101
|
Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 2004; 25:3211-22. [PMID: 14980416 DOI: 10.1016/j.biomaterials.2003.10.045] [Citation(s) in RCA: 526] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 09/29/2003] [Indexed: 12/13/2022]
Abstract
The differentiation and growth of adult stem cells within engineered tissue constructs are hypothesized to be influenced by cell-biomaterial interactions. In this study, we compared the chondrogenic differentiation of human adipose-derived adult stem (hADAS) cells seeded in alginate and agarose hydrogels, and porous gelatin scaffolds (Surgifoam), as well as the functional properties of tissue engineered cartilage constructs. Chondrogenic media containing transforming growth factor beta 1 significantly increased the rates of protein and proteoglycan synthesis as well as the content of DNA, sulfated glycosaminoglycans, and hydroxyproline of engineered constructs as compared to control conditions. Furthermore, chondrogenic culture conditions resulted in 86%, and 160% increases ( p < 0.05 ) in the equilibrium compressive and shear moduli of the gelatin scaffolds, although they did not affect the mechanical properties of the hydrogels over 28 days in culture. Cells encapsulated in the hydrogels exhibited a spherical cellular morphology, while cells in the gelatin scaffolds showed a more polygonal shape; however, this difference did not appear to hinder the chondrogenic differentiation of the cells. Furthermore, the equilibrium compressive and shear moduli of the gelatin scaffolds were comparable to agarose by day 28. Our results also indicated that increases in the shear moduli were significantly associated with increases in S-GAG content ( R2 = 0.36, p < 0.05 ) and with the interaction between S-GAG and hydroxyproline ( R2 = 0.34, p < 0.05 ). The findings of this study suggest that various biomaterials support the chondrogenic differentiation of hADAS cells, and that manipulating the composition of these tissue engineered constructs may have significant effects on their mechanical properties.
Collapse
Affiliation(s)
- Hani A Awad
- Department of Surgery, Division of Orthopaedic Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
102
|
Reinholz GG, Lu L, Saris DBF, Yaszemski MJ, O'Driscoll SW. Animal models for cartilage reconstruction. Biomaterials 2004; 25:1511-21. [PMID: 14697854 DOI: 10.1016/s0142-9612(03)00498-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animal models are widely used to develop and evaluate tissue-engineering techniques for the reconstruction of damaged human articular cartilage. For the purpose of this review, these model systems will include in vitro culture of animal cells and explants, heterotopic models of chondrogenesis, and articular cartilage defect models. The objectives for these preclinical studies are to engineer articular cartilage for the functional restoration of a joint surface that appears anatomically, histologically, biologically, biochemically, and mechanically to resemble the original joint surface. While no animal model permits direct application to humans, each is capable of yielding principles on which decisions can be made that might eventually translate into a human application. Clearly, the use of animal models has and will continue to play a significant role in the advancement of this field. Each animal model has specific advantages and disadvantages. The key issue in the selection of an appropriate animal model is to match the model to the question being investigated and the hypothesis to be tested. The purpose of this review is to discuss issues regarding animal model selection, the benefits and limitations of these model systems, scaffold selection with emphasis on polymers, and evaluation of the tissue-engineered articular cartilage.
Collapse
Affiliation(s)
- G G Reinholz
- Department of Orthopaedic Surgery, Mayo Clinic, 200 First Street S.W., Minnesota 3-69 Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
103
|
Fuentes-Boquete I, López-Armada MJ, Maneiro E, Fernández-Sueiro JL, Caramés B, Galdo F, de Toro FJ, Blanco FJ. Pig chondrocyte xenoimplants for human chondral defect repair: an in vitro model. Wound Repair Regen 2004; 12:444-52. [PMID: 15260810 DOI: 10.1111/j.1067-1927.2004.012412.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The objective of this study was to evaluate the use of cultured porcine chondrocyte xenotransplantation for the repair of human chondral defects. Two-millimeter-diameter defects were drilled into explants of femoral cartilage from healthy adult donors. No cells were implanted in the chondral defects of the control group, while pig chondrocytes from normal femoral cartilage were deposited into the treated chondral defects. Cartilage explants were cultured for 4, 8, and 12 weeks. Tissue sections were processed for standard histologic staining and immunostaining with monoclonal antibodies against types I and II collagen, chondroitin-4-sulfate, chondroitin-6-sulfate, keratan sulfate, and integrin subunit beta1. The porcine origin of chondrocytes was confirmed using a specific pig monoclonal anti-CD46. Repair was only observed in the cell-treated defects. Mono- or bilayers of cells were detected after 4 culture weeks on the bottom of the defects, while after 8-12 weeks a repair tissue filled near 30-40 percent of the defect. At 8 weeks, the newly synthesized tissue was composed of a fibrous mesh including some cells. However, at 12 weeks it showed a hypercellular hyaline-like region. This hypercellular region showed excellent bonding with the native cartilage, cells were located in numerous lacunae, and a high content of proteoglycans as indicated by an intense toluidine blue stain was observed. The repaired tissue showed positive immunostaining for both type I and II collagen, as well as chondroitin-4-sulfate, chondroitin-6-sulfate, keratan sulfate, and integrin subunit beta1. Positive staining for porcine anti-CD46 was localized exclusively in the neo-synthesized tissue. We conclude that xenotransplantation of pig chondrocytes can repair, in an in vitro model, defects in human articular cartilage.
Collapse
Affiliation(s)
- Isaac Fuentes-Boquete
- Department of Medicine, University of A Coruña, and Laboratory of Investigation. Rheumatology Division, CHU Juan Canalejo, C/As Xubias 84, 15006-A Coruña, Spain
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Awad HA, Halvorsen YDC, Gimble JM, Guilak F. Effects of transforming growth factor beta1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. ACTA ACUST UNITED AC 2004; 9:1301-12. [PMID: 14670117 DOI: 10.1089/10763270360728215] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of soluble mediators and medium supplements commonly used to induce chondrogenic differentiation in different cell culture systems were investigated to define their dose-response profiles and potentially synergistic effects on the chondrogenic differentiation of adipose-derived adult stromal (ADAS) cells. Human ADAS cells were suspended within alginate beads and cultured in basal medium with insulin, transferrin, and selenious acid (ITS+) or fetal bovine serum (FBS) and treated with different doses and combinations of TGF-beta1 (0, 1, and 10 ng/mL) and dexamethasone (0, 10, and 100 nM). Cell growth and chondrogenic differentiation were assessed by measuring DNA content, protein and proteoglycan synthesis rates, and proteoglycan accumulation. The combination of ITS+ and TGF-beta1 significantly increased cell proliferation. Protein synthesis rates were increased by TGF-beta1 and dexamethasone in the presence of ITS+ or FBS. While TGF-beta1 significantly increased proteoglycan synthesis and accumulation by 1.5- to 2-fold in the presence of FBS, such effects were suppressed by dexamethasone. In summary, the combination of TGF-beta1 and ITS+ stimulated cell growth and synthesis of proteins and proteoglycans by human ADAS cells. The addition of dexamethasone appeared to amplify protein synthesis but had suppressive effects on proteoglycan synthesis and accumulation.
Collapse
Affiliation(s)
- Hani A Awad
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
105
|
Abstract
In recent years, stem cells have shown significant promise for their potential to provide a source of undifferentiated progenitor cells for therapeutic applications in tissue or organ repair. Significant questions still remain, however, as to the genetic and epigenetic signals that regulate the fate of stem cells. It is now well accepted that the micro-environment of the stem cell can have a significant influence on its differentiation and phenotypic expression. Although emphasis has been placed in previous work on the role of soluble mediators such as growth factors and cytokines on stem cell differentiation, there is now significant evidence, both direct and indirect, that mechanical signals may also regulate stem cell fate. We review a number of in vivo and in vitro studies that have provided evidence that mechanical factors have the ability to influence the differentiation of a number of cells that have been classified as either precursor, progenitor, or stem cells. Taken together, these studies show that specific mechanical signals may promote cell differentiation into a particular phenotype, potentially having an effect on embryonic development. The use of such mechanical signals in vitro in specially designed "bioreactors" may provide important adjuncts to standard biochemical signaling pathways for promoting engineered tissue growth. A further understanding of the biomechanical and biochemical pathways involved in mechanical signal transduction by stem cells will hopefully provide new insight for the improvement of stem-cell based therapies.
Collapse
Affiliation(s)
- Bradley T Estes
- Department of Surgery, Division of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
106
|
Park S, Hung CT, Ateshian GA. Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels. Osteoarthritis Cartilage 2004; 12:65-73. [PMID: 14697684 DOI: 10.1016/j.joca.2003.08.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The objective of this study was to characterize the dynamic modulus and compressive strain magnitudes of bovine articular cartilage at physiological compressive stress levels and loading frequencies. DESIGN Twelve distal femoral cartilage plugs (3mm in diameter) were loaded in a custom apparatus under load control, with a load amplitude up to 40 N and loading frequencies of 0.1, 1, 10 and 40 Hz, resulting in peak Cauchy stress amplitudes of 4.8 MPa (engineering stress 5.7 MPa). RESULTS The equilibrium Young's modulus under a tare load of 0.4N was 0.49+/-0.10 MPa. In the limit of zero applied stress, the incremental dynamic modulus derived from the slope of the stress-strain curve increased from 14.6+/-6.9 MPa at 0.1 Hz to 28.7+/-7.8 MPa at 40 Hz. At 4 MPa of applied stress, the corresponding increase was from 48.2+/-13.5 MPa at 0.1 Hz to 64.8+/-13.0 MPa at 40 Hz. Peak compressive strain amplitudes varied from 15.8+/-3.4% at 0.1 Hz to 8.7+/-1.8% at 40 Hz. The phase angle decreased from 28.8 degrees +/-6.7 degrees at 0.1 Hz to-0.5 degrees +/-3.8 degrees at 40 Hz. DISCUSSION These results are representative of the functional properties of articular cartilage under physiological load magnitudes and frequencies. The viscoelasticity and nonlinearity of the tissue helps to maintain the compressive strains below 20% under the physiological compressive stresses achieved in this study. These findings have implications for our understanding of cartilage metabolism and chondrocyte viability under various loading regimes. They also help establish guidelines for cartilage functional tissue engineering studies.
Collapse
Affiliation(s)
- S Park
- Columbia University, Department of Mechanical Engineering, New York, NY 10027, USA
| | | | | |
Collapse
|
107
|
Leddy HA, Awad HA, Guilak F. Molecular diffusion in tissue-engineered cartilage constructs: Effects of scaffold material, time, and culture conditions. ACTA ACUST UNITED AC 2004; 70:397-406. [PMID: 15264325 DOI: 10.1002/jbm.b.30053] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diffusion is likely to be the primary mechanism for macromolecular transport in tissue-engineered cartilage, and providing an adequate nutrient supply via diffusion may be necessary for cell proliferation and extracellular matrix production. The goal of this study was to measure the diffusivity of tissue-engineered cartilage constructs as a function of scaffold material, culture conditions, and time in culture. Diffusion coefficients of four different-sized fluorescent dextrans were measured by fluorescence recovery after photobleaching in tissue-engineered cartilage constructs seeded with human adipose-derived stem cells or acellular constructs on scaffolds of alginate, agarose, gelatin, or fibrin that were cultured for 1 or 28 days in either chondrogenic or control conditions. Diffusivities in the constructs were much greater than those of native cartilage. The diffusivity of acellular constructs increased 62% from Day 1 to Day 28, whereas diffusivity of cellular constructs decreased 42% and 27% in chondrogenic and control cultures, respectively. The decrease in diffusivity in cellular constructs is likely due to new matrix synthesis, which may be enhanced with chondrogenic media, and matrix contraction by the cells in the fibrin and gelatin scaffolds. The increase in diffusivity in the acellular constructs is probably due to scaffold degradation and swelling.
Collapse
Affiliation(s)
- Holly A Leddy
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
108
|
Hung CT, Lima EG, Mauck RL, Takai E, Taki E, LeRoux MA, Lu HH, Stark RG, Guo XE, Ateshian GA. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech 2003; 36:1853-64. [PMID: 14614939 DOI: 10.1016/s0021-9290(03)00213-6] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Few successful treatment modalities exist for surface-wide, full-thickness lesions of articular cartilage. Functional tissue engineering offers a great potential for the clinical management of such lesions. Our long-term hypothesis is that anatomically shaped tissue constructs of entire articular layers can be engineered in vitro on a bony substrate, for subsequent implantation. To determine the feasibility, this study investigated the development of bilayered scaffolds of chondrocyte-seeded agarose on natural trabecular bone. In a series of three experiments, bovine chondrocytes were seeded in (1) cylindrical bilayered constructs of agarose and bovine trabecular bone, 0.53 cm2 in surface area and 3.2 mm thick, and were cultured for up to 6 weeks; (2) chondrocyte-seeded anatomically shaped agarose constructs reproducing the human patellar articular layer (area=11.7 cm2, mean thickness=3.4 mm), cultured for up to 6 weeks; and (3) chondrocyte-seeded anatomically shaped agarose constructs of the patella (same as above) integrated into a corresponding anatomically shaped trabecular bone substrate, cultured for up to 2 weeks. Articular layer geometry, previously acquired from human cadaver joints, was used in conjunction with computer-aided design and manufacturing technology to create these anatomically accurate molds. In all experiments, chondrocytes remained viable over the entire culture period, with the agarose maintaining its shape while remaining firmly attached to the underlying bony substrate (when present). With culture time, the constructs exhibited positive type II collagen staining as well as increased matrix elaboration (Safranin O staining for glycosaminoglycans) and material properties (Young's modulus and aggregate modulus). Despite the use of relatively large agarose constructs partially integrated with trabecular bone, no adverse diffusion limitation effects were observed. Anatomically shaped constructs on a bony substrate may represent a new paradigm in the design of a functional articular cartilage tissue replacement.
Collapse
Affiliation(s)
- Clark T Hung
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY 10027, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Mauck RL, Wang CCB, Oswald ES, Ateshian GA, Hung CT. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarthritis Cartilage 2003; 11:879-90. [PMID: 14629964 DOI: 10.1016/j.joca.2003.08.006] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Functional tissue engineering (FTE) of articular cartilage involves the use of physiologically relevant mechanical signals to encourage the growth of engineered constructs. The goal of this study was to determine the utility of deformational loading in enhancing the mechanical properties of chondrocyte-seeded agarose hydrogels, and to investigate the role of initial cell seeding density and nutrient supply in this process. DESIGN Chondrocyte-seeded agarose hydrogels were cultured in free-swelling conditions or with intermittent deformational loading (10% deformation, 1 Hz, 1 h on/ 1 h off, 3 h per day, five days per week) over a two-month culture period. Disks were seeded at lower (10 million cells/ml) and higher (60 million cells/ml) seeding densities in the context of a greater medium supply than previous studies (decreasing the number of cells/ml feed medium/day) and with an increasing concentration of fetal bovine serum (10 or 20% FBS). RESULTS Under these more optimal nutrient conditions, at higher seeding densities and high serum concentration (20% FBS), dynamically loaded constructs show >2-fold increases in material properties relative to free-swelling controls. After two months of culture, dynamically loaded constructs achieved a Young's modulus of approximately 185 kPa and a dynamic modulus (at 1 Hz) of approximately 1.6 MPa, with a frequency dependent response similar to that of the native tissue. These values represent approximately 3/4 and approximately 1/4 the values measured for the native tissue, respectively. While significant differences were found in mechanical properties, staining and bulk measurements of both proteoglycan and collagen content of higher seeding density constructs revealed no significant differences between free-swelling and loading groups. This finding indicates that deformational loading may act to increase material properties via differences in the structural organization, the production of small linker ECM molecules, or by modulating the size of macromolecular proteoglycan aggregates. CONCLUSIONS Taken together, these results point to the utility of dynamic deformational loading in the mechanical preconditioning of engineered articular cartilage constructs and the necessity for increasing feed media volume and serum supplementation with increasing cell seeding densities.
Collapse
Affiliation(s)
- R L Mauck
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | | | | | | | | |
Collapse
|
110
|
Démarteau O, Wendt D, Braccini A, Jakob M, Schäfer D, Heberer M, Martin I. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem Biophys Res Commun 2003; 310:580-8. [PMID: 14521950 DOI: 10.1016/j.bbrc.2003.09.099] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent works have shown that mechanical loading can alter the metabolic activity of chondrocytes cultured in 3D scaffolds. In this study we determined whether the stage of development of engineered cartilaginous constructs (expanded adult human articular chondrocytes/Polyactive foams) regulates the effect of dynamic compression on glycosaminoglycan (GAG) metabolism. Construct maturation depended on the culture time (3-14 days) and the donor (4 individuals). When dynamic compression was subsequently applied for 3 days, changes in GAG synthesized, accumulated, and released were significantly positively correlated to the GAG content of the constructs prior to loading, and resulted in stimulation of GAG formation only in the most developed tissues. Conversely, none of these changes were correlated with the expression of collagen type II mRNA, indicating that the response of chondrocytes to dynamic compression does not depend directly upon the stage of cell differentiation, but rather on the extracellular matrix surrounding the cells.
Collapse
Affiliation(s)
- O Démarteau
- Department of Surgery, University Hospital, Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
111
|
Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. J Biomech 2003; 36:1087-96. [PMID: 12831733 DOI: 10.1016/s0021-9290(03)00110-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Physical stimuli play critical roles in the development, regeneration, and pathology of many mesenchymal tissues, most notably bone. While mature bone cells, such as osteoblasts and osteocytes, are clearly involved in these processes, the role of their progenitors in mechanically mediated tissue responses is unknown. In this study, we investigated the effect of cyclic substrate deformation on the proliferation and osteogenic differentiation of human mesenchymal stem cells (hMSCs). Application of equibiaxial cyclic strain (3%, 0.25Hz) to hMSCs cultured in osteogenic media inhibited proliferation and stimulated a 2.3-fold increase in matrix mineralization over unstrained cells. The strain stimulus activated the extracellular signal-regulated kinase (ERK1/2) and p38 mitogen-activated protein kinase pathways, but had no effect on c-Jun N-terminal kinase phosphorylation or activity. Strain-induced mineralization was largely mediated by ERK1/2 signaling, as inhibition of ERK1/2 attenuated calcium deposition by 55%. Inhibition of the p38 pathway resulted in a more mature osteogenic phenotype, suggesting an inhibitory role for p38 signaling in the modulation of strain-induced osteogenic differentiation. These results demonstrate that mechanical signals regulate hMSC function, suggesting a critical role for physical stimulation of this specific cell population in mesenchymal tissue formation.
Collapse
Affiliation(s)
- Craig A Simmons
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
112
|
Juncosa N, West JR, Galloway MT, Boivin GP, Butler DL. In vivo forces used to develop design parameters for tissue engineered implants for rabbit patellar tendon repair. J Biomech 2003; 36:483-8. [PMID: 12600338 DOI: 10.1016/s0021-9290(02)00459-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies in tissue engineering have shown that suspending undifferentiated mesenchymal stem cells in collagen gels and wrapping them about a suture causes alignment of cells and contraction of constructs in culture in a form that is suitable for implantation for tendon repair. Little is known about the patterns of these in vivo signals that might improve tendon repair biomechanics. Three hypotheses were tested in this study using the rabbit patellar tendon (PT) model: (1) peak in vivo forces and the rates of rise and fall in these forces will increase significantly with increasing levels of activity; (2) the PTs safety factor for all activities will be in the range of values found for tendons (2.5-3); (3) rabbits will not "favor" the operated limb at the time of evaluation but maintain similar vertical ground reaction forces in both limbs during quiet standing (QS). In vivo rabbit PT forces were measured during QS and while the animal hopped on a treadmill whose speed (0.04 and 0.13 m/s) and inclination (0 degrees and 12 degrees) were controlled. Implantable force transducers were surgically placed in one PT and data collected three days post surgery in each of eight New Zealand White rabbits. Peak tensile forces increased significantly with inclination of the treadmill and the rates of rise and fall in tendon force increased significantly with both speed and inclination (p<0.001). Such design criteria should be useful in mechanically stimulating cell-gel constructs for tendon repair.
Collapse
Affiliation(s)
- Natalia Juncosa
- Noyes-Giannestras Biomechanics Laboratories, Department of Biomedical Engineering, University of Cincinnati, 2901 Campus Drive, P.O. Box 210048, Cincinnati, OH 45221-0048, USA
| | | | | | | | | |
Collapse
|