101
|
Khamoui AV, Kim JS. Candidate mechanisms underlying effects of contractile activity on muscle morphology and energetics in cancer cachexia. Eur J Cancer Care (Engl) 2011; 21:143-57. [PMID: 21880081 DOI: 10.1111/j.1365-2354.2011.01287.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle wasting is a prominent pathophysiological feature of cancer cachexia. Recent evidence suggests the manifestation of mitochondrial dysfunction along with a diminished oxidative capacity. These abnormalities have been concurrently observed with impaired muscle force production and the accelerated onset of fatigue in both tumour-bearing animals and cancer patients exhibiting wasting. To address the burden imposed by cachexia, nutritional and pharmacological interventions have been investigated extensively; in contrast, contractile activity-based countermeasures (i.e. exercise training) have been less frequently explored. Although limited, several preclinical studies that implemented contractile activity have reported favourable outcomes such as the retention of muscle mass and the restoration of energetic homeostasis. Even fewer investigations have examined the mechanisms accounting for these protective effects. An experimental approach addressing contractile activity-dependent expression of muscle mass and energy metabolism regulators may yield information that provides mechanistic support for exercise countermeasures. In this review, we present several candidate mechanisms underlying the protective effects of contractile activity as support for exercise countermeasure strategies. Given the limited quantity of data in this area, insights will be derived from studies on contractile activity-dependent modulation of common cellular and molecular events regulating muscle morphology and energetics during other muscle wasting conditions (e.g. sarcopenia).
Collapse
Affiliation(s)
- A V Khamoui
- Department of Nutrition, Food and Exercise Sciences, The Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
102
|
Ventura-Clapier R, Garnier A, Veksler V, Joubert F. Bioenergetics of the failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1360-72. [DOI: 10.1016/j.bbamcr.2010.09.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/24/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
103
|
White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA. Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol 2010; 300:R201-11. [PMID: 21148472 DOI: 10.1152/ajpregu.00300.2010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many diseases are associated with catabolic conditions that induce skeletal muscle wasting. These various catabolic states may have similar and distinct mechanisms for inducing muscle protein loss. Mechanisms related to muscle wasting may also be related to muscle metabolism since glycolytic muscle fibers have greater wasting susceptibility with several diseases. The purpose of this study was to determine the relationship between muscle oxidative capacity and muscle mass loss in red and white hindlimb muscles during cancer cachexia development in the Apc(Min/+) mouse. Gastrocnemius and soleus muscles were excised from Apc(Min/+) mice at 20 wk of age. The gastrocnemius muscle was partitioned into red and white portions. Body mass (-20%), gastrocnemius muscle mass (-41%), soleus muscle mass (-34%), and epididymal fat pad (-100%) were significantly reduced in severely cachectic mice (n = 8) compared with mildly cachectic mice (n = 6). Circulating IL-6 was fivefold higher in severely cachectic mice. Cachexia significantly reduced the mitochondrial DNA-to-nuclear DNA ratio in both red and white portions of the gastrocnemius. Cytochrome c and cytochrome-c oxidase complex subunit IV (Cox IV) protein were reduced in all three muscles with severe cachexia. Changes in muscle oxidative capacity were not associated with altered myosin heavy chain expression. PGC-1α expression was suppressed by cachexia in the red and white gastrocnemius and soleus muscles. Cachexia reduced Mfn1 and Mfn2 mRNA expression and markers of oxidative stress, while Fis1 mRNA was increased by cachexia in all muscle types. Muscle oxidative capacity, mitochondria dynamics, and markers of oxidative stress are reduced in both oxidative and glycolytic muscle with severe wasting that is associated with increased circulating IL-6 levels.
Collapse
Affiliation(s)
- James P White
- Dept. of Exercise Science, University of South Carolina, Public Health Research Center, Rm. 405, 921 Assembly St., Columbia, SC 29208, USA
| | | | | | | | | | | |
Collapse
|
104
|
Saxena S, Shukla D, Saxena S, Khan YA, Singh M, Bansal A, Sairam M, Jain SK. Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf) 2010; 200:249-63. [PMID: 20384596 DOI: 10.1111/j.1748-1716.2010.02136.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Training under hypoxia has several advantages over normoxic training in terms of enhancing the physical performance. Therefore, we tested the protective effect of hypoxia preconditioning by hypoxia mimetic cobalt chloride against exercise-induced oxidative damage in the skeletal muscles and improvement of physical performance. METHOD Male Sprague-Dawley rats were randomly divided into four groups (n=8), namely control, cobalt-supplemented, training and cobalt with training. The red gastrocnemius muscle was examined for all measurements, viz. free radical generation, lipid peroxidation, muscle damage and antioxidative capacity. RESULTS Hypoxic preconditioning with cobalt along with training significantly increased physical performance (33%, P<0.01) in rats compared with training-only rats. Cobalt supplementation activated cellular oxygen sensing system in rat skeletal muscle. It also protected against training-induced oxidative damage as observed by an increase in the GSH/GSSG ratio (36%, P<0.001; 28%, P<0.01 respectively) and reduced lipid peroxidation (15%, P<0.01; 31%, P<0.01 respectively) in both trained and untrained rats compared with their respective controls. Cobalt supplementation along with training enhanced the expression of antioxidant proteins haem oxygenase-1 (HO-1; 1.2-fold, P<0.05) and metallothionein (MT; 4.8-fold, P<0.001) compared with training only. A marked reduction was observed in exercise-induced muscle fibre damage as indicated by decreased necrotic muscle fibre, decreased lipofuscin content of muscle and plasma creatine kinase level (16%, P<0.01) in rats preconditioned with cobalt. CONCLUSION Our study provides strong evidence that hypoxic preconditioning with cobalt chloride enhances physical performance and protects muscle from exercise-induced oxidative damage via GSH, HO-1 and MT-mediated antioxidative capacity.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Cell Hypoxia
- Cobalt/pharmacology
- Creatine Kinase, MM Form/blood
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glutathione/metabolism
- Heme Oxygenase (Decyclizing)/metabolism
- Lactic Acid/blood
- Lipid Peroxidation/drug effects
- Lipofuscin/metabolism
- Male
- Metallothionein/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/etiology
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Muscular Diseases/physiopathology
- Muscular Diseases/prevention & control
- Necrosis
- Oxidative Stress/drug effects
- Physical Endurance/drug effects
- Physical Exertion
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- S Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
105
|
van Wessel T, de Haan A, van der Laarse WJ, Jaspers RT. The muscle fiber type-fiber size paradox: hypertrophy or oxidative metabolism? Eur J Appl Physiol 2010; 110:665-94. [PMID: 20602111 PMCID: PMC2957584 DOI: 10.1007/s00421-010-1545-0] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2010] [Indexed: 12/11/2022]
Abstract
An inverse relationship exists between striated muscle fiber size and its oxidative capacity. This relationship implies that muscle fibers, which are triggered to simultaneously increase their mass/strength (hypertrophy) and fatigue resistance (oxidative capacity), increase these properties (strength or fatigue resistance) to a lesser extent compared to fibers increasing either of these alone. Muscle fiber size and oxidative capacity are determined by the balance between myofibrillar protein synthesis, mitochondrial biosynthesis and degradation. New experimental data and an inventory of critical stimuli and state of activation of the signaling pathways involved in regulating contractile and metabolic protein turnover reveal: (1) higher capacity for protein synthesis in high compared to low oxidative fibers; (2) competition between signaling pathways for synthesis of myofibrillar proteins and proteins associated with oxidative metabolism; i.e., increased mitochondrial biogenesis via AMP-activated protein kinase attenuates the rate of protein synthesis; (3) relatively higher expression levels of E3-ligases and proteasome-mediated protein degradation in high oxidative fibers. These observations could explain the fiber type-fiber size paradox that despite the high capacity for protein synthesis in high oxidative fibers, these fibers remain relatively small. However, it remains challenging to understand the mechanisms by which contractile activity, mechanical loading, cellular energy status and cellular oxygen tension affect regulation of fiber size. Therefore, one needs to know the relative contribution of the signaling pathways to protein turnover in high and low oxidative fibers. The outcome and ideas presented are relevant to optimizing treatment and training in the fields of sports, cardiology, oncology, pulmonology and rehabilitation medicine.
Collapse
Affiliation(s)
- T. van Wessel
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | - A. de Haan
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Manchester, UK
| | - W. J. van der Laarse
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - R. T. Jaspers
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|
106
|
Vincent AM, Edwards JL, McLean LL, Hong Y, Cerri F, Lopez I, Quattrini A, Feldman EL. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 2010; 120:477-89. [PMID: 20473509 DOI: 10.1007/s00401-010-0697-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 04/23/2010] [Accepted: 05/06/2010] [Indexed: 01/24/2023]
Abstract
Mitochondrial-mediated oxidative stress in response to high glucose is proposed as a primary cause of dorsal root ganglia (DRG) neuron injury in the pathogenesis of diabetic neuropathy. In the present study, we report a greater number of mitochondria in both myelinated and unmyelinated dorsal root axons in a well-established model of murine diabetic neuropathy. No similar changes were seen in younger diabetic animals without neuropathy or in the ventral motor roots of any diabetic animals. These findings led us to examine mitochondrial biogenesis and fission in response to hyperglycemia in the neurites of cultured DRG neurons. We demonstrate overall mitochondrial biogenesis via increases in mitochondrial transcription factors and increases in mitochondrial DNA in both DRG neurons and axons. However, this process occurs over a longer time period than a rapidly observed increase in the number of mitochondria in DRG neurites that appears to result, at least in part, from mitochondrial fission. We conclude that during acute hyperglycemia, mitochondrial fission is a prominent response, and excessive mitochondrial fission may result in dysregulation of energy production, activation of caspase 3, and subsequent DRG neuron injury. During more prolonged hyperglycemia, there is evidence of compensatory mitochondrial biogenesis in axons. Our data suggest that an imbalance between mitochondrial biogenesis and fission may play a role in the pathogenesis of diabetic neuropathy.
Collapse
|
107
|
Bo H, Zhang Y, Ji LL. Redefining the role of mitochondria in exercise: a dynamic remodeling. Ann N Y Acad Sci 2010; 1201:121-8. [PMID: 20649548 DOI: 10.1111/j.1749-6632.2010.05618.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Exercise induced adaptations in muscle are highly specific and dependent upon the type of exercise, as well as its frequency, intensity, and duration. Mitochondria are highly dynamic organelles. Fusion and fission reactions lead to a continuous remodeling of the mitochondrial network, which range from reticulum of elongated and branched filaments to collections of individual organelles. Mitochondrial network dynamics are sensitive to various physiological and pathological stimuli, and mitochondrial morphological changes are no epiphenomena, but central to cell function and survival. There is a strong correlation between mitochondrial network morphology, dynamic-related protein, and energy metabolism. It is expected that alteration in cellular energy status during exercise can also be achieved through mitochondrial network dynamics. In this review, we describe mitochondrial network remodeling response to acute and endurance exercise, which is accompanied by bioenergetics and redox regulation. In addition, potential mechanisms for metabolic and redox signaling involved in mitochondrial dynamic regulation are also reviewed.
Collapse
Affiliation(s)
- Hai Bo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Department of Health and Exercise Science, Tianjin University of Sport, Tianjin, China
| | | | | |
Collapse
|
108
|
Lira VA, Benton CR, Yan Z, Bonen A. PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 2010; 299:E145-61. [PMID: 20371735 PMCID: PMC2928513 DOI: 10.1152/ajpendo.00755.2009] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The peroxisome proliferator-activated receptor-gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) is a major regulator of exercise-induced phenotypic adaptation and substrate utilization. We provide an overview of 1) the role of PGC-1alpha in exercise-mediated muscle adaptation and 2) the possible insulin-sensitizing role of PGC-1alpha. To these ends, the following questions are addressed. 1) How is PGC-1alpha regulated, 2) what adaptations are indeed dependent on PGC-1alpha action, 3) is PGC-1alpha altered in insulin resistance, and 4) are PGC-1alpha-knockout and -transgenic mice suitable models for examining therapeutic potential of this coactivator? In skeletal muscle, an orchestrated signaling network, including Ca(2+)-dependent pathways, reactive oxygen species (ROS), nitric oxide (NO), AMP-dependent protein kinase (AMPK), and p38 MAPK, is involved in the control of contractile protein expression, angiogenesis, mitochondrial biogenesis, and other adaptations. However, the p38gamma MAPK/PGC-1alpha regulatory axis has been confirmed to be required for exercise-induced angiogenesis and mitochondrial biogenesis but not for fiber type transformation. With respect to a potential insulin-sensitizing role of PGC-1alpha, human studies on type 2 diabetes suggest that PGC-1alpha and its target genes are only modestly downregulated (< or =34%). However, studies in PGC-1alpha-knockout or PGC-1alpha-transgenic mice have provided unexpected anomalies, which appear to suggest that PGC-1alpha does not have an insulin-sensitizing role. In contrast, a modest ( approximately 25%) upregulation of PGC-1alpha, within physiological limits, does improve mitochondrial biogenesis, fatty acid oxidation, and insulin sensitivity in healthy and insulin-resistant skeletal muscle. Taken altogether, there is substantial evidence that the p38gamma MAPK-PGC-1alpha regulatory axis is critical for exercise-induced metabolic adaptations in skeletal muscle, and strategies that upregulate PGC-1alpha, within physiological limits, have revealed its insulin-sensitizing effects.
Collapse
Affiliation(s)
- Vitor A Lira
- Center for Skeletal Muscle Research, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
109
|
Fatone C, Guescini M, Balducci S, Battistoni S, Settequattrini A, Pippi R, Stocchi L, Mantuano M, Stocchi V, De Feo P. Two weekly sessions of combined aerobic and resistance exercise are sufficient to provide beneficial effects in subjects with Type 2 diabetes mellitus and metabolic syndrome. J Endocrinol Invest 2010; 33:489-95. [PMID: 20142634 DOI: 10.1007/bf03346630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study was performed to establish whether only 2 sessions per week of combined aerobic and resistance exercise are enough to reduce glycated hemoglobin (HbA(1c)) and to induce changes in skeletal muscle gene expression in Type 2 diabetes mellitus (DM2) subjects with metabolic syndrome. Eight DM2 subjects underwent a 1-yr exercise program consisting of 2 weekly sessions of 140 min that combined aerobic [at 55-70% of maximal oxygen uptake (VO(2max))] and resistance circuit training [at 60-80% of 1 repetition maximum (RM)]. The training significantly improved VO(2max) (from 33.5+/-3.8 ml/kg/min to 38.2+/-3.5 ml/kg/min, p=0.0085) and muscle strength (p<0.05). Changes over baseline were significant for HbA(1c), reduced by 0.45% (p=0.0084), fasting blood glucose (from 8.8+/-1.5 to 6.9+/-2.2 mmol/l, p=0.0132), waist circumference (from 98.9+/-4.8 to 95.9+/-4.6 cm, p=0.0054), body weight (from 87.5+/-10.7 to 85.7+/-10.1 kg, p=0.0375), systolic blood pressure (from 137+/-15 to 126+/-8 mmHg, p=0.0455), total cholesterol (from 220+/-24 to 184+/-13 mg/dl, p=0.0057), and LDL-cholesterol (from 150+/-16 to 105+/-15 mg/dl, p=0.0004). Mitochondrial DNA/nuclear DNA ratio at 6 and 12 months did not change. There was a significant increase of mRNA of peroxisome proliferator- activated receptor (PPAR)-gamma after 6 months of train - ing (p=0.024); PPARalpha mRNA levels were significantly increased at 6 (p=0.035) and 12 months (p=0.044). The mRNA quantification of other genes measured [mitochondrially encoded cytochrome c oxidase subunit II (MTCO2), cytochrome c oxidase subunit Vb (COX5b), PPARgamma coactivator 1alpha (PGC- 1alpha), glucose transporter 4 (GLUT 4), forkhead transcription factor BOX O1 (FOXO-1), carnitine palmitoyltransferase 1 (CPT-1), lipoprotein lipase (LPL), and insulin receptor substrate 1 (IRS-1)] did not show significant changes at 6 and 12 months. This study suggests that a twice-per-week frequency of exercise is sufficient to improve glucose control and the expression of skeletal muscle PPARgamma and PPARalpha in DM2 subjects with metabolic syndrome.
Collapse
Affiliation(s)
- C Fatone
- C.U.R.I.A.MO. (Centro Universitario Ricerca Interdipartimentale Attività Motoria/University Research Center on Physical Activity), University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 2009; 54:1891-8. [PMID: 19892241 DOI: 10.1016/j.jacc.2009.07.031] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 06/24/2009] [Accepted: 07/06/2009] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aim of this study was to determine the impact of diabetes on oxidant balance and mitochondrial metabolism of carbohydrate- and lipid-based substrates in myocardium of type 2 diabetic patients. BACKGROUND Heart failure represents a major cause of death among diabetic patients. It has been proposed that derangements in cardiac metabolism and oxidative stress may underlie the progression of this comorbidity, but scarce evidence exists in support of this mechanism in humans. METHODS Mitochondrial oxygen (O(2)) consumption and hydrogen peroxide (H(2)O(2)) emission were measured in permeabilized myofibers prepared from samples of the right atrial appendage obtained from nondiabetic (n = 13) and diabetic (n = 11) patients undergoing nonemergent coronary artery bypass graft surgery. RESULTS Mitochondria in atrial tissue of type 2 diabetic individuals show a sharply decreased capacity for glutamate and fatty acid-supported respiration, in addition to an increased content of myocardial triglycerides, as compared to nondiabetic patients. Furthermore, diabetic patients show an increased mitochondrial H(2)O(2) emission during oxidation of carbohydrate- and lipid-based substrates, depleted glutathione, and evidence of persistent oxidative stress in their atrial tissue. CONCLUSIONS These findings are the first to directly investigate the effects of type 2 diabetes on a panoply of mitochondrial functions in the human myocardium using cellular and molecular approaches, and they show that mitochondria in diabetic human hearts have specific impairments in maximal capacity to oxidize fatty acids and glutamate, yet increased mitochondrial H(2)O(2) emission, providing insight into the role of mitochondrial dysfunction and oxidative stress in the pathogenesis of heart failure in diabetic patients.
Collapse
|
111
|
Lumini-Oliveira J, Magalhães J, Pereira CV, Aleixo I, Oliveira PJ, Ascensão A. Endurance training improves gastrocnemius mitochondrial function despite increased susceptibility to permeability transition. Mitochondrion 2009; 9:454-62. [DOI: 10.1016/j.mito.2009.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/05/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
|
112
|
Capacity of oxidative phosphorylation in human skeletal muscle. Int J Biochem Cell Biol 2009; 41:1837-45. [DOI: 10.1016/j.biocel.2009.03.013] [Citation(s) in RCA: 344] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/26/2009] [Accepted: 03/26/2009] [Indexed: 01/09/2023]
|
113
|
Ding H, Jiang N, Liu H, Liu X, Liu D, Zhao F, Wen L, Liu S, Ji LL, Zhang Y. Response of mitochondrial fusion and fission protein gene expression to exercise in rat skeletal muscle. Biochim Biophys Acta Gen Subj 2009; 1800:250-6. [PMID: 19716857 DOI: 10.1016/j.bbagen.2009.08.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/29/2009] [Accepted: 08/18/2009] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to investigate the changes in the gene expression of Mitofusion (Mfn) 1 and 2 and Fission 1 (Fis1) and mitochondrial energy metabolism in response to altered energy demand during prolonged exercise in rat skeletal muscle. Male Sprague-Dawley rats were subjected to an acute bout of treadmill running at various durations and killed immediately or during recovery. Mfn1/2 and Fis1 mRNA and protein contents, reactive oxygen species (ROS) generation, state 3 and state 4 respiration rates, trans-innermembrane potential and ATP synthase activity were measured in isolated muscle mitochondria. We found that (1) Mfn1/2 mRNA contents were progressively decreased during 150 min of exercise, along with decreased Mfn 1 protein levels. Fis1 mRNA and protein contents showed significant increases after 120-150 min of exercise. These changes persisted through the recovery period up to 24 h. (2) Mitochondrial ROS generation and state 4 respiration showed progressive increases up to 120 min, but dropped at 150 min of exercise. (3) State 3 respiration rate and respiratory control index were unchanged initially but decreased at 150 and 120 min of exercise, respectively, whereas ATP synthase activity was elevated at 45 min and returned to resting level thereafter. Our data suggested that the gene expression of mitochondrial fusion and fission proteins in skeletal muscle can respond rapidly to increased metabolic demand during prolonged exercise, which could significantly affect the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Hu Ding
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine; Department of Health & Exercise Science, Tianjin University of Sport, Tianjin 300381, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Ventura-Clapier R. Exercise training, energy metabolism, and heart failure. Appl Physiol Nutr Metab 2009; 34:336-9. [PMID: 19448695 DOI: 10.1139/h09-013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Energy metabolism is at the crossroad of cell function and dysfunction. Cardiac and skeletal muscle cells, the energy metabolism of which is high, fluctuating, and adaptable to the special needs of the body, have developed sophisticated strategies for synthesizing, transferring, and utilizing energy in accordance with the needs of the body. Adaptation to endurance training mainly involves energetic remodelling in skeletal muscles, but less is known for the cardiac muscle. Alterations in energy metabolism participate in many pathophysiological processes, among which is heart failure. Because endurance training improves symptoms and quality of life and decreases mortality rate and hospitalization, it is increasingly recognized as a beneficial practice for heart failure patients. The mechanisms involved in the beneficial effects of exercise training are far from being understood. Proper evaluation of these mechanisms is thus a major health issue for populations living in industrialized countries. This review mainly focuses on oxidative metabolism and intracellular energy transfer in muscles and the heart, their alterations in heart failure, and the effects of endurance exercise training.
Collapse
Affiliation(s)
- Renée Ventura-Clapier
- INSERM, U-769, Chatenay-Malabry, Universite Paris-Sud, Chatenay-Malabry, Paris, France.
| |
Collapse
|
115
|
Garnier A, Zoll J, Fortin D, N'Guessan B, Lefebvre F, Geny B, Mettauer B, Veksler V, Ventura-Clapier R. Control by Circulating Factors of Mitochondrial Function and Transcription Cascade in Heart Failure. Circ Heart Fail 2009; 2:342-50. [DOI: 10.1161/circheartfailure.108.812099] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background—
Evidence is emerging to support the concept that the failing heart is “energy depleted” and that defects in energy metabolism are important determinants in the development and the progression of the disease. We have shown previously that depressed mitochondrial function in cardiac and skeletal muscles in chronic heart failure is linked to decreased expression of the gene encoding transcriptional proliferator-activated receptor-γ coactivator-1α, the inducible regulator of mitochondrial biogenesis and its transcription cascade, leading to altered expression of mitochondrial proteins. However, oxidative capacity of the myocardium of patients treated for chronic heart failure and pathophysiological mechanisms of mitochondrial dysfunction are still largely unknown.
Methods and Results—
In patients with chronic heart failure treated with angiotensin-converting enzyme inhibition, cardiac oxidative capacity, measured in saponin-permeabilized fibers, was 25% lower, and proliferator-activated receptor-γ coactivator-1α protein content was 34% lower compared with nonfailing controls. In a rat model of myocardial infarction, angiotensin-converting enzyme inhibition therapy was only partially able to protect cardiac mitochondrial function and transcription cascade. Expression of proliferator-activated receptor-γ coactivator-1α and its transcription cascade were evaluated after a 48-hour exposure of cultured adult rat ventricular myocytes to endothelin-1, angiotensin II, aldosterone, phenylephrine, or isoprenaline. Endothelin-1 (−30%) and, to a lesser degree, angiotensin II (−20%) decreased proliferator-activated receptor-γ coactivator-1α mRNA content, whereas other hormones had no effect (phenylephrine) or even increased it (aldosterone, isoprenaline).
Conclusions—
Taken together, these results show that, despite angiotensin-converting enzyme inhibition treatment, oxidative capacity is reduced in human and experimental heart failure and that endothelin-1 and angiotensin II could be involved in the downregulation of the mitochondrial transcription cascade.
Collapse
Affiliation(s)
- Anne Garnier
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Joffrey Zoll
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Dominique Fortin
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Benoît N'Guessan
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Florence Lefebvre
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Bernard Geny
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Bertrand Mettauer
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Vladimir Veksler
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| | - Renée Ventura-Clapier
- From the INSERM (A.G., D.F., F.L., V.V., R.V.C.), U-769, Châtenay-Malabry, France; Univ Paris-Sud (A.G., D.F., F.L., V.V., R.V.C.), IFR 141, Châtenay-Malabry, France; and Département de Physiologie (J.Z., B.N., B.G., B.M.), CHRU, EA3072, Strasbourg, France
| |
Collapse
|
116
|
Phenotypic analysis of genes whose mRNA accumulation is dependent on calcineurin in Aspergillus fumigatus. Fungal Genet Biol 2009; 46:791-802. [PMID: 19573616 DOI: 10.1016/j.fgb.2009.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/21/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and DeltacalA mutant strains. Our results showed that the mitochondrial copy number is reduced in the DeltacalA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the DeltacalA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS).
Collapse
|
117
|
Relationship between protein and mitochondrial DNA oxidative injury and telomere length and muscle loss in healthy elderly subjects. Arch Gerontol Geriatr 2009; 48:335-9. [DOI: 10.1016/j.archger.2008.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 12/25/2022]
|
118
|
Musicco C, Capelli V, Pesce V, Timperio AM, Calvani M, Mosconi L, Zolla L, Cantatore P, Gadaleta MN. Accumulation of overoxidized Peroxiredoxin III in aged rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:890-6. [PMID: 19272351 DOI: 10.1016/j.bbabio.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 12/23/2022]
Abstract
Overoxidation and subsequent inactivation of Peroxiredoxin III (PrxIII), a mitochondrial H(2)O(2) scavenging enzyme, have been reported in oxidative stress conditions. No data are available in the literature about the presence of overoxidized forms of PrxIII in aged tissues. Liver mitochondria from 12-month-old rats and 28-month-old rats were here analyzed by two-dimensional gel electrophoresis. A spot corresponding to the native form of PrxIII was present in adult and old rats with the same volume, whereas an additional, more acidic spot, of the same molecular weight of the native form, accumulated only in old rats. The acidic spot was identified, by MALDI-MS analysis, as a form of PrxIII bearing the cysteine of the catalytic site overoxidized to sulphonic acid. This modified PrxIII form corresponds to the irreversibly inactivated enzyme, here reported, for the first time, in aging. Three groups of 28-month-old rats treated with acetyl-l-carnitine were also examined. Reduced accumulation of the overoxidized PrxIII form was found in all ALCAR-treated groups.
Collapse
Affiliation(s)
- Clara Musicco
- Institute of Biomembranes and Bioenergetics, Consiglio Nazionale delle Ricerche (CNR), Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Hom J, Sheu SS. Morphological dynamics of mitochondria--a special emphasis on cardiac muscle cells. J Mol Cell Cardiol 2009; 46:811-20. [PMID: 19281816 DOI: 10.1016/j.yjmcc.2009.02.023] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 02/22/2009] [Accepted: 02/25/2009] [Indexed: 01/10/2023]
Abstract
Mitochondria play a critical role in cellular energy metabolism, Ca(2+) homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart.
Collapse
Affiliation(s)
- Jennifer Hom
- Department of Pharmacology and Physiology, Mitochondrial Research and Innovation Group, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
120
|
Lumini JA, Magalhães J, Oliveira PJ, Ascensão A. Beneficial effects of exercise on muscle mitochondrial function in diabetes mellitus. Sports Med 2009; 38:735-50. [PMID: 18712941 DOI: 10.2165/00007256-200838090-00003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The physiopathology of diabetes mellitus has been closely associated with a variety of alterations in mitochondrial histology, biochemistry and function. Generally, the alterations comprise increased mitochondrial reactive oxygen and nitrogen species (RONS) generation, resulting in oxidative stress and damage; decreased capacity to metabolize lipids, leading to intramyocyte lipid accumulation; and diminished mitochondrial density and reduced levels of uncoupling proteins (UCPs), with consequent impairment in mitochondrial function. Chronic physical exercise is a physiological stimulus able to induce mitochondrial adaptations that can counteract the adverse effects of diabetes on muscle mitochondria. However, the mechanisms responsible for mitochondrial adaptations in the muscles of diabetic patients are still unclear. The main mechanisms by which exercise may be considered an important non-pharmacological strategy for preventing and/or attenuating diabetes-induced mitochondrial impairments may involve (i) increased mitochondrial biogenesis, which is dependent on the increased expression of some important proteins, such as the 'master switch' peroxisome proliferator-activated receptor (PPAR)-gamma-coactivator-1alpha (PGC-1alpha) and heat shock proteins (HSPs), both of which are severely downregulated in the muscles of diabetic patients; and (ii) the restoration or attenuation of the low UCP3 expression in skeletal muscle mitochondria of diabetic patients, which is suggested to play a pivotal role in mitochondrial dysfunction.There is evidence that chronic exercise and lifestyle interventions reverse impairments in mitochondrial density and size, in the activity of respiratory chain complexes and in cardiolipin content; however, the mechanisms by which chronic exercise alters mitochondrial respiratory parameters, mitochondrial antioxidant systems and other specific proteins involved in mitochondrial metabolism in the muscles of diabetic patients remain to be elucidated.
Collapse
Affiliation(s)
- José A Lumini
- Research Centre in Physical Activity, Health and Leisure, University of Porto, Porto, Portugal
| | | | | | | |
Collapse
|
121
|
Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (Lond) 2008; 115:283-93. [PMID: 18338980 DOI: 10.1042/cs20070332] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Regular exercise training is recognized as a powerful tool to improve work capacity, endothelial function and the cardiovascular risk profile in obesity, but it is unknown which of high-intensity aerobic exercise, moderate-intensity aerobic exercise or strength training is the optimal mode of exercise. In the present study, a total of 40 subjects were randomized to high-intensity interval aerobic training, continuous moderate-intensity aerobic training or maximal strength training programmes for 12 weeks, three times/week. The high-intensity group performed aerobic interval walking/running at 85-95% of maximal heart rate, whereas the moderate-intensity group exercised continuously at 60-70% of maximal heart rate; protocols were isocaloric. The strength training group performed 'high-intensity' leg press, abdominal and back strength training. Maximal oxygen uptake and endothelial function improved in all groups; the greatest improvement was observed after high-intensity training, and an equal improvement was observed after moderate-intensity aerobic training and strength training. High-intensity aerobic training and strength training were associated with increased PGC-1alpha (peroxisome-proliferator-activated receptor gamma co-activator 1alpha) levels and improved Ca(2+) transport in the skeletal muscle, whereas only strength training improved antioxidant status. Both strength training and moderate-intensity aerobic training decreased oxidized LDL (low-density lipoprotein) levels. Only aerobic training decreased body weight and diastolic blood pressure. In conclusion, high-intensity aerobic interval training was better than moderate-intensity aerobic training in improving aerobic work capacity and endothelial function. An important contribution towards improved aerobic work capacity, endothelial function and cardiovascular health originates from strength training, which may serve as a substitute when whole-body aerobic exercise is contra-indicated or difficult to perform.
Collapse
|
122
|
Abstract
Lifestyle intervention programs encompassing exercise and healthy diets are an option for the treatment and management of obesity and type 2 diabetes and have long been known to exert beneficial effects on whole-body metabolism, in particular leading to enhanced insulin-sensitivity. Obesity is associated with increased risk of several illnesses and premature mortality. However, physical inactivity is itself associated with a number of similar risks, independent of body-mass index, and is an independent risk factor for more than 25 chronic diseases, including type 2 diabetes and cardiovascular disease. This article addresses the debate regarding the relative effects of physical exercise itself and the effect of exercise-induced weight loss.
Collapse
Affiliation(s)
- Donal J O'Gorman
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| | | |
Collapse
|
123
|
The 12-week progressive quadriceps resistance training improves muscle strength, exercise capacity and quality of life in patients with stable chronic heart failure. Int J Cardiol 2008; 130:36-43. [DOI: 10.1016/j.ijcard.2007.07.158] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 05/16/2007] [Accepted: 07/20/2007] [Indexed: 12/21/2022]
|
124
|
Suppression of the aging-associated decline in physical performance by a combination of resveratrol intake and habitual exercise in senescence-accelerated mice. Biogerontology 2008; 10:423-34. [PMID: 18830683 DOI: 10.1007/s10522-008-9177-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
The decline in physical performance with increasing age is a crucial problem in our aging society. We examined the effects of resveratrol, a natural polyphenolic compound present in grapes, in combination with habitual exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1). The endurance capacity of SAMP1 mice undergoing an exercise regimen (SAMP1-Ex) decreased over 12 weeks whereas that of SAMP1 mice fed 0.2% (w/w) resveratrol along with exercise (SAMP1-ExRes) remained significantly higher. In the SAMP1-ExRes group, there was a significant increase in oxygen consumption and skeletal muscle mRNA levels of mitochondrial function-related enzymes. These results suggest that the intake of resveratrol, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and that these effects are attributable, at least in part, to improved mitochondrial function in skeletal muscle.
Collapse
|
125
|
Long YC, Zierath JR. Influence of AMP-activated protein kinase and calcineurin on metabolic networks in skeletal muscle. Am J Physiol Endocrinol Metab 2008; 295:E545-52. [PMID: 18544643 DOI: 10.1152/ajpendo.90259.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Skeletal muscle fibers differ considerably in their metabolic and physiological properties. Skeletal muscle displays a high degree of metabolic flexibility, which allows the myofibers to adapt to various physiological demands by shifting energy substrate utilization. Transcriptional events play a pivotal role in the metabolic adaptations of skeletal muscle. The expression of genes essential for skeletal muscle glucose and lipid metabolism is tightly coordinated in support of a shift in substrate utilization. AMP-activated protein kinase (AMPK) and calcineurin (a calcium-regulated serine/threonine protein phosphatase) regulate skeletal muscle metabolic gene expression programs in response to changes in the energy status and levels of neuronal input, respectively. AMPK and calcineurin activate transcriptional regulators such as peroxisome proliferator-activated receptor-gamma coactivator-1alpha and myocyte enhancer factor as well as increase skeletal muscle oxidative capacity and mitochondrial gene expression. Activation of either the AMPK or calcineurin pathway can also enhance the glycogen storage capacity and insulin sensitivity in skeletal muscle. Characterization of pathways governing skeletal muscle metabolism offers insight into physiological and pharmacological strategies to prevent or ameliorate peripheral insulin resistance associated with metabolic disorders such as type 2 diabetes.
Collapse
Affiliation(s)
- Yun Chau Long
- Karolinska Institutet, Dept. of Molecular Medicine and Surgery, von Eulers väg 4, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
126
|
Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARdelta agonists are exercise mimetics. Cell 2008; 134:405-15. [PMID: 18674809 PMCID: PMC2706130 DOI: 10.1016/j.cell.2008.06.051] [Citation(s) in RCA: 1185] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 04/23/2008] [Accepted: 06/20/2008] [Indexed: 10/21/2022]
Abstract
The benefits of endurance exercise on general health make it desirable to identify orally active agents that would mimic or potentiate the effects of exercise to treat metabolic diseases. Although certain natural compounds, such as reseveratrol, have endurance-enhancing activities, their exact metabolic targets remain elusive. We therefore tested the effect of pathway-specific drugs on endurance capacities of mice in a treadmill running test. We found that PPARbeta/delta agonist and exercise training synergistically increase oxidative myofibers and running endurance in adult mice. Because training activates AMPK and PGC1alpha, we then tested whether the orally active AMPK agonist AICAR might be sufficient to overcome the exercise requirement. Unexpectedly, even in sedentary mice, 4 weeks of AICAR treatment alone induced metabolic genes and enhanced running endurance by 44%. These results demonstrate that AMPK-PPARdelta pathway can be targeted by orally active drugs to enhance training adaptation or even to increase endurance without exercise.
Collapse
Affiliation(s)
- Vihang A Narkar
- Gene Expression Laboratory, Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Murase T, Haramizu S, Ota N, Hase T. Tea catechin ingestion combined with habitual exercise suppresses the aging-associated decline in physical performance in senescence-accelerated mice. Am J Physiol Regul Integr Comp Physiol 2008; 295:R281-9. [DOI: 10.1152/ajpregu.00880.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Catechins, which are abundant in green tea, possess a variety of biologic actions, and their clinical application has been extensively investigated. In this study, we examined the effects of tea catechins and regular exercise on the aging-associated decline in physical performance in senescence-accelerated prone mice (SAMP1) and age-matched senescence-accelerated resistant mice (SAMR1). The endurance capacity of SAMR1 mice, measured as the running time to exhaustion, tended to increase over the 8-wk experimental period, whereas that of SAMP1 mice decreased by 17%. On the other hand, the endurance capacity of SAMP1 mice fed 0.35% (wt/wt) catechins remained at the initial level and was significantly higher than that of SAMP1 mice not fed catechins. In SAMP1 mice fed catechins and given exercise, oxygen consumption was significantly increased, and there was an increase in skeletal muscle fatty acid β-oxidation. The mRNA levels of mitochondria-related molecules, such as peroxisome proliferator-activated receptor-γ coactivator-1, cytochrome c oxidase-II, III, and IV in skeletal muscle were also higher in SAMP1 mice given both catechins and exercise. Moreover, oxidative stress measured as thiobarbituric reactive substances was lower in SAMP1 groups fed catechins than in the SAMP1 control group. These results suggest that long-term intake of catechins, together with habitual exercise, is beneficial for suppressing the aging-related decline in physical performance and energy metabolism and that these effects are due, at least in part, to improved mitochondrial function in skeletal muscle.
Collapse
|
128
|
Ventura-Clapier R, Garnier A, Veksler V. Transcriptional control of mitochondrial biogenesis: the central role of PGC-1alpha. Cardiovasc Res 2008; 79:208-17. [PMID: 18430751 DOI: 10.1093/cvr/cvn098] [Citation(s) in RCA: 689] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the concept of energy starvation in the failing heart was proposed decades ago, still very little is known about the origin of energetic failure. Recent advances in molecular biology have started to elucidate the transcriptional events governing mitochondrial biogenesis. In particular, a great step was taken with the discovery that peroxisome proliferator-activated receptor gamma co-activator (PGC-1alpha) is the master regulator of mitochondrial biogenesis. The molecular mechanisms underlying the downregulation of PGC-1alpha and the consequent decrease in mitochondrial function in heart failure are, however, still poorly understood. Indeed, the main pathways involved in mitochondrial biogenesis are thought to be up- rather than down-regulated in pathological hypertrophy and heart failure. The current review summarizes recent advances in this field and is restricted to the heart when cardiac data are available.
Collapse
|
129
|
de Brito OM, Scorrano L. Mitofusin 2: a mitochondria-shaping protein with signaling roles beyond fusion. Antioxid Redox Signal 2008; 10:621-33. [PMID: 18092941 DOI: 10.1089/ars.2007.1934] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mitochondria are central organelles in metabolism, signal transduction, and programmed cell death. To meet their diverse functional demands, their shape is strictly regulated by a growing family of proteins that impinge on fission and fusion of the organelle. Mitochondrial fusion depends on Mitofusin (Mfn) 1 and 2, two integral outer-membrane proteins. Although MFN1 seems primarily involved in the regulation of the docking and fusion of the organelle, mounting evidence is implicating MFN2 in multiple signaling pathways not restricted to the regulation of mitochondrial shape. Here we review data supporting a role for this mitochondria-shaping protein beyond fusion, in regulating mitochondrial metabolism, apoptosis, shape of other organelles, and even progression through cell cycle. In conclusion, MFN2 appears a multifunctional protein whose biologic function is not restricted to the regulation of mitochondrial shape.
Collapse
|
130
|
Mezzani A, Corrà U, Andriani C, Giordano A, Colombo R, Giannuzzi P. Anaerobic and aerobic relative contribution to total energy release during supramaximal effort in patients with left ventricular dysfunction. J Appl Physiol (1985) 2008; 104:97-102. [DOI: 10.1152/japplphysiol.00608.2007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Energetic metabolism during effort is impaired in patients with left ventricular dysfunction (Dysf), but data have been lacking up to now on the relative anaerobic vs. aerobic contribution to total energy release during supramaximal effort. Recently, the maximal accumulated oxygen deficit (MAOD) has been shown to be measurable in Dysf patients, making it possible to evaluate the anaerobic/aerobic interaction under conditions of maximal stress of both anaerobic and aerobic metabolic pathways in this population. Nineteen Dysf patients and 17 normal patients (N) underwent one ramp cardiopulmonary, three moderate-intensity constant-power, and three supramaximal constant-power (1- to 2-min, 2- to 3-min, and 3- to 4-min duration) exercise tests. MAOD was the difference between accumulated O2demand (accO2dem; estimated from the moderate-intensity O2uptake/watt relationship) and uptake during supramaximal tests. Percent anaerobic (%Anaer) and aerobic (%Aer) energetic release were [(MAOD/accO2dem)·100] and 100 − %Anaer, respectively. MAOD did not vary between 1–2, 2–3, and 3–4 min supramaximal tests, whereas accO2dem increased significantly with and was linearly related to test duration in both Dysf and N. Consequently, %Anaer and %Aer decreased and increased, respectively, with increasing test duration but did not differ between Dysf and N in 1–2 min, 2–3 min, and 3–4 min tests. Our study demonstrates a similar relative anaerobic vs. aerobic contribution to total energy release during supramaximal effort in Dysf and N. This finding indicates that energetic metabolism during supramaximal exercise is exercise tolerance independent and that relative anaerobic vs. aerobic contribution in this effort domain remains the same within the physiology- or pathology-induced limits to individual peak exercise performance.
Collapse
|
131
|
Vaarmann A, Fortin D, Veksler V, Momken I, Ventura-Clapier R, Garnier A. Mitochondrial biogenesis in fast skeletal muscle of CK deficient mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:39-47. [DOI: 10.1016/j.bbabio.2007.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 11/05/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
132
|
Bigard AX, Sanchez H, Koulmann N. Modulations du génome exprimé dans le muscle squelettique avec l’entraînement physique. Sci Sports 2007. [DOI: 10.1016/j.scispo.2007.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
133
|
Weigert C, Düfer M, Simon P, Debre E, Runge H, Brodbeck K, Häring HU, Schleicher ED. Upregulation of IL-6 mRNA by IL-6 in skeletal muscle cells: role of IL-6 mRNA stabilization and Ca2+-dependent mechanisms. Am J Physiol Cell Physiol 2007; 293:C1139-47. [PMID: 17615159 DOI: 10.1152/ajpcell.00142.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle cells have been established as significant producers of IL-6 during exercise. This IL-6 production is discussed as one possible mediator of the beneficial effects of physical activity on glucose and fatty acid metabolism. IL-6 itself could be the exercise-related factor that upregulates and maintains its own production. We investigated this hypothesis and the underlying molecular mechanism in cultured C(2)C(12) cells. IL-6 led to a rapid and prolonged increase in IL-6 mRNA, which was also found in human myotubes. Because IL-6 has been shown to activate AMP-activated kinase (AMPK), we studied whether, in turn, activated AMPK induces IL-6 expression. Pharmacological activation of AMPK with 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside upregulated IL-6 mRNA expression, which was blocked by knockdown of AMPK alpha(1) and alpha(2) using small, interfering RNA (siRNA) oligonucleotides. However, the effect of IL-6 was shown to be independent of AMPK, since the siRNA approach silencing the AMPK alpha-subunits did not reduce the upregulation of IL-6 induced by IL-6 stimulation. The self-stimulatory effect of IL-6 partly involves a Ca(2+)-dependent pathway: IL-6 increased intracellular Ca(2+), and intracellular blockade of Ca(2+) with a Ca(2+) chelator reduced the IL-6-mediated increase in IL-6 mRNA levels. Moreover, inhibition of Ca(2+)/calmodulin-dependent kinase kinase with STO-609 or the siRNA approach decreased IL-6 mRNA levels of control and IL-6-stimulated cells. A major, STO-609-independent mechanism is the IL-6-mediated stabilization of its mRNA. The data suggest that IL-6 could act as autocrine factor upregulating its mRNA levels, thereby supporting its function as an exercise-activated factor in skeletal muscle cells.
Collapse
Affiliation(s)
- Cora Weigert
- Dept. of Internal Medicine, Division of Endocrinology, Metabolism, Pathobiochemistry and Clinical Chemistry, Univ. of Tuebingen, Otfried-Mueller-Straaae 10, D-72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Loiseau D, Chevrollier A, Verny C, Guillet V, Gueguen N, Pou de Crescenzo MA, Ferré M, Malinge MC, Guichet A, Nicolas G, Amati-Bonneau P, Malthièry Y, Bonneau D, Reynier P. Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann Neurol 2007; 61:315-23. [PMID: 17444508 DOI: 10.1002/ana.21086] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Mutations of the mitofusin 2 gene (MFN2) may account for at least a third of the cases of Charcot-Marie-Tooth disease type 2 (CMT2). This study investigates mitochondrial cellular bioenergetics in MFN2-related CMT2A. METHODS Mitochondrial network morphology and metabolism were studied in cultures of skin fibroblasts obtained from four CMT2A patients harboring novel missense mutations of the MFN2 gene. RESULTS Although the mitochondrial network appeared morphologically unaltered, there was a significant defect of mitochondrial coupling associated with a reduction of the mitochondrial membrane potential. INTERPRETATION Our results suggest that the sharply reduced efficacy of oxidative phosphorylation in MFN2-related CMT2A may contribute to the pathophysiology of the axonal neuropathy.
Collapse
Affiliation(s)
- Dominique Loiseau
- Institut National de la Santé et de la Recherche Médicale U694, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Wisløff U, Støylen A, Loennechen JP, Bruvold M, Rognmo Ø, Haram PM, Tjønna AE, Helgerud J, Slørdahl SA, Lee SJ, Videm V, Bye A, Smith GL, Najjar SM, Ellingsen Ø, Skjaerpe T. Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 2007; 115:3086-94. [PMID: 17548726 DOI: 10.1161/circulationaha.106.675041] [Citation(s) in RCA: 1382] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Exercise training reduces the symptoms of chronic heart failure. Which exercise intensity yields maximal beneficial adaptations is controversial. Furthermore, the incidence of chronic heart failure increases with advanced age; it has been reported that 88% and 49% of patients with a first diagnosis of chronic heart failure are >65 and >80 years old, respectively. Despite this, most previous studies have excluded patients with an age >70 years. Our objective was to compare training programs with moderate versus high exercise intensity with regard to variables associated with cardiovascular function and prognosis in patients with postinfarction heart failure. METHODS AND RESULTS Twenty-seven patients with stable postinfarction heart failure who were undergoing optimal medical treatment, including beta-blockers and angiotensin-converting enzyme inhibitors (aged 75.5+/-11.1 years; left ventricular [LV] ejection fraction 29%; VO2peak 13 mL x kg(-1) x min(-1)) were randomized to either moderate continuous training (70% of highest measured heart rate, ie, peak heart rate) or aerobic interval training (95% of peak heart rate) 3 times per week for 12 weeks or to a control group that received standard advice regarding physical activity. VO2peak increased more with aerobic interval training than moderate continuous training (46% versus 14%, P<0.001) and was associated with reverse LV remodeling. LV end-diastolic and end-systolic volumes declined with aerobic interval training only, by 18% and 25%, respectively; LV ejection fraction increased 35%, and pro-brain natriuretic peptide decreased 40%. Improvement in brachial artery flow-mediated dilation (endothelial function) was greater with aerobic interval training, and mitochondrial function in lateral vastus muscle increased with aerobic interval training only. The MacNew global score for quality of life in cardiovascular disease increased in both exercise groups. No changes occurred in the control group. CONCLUSIONS Exercise intensity was an important factor for reversing LV remodeling and improving aerobic capacity, endothelial function, and quality of life in patients with postinfarction heart failure. These findings may have important implications for exercise training in rehabilitation programs and future studies.
Collapse
Affiliation(s)
- Ulrik Wisløff
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Olav Kyrres gt. 9, 7489 Trondheim, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Guescini M, Fatone C, Stocchi L, Guidi C, Potenza L, Ditroilo M, Ranchelli A, Di Loreto C, Sisti D, De Feo P, Stocchi V. Fine needle aspiration coupled with real-time PCR: a painless methodology to study adaptive functional changes in skeletal muscle. Nutr Metab Cardiovasc Dis 2007; 17:383-393. [PMID: 17482439 DOI: 10.1016/j.numecd.2007.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 01/26/2007] [Accepted: 01/30/2007] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM In this study we developed a new methodology for obtaining human skeletal muscle samples to evaluate gene expression. This approach is based on a fine needle aspiration technique, which allows us to extract a small tissue sample in a significantly less invasive manner than with classic biopsy. METHODS AND RESULTS Multiplex tandem RT-PCR was used to determine the mRNA levels of genes involved in ATP production and mitochondrial biogenesis in muscle tissue. Samples of vastus lateralis muscle were obtained from 21 healthy subjects with different fitness levels. The principal findings in our study show a strong correlation between PGC-1alpha and COX5B (p<0.001) and between PGC-1alpha and MT-CO2 (p=0.017) expression. Furthermore, a significant positive correlation between mtDNA content and the percentage of MHCI present in the aspired samples were found (p=0.028). These data are in agreement with current knowledge on skeletal muscle physiology and show the reliability of the proposed method. CONCLUSION This painless methodology can be used to investigate, in vivo, human muscle RNA and DNA adaptations in response to either physiological and/or pharmacological stimuli. This method has major clinical relevance, such as its application in clarifying the mechanisms underling metabolic and systemic disorders.
Collapse
MESH Headings
- Adaptation, Physiological
- Adult
- Base Sequence
- Biopsy, Fine-Needle/methods
- Cross-Over Studies
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Gene Amplification
- Gene Expression Regulation/physiology
- Humans
- Male
- Mitochondria, Muscle/genetics
- Mitochondria, Muscle/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Oxygen Consumption
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
Collapse
Affiliation(s)
- Michele Guescini
- Institute of Health and Physical Exercise, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Zoll J, Ponsot E, Dufour S, Doutreleau S, Ventura-Clapier R, Vogt M, Hoppeler H, Richard R, Flück M. Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol (1985) 2007; 100:1258-66. [PMID: 16540710 DOI: 10.1152/japplphysiol.00359.2005] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We hypothesized that specific muscular transcript level adaptations participate in the improvement of endurance performances following intermittent hypoxia training in endurance-trained subjects. Fifteen male high-level, long-distance runners integrated a modified living low-training high program comprising two weekly controlled training sessions performed at the second ventilatory threshold for 6 wk into their normal training schedule. The athletes were randomly assigned to either a normoxic (Nor) (inspired O2 fraction = 20.9%, n = 6) or a hypoxic group exercising under normobaric hypoxia (Hyp) (inspired O2 fraction = 14.5%, n = 9). Oxygen uptake and speed at second ventilatory threshold, maximal oxygen uptake (VO2 max), and time to exhaustion (Tlim) at constant load at VO2 max velocity in normoxia and muscular levels of selected mRNAs in biopsies were determined before and after training. VO2 max (+5%) and Tlim (+35%) increased specifically in the Hyp group. At the molecular level, mRNA concentrations of the hypoxia-inducible factor 1alpha (+104%), glucose transporter-4 (+32%), phosphofructokinase (+32%), peroxisome proliferator-activated receptor gamma coactivator 1alpha (+60%), citrate synthase (+28%), cytochrome oxidase 1 (+74%) and 4 (+36%), carbonic anhydrase-3 (+74%), and manganese superoxide dismutase (+44%) were significantly augmented in muscle after exercise training in Hyp only. Significant correlations were noted between muscular mRNA levels of monocarboxylate transporter-1, carbonic anhydrase-3, glucose transporter-4, and Tlim only in the group of athletes who trained in hypoxia (P < 0.05). Accordingly, the addition of short hypoxic stress to the regular endurance training protocol induces transcriptional adaptations in skeletal muscle of athletic subjects. Expressional adaptations involving redox regulation and glucose uptake are being recognized as a potential molecular pathway, resulting in improved endurance performance in hypoxia-trained subjects.
Collapse
Affiliation(s)
- Joffrey Zoll
- Department of Anatomy, University of Bern, Bühlstrasse 26, 3000 Bern 9, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Long YC, Glund S, Garcia-Roves PM, Zierath JR. Calcineurin regulates skeletal muscle metabolism via coordinated changes in gene expression. J Biol Chem 2006; 282:1607-14. [PMID: 17107952 DOI: 10.1074/jbc.m609208200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabolic property of skeletal muscle adapts in response to an increased physiological demand by altering substrate utilization and gene expression. The calcium-regulated serine/threonine protein phosphatase calcineurin has been implicated in the transduction of motor neuron signals to alter gene expression programs in skeletal muscle. We utilized transgenic mice that overexpress an activated form of calcineurin in skeletal muscle (MCK-CnA*) to investigate the impact of calcineurin activation on metabolic properties of skeletal muscle. Activation of calcineurin increased glucose incorporation into glycogen and lipid oxidation in skeletal muscle. Activated calcineurin suppressed skeletal muscle glucose oxidation and increased lactate release. The enhancement in lipid oxidation was supported by increased expression of genes for lipid metabolism and mitochondrial oxidative phosphorylation. In a reciprocal fashion, several genes of glycolysis were down-regulated, whereas pyruvate dehydrogenase kinase 4 was markedly induced. This expression pattern was associated with decreased glucose utilization and enhanced glycogen storage. The peroxisome proliferator-activated receptors (PPARs) and PPARgamma coactivator 1alpha (PGC1alpha) are transcription regulators for the expression of metabolic and mitochondrial genes. Consistent with changes in the gene-regulatory program, calcineurin promoted the expression of PPARalpha, PPARdelta, and PPARgamma coactivator 1alpha in skeletal muscle. These results provide evidence that calcineurin-mediated skeletal muscle reprogramming induces the expression of several transcription regulators that coordinate changes in the expression of genes for lipid and glucose metabolism, which in turn alters energy substrate utilization in skeletal muscle.
Collapse
Affiliation(s)
- Yun Chau Long
- Department of Molecular Medicine and Surgery, Section of Integrative Physiology, Karolinska Institutet, von Eulers väg 4, 4th Floor, Stockholm S-171 77, Sweden
| | | | | | | |
Collapse
|
139
|
Zoll J, Monassier L, Garnier A, N'Guessan B, Mettauer B, Veksler V, Piquard F, Ventura-Clapier R, Geny B. ACE inhibition prevents myocardial infarction-induced skeletal muscle mitochondrial dysfunction. J Appl Physiol (1985) 2006; 101:385-91. [PMID: 16614354 DOI: 10.1152/japplphysiol.01486.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heart failure is associated with alterations in cardiac and skeletal muscle energy metabolism resulting in a generalized myopathy. We investigated the molecular and cellular effects of angiotensin-converting enzyme inhibition (ACEi) on skeletal muscle metabolism in infarcted animals. Myocardial infarction (MI) was obtained by left descending coronary artery ligation. Sham, MI, and MI-treated rats (perindopril, 2 mg·kg−1·day−1 given 7 days after MI) were studied 1 and 4 mo after surgery. Oxygen consumption of white gastrocnemius (Gas) muscle was studied in saponin-permeabilized fibers, using the main substrates of mitochondrial respiration. mRNA expression of nuclear factors (PGC-1α, NRF-2α, and mtTFA), involved in the transcription of mitochondrial proteins, and of MCIP1, a marker of calcineurin activation, were also determined. Echocardiographic left ventricular fractional shortening was reduced in both MI and perindopril group after 1 and 4 mo, whereas systemic blood pressure was reduced by 16% only in the MI group after 4 mo. The capacity of Gas to oxidize glutamate-malate, glycerol-triphosphate, or pyruvate (−30%, P < 0.01; −32%, P < 0.05; −33%, P < 0.01, respectively), was greatly decreased. Furthermore, PGC-1α (−54%), NRF-2α (−45%), and MCIP1 (−84%) gene expression were significantly downregulated. ACEi improved survival, left ventricular function, and blood pressure. Perindopril protected also totally the Gas mitochondrial function and preserved the mRNAs concentration of the mitochondrial transcriptional factors. Moreover, PGC-1α correlated with Gas oxidative capacity ( r = 0.48), mitochondrial cytochrome- c oxidase ( r = 0.65), citrate synthase ( r = 0.45) activities, and MCIP1 expression ( r = 0.44). Thus ACEi totally prevented MI-induced alterations of skeletal muscle mitochondrial function and protein expression, halting the development of this metabolic myopathy.
Collapse
Affiliation(s)
- Joffrey Zoll
- Département de Physiologie, Faculté de Médecine, 11, rue Humann, 67000 Strasbourg, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Mettauer B, Zoll J, Garnier A, Ventura-Clapier R. Heart failure: a model of cardiac and skeletal muscle energetic failure. Pflugers Arch 2006; 452:653-66. [PMID: 16767467 DOI: 10.1007/s00424-006-0072-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
Chronic heart failure (CHF), the new epidemic in cardiology, is characterized by energetic failure of both cardiac and skeletal muscles. The failing heart wastes energy due to anatomical changes that include cavity enlargement, altered geometry, tachycardia, mitral insufficiency and abnormal loading, while skeletal muscle undergoes atrophy. Cardiac and skeletal muscles also have altered high-energy phosphate production and handling in CHF. Nevertheless, there are differences in the phenotype of myocardial and skeletal muscle myopathy in CHF: cardiomyocytes have a lower mitochondrial oxidative capacity, abnormal substrate utilisation and intracellular signalling but a maintained oxidative profile; in skeletal muscle, by contrast, mitochondrial failure is less clear, and there is altered microvascular reactivity, fibre type shifts and abnormalities in the enzymatic systems involved in energy distribution. Underlying these phenotypic abnormalities are changes in gene regulation in both cardiac and skeletal muscle cells. Here, we review the latest advances in cardiac and skeletal muscle energetic research and argue that energetic failure could be taken as a unifying mechanism leading to contractile failure, ultimately resulting in skeletal muscle energetic failure, exertional fatigue and death.
Collapse
Affiliation(s)
- B Mettauer
- Département de Physiologie, CHRU, EA3072, F-67091 Strasbourg, France.
| | | | | | | |
Collapse
|
141
|
Garcia-Roves PM, Huss J, Holloszy JO. Role of calcineurin in exercise-induced mitochondrial biogenesis. Am J Physiol Endocrinol Metab 2006; 290:E1172-9. [PMID: 16403773 DOI: 10.1152/ajpendo.00633.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Raising cytosolic Ca2+ induces an increase in mitochondrial biogenesis in myotubes. This phenomenon mimics the adaptive responses of skeletal muscle to exercise. It has been hypothesized that increases in cytosolic Ca2+ during motor nerve activity stimulate mitochondrial biogenesis by activating calcineurin. Overexpression of constitutively active calcineurin increases expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) and induction of genes involved in mitochondrial energy metabolism in muscle cells. The purpose of this study was to determine whether calcineurin plays a role in the stimulation of mitochondrial biogenesis by exercise. Rats were exercised on 5 successive days by means of swimming. Inhibition of calcineurin with cyclosporin did not prevent the exercise-induced increases in PGC-1alpha and a range of mitochondrial proteins. In contrast to the other mitochondrial proteins, the increases in cytochrome oxidase (COX)-I and -IV proteins were blocked by cyclosporin treatment. This inhibitory effect of cyclosporin occurred at the posttranscriptional level, as evidenced by normal increases in COX-I and COX-IV mRNAs in response to exercise in the cyclosporin-treated rats. This toxic effect of cyclosporin may account for the decrease in muscle respiratory capacity reported to occur with cyclosporin treatment. In conclusion, inhibition of calcineurin does not prevent the exercise-induced increase in mitochondrial biogenesis in skeletal muscles, providing evidence that the adaptive response is not mediated by activation of calcineurin.
Collapse
Affiliation(s)
- Pablo M Garcia-Roves
- Department of Medicine, Washington University School of Medicine, Applied Physiology, Campus Box 8113, 4566 Scott Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
142
|
Santel A. Get the balance right: Mitofusins roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:490-9. [PMID: 16574259 DOI: 10.1016/j.bbamcr.2006.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 01/08/2023]
Abstract
Mitochondria are highly dynamic organelles exhibiting an elaborate morphology and fine structure. Fusion and fission processes contribute to the maintenance and dynamics of mitochondrial morphology. The Mitofusins, a class of evolutionary conserved GTPases of the mitochondrial outer membrane, are essential for the controlled fusion of mitochondrial membranes. Genetic and biochemical data propose a model in which functional domains, such as the GTPase domain and the C-terminally located coiled coil structure, act in an orchestrated manner to coordinate the tethering and mitochondrial outer membrane fusion. In addition, recent reports shed new light on the physiological importance of Mitofusin function suggesting a role in mitochondrial metabolism, apoptosis as well as cellular signalling. Mutations identified in the human Mfn2 gene from patients with the peripheral neuropathy Charcot-Marie-Tooth Type 2A invoke a direct correlation between mitochondrial morphology and function.
Collapse
Affiliation(s)
- Ansgar Santel
- Atugen AG/SR Pharma plc, Otto-Warburg-Haus, Robert-Rössle-Str.10, 13125 Berlin, Germany.
| |
Collapse
|
143
|
Koulmann N, Bigard AX. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 2006; 452:125-39. [PMID: 16437222 DOI: 10.1007/s00424-005-0030-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 10/23/2005] [Accepted: 11/24/2005] [Indexed: 12/29/2022]
Abstract
The purpose of this review is to summarise the latest literature on the signalling pathways involved in transcriptional modulations of genes that encode contractile and metabolic proteins in response to endurance exercise. A special attention has been paid to the cooperation between signalling pathways and coordinated expression of protein families that establish myofibre phenotype. Calcium acts as a second messenger in skeletal muscle during exercise, conveying neuromuscular activity into changes in the transcription of specific genes. Three main calcium-triggered regulatory pathways acting through calcineurin, Ca(2+)-calmodulin-dependent protein kinases (CaMK) and Ca(2+)-dependent protein kinase C, transduce alterations in cytosolic calcium concentration to target genes. Calcineurin signalling, the most important of these Ca(2+)-dependent pathways, stimulates the activation of many slow-fibre gene expression, including genes encoding proteins involved in contractile process, Ca(2+) uptake and energy metabolism. It involves the interaction between multiple transcription factors and the collaboration of other Ca(2+)-dependent CaMKs. Although members of mitogen-activated protein kinase (MAPK) pathways are activated during exercise, their integration into other signalling pathways remains largely unknown. The peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) constitutes a pivotal factor of the circuitry which coordinates mitochondrial biogenesis and which couples to the expression of contractile and metabolic genes with prolonged exercise.
Collapse
Affiliation(s)
- Nathalie Koulmann
- Département des Facteurs Humains, Centre de Recherches du Service de Santé des Armées, BP 87 38 702 La Tronche cedex, France
| | | |
Collapse
|