leon Espira
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
114
|
Tao L, Wang Y, Gao E, Zhang H, Yuan Y, Lau WB, Chan L, Koch WJ, Ma XL. Adiponectin: an indispensable molecule in rosiglitazone cardioprotection following myocardial infarction. Circ Res 2009; 106:409-17. [PMID: 19940263 DOI: 10.1161/circresaha.109.211797] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Patients treated with peroxisome proliferator-activated receptor (PPAR)-gamma agonist manifest favorable metabolic profiles associated with increased plasma adiponectin (APN). However, whether increased APN production as a result of PPAR-gamma agonist treatment is an epiphenomenon or is causatively related to the cardioprotective actions of PPAR-gamma remains unknown. OBJECTIVE To determine the role of APN in rosiglitazone (RSG) cardioprotection against ischemic heart injury. METHODS AND RESULTS Adult male wild-type (WT) and APN knockdown/knockout (APN(+ or -) and APN(- or -)) mice were treated with vehicle or RSG (20 mg/kg per day), and subjected to coronary artery ligation 3 days after beginning treatment. In WT mice, RSG (7 days) significantly increased adipocyte APN expression, elevated plasma APN levels (2.6-fold), reduced infarct size (17% reduction), decreased apoptosis (0.23 + or - 0.02% versus 0.47 + or - 0.04% TUNEL-positive in remote nonischemic area), attenuated oxidative stress (48.5% reduction), and improved cardiac function (P<0.01). RSG-induced APN production and cardioprotection were significantly blunted (P<0.05 versus WT) in APN(+ or -), and completely lost in APN(- or -) (P>0.05 versus vehicle-treated APN(- or -) mice). Moreover, treatment with RSG for up to 14 days significantly improved the postischemic survival rate of WT mice (P<0.05 versus vehicle group) but not APN knockdown/knockout mice. CONCLUSIONS The cardioprotective effects of PPAR-gamma agonists are critically dependent on its APN stimulatory action, suggesting that under pathological conditions where APN expression is impaired (such as advanced type 2 diabetes), the harmful cardiovascular effects of PPAR-gamma agonists may outweigh its cardioprotective benefits.
Collapse
Affiliation(s)
- Ling Tao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 15 West Changle Rd, Xian, China, 710032.
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Kilter H, Werner M, Roggia C, Reil JC, Schäfers HJ, Kintscher U, Böhm M. The PPAR-gamma agonist rosiglitazone facilitates Akt rephosphorylation and inhibits apoptosis in cardiomyocytes during hypoxia/reoxygenation. Diabetes Obes Metab 2009; 11:1060-7. [PMID: 19732122 DOI: 10.1111/j.1463-1326.2009.01097.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Results on the cardiovascular effects of PPAR-gamma agonists are conflicting. On one hand, it was suggested that the PPAR-gamma agonist rosiglitazone may increase the risk of cardiovascular events. On the other hand, PPAR-gamma agonists reduce myocardial infarct size and improve myocardial function during ischemia/reperfusion in animal studies in vivo. However, the mechanism of this effect is unclear, and it is open if PPAR-gamma agonists have a direct effect on cardiac myocyte survival in ischemia/reperfusion. The aim of this study was to determine the effect of the PPAR-gamma agonist rosiglitazone on hypoxia/reoxygenation-induced apoptosis of isolated cardiomyocytes. METHODS Isolated rat cardiac myocytes were pretreated with rosiglitazone or vehicle for 30 min before they were subjected to hypoxia for 4 h followed by different times of reoxygenation (5 min to 12 h). Apoptosis was determined by in situ hybridization for DNA fragmentation (TUNEL) as well as detection of cytoplasmic accumulation of histone-associated DNA fragments by enzyme-linked immunosorbent assay (ELISA). Activation of apoptosis regulating intracellular signalling pathways was studied by immunoblotting using phosphospecific antibodies. RESULTS Rosiglitazone significantly reduced apoptosis of isolated cardiomyocytes subjected to hypoxia/reoxygenation, independently determined with two methods. After 4 h of hypoxia and 12 h of reoxygenation, 34 +/- 3.6% of the vehicle treated cardiac myocytes stained positive for DNA fragmentation in the TUNEL staining. Rosiglitazone treatment reduced this effect by 23% (p < 0.01). Even more pronounced, cytoplasmic accumulation of histone-associated DNA fragments detected by ELISA was reduced by 35% (p < 0.05) in the presence of rosiglitazone. This inhibition of hypoxia/reoxygenation-induced apoptosis was associated with an increased reoxygenation-induced rephosphorylation of the protein kinase Akt, a crucial mediator of cardiomyocyte survival in ischemia/reperfusion of the heart. This effect was reversed by GW-9662, an irreversible PPAR-gamma antagonist. However, rosiglitazone did not alter phosphorylation of the MAP kinases ERK1/2 and c-Jun N-terminal kinase (JNK). CONCLUSION It can be concluded that cardiac myocytes are direct targets of PPAR-gamma agonists promoting its survival in ischemia/reperfusion, at least in part by facilitating Akt rephosphorylation. This effect may be of clinical relevance inhibiting the reperfusion-induced injury in patients suffering from myocardial infarction or undergoing cardiac surgery.
Collapse
Affiliation(s)
- H Kilter
- Klinik für Innere Medizin III, Kardiologie, Angiologie und internistische Intensivmedizin, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany.
| | | | | | | | | | | | | |
Collapse
|
116
|
Nofziger C, Blazer-Yost BL. PPARgamma agonists, modulation of ion transporters, and fluid retention. J Am Soc Nephrol 2009; 20:2481-3. [PMID: 19820124 DOI: 10.1681/asn.2009060673] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
117
|
Biscetti F, Straface G, Arena V, Stigliano E, Pecorini G, Rizzo P, De Angelis G, Iuliano L, Ghirlanda G, Flex A. Pioglitazone enhances collateral blood flow in ischemic hindlimb of diabetic mice through an Akt-dependent VEGF-mediated mechanism, regardless of PPARgamma stimulation. Cardiovasc Diabetol 2009; 8:49. [PMID: 19737384 PMCID: PMC2745363 DOI: 10.1186/1475-2840-8-49] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/08/2009] [Indexed: 12/12/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is commonly associated with both microvascular and macrovascular complications and a strong correlation exists between glycaemic control and the incidence and progression of vascular complications. Pioglitazone, a Peroxisome proliferator-activated receptor-γ (PPARγ) ligand indicated for therapy of type T2DM, induces vascular effects that seem to occur independently of glucose lowering. Methods By using a hindlimb ischemia murine model, in this study we have found that pioglitazone restores the blood flow recovery and capillary density in ischemic muscle of diabetic mice and that this process is associated with increased expression of Vascular Endothelial Growth Factor (VEGF). Importantly, these beneficial effects are abrogated when endogenous Akt is inhibited; furthermore, the direct activation of PPARγ, with its selective agonist GW1929, does not restore blood flow recovery and capillary density. Finally, an important collateral vessel growth is obtained with combined treatment with pioglitazone and selective PPARγ inhibitor GW9662. Conclusion These data demonstrate that Akt-VEGF pathway is essential for ischemia-induced angiogenic effect of pioglitazone and that pioglitazone exerts this effect via a PPARγ independent manner.
Collapse
Affiliation(s)
- Federico Biscetti
- Laboratory of Vascular Biology and Genetics, Department of Medicine, A Gemelli University Hospital, Catholic University School of Medicine, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Huang WP, Yin WH, Chen JW, Jen HL, Young MS, Lin SJ. Fenofibrate attenuates endothelial monocyte adhesion in chronic heart failure: an in vitro study. Eur J Clin Invest 2009; 39:775-83. [PMID: 19531154 DOI: 10.1111/j.1365-2362.2009.02176.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Inflammation is implicated in chronic heart failure (CHF). In this study, the potential inhibitory effect of peroxisome proliferator-activated receptor-alpha (PPARalpha) activator fenofibrate on monocyte adhesion in CHF patients was investigated in vitro. MATERIALS AND METHODS Isolated peripheral blood mononuclear cells (PBMCs) were collected from 36 patients (aged 65 +/- 8 years) with symptomatic CHF and from 12 healthy control subjects. The cultured human aortic endothelial cells (HAECs) were stimulated with or without 2 ng mL(-1) tumour necrosis factor-alpha (TNF-alpha) and the inhibitory effects of fenofibrate at 25, 50, 100 and 200 microM on endothelial mononuclear cell adhesion were tested. Furthermore, the HAECs were stimulated with 70% sera obtained from CHF patients and control individuals, respectively, with or without pretreatments with fenofibrate. The endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) was then confirmed by mRNA expression and Western blot. RESULTS We found that the increased adhesion of PBMCs to TNF-alpha-stimulated HAECs in CHF patients was reduced when the HAECs were pretreated with fenofibrate (31% inhibition, P = 0.0121). However, pretreatment of the isolated PBMCs collected from CHF patients with fenofibrate failed to suppress their adherence to TNF-alpha-stimulated HAECs. Furthermore, stimulation of cultured HAECs with CHF patient sera significantly increased VCAM-1 and ICAM-1 expression, which could also be inhibited by fenofibrate. CONCLUSIONS The fenofibrate directly inhibits monocyte binding by TNF-alpha-activated HAECs, probably through preventing up-regulation of cell adhesion molecules by endothelial cells in response to inflammatory stimuli. This PPARalpha activator may have the potential to ameliorate vascular inflammation in patients with CHF.
Collapse
Affiliation(s)
- W P Huang
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
119
|
Renoprotective immunosuppression by pioglitazone with low-dose cyclosporine in rat heart transplantation. J Thorac Cardiovasc Surg 2009; 138:744-51. [DOI: 10.1016/j.jtcvs.2009.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 03/18/2009] [Accepted: 04/22/2009] [Indexed: 01/18/2023]
|
120
|
Aarsaether E, Rydningen M, Einar Engstad R, Busund R. Cardioprotective effect of pretreatment with β-glucan in coronary artery bypass grafting. SCAND CARDIOVASC J 2009; 40:298-304. [PMID: 17012141 DOI: 10.1080/14017430600868567] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Beta-glucan pretreatment has been shown to attenuate inflammatory response and to protect against ischemia-reperfusion injury in animal studies. The aims of the present study were to examine the safety of pretreatment with beta-1,3/1,6-glucan in patients scheduled for coronary artery bypass grafting (CABG), and to investigate whether beta-1,3/1,6-glucan pretreatment could suppress inflammatory response and protect against ischemia-reperfusion injury following CABG. METHODS Twenty one patients scheduled for CABG were assigned to oral beta-1,3/1,6-glucan 700 mg (Group 1) or 1 400 mg (Group 2) five consecutive days before surgery and were compared with a control group (Group 3). Blood samples were drawn preoperatively and on the first, third and fifth postoperative day for analysis of acute-phase reactants, hematology, cytokines and myocardial enzymes. RESULTS The study drug was well tolerated. Creatine kinase isoenzyme MB was significantly lower in Group 2 compared with controls on the first postoperative day (p = 0.028). Mean change in cardiac troponin T was lower in Group 2 compared with controls (p = 0.028). CONCLUSIONS Beta-1,3/1,6-glucan pretreatment is safe in patients undergoing CABG and may protect against ischemia reperfusion injury following CABG.
Collapse
Affiliation(s)
- Erling Aarsaether
- Department of Cardiothoracic and Vascular Surgery, University Hospital of North Norway, 9038, Tromsø, N-Norway.
| | | | | | | |
Collapse
|
121
|
Zhang XJ, Xiong ZB, Tang AL, Ma H, Ma YD, Wu JG, Dong YG. Rosiglitazone-induced myocardial protection against ischaemia-reperfusion injury is mediated via a phosphatidylinositol 3-kinase/Akt-dependent pathway. Clin Exp Pharmacol Physiol 2009; 37:156-61. [PMID: 19566839 DOI: 10.1111/j.1440-1681.2009.05232.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Rosiglitazone is widely used in the treatment of Type 2 diabetes. However, in recent years it has become evident that the therapeutic effects of peroxisome proliferator-activated receptor gamma ligands reach far beyond their use as insulin sensitizers. Recently, the ability of rosiglitazone pretreatment to induce cardioprotection following ischaemia-reperfusion (I/R) has been well documented; however, the protective mechanisms have not been elucidated. In the present study, examined the role of the phosphatidylinositol 3-kinase (PI3-K)/Akt signalling pathway in rosiglitazone cardioprotection following I/R injury. 2. Mice were pretreated with 3 mg/kg per day rosiglitazone for 14 days before hearts were subjected to ischaemia (30 min) and reperfusion (2 h). Wortmannin (1.4 mg/kg, i.p.), an inhibitor of PI3-K, was administered 10 min prior to myocardial I/R. Then, activation of the PI3-K/Akt/glycogen synthase kinase (GSK)-3alpha signalling pathway was examined. The effects of PI3-K inhibition on rosiglitazone-induced cardioprotection were also evaluated. 3. Compared with control rats, the ratio of infarct size to ischaemic area (area at risk) and the occurrence of sustained ventricular fibrillation in rosiglitazone-pretreated rats was significantly reduced (P < 0.05). Rosiglitazone pretreatment attenuated cardiac apoptosis, as assessed by ELISA to determine cardiomyocyte DNA fragmentation. Rosiglitazone pretreatment significantly increased levels of phosphorylated (p-) Akt and p-GSK-3alpha in the rat myocardium. Pharmacological inhibition of PI3-K by wortmannin markedly abolished the cardioprotection induced by rosiglitazone. 4. These results indicate that rosiglitazone-induced cardioprotection in I/R injury is mediated via a PI3-K/Akt/GSK-3alpha-dependent pathway. The data also suggest that modulation of PI3-K/Akt/GSK-3alpha-dependent signalling pathways may be a viable strategy to reduce myocardial I/R injury.
Collapse
Affiliation(s)
- Xue-Jiao Zhang
- Department of Cardiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
122
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
123
|
Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123:255-78. [PMID: 19460403 DOI: 10.1016/j.pharmthera.2009.05.002] [Citation(s) in RCA: 779] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts are the most prevalent cell type in the heart and play a key role in regulating normal myocardial function and in the adverse myocardial remodeling that occurs with hypertension, myocardial infarction and heart failure. Many of the functional effects of cardiac fibroblasts are mediated through differentiation to a myofibroblast phenotype that expresses contractile proteins and exhibits increased migratory, proliferative and secretory properties. Cardiac myofibroblasts respond to proinflammatory cytokines (e.g. TNFalpha, IL-1, IL-6, TGF-beta), vasoactive peptides (e.g. angiotensin II, endothelin-1, natriuretic peptides) and hormones (e.g. noradrenaline), the levels of which are increased in the remodeling heart. Their function is also modulated by mechanical stretch and changes in oxygen availability (e.g. ischaemia-reperfusion). Myofibroblast responses to such stimuli include changes in cell proliferation, cell migration, extracellular matrix metabolism and secretion of various bioactive molecules including cytokines, vasoactive peptides and growth factors. Several classes of commonly prescribed therapeutic agents for cardiovascular disease also exert pleiotropic effects on cardiac fibroblasts that may explain some of their beneficial outcomes on the remodeling heart. These include drugs for reducing hypertension (ACE inhibitors, angiotensin receptor blockers, beta-blockers), cholesterol levels (statins, fibrates) and insulin resistance (thiazolidinediones). In this review, we provide insight into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules. We also review the evidence suggesting that certain cardiovascular drugs can reduce myocardial remodeling specifically via modulatory effects on cardiac fibroblasts.
Collapse
|
124
|
Guo Q, Wang G, Liu X, Namura S. Effects of gemfibrozil on outcome after permanent middle cerebral artery occlusion in mice. Brain Res 2009; 1279:121-30. [PMID: 19427843 DOI: 10.1016/j.brainres.2009.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 04/24/2009] [Accepted: 04/25/2009] [Indexed: 12/25/2022]
Abstract
Fibrates are lipid lowering drugs and found as ligands for peroxisome proliferator-activated receptors (PPARs). A clinical study has shown that one type of fibrate gemfibrozil reduces stroke incidence in men. However, it remains unknown whether gemfibrozil improves outcome after stroke. We hypothesized that prophylactic administration of gemfibrozil improves outcome after ischemic stroke. In this study, we measured the impact of gemfibrozil in two permanent middle cerebral artery occlusion (MCAO) models in young adult male mice on normal diet. First, we tested gemfibrozil in a filamentous MCAO model. Pretreatment with gemfibrozil (30 mg/kg) for 7 days moderately but significantly reduced infarct size at 24 h after MCAO. A higher dose (120 mg/kg) did not attenuate infarct size. Rather, it tended to increase brain swelling. Second, we tested in a distal MCAO model. Gemfibrozil (30 mg/kg) for 7 days before and after stroke significantly attenuated cortical lesion size at 7 days after MCAO. Cortical blood flow measured by laser speckle imaging was improved by gemfibrozil in the ischemic hemisphere. In non-stroke animals gemfibrozil also altered gene expression levels of PPARs in both the aorta and brain in organ specific manners; however, endothelial nitric oxide synthase (eNOS) was not significantly affected. These findings suggested the possibility that the observed infarct reductions and cortical blood flow improvements in ischemic brains were not through eNOS-mediated mechanisms. Further investigations may be meritorious to examine whether prophylactic usage of gemfibrozil against stroke is beneficial.
Collapse
Affiliation(s)
- Qingmin Guo
- Department of Anatomy and Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta GA 30310, USA
| | | | | | | |
Collapse
|
125
|
Ozawa T, Oda H, Oda M, Hosaka Y, Kashimura T, Ozaki K, Tsuchida K, Takahashi K, Miida T, Aizawa Y. Improved cardiac function after sirolimus-eluting stent placement in diabetic patients by pioglitazone: combination therapy with statin. J Cardiol 2009; 53:402-9. [PMID: 19477383 DOI: 10.1016/j.jjcc.2009.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/28/2008] [Accepted: 01/21/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists are used as anti-diabetic drugs, and their pleiotrophic action has been reported to improve endothelial function leading to cardioprotective effects. In this study we evaluated the long-term effect of pioglitazone on cardiac function in diabetic patients after percutaneous coronary intervention (PCI) by drug-eluting stent (DES). METHODS AND RESULTS We investigated 54 diabetic patients who received PCI using a sirolimus-eluting stent. We excluded cases of acute myocardial infarction. They were divided into two groups: Group C received only conventional therapy (n=26) and Group P received additionally pioglitazone 15 mg/day (n=28). The left ventricular ejection fraction (LVEF) was measured by left ventriculography and analyzed before and 8 months after PCI. In Group C, LVEF did not change significantly: 55.6% vs. 56.7%, before and after PCI respectively (p=0.58). However, pioglitazone significantly improved LVEF: 54.4% vs. 60.0% (p=0.014). Multiple linear regression analysis showed that DeltaLVEF was significantly related to pioglitazone therapy (p=0.037). In particular, the combination of pioglitazone and statin improved LVEF (DeltaLVEF 9.6% with vs. 2.2% without statin). CONCLUSIONS Pioglitazone improved cardiac function after PCI using SES in diabetic patients, especially in combination with a statin.
Collapse
Affiliation(s)
- Takuya Ozawa
- Department of Cardiology, Niigata City General Hospital, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Yasuda S, Kobayashi H, Iwasa M, Kawamura I, Sumi S, Narentuoya B, Yamaki T, Ushikoshi H, Nishigaki K, Nagashima K, Takemura G, Fujiwara T, Fujiwara H, Minatoguchi S. Antidiabetic drug pioglitazone protects the heart via activation of PPAR-gamma receptors, PI3-kinase, Akt, and eNOS pathway in a rabbit model of myocardial infarction. Am J Physiol Heart Circ Physiol 2009; 296:H1558-65. [PMID: 19286954 DOI: 10.1152/ajpheart.00712.2008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The insulin-sensitizing drug pioglitazone has been reported to be protective against myocardial infarction. However, its precise mechanism is unclear. Rabbits underwent 30 min of coronary occlusion followed by 48 h of reperfusion. Rabbits were assigned randomly to nine groups (n = 10 in each): the control group (fed a normal diet), pioglitazone group (fed diets containing 1 mg.kg(-1).day(-1) pioglitazone), pioglitazone + 5-hydroxydecanoic acid (HD) group [fed the pioglitazone diet + 5 mg/kg iv 5-HD, a mitochondrial ATP-sensitive K(+) (K(ATP)) channel blocker], pioglitazone + GW9662 group [fed the pioglitazone diet + 2 mg/kg iv GW9662, a peroxisome proliferator activated receptor (PPAR)-gamma antagonist], GW9662 group (fed a normal diet + iv GW9662), pioglitazone + wortmannin group [fed the pioglitazone diet + 0.6 mg/kg iv wortmannin, a phosphatidylinositol (PI)3-kinase inhibitor], wortmannin group (fed a normal diet + iv wortmannin), pioglitazone + nitro-l-arginine methyl ester (l-NAME) group [fed the pioglitazone diet + 10 mg/kg iv l-NAME, a nitric oxide synthase (NOS) inhibitor], and l-NAME group (fed a normal diet + iv l-NAME). All groups were fed the diets for 7 days. The risk area and nonrisk area of the left ventricle (LV) were separated by Evans blue dye, and the infarct area was determined by triphenyltetrazolium chloride staining. The infarct size was calculated as a percentage of the LV risk area. Western blotting was performed to assess levels of Akt and phospho-Akt and phospho-endothelial NOS (eNOS) in the myocardium following reperfusion. The infarct size was significantly smaller in the pioglitazone group (21 +/- 2%) than in the control group (43 +/- 3%). This effect was abolished by GW9662 (42 +/- 3%), wortmannin (40 +/- 3%), or l-NAME (42 +/- 7%) but not by 5-HD (24 +/- 5%). Western blotting showed higher levels of phospho-Akt and phospho-eNOS in the pioglitazone group. Pioglitazone reduces the myocardial infarct size via activation of PPAR-gamma, PI3-kinase, Akt, and eNOS pathways, but not via opening the mitochondrial K(ATP) channel. Pioglitazone may be a novel strategy for the treatment of diabetes mellitus with coronary artery disease.
Collapse
Affiliation(s)
- Shinji Yasuda
- Dept. of Cardiology, Gifu Univ. Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Hennebert O, Montes M, Favre-Reguillon A, Chermette H, Ferroud C, Morfin R. Epimerase activity of the human 11beta-hydroxysteroid dehydrogenase type 1 on 7-hydroxylated C19-steroids. J Steroid Biochem Mol Biol 2009; 114:57-63. [PMID: 19167490 DOI: 10.1016/j.jsbmb.2008.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 12/31/2008] [Indexed: 01/14/2023]
Abstract
Cytochrome P4507B1 7alpha-hydroxylates dehydroepiandrosterone (DHEA), epiandrosterone (EpiA) and 5alpha-androstane-3beta,17beta-diol (Adiol). 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) interconverts 7alpha- and 7beta-forms. Whether the interconversion proceeds through oxido-reductive steps or epimerase activity was investigated. Experiments using [(3)H]-labelled 7beta-hydroxy-DHEA, 7beta-hydroxy-EpiA and 7beta-hydroxy-Adiol showed the (3)H-label to accumulate in the 7-oxo-DHEA trap but not in 7-oxo-EpiA or 7-oxo-Adiol traps. Computed models of 7-oxygenated steroids docked in the active site of 11beta-HSD1 either in a flipped or turned form relative to cortisone and cortisol. 7-Oxo-steroid reduction in 7alpha- or 7beta-hydroxylated derivatives resulted from either turned or flipped forms. 11beta-HSD1 incubation in H(2)(18)O medium with each 7-hydroxysteroid did not incorporate (18)O in 7-hydroxylated derivatives of EpiA and Adiol independently of the cofactor used. Thus oxido-reductive steps apply for the interconversion of 7alpha- and 7beta-hydroxy-DHEA through 7-oxo-DHEA. Epimerization may proceed on the 7-hydroxylated derivatives of EpiA and Adiol through a mechanism involving the cofactor and Ser(170). The physiopathological importance of this epimerization process is related to 7beta-hydroxy-EpiA production and its effects in triggering the resolution of inflammation.
Collapse
Affiliation(s)
- Olivier Hennebert
- Chaire de Génie Biologique, EA-3199, Biotechnologie, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | | | | | | | | | | |
Collapse
|
128
|
ANTI-APOPTOTIC AND ANTI-INFLAMMATORY EFFECTS OF HYDROGEN SULFIDE IN A RAT MODEL OF REGIONAL MYOCARDIAL I/R. Shock 2009; 31:267-74. [DOI: 10.1097/shk.0b013e318180ff89] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
129
|
Collino M, Patel NSA, Thiemermann C. PPARs as new therapeutic targets for the treatment of cerebral ischemia/reperfusion injury. Ther Adv Cardiovasc Dis 2009; 2:179-97. [PMID: 19124421 DOI: 10.1177/1753944708090924] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of death and long-term disability in industrialized countries. Despite advances in understanding its pathophysiology, little progress has been made in the treatment of stroke. The currently available therapies have proven to be highly unsatisfactory (except thrombolysis) and attempts are being made to identify and characterize signaling proteins which could be exploited to design novel therapeutic modalities. The peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors that control lipid and glucose metabolism. PPARs regulate gene expression by binding with the retinoid X receptor (RXR) as a heterodimeric partner to specific DNA sequences, termed PPAR response elements. In addition, PPARs may modulate gene transcription also by directly interfering with other transcription factor pathways in a DNA-binding independent manner. To date, three different PPAR isoforms, designated alpha, beta/delta, and gamma, have been identified. Recently, they have been found to play an important role for the pathogenesis of various disorders of the central nervous system and accumulating data suggest that PPARs may serve as potential targets for treating ischemic stroke. Activation of all PPAR isoforms, but especially of PPARgamma, was shown to prevent post-ischemic inflammation and neuronal damage in several in vitro and in vivo models, negatively regulating the expression of genes induced by ischemia/ reperfusion (I/R). This paper reviews the evidence and recent developments relating to the potential therapeutic effects of PPAR-agonists in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Massimo Collino
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | |
Collapse
|
130
|
Wang Y, Santos J, Sakurai R, Shin E, Cerny L, Torday JS, Rehan VK. Peroxisome proliferator-activated receptor gamma agonists enhance lung maturation in a neonatal rat model. Pediatr Res 2009; 65:150-5. [PMID: 19262292 PMCID: PMC2921215 DOI: 10.1203/pdr.0b013e3181938c40] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) gamma plays a central role in normal lung development. However, the effects of modulating PPARgamma expression by exogenously administered PPARgamma agonists on lung development and basic blood biochemical and metabolic profiles in a developing animal are not known. To determine these effects, newborn Sprague-Dawley rat pups were administered either diluent or rosiglitazone (RGZ), a potent PPARgamma agonist, for either 1 or 7 d. Then the pups were killed and the lungs were examined for specific markers of alveolar epithelial, mesenchymal, and vascular maturation, and lung morphometry. The effect of RGZ on a limited number of blood biochemical and metabolic parameters was also determined. Overall, systemically administered RGZ significantly enhanced lung maturation without affecting serum electrolytes, blood glucose, blood gases, plasma cholesterol, triglycerides, and serum cardiac troponin levels. The lung maturation effect of PPARgamma agonists was also confirmed by another PPARgamma agonist, the naturally occurring PPARgamma ligand prostaglandin J2. We conclude that systemically administered RGZ significantly enhances lung maturation without significantly affecting the acute blood biochemical and metabolic profiles, providing rationale for further studying PPARgamma agonists for enhancing lung maturation, and for promoting lung injury/repair in neonates.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA
| | - Jamie Santos
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA
| | - Reiko Sakurai
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA
| | - Eugene Shin
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA
| | - Laura Cerny
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA
| | - John S. Torday
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA, Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA
| | - Virender K. Rehan
- Department of Pediatrics, Harbor-UCLA Medical Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, David Geffen School of Medicine at UCLA, 1124 West Carson St., RB1, Torrance, CA 90502, USA,Address for Reprint Requests and Correspondence: Virender K. Rehan, MD, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor UCLA Medical Center, David Geffen School of Medicine at UCLA, 1124 West Carson Street, Torrance, CA 90502,
| |
Collapse
|
131
|
The thiazolidinedione ciglitazone reduces bacterial outgrowth and early inflammation during Streptococcus pneumoniae pneumonia in mice*. Crit Care Med 2009; 37:614-8. [DOI: 10.1097/ccm.0b013e31819599b6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
132
|
Bulhak AA, Jung C, Ostenson CG, Lundberg JO, Sjöquist PO, Pernow J. PPAR-alpha activation protects the type 2 diabetic myocardium against ischemia-reperfusion injury: involvement of the PI3-Kinase/Akt and NO pathway. Am J Physiol Heart Circ Physiol 2009; 296:H719-27. [PMID: 19151258 DOI: 10.1152/ajpheart.00394.2008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Several clinical studies have shown the beneficial cardiovascular effects of fibrates in patients with diabetes and insulin resistance. The ligands of peroxisome proliferator-activated receptor-alpha (PPAR-alpha) reduce ischemia-reperfusion injury in nondiabetic animals. We hypothesized that the activation of PPAR-alpha would exert cardioprotection in type 2 diabetic Goto-Kakizaki (GK) rats, involving mechanisms related to nitric oxide (NO) production via the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. GK rats and age-matched Wistar rats (n >or= 7) were given either 1) the PPAR-alpha agonist WY-14643 (WY), 2) dimethyl sulfoxide (DMSO), 3) WY and the NO synthase inhibitor N(G)-nitro-l-arginine (l-NNA), 4) l-NNA, 5) WY and the PI3K inhibitor wortmannin, or 6) wortmannin alone intravenously before a 35-min period of coronary artery occlusion followed by 2 h of reperfusion. Infarct size (IS), expression of endothelial NO synthase (eNOS), inducible NO synthase, and Akt as well as nitrite/nitrate were determined. The IS was 75 +/- 3% and 72 +/- 4% of the area at risk in the Wistar and GK DMSO groups, respectively. WY reduced IS to 56 +/- 3% in Wistar (P < 0.05) and to 46 +/- 5% in GK rats (P < 0.001). The addition of either l-NNA or wortmannin reversed the cardioprotective effect of WY in both Wistar (IS, 70 +/- 5% and 65 +/- 5%, respectively) and GK (IS, 66 +/- 4% and 64 +/- 4%, P < 0.05, respectively) rats. The expression of eNOS and eNOS Ser1177 in the ischemic myocardium from both strains was increased after WY. The expression of Akt, Akt Ser473, and Akt Thr308 was also increased in the ischemic myocardium from GK rats following WY. Myocardial nitrite/nitrate levels were reduced in GK rats (P < 0.05). The results suggest that PPAR-alpha activation protects the type 2 diabetic rat myocardium against ischemia-reperfusion injury via the activation of the PI3K/Akt and NO pathway.
Collapse
Affiliation(s)
- Aliaksandr A Bulhak
- Division of Cardiology, Department of Medicine, The Rolf Luft Center for Diabetes Research, Karolinska University Hospital, Solna, S-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
133
|
Takano H, Komuro I. Peroxisome proliferator-activated receptor gamma and cardiovascular diseases. Circ J 2009; 73:214-20. [PMID: 19129679 DOI: 10.1253/circj.cj-08-1071] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily and form heterodimers with retinoid X receptor. Three PPAR isoforms have been isolated and termed alpha, beta (or delta) and gamma. Although PPARgamma is expressed predominantly in adipose tissue and associated with adipocyte differentiation and glucose homeostasis, PPARgamma is also present in a variety of cell types. Synthetic antidiabetic thiazolidinediones (TZDs) are well known as ligands and activators for PPARgamma. After it was reported that activation of PPARgamma suppressed production of pro-inflammatory cytokines in activated macrophages, medical interest in PPARgamma has grown and there has been a huge research effort. PPARgamma is currently known to be implicated in various human chronic diseases such as diabetes mellitus, atherosclerosis, rheumatoid arthritis, inflammatory bowel disease, and Alzheimer's disease. Many studies suggest that TZDs not only ameliorate insulin sensitivity, but also have pleiotropic effects on many tissues and cell types. Although activation of PPARgamma seems to have beneficial effects on cardiovascular diseases, the mechanisms by which PPARgamma ligands prevent their development are not fully understood. Recent data about the actions and its mechanisms of PPARgamma-dependent pathway in cardiovascular diseases are discussed here.
Collapse
Affiliation(s)
- Hiroyuki Takano
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| | | |
Collapse
|
134
|
Kaundal RK, Iyer S, Kumar A, Sharma SS. Protective Effects of Pioglitazone Against Global Cerebral Ischemic-Reperfusion Injury in Gerbils. J Pharmacol Sci 2009; 109:361-7. [DOI: 10.1254/jphs.08246fp] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
135
|
O'Brien JJ, Baglole CJ, Garcia-Bates TM, Blumberg N, Francis CW, Phipps RP. 15-deoxy-Delta12,14 prostaglandin J2-induced heme oxygenase-1 in megakaryocytes regulates thrombopoiesis. J Thromb Haemost 2009; 7:182-9. [PMID: 18983509 PMCID: PMC2821682 DOI: 10.1111/j.1538-7836.2008.03191.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet production is an intricate process that is poorly understood. Recently, we demonstrated that the natural peroxisome proliferator-activated receptor gamma (PPARgamma) ligand, 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), augments platelet numbers by increasing platelet release from megakaryocytes through the induction of reactive oxygen species (ROS). 15d-PGJ(2) can exert effects independent of PPARgamma, such as increasing oxidative stress. Heme oxygenase-1 (HO-1) is a potent antioxidant and may influence platelet production. OBJECTIVES To further investigate the influence of 15d-PGJ(2) on megakaryocytes and to understand whether HO-1 plays a role in platelet production. METHODS Meg-01 cells (a primary megakaryoblastic cell line) and primary human megakaryocytes derived from cord blood were used to examine the effects of 15d-PGJ(2) on HO-1 expression in megakaryocytes and their daughter platelets. The role of HO-1 activity in thrombopoiesis was studied using established in vitro models of platelet production. RESULTS AND CONCLUSIONS 15d-PGJ(2) potently induced HO-1 protein expression in Meg-01 cells and primary human megakaryocytes. The platelets produced from these megakaryocytes also expressed elevated levels of HO-1. 15d-PGJ(2)-induced HO-1 was independent of PPARgamma, but could be replicated using other electrophilic prostaglandins, suggesting that the electrophilic properties of 15d-PGJ(2) were important for HO-1 induction. Interestingly, inhibiting HO-1 activity enhanced ROS generation and augmented 15d-PGJ(2)-induced platelet production, which could be attenuated by antioxidants. These new data reveal that HO-1 negatively regulates thrombopoiesis by inhibiting ROS.
Collapse
Affiliation(s)
- J J O'Brien
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
136
|
Georgiadou P, Iliodromitis EK, Kolokathis F, Mavroidis M, Andreadou I, Demopoulou M, Varounis C, Capetanaki Y, Boudoulas H, Kremastinos DT. Plasma levels of osteopontin before and 24 h after percutaneous coronary intervention. Expert Opin Ther Targets 2008; 12:1477-80. [DOI: 10.1517/14728220802510740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
137
|
Ye Y, Lin Y, Manickavasagam S, Perez-Polo JR, Tieu BC, Birnbaum Y. Pioglitazone protects the myocardium against ischemia-reperfusion injury in eNOS and iNOS knockout mice. Am J Physiol Heart Circ Physiol 2008; 295:H2436-46. [PMID: 18931027 DOI: 10.1152/ajpheart.00690.2008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) activation with subsequent inducible NOS (iNOS), cytosolic phospholipase A2 (cPLA2), and cyclooxygenase-2 (COX2) activation is essential to statin inhibition of myocardial infarct size (IS). In the rat, the peroxisome proliferator-activated receptor-gamma agonist pioglitazone (Pio) limits IS, upregulates and activates cPLA2 and COX2, and increases myocardial 6-keto-PGF1alpha levels without activating eNOS and iNOS. We asked whether Pio also limits IS in eNOS-/- and iNOS-/- mice. Male C57BL/6 wild-type (WT), eNOS-/-, and iNOS-/- mice received 10 mg.kg(-1).day(-1) Pio (Pio+) or water alone (Pio-) for 3 days. Mice underwent 30 min coronary artery occlusion and 4 h reperfusion, or hearts were harvested and subjected to ELISA and immunoblotting. As a result, Pio reduced IS in the WT (15.4+/-1.4% vs. 39.0+/-1.1%; P<0.001), as well as in the eNOS-/- (32.0+/-1.6% vs. 44.2+/-1.9%; P<0.001) and iNOS-/- (18.0+/-1.2% vs. 45.5+/-2.3%; P<0.001) mice. The protective effect of Pio in eNOS-/- mice was smaller than in the WT (P<0.001) and iNOS-/- (P<0.001) mice. Pio increased myocardial Ser633 and Ser1177 phosphorylated eNOS levels in the WT and iNOS-/- mice. iNOS was undetectable in all six groups. Pio increased cPLA2, COX2, and PGI2 synthase levels in the WT, as well as in the eNOS-/- and iNOS-/-, mice. Pio increased the myocardial 6-keto-PGF1alpha levels and cPLA2 and COX2 activity in the WT, eNOS-/-, and iNOS-/- mice. In conclusion, the myocardial protective effect of Pio is iNOS independent and may be only partially dependent on eNOS. Because eNOS activity decreases with age, diabetes, and advanced atherosclerosis, this effect may be relevant in a clinical setting and should be further characterized.
Collapse
Affiliation(s)
- Yumei Ye
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Science, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | |
Collapse
|
138
|
Le Mée S, Hennebert O, Ferrec C, Wülfert E, Morfin R. 7beta-Hydroxy-epiandrosterone-mediated regulation of the prostaglandin synthesis pathway in human peripheral blood monocytes. Steroids 2008; 73:1148-59. [PMID: 18555503 DOI: 10.1016/j.steroids.2008.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 04/21/2008] [Accepted: 05/02/2008] [Indexed: 11/30/2022]
Abstract
7alpha-Hydroxy-DHEA, 7beta-hydroxy-DHEA and 7beta-hydroxy-EpiA are native metabolites of dehydroepiandrosterone (DHEA) and epiandrosterone (EpiA). Since numerous steroids are reported to interfere with inflammatory and immune processes, our objective was to test the effects of these hydroxysteroids on prostaglandin (PG) production and related enzyme gene expression. Human peripheral blood monocytes were cultured for 4 and 24 h in the presence of each of the steroids (1-100 nM), with and without addition of TNF-alpha (10 ng/mL). Levels of PGE(2), PGD(2) and 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) were measured in the incubation medium, and cell content of cyclooxygenase (COX-2), and PGE and PGD synthases (m-PGES1, H-PGDS, L-PGDS), and peroxisome proliferator activated receptor (PPAR-gamma) was assessed by quantitative RT-PCR and Western blots. Addition of TNF-alpha resulted in elevated PG production and increased COX-2 and m-PGES1 levels. Among the three steroids tested, only 7beta-hydroxy-EpiA decreased COX-2, m-PGES1 and PPAR-gamma expression while markedly decreasing PGE(2) and increasing 15d-PGJ(2) production. These results suggest that 7beta-hydroxy-EpiA is a native trigger of cellular protection through simultaneous activation of 15d-PGJ(2) and depression of PGE(2) synthesis, and that these effects may be mediated by activation of a putative receptor, specific for 7beta-hydroxy-EpiA.
Collapse
Affiliation(s)
- Sandrine Le Mée
- Chaire de Génie Biologique, EA-3199, Conservatoire National des Arts et Métiers, 2 rue Conté, 75003 Paris, France
| | | | | | | | | |
Collapse
|
139
|
Effect of cyclopentanone prostaglandin 15-deoxy-delta12,14PGJ2 on early functional recovery from experimental spinal cord injury. Shock 2008; 30:142-52. [PMID: 18628687 DOI: 10.1097/shk.0b013e31815dd381] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) gamma is a member of the nuclear-receptor superfamily that binds to DNA with retinoid X receptors as PPAR-retinoid X receptor heterodimers. Recent evidence also suggests that the cyclopentenone prostaglandin 15-deoxy-DeltaPGJ2 (15d-PGJ2), which is a metabolite of the prostaglandin D2, functions as an endogenous ligand for PPAR-gamma We postulated that 15d-PGJ2 would attenuate inflammation, investigating the effects on the degree of experimental spinal cord trauma induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. Spinal cord injury in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of a range of inflammatory mediators, tissue damage, and apoptosis. Furthermore, 15d-PGJ2 reduced (1) spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nuclear factor-kappaB activation, (4) expression of iNOS, nitrotyrosine and TNF-alpha, and (5) apoptosis (terminal deoxynucleotidyltransferase-mediated uridine triphosphate end labeling staining, Bax, Bcl-2, and FAS-L expression). In a separate set of experiments, 15d-PGJ2 significantly ameliorated the recovery of limb function (evaluated by motor recovery score). To elucidate whether the protective effects of 15d-PGJ2 are related to activation of the PPAR-gamma receptor, we also investigated the effect of a PPAR-gamma antagonist, GW 9662, on the protective effects of 15d-PGJ2. GW9662 (1 mg/kg administered i.p. 30 min before treatment with 15d-PGJ2) significantly antagonized the effect of the PPAR-gamma agonist and, thus, abolished the protective effect. Taken together, our results clearly demonstrate that treatment with 15d-PGJ2 reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Collapse
|
140
|
Abstract
The peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a regulator of anti-inflammatory genes. One of its agonists, rosiglitazone-widely used in the treatment of type 2 diabetes mellitus-has recently been reported to increase the risk for myocardial infarction. In contrast, various studies provide evidence for a rosiglitazone-induced cardioprotection in different models of acute myocardial I/R. Here, we report that this protection can still be observed after 28 days of reperfusion in a murine model even when treatment commenced after the period of ischemia (reperfusion therapy). In vitro, cells from the rat cardiomyoblast cell line H9c2(2-1) are protected against oxidative stress by incubation with rosiglitazone, which can be abrogated by dexamethasone or cycloheximide. The antioxidant enzyme heme oxygenase 1 is up-regulated in these cells after rosiglitazone treatment. Our data provide further evidence that rosiglitazone exerts protective effects during myocardial I/R and might contribute to the reevaluation of the approved drug rosiglitazone.
Collapse
|
141
|
The role of 15-deoxy-delta(12,14)-prostaglandin J(2), an endogenous ligand of peroxisome proliferator-activated receptor gamma, in tumor angiogenesis. Biochem Pharmacol 2008; 76:1544-53. [PMID: 18771658 DOI: 10.1016/j.bcp.2008.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 07/27/2008] [Accepted: 07/29/2008] [Indexed: 11/23/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear hormone receptor, is a ligand-activated transcription factor involved in adipogenesis, glucose homeostasis and lipid metabolism. 15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), an endogenous ligand of PPARgamma, has multifaceted cellular functions. Angiogenesis plays an important role in the pathophysiology of ischemic and neoplastic disorders, especially cancer. 15d-PGJ(2) is involved in regulation of angiogenic mediators including vascular endothelial growth factor and hence participates in the blood vessel formation by means of angiogenesis. However, depending on the experimental conditions, this cyclopentenone prostaglandin can exert opposite effects on angiogenesis. 15d-PGJ(2) inhibits angiogenesis via suppression of pro-inflammatory enzymes and cytokines, while it also stimulates angiogenesis via induction of heme oxygenase-1, endothelial nitric-oxide synthase, and hypoxia inducible factor-1alpha. The aim of this review is to highlight such dual effects of 15d-PGJ(2) on angiogenesis and underlying molecular mechanisms.
Collapse
|
142
|
Smeets PJH, Teunissen BEJ, Planavila A, de Vogel-van den Bosch H, Willemsen PHM, van der Vusse GJ, van Bilsen M. Inflammatory pathways are activated during cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARalpha and PPARdelta. J Biol Chem 2008; 283:29109-18. [PMID: 18701451 DOI: 10.1074/jbc.m802143200] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates an important role for inflammation in cardiac hypertrophy and failure. Peroxisome proliferator-activated receptors (PPARs) have been reported to attenuate inflammatory signaling pathways and, as such, may interfere with cardiac remodeling. Accordingly, the objectives of the present study were to explore the relationship between cardiomyocyte hypertrophy and inflammation and to investigate whether PPARalpha and PPARdelta are able to inhibit NF-kappaB activation and, consequently, the hypertrophic growth response of neonatal rat cardiomyocytes (NCM). mRNA levels of markers of both hypertrophy and inflammation were increased following treatment with the pro-hypertrophic factor phenylephrine (PE) or the chemokine TNF-alpha. Induction of inflammatory genes was found to be fast (within 2 h after stimulation) and transient, while induction of hypertrophic marker genes was more gradual (peaking at 24-48 h). Inflammatory and hypertrophic pathways appeared to converge on NF-kappaB as both PE and TNF-alpha increased NF-kappaB binding activity as measured by electrophoretic mobility shift assay. Following transient transfection, the p65-induced transcriptional activation of a NF-kappaB reporter construct was significantly blunted after co-transfection of PPARalpha or PPARdelta in the presence of their respective ligands. Finally, adenoviral overexpression of PPARalpha and PPARdelta markedly attenuated cell enlargement and the expression of hypertrophic marker genes in PE-stimulated NCM. The collective findings reveal a close relationship between hypertrophic and inflammatory signaling pathways in the cardiomyocyte. It was shown that both PPARalpha and PPARdelta are able to mitigate cardiomyocyte hypertrophy in vitro by inhibiting NF-kappaB activation.
Collapse
Affiliation(s)
- Pascal J H Smeets
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
143
|
Shim YH, Kersten JR. Preconditioning, anesthetics, and perioperative medication. Best Pract Res Clin Anaesthesiol 2008; 22:151-65. [PMID: 18494394 DOI: 10.1016/j.bpa.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of endogenous signal transduction pathways, by a variety of stimuli including ischemic and anesthetic pre- and post-conditioning, protects myocardium against ischemia and reperfusion injury. Experimental evidence suggests that adenosine-regulated potassium channels, cyclooxygenase-2, intracellular kinases, endothelial nitric oxide synthase, and membrane bound receptors play critical roles in signal transduction, and that intracellular signaling pathways ultimately converge on mitochondria to produce cardioprotection. Disease states, and perioperative medications such as sulfonylureas and COX-2 antagonists, could have adverse effects on cardioprotection by impairing activation of ion channels and proteins that are important in cell signaling. Insights gained from animal and clinical studies are reviewed and recommendations given for the use of perioperative anesthetics and medications.
Collapse
Affiliation(s)
- Yon Hee Shim
- Department of Anesthesiology, Pharmacology and Toxicology, The Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
144
|
Madrazo JA, Kelly DP. The PPAR trio: regulators of myocardial energy metabolism in health and disease. J Mol Cell Cardiol 2008; 44:968-975. [PMID: 18462747 DOI: 10.1016/j.yjmcc.2008.03.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/07/2008] [Accepted: 03/21/2008] [Indexed: 12/20/2022]
Abstract
Common causes of heart failure are associated with derangements in myocardial fuel utilization. Evidence is emerging that metabolic abnormalities may contribute to the development and progression of myocardial disease. The peroxisome proliferator-activated receptor (PPAR) family of nuclear receptor transcription factors has been shown to regulate cardiac fuel metabolism at the gene expression level. The three PPAR family members (alpha, beta/delta and gamma) are uniquely suited to serve as transducers of developmental, physiological, and dietary cues that influence cardiac fatty acid and glucose metabolism. This review describes murine PPAR loss- and gain-of-function models that have shed light on the roles of these receptors in regulating myocardial metabolic pathways and have defined key links to disease states including the hypertensive and diabetic heart.
Collapse
Affiliation(s)
- Jose A Madrazo
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel P Kelly
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
145
|
Different effect of acute treatment with rosiglitazone on rat myocardial ischemia/reperfusion injury by administration method. Eur J Pharmacol 2008; 589:215-9. [PMID: 18571644 DOI: 10.1016/j.ejphar.2008.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 04/04/2008] [Accepted: 05/13/2008] [Indexed: 11/23/2022]
Abstract
The present study was undertaken to examine the effect of rosiglitazone, a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, using different administration methods, on rat myocardial infarct size induced by 30 min of ischemia followed by 4 h of reperfusion. The infarct size was significantly reduced by the continuous infusion of rosiglitazone (0.5 mg/kg/h) from 30 min before occlusion for 2 h. On the other hand, limitation of the infarct size was shown by a bolus injection of 0.75 mg/kg at 5 min before reperfusion, but not by a bolus injection of 1 mg at 30 min before occlusion. The protective effect of rosiglitazone by the bolus injection before occlusion was obtained when an antioxidant, N-acetylcysteine, was concomitantly administered. The cardioprotection by rosiglitazone was associated with the inhibition of increased myeloperoxidase activity, tumor necrosis factor-alpha content and phosphorylation of inhibitor kappaB in the myocardium. The present study demonstrated that the protective effect of rosiglitazone on myocardial ischemia/reperfusion injury occurred most likely by inhibition of the nuclear factor-kappaB pathway through PPAR-gamma activation. However, acute treatment with rosiglitazone is harmful if its concentration is high during ischemia.
Collapse
|
146
|
Harris GS, Lust RM, DeAntonio JH, Katwa LC. PPAR-gamma expression in animals subjected to volume overload and chronic Urotensin II administration. Peptides 2008; 29:795-800. [PMID: 18423937 PMCID: PMC3876796 DOI: 10.1016/j.peptides.2008.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 02/13/2008] [Accepted: 03/03/2008] [Indexed: 11/22/2022]
Abstract
Activation of PPAR-gamma through the administration of glitazones has shown promise in preserving function following cardiac injury, although recent evidence has suggested their use may be contraindicated in the case of severe heart failure. This study tested the hypothesis that PPAR-gamma expression increases in a time dependent manner in response to chronic volume overload (VO) induced heart failure. Additionally, we attempted to determine what effect 4 week administration of Urotensin II (UTII) may have on PPAR-gamma expression. VO induced heart failure was produced in Sprague-Dawley rats (n=32) by aorta-caval fistula. Animals were sacrificed at 1, 4, and 14 weeks following shunt creation. In a separate set of experiments, animals were administered 300 pmol/kg/h of UTII for 4 weeks, subjected to 4 weeks of volume overload, or given UTII+VO. Densitometric analysis of left ventricular (LV) protein demonstrated PPAR-gamma expression was significantly ((*)p<0.05) upregulated at 4 and 14 weeks (31.5% and 37%, respectively) post-fistula formation compared to control values. PPAR-gamma activation was decreased in the 4 and 14 week (39.16% and 42.4%, respectively), but not in the 1-week animals, and these changes did not correlate with NF-kappaB activity. Animals given UTII either with or without VO demonstrated increased expression of PPAR-gamma as did animals subjected to 4 week VO alone. Animals given UTII either with or without VO had decreased activity vs. control. These data suggest PPAR-gamma may play a role in the progression of heart failure, however, the exact nature has yet to be determined.
Collapse
Affiliation(s)
| | | | | | - Laxmansa C. Katwa
- Corresponding author at: Department of physiology, Rm. 6E-73C Brody Building, The Brody School of Medicine at East Carolina University, 600 Moye Blvd., Greenville, NC 27834, USA. Tel.: +1 252 744 1906; fax: +1 252 744 3460. (L.C. Katwa)
| |
Collapse
|
147
|
Therapeutic Potential of PPARγ Activation in Stroke. PPAR Res 2008; 2008:461981. [PMID: 21909480 PMCID: PMC2293414 DOI: 10.1155/2008/461981] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 03/27/2008] [Indexed: 02/07/2023] Open
Abstract
Stroke (focal cerebral ischemia) is a leading cause of death and disability among adult population. Many pathological events including inflammation and oxidative stress during the acute period contributes to the secondary neuronal death leading the neurological dysfunction after stroke. Transcriptional regulation of genes that promote these pathophysiological mechanisms can be an effective strategy to minimize the poststroke neuronal death. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors known to be upstream to many inflammatory and antioxidant genes. The goal of this review is to discuss the therapeutic potential and putative mechanisms of neuroprotection following PPAR activation after stroke.
Collapse
|
148
|
Burwell LS, Brookes PS. Mitochondria as a target for the cardioprotective effects of nitric oxide in ischemia-reperfusion injury. Antioxid Redox Signal 2008; 10:579-99. [PMID: 18052718 DOI: 10.1089/ars.2007.1845] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During cardiac ischemia-reperfusion (IR) injury, excessive generation of reactive oxygen species (ROS) and overload of Ca(2+) at the mitochondrial level both lead to opening of the mitochondrial permeability transition (PT) pore on reperfusion. This can result in the depletion of ATP, irreversible oxidation of proteins, lipids, and DNA within the cardiomyocyte, and can trigger cell-death pathways. In contrast, mitochondria are also implicated in the cardioprotective signaling processes of ischemic preconditioning (IPC), to prevent IR-related pathology. Nitric oxide (NO*) has emerged as a potent effector molecule for a variety of cardioprotective strategies, including IPC. Whereas NO* is most noted for its activation of the "classic" soluble guanylate cyclase (sGC) signaling pathway, emerging evidence indicates that NO can directly act on mitochondria, independent of the sGC pathway, affording acute cardioprotection against IR injury. These direct effects of NO* on mitochondria are the focus of this review.
Collapse
Affiliation(s)
- Lindsay S Burwell
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
149
|
Meili-Butz S, Niermann T, Fasler-Kan E, Barbosa V, Butz N, John D, Brink M, Buser PT, Zaugg CE. Dimethyl fumarate, a small molecule drug for psoriasis, inhibits Nuclear Factor-kappaB and reduces myocardial infarct size in rats. Eur J Pharmacol 2008; 586:251-8. [PMID: 18405893 DOI: 10.1016/j.ejphar.2008.02.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 01/04/2008] [Accepted: 02/12/2008] [Indexed: 11/30/2022]
Abstract
Persistent Nuclear Factor-kappaB (NF-kappaB) activation is hypothesized to contribute to myocardial injuries following ischemia-reperfusion. Because inhibition or control of NF-kappaB signaling in the heart probably confers cardioprotection, we determined the potency of the NF-kappaB inhibitor dimethyl fumarate (DMF) in cardiovascular cells, and determined whether administration of DMF translates into beneficial effects in an animal model of myocardial infarction. In rat heart endothelial cells (RHEC), we analysed inhibitory effects of DMF on NF-kappaB using shift assay and immunohistofluorescence. In in vivo experiments, male Sprague Dawley rats undergoing left coronary artery occlusion for 45 min received either DMF (10 mg/kg body weight) or vehicle 90 min before ischemia as well as immediately before ischemia. After 120 min of reperfusion, the hearts were stained with phthalocyanine blue dye and triphenyltetrazolium chloride. Additionally, acute hemodynamic and electrophysiologic effects of DMF were determined in dose-response experiments in isolated perfused rat hearts. DMF inhibited TNF-alpha-induced nuclear entry of NF-kappaB in RHEC. In in vivo experiments, myocardial infarct size was significantly smaller in rats that had received DMF (20.7%+/-9.7% in % of risk area; n=17) than in control rats (28.2%+/-6.2%; n=15). Dose-response experiments in isolated perfused rat hearts excluded acute hemodynamic or electrophysiologic effects as mechanisms for the effects of DMF. DMF inhibits nuclear entry of NF-kappaB in RHEC and reduces myocardial infarct size after ischemia and reperfusion in rats in vivo. There was no indication that the beneficial effects of DMF were due to acute hemodynamic or electrophysiologic influences.
Collapse
Affiliation(s)
- Silvia Meili-Butz
- University Hospital Basel, Department of Research, Cardiobiology Laboratories, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Agonists at PPAR-gamma suppress angiotensin II-induced production of plasminogen activator inhibitor-1 and extracellular matrix in rat cardiac fibroblasts. Br J Pharmacol 2008; 153:1409-19. [PMID: 18278065 DOI: 10.1038/bjp.2008.21] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit cardiac fibrosis. However, the underlying mechanisms are poorly understood. We investigated the regulation by PPAR-gamma ligands of angiotensin (Ang) II-induced plasminogen activator inhibitor (PAI)-1, extracellular matrix (ECM) production and cell growth in cardiac fibroblasts. EXPERIMENTAL APPROACH The effects of PPAR-gamma ligands on Ang II-induced PAI-1, ECM expression and cell growth were assessed in primary-cultured rat cardiac fibroblasts; cardiac PAI-1 and ECM production was examined in Ang II-infused rats. KEY RESULTS In growth-arrested cardiac fibroblasts, PPAR-gamma ligands rosiglitazone and 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2) dose-dependently attenuated Ang II-induced cell proliferation and expression of PAI-1, collagen type-I, collagen type-III and fibronectin. An accompanying increase in PPAR-gamma expression and activation was also observed. These suppressive effects were attenuated by the PPAR-gamma antagonists GW9662 and bisphenol A diglycidyl ether (BADGE). Moreover, rosiglitazone and 15d-PGJ2 inhibited in part the expression and phosphorylation of Ang II-induced transforming growth factor (TGF)-beta1, Smad2/3 and c-Jun NH(2)-terminal kinase (JNK). Ang II infusion in rats markedly increased left ventricular production of PAI-1, collagen and fibronectin, with a concurrent increase in the ratios of heart weight/body weight and left ventricle weight/body weight. Co-treatment with rosiglitazone significantly decreased these levels and upregulated PPAR-gamma expression. CONCLUSIONS AND IMPLICATIONS Rosiglitazone and 15d-PGJ2 suppress Ang II-induced production of PAI-1 and ECM probably via interactions between PPAR-gamma and TGF-beta1/Smad2/3 and JNK signalling pathways. It is suggested that PPAR-gamma and its ligands may have potential applications in preventing cardiac fibrosis.
Collapse
|