101
|
Narazaki M, Kishimoto T. Current status and prospects of IL-6–targeting therapy. Expert Rev Clin Pharmacol 2022; 15:575-592. [DOI: 10.1080/17512433.2022.2097905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masashi Narazaki
- Department of Advanced Clinical and Translational Immunology, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Respiratory Medicine, Clinical Immunology, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Immunopathology, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tadamitsu Kishimoto
- Laboratory of Immune Regulation, World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
102
|
Lv M, Liu Y, Liu W, Xing Y, Zhang S. Immunotherapy for Pediatric Acute Lymphoblastic Leukemia: Recent Advances and Future Perspectives. Front Immunol 2022; 13:921894. [PMID: 35769486 PMCID: PMC9234114 DOI: 10.3389/fimmu.2022.921894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Pediatric acute lymphoblastic leukemia (ALL) is the most common subtype of childhood leukemia, which is characterized by the abnormal proliferation and accumulation of immature lymphoid cell in the bone marrow. Although the long-term survival rate for pediatric ALL has made significant progress over years with the development of contemporary therapeutic regimens, patients are still suffered from relapse, leading to an unsatisfactory outcome. Since the immune system played an important role in the progression and relapse of ALL, immunotherapy including bispecific T-cell engagers and chimeric antigen receptor T cells has been demonstrated to be capable of enhancing the immune response in pediatric patients with refractory or relapsed B-cell ALL, and improving the cure rate of the disease and patients’ quality of life, thus receiving the authorization for market. Nevertheless, the resistance and toxicities associated with the current immunotherapy remains a huge challenge. Novel therapeutic options to overcome the above disadvantages should be further explored. In this review, we will thoroughly discuss the emerging immunotherapeutics for the treatment of pediatric ALL, as well as side-effects and new development.
Collapse
Affiliation(s)
- Meng Lv
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Liu
- Department of Hematology Oncology, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yabing Xing
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Yabing Xing, ; Shengnan Zhang,
| | - Shengnan Zhang
- Department of Pharmacy, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou, China
- *Correspondence: Yabing Xing, ; Shengnan Zhang,
| |
Collapse
|
103
|
Application and Design of Switches Used in CAR. Cells 2022; 11:cells11121910. [PMID: 35741039 PMCID: PMC9221702 DOI: 10.3390/cells11121910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.
Collapse
|
104
|
Leclercq G, Steinhoff N, Haegel H, De Marco D, Bacac M, Klein C. Novel strategies for the mitigation of cytokine release syndrome induced by T cell engaging therapies with a focus on the use of kinase inhibitors. Oncoimmunology 2022; 11:2083479. [PMID: 35694193 PMCID: PMC9176235 DOI: 10.1080/2162402x.2022.2083479] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022] Open
Abstract
T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies. This emphasizes the need to elaborate mitigation strategies, which reduce cytokine release while retaining efficacy. Here, we review pre-clinical and clinical approaches applied for the management of CRS symptoms in the context of T cell engaging therapies, highlighting the use of tyrosine kinase inhibitors as an emerging mitigation strategy. In particular, we focus on the effects of Bruton's tyrosine kinase (BTK), Src family including Lck, mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK) inhibitors on T cell functionality and cytokine release, to provide a rationale for their use as mitigation strategies against CRS in the context of T cell engaging therapies.
Collapse
Affiliation(s)
- Gabrielle Leclercq
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Nathalie Steinhoff
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Hélène Haegel
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Donata De Marco
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Marina Bacac
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Christian Klein
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| |
Collapse
|
105
|
Nong C, Guan P, Li L, Zhang H, Hu H. Tumor immunotherapy: Mechanisms and clinical applications. MEDCOMM – ONCOLOGY 2022. [DOI: 10.1002/mog2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cheng Nong
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Pengbo Guan
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Li
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Hongbo Hu
- Center for Immunology and Hematology, National Clinical Research Center for Geriatrics State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- Chongqing International Institution for Immunology Chongqing China
| |
Collapse
|
106
|
Tyebally S, Ghose A, Chen DH, Abiodun AT, Ghosh AK. Chest Pain in the Cancer Patient. Eur Cardiol 2022; 17:e15. [PMID: 35702571 PMCID: PMC9185574 DOI: 10.15420/ecr.2021.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Chest pain is one of the most common presenting symptoms in patients seeking care from a physician. Risk assessment tools and scores have facilitated prompt diagnosis and optimal management in these patients; however, it is unclear as to whether a standardised approach can adequately triage chest pain in cancer patients and survivors. This is of concern because cancer patients are often at an increased risk of cardiovascular mortality and morbidity given the shared risk factors between cancer and cardiovascular disease, compounded by the fact that certain anti-cancer therapies are associated with an increased risk of cardiovascular events that can persist for weeks and even years after treatment. This article describes the underlying mechanisms of the most common causes of chest pain in cancer patients with an emphasis on how their management may differ to that of non-cancer patients with chest pain. It will also highlight the role of the cardio-oncology team, who can aid in identifying cancer therapy-related cardiovascular side-effects and provide optimal multidisciplinary care for these patients.
Collapse
Affiliation(s)
- Sara Tyebally
- Cardio-Oncology Service, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Aruni Ghose
- Oncology Department, St Bartholomew’s Hospital, London, UK
| | - Daniel H Chen
- Cardio-Oncology Service, Barts Heart Centre, St Bartholomew’s Hospital, London, UK; Hatter Cardiovascular Institute, UCL Institute of Cardiovascular Science, University College London Hospital, London, UK
| | - Aderonke T Abiodun
- Cardio-Oncology Service, Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Arjun K Ghosh
- Cardio-Oncology Service, Barts Heart Centre, St Bartholomew’s Hospital, London, UK; Hatter Cardiovascular Institute, UCL Institute of Cardiovascular Science, University College London Hospital, London, UK
| |
Collapse
|
107
|
Du HB, Jiang SB, Zhao ZA, Zhang H, Zhang LM, Wang Z, Guo YX, Zhai JY, Wang P, Zhao ZG, Niu CY, Jiang LN. TLR2/TLR4-Enhanced TIPE2 Expression Is Involved in Post-Hemorrhagic Shock Mesenteric Lymph-Induced Activation of CD4+T Cells. Front Immunol 2022; 13:838618. [PMID: 35572554 PMCID: PMC9101470 DOI: 10.3389/fimmu.2022.838618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.
Collapse
Affiliation(s)
- Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Sun-Ban Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Zhao Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Xiong Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Peng Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| |
Collapse
|
108
|
Ferrer G, Álvarez-Errico D, Esteller M. Biological and Molecular Factors Predicting Response to Adoptive Cell Therapies in Cancer. J Natl Cancer Inst 2022; 114:930-939. [PMID: 35438170 PMCID: PMC9275759 DOI: 10.1093/jnci/djac088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/08/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Adoptive cell therapy (ACT) constitutes a major breakthrough in cancer management that has expanded in the past years due to impressive results showing durable and even curative responses for some patients with hematological malignancies. ACT leverages antigen specificity and cytotoxic mechanisms of the immune system, particularly relying on the patient’s T lymphocytes to target and eliminate malignant cells. This personalized therapeutic approach exemplifies the success of the joint effort of basic, translational, and clinical researchers that has turned the patient’s immune system into a great ally in the search for a cancer cure. ACTs are constantly improving to reach a maximum beneficial clinical response. Despite being very promising therapeutic options for certain types of cancers, mainly melanoma and hematological malignancies, these individualized treatments still present several shortcomings, including elevated costs, technical challenges, management of adverse side effects, and a limited population of responder patients. Thus, it is crucial to discover and develop reliable and robust biomarkers to specifically and sensitively pinpoint the patients that will benefit the most from ACT as well as those at higher risk of developing potentially serious toxicities. Although unique readouts of infused cell therapy success have not yet been identified, certain characteristics from the adoptive cells, the tumor, and/or the tumor microenvironment have been recognized to predict patients’ outcome on ACT. Here, we comment on the importance of biomarkers to predict ACT chances of success to maximize efficacy of treatments and increase patients’ survival.
Collapse
Affiliation(s)
- Gerardo Ferrer
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain
| | | | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Catalonia, Spain
| |
Collapse
|
109
|
Boettcher M, Joechner A, Li Z, Yang SF, Schlegel P. Development of CAR T Cell Therapy in Children-A Comprehensive Overview. J Clin Med 2022; 11:2158. [PMID: 35456250 PMCID: PMC9024694 DOI: 10.3390/jcm11082158] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
CAR T cell therapy has revolutionized immunotherapy in the last decade with the successful establishment of chimeric antigen receptor (CAR)-expressing cellular therapies as an alternative treatment in relapsed and refractory CD19-positive leukemias and lymphomas. There are fundamental reasons why CAR T cell therapy has been approved by the Food and Drug administration and the European Medicines Agency for pediatric and young adult patients first. Commonly, novel therapies are developed for adult patients and then adapted for pediatric use, due to regulatory and commercial reasons. Both strategic and biological factors have supported the success of CAR T cell therapy in children. Since there is an urgent need for more potent and specific therapies in childhood malignancies, efforts should also include the development of CAR therapeutics and expand applicability by introducing new technologies. Basic aspects, the evolution and the drawbacks of childhood CAR T cell therapy are discussed as along with the latest clinically relevant information.
Collapse
Affiliation(s)
- Michael Boettcher
- Department of Pediatric Surgery, University Medical Centre Mannheim, University of Heidelberg, 69117 Heidelberg, Germany;
| | - Alexander Joechner
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Ziduo Li
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Sile Fiona Yang
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
| | - Patrick Schlegel
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia;
- Cellular Cancer Therapeutics Unit, Children’s Medical Research Institute, Sydney 2145, Australia; (Z.L.); (S.F.Y.)
- Department of Pediatric Hematology and Oncology, Westmead Children’s Hospital, Sydney 2145, Australia
| |
Collapse
|
110
|
Thompson JA, Schneider BJ, Brahmer J, Achufusi A, Armand P, Berkenstock MK, Bhatia S, Budde LE, Chokshi S, Davies M, Elshoury A, Gesthalter Y, Hegde A, Jain M, Kaffenberger BH, Lechner MG, Li T, Marr A, McGettigan S, McPherson J, Medina T, Mohindra NA, Olszanski AJ, Oluwole O, Patel SP, Patil P, Reddy S, Ryder M, Santomasso B, Shofer S, Sosman JA, Wang Y, Zaha VG, Lyons M, Dwyer M, Hang L. Management of Immunotherapy-Related Toxicities, Version 1.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2022; 20:387-405. [PMID: 35390769 DOI: 10.6004/jnccn.2022.0020] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the NCCN Guidelines for Management of Immunotherapy-Related Toxicities is to provide guidance on the management of immune-related adverse events resulting from cancer immunotherapy. The NCCN Management of Immunotherapy-Related Toxicities Panel is an interdisciplinary group of representatives from NCCN Member Institutions, consisting of medical and hematologic oncologists with expertise across a wide range of disease sites, and experts from the areas of dermatology, gastroenterology, endocrinology, neurooncology, nephrology, cardio-oncology, ophthalmology, pulmonary medicine, and oncology nursing. The content featured in this issue is an excerpt of the recommendations for managing toxicities related to CAR T-cell therapies and a review of existing evidence. For the full version of the NCCN Guidelines, including recommendations for managing toxicities related to immune checkpoint inhibitors, visit NCCN.org.
Collapse
Affiliation(s)
- John A Thompson
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | | | - Julie Brahmer
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins
| | | | | | | | | | | | - Saurin Chokshi
- St. Jude Children's Research Hospital/The University of Tennessee Health Science Center
| | | | | | | | | | | | - Benjamin H Kaffenberger
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | | | | | | | | | - Nisha A Mohindra
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | | | | | - Pradnya Patil
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | | | | | | | | | - Jeffrey A Sosman
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University
| | | | - Vlad G Zaha
- UT Southwestern Simmons Comprehensive Cancer Center; and
| | | | | | - Lisa Hang
- National Comprehensive Cancer Network
| |
Collapse
|
111
|
Schreiber A, Elango K, Sossou C, Fakhra S, Asad S, Ahsan C. COVID-19 Induced Cardiomyopathy Successfully Treated with Tocilizumab. Case Rep Cardiol 2022; 2022:9943937. [PMID: 35402051 PMCID: PMC8985704 DOI: 10.1155/2022/9943937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 12/28/2022] Open
Abstract
Background. Currently, the literature regarding the management of COVID-19 induced cardiomyopathy with reduced ejection fraction is limited. In this case report, we present the first documented case of COVID-19 induced myocardial stunning leading to severely reduced LV systolic function that was reversed by the administration of corticosteroids and tocilizumab. Case Summary. A 39-year-old female with well controlled systemic hypertension, tested positive for SARS-CoV-2 RNA and underwent self-isolation for 14 days. Patient presented to our facility a month later with one-week history of progressively worsening generalized body aches, chills, fever, watery diarrhea, nausea with associated mild dry nonproductive cough, shortness of breath and nonspecific chest pain. Initial labs demonstrated that she was COVID-19 positive, elevated troponin (4.295 ng/ml), and elevated BNP (2,291 pg/ml). Her initial Transthoracic echocardiography demonstrated an Left ventricular ejection fraction (LVEF) of 20-25% with apical akinesis. After administration of tocilizumab and corticosteroids, patient demonstrated interval improvement with LVEF improving to 50-55% within days. Her labs confirmed these findings with improved troponin (0.858 ng/ml) and BNP (209 pg/ml). Discussion. This case demonstrates that it can be safe and efficacious to use tocilizumab and corticosteroids in patients with COVID-19 induced cardiomyopathy. These finding suggest that cytokine storm is the predominant mechanism by which COVID-19 induced cardiomyopathy occurs. Additional studies are required to determine the role of corticosteroids and tocilizumab in management of this condition.
Collapse
Affiliation(s)
- Ariyon Schreiber
- Department of Cardiology-University of Nevada, Las Vegas-Kirk Kirkorian School of Medicine, USA
| | - Kalaimani Elango
- Department of Cardiology-University of Nevada, Las Vegas-Kirk Kirkorian School of Medicine, USA
| | - Christoph Sossou
- Department of Cardiology-University of Nevada, Las Vegas-Kirk Kirkorian School of Medicine, USA
| | - Sadaf Fakhra
- Department of Internal Medicine-University of Nevada, Las Vegas-Kirk Kirkorian School of Medicine, USA
| | - Shabada Asad
- Department of Infectious Disease-University of Nevada, Las Vegas-Kirk Kirkorian School of Medicine, USA
| | - Chowdhury Ahsan
- Department of Cardiology-University of Nevada, Las Vegas-Kirk Kirkorian School of Medicine, USA
| |
Collapse
|
112
|
Gallo CG, Fiorino S, Posabella G, Antonacci D, Tropeano A, Pausini E, Pausini C, Guarniero T, Hong W, Giampieri E, Corazza I, Loiacono R, Loggi E, de Biase D, Zippi M, Lari F, Zancanaro M. The function of specialized pro-resolving endogenous lipid mediators, vitamins, and other micronutrients in the control of the inflammatory processes: Possible role in patients with SARS-CoV-2 related infection. Prostaglandins Other Lipid Mediat 2022; 159:106619. [PMID: 35032665 PMCID: PMC8752446 DOI: 10.1016/j.prostaglandins.2022.106619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/09/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023]
Abstract
Inflammation is an essential protective response against harmful stimuli, such as invading pathogens, damaged cells, or irritants. Physiological inflammation eliminates pathogens and promotes tissue repair and healing. Effective immune response in humans depends on a tightly regulated balance among inflammatory and anti-inflammatory mechanisms involving both innate and adaptive arms of the immune system. Excessive inflammation can become pathological and induce detrimental effects. If this process is not self-limited, an inappropriate remodeling of the tissues and organs can occur and lead to the onset of chronic degenerative diseases. A wide spectrum of infectious and non-infectious agents may activate the inflammation, via the release of mediators and cytokines by distinct subtypes of lymphocytes and macrophages. Several molecular mechanisms regulate the onset, progression, and resolution of inflammation. All these steps, even the termination of this process, are active and not passive events. In particular, a complex interplay exists between mediators (belonging to the group of Eicosanoids), which induce the beginning of inflammation, such as Prostaglandins (PGE2), Leukotrienes (LT), and thromboxane A2 (TXA2), and molecules which display a key role in counteracting this process and in promoting its proper resolution. The latter group of mediators includes: ω-6 arachidonic acid (AA)-derived metabolites, such as Lipoxins (LXs), ω -3 eicosapentaenoic acid (EPA)-derived mediators, such as E-series Resolvins (RvEs), and ω -3 docosahexaenoic (DHA)-derived mediators, such as D-series Resolvins (RvDs), Protectins (PDs) and Maresins (MaRs). Overall, these mediators are defined as specialized pro-resolving mediators (SPMs). Reduced synthesis of these molecules may lead to uncontrolled inflammation with possible harmful effects. ω-3 fatty acids are widely used in clinical practice as rather inexpensive, safe, readily available supplemental therapy. Taking advantage of this evidence, several researchers are suggesting that SPMs may have beneficial effects in the complementary treatment of patients with severe forms of SARS-CoV-2 related infection, to counteract the "cytokine storm" observed in these individuals. Well-designed and sized trials in patients suffering from COVID-19 with different degrees of severity are needed to investigate the real impact in the clinical practice of this promising therapeutic approach.
Collapse
Affiliation(s)
- Claudio G Gallo
- Emilian Physiolaser Therapy Center, Castel S. Pietro Terme, Bologna, Italy.
| | - Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | | - Donato Antonacci
- Medical Science Department, "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, FG, Italy
| | | | | | | | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, People's Republic of China
| | - Enrico Giampieri
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Ivan Corazza
- Experimental, Diagnostic and Specialty Medicine Department, University of Bologna, Bologna, Italy
| | - Rossella Loiacono
- Internal Medicine Unit, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Elisabetta Loggi
- Hepatology Unit, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy
| | - Dario de Biase
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology and Digestive Endoscopy, Sandro Pertini Hospital, Rome, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital Azienda USL, Bologna, Italy
| | | |
Collapse
|
113
|
Baumeister SHC, Mohan GS, Elhaddad A, Lehmann L. Cytokine Release Syndrome and Associated Acute Toxicities in Pediatric Patients Undergoing Immune Effector Cell Therapy or Hematopoietic Cell Transplantation. Front Oncol 2022; 12:841117. [PMID: 35402259 PMCID: PMC8989409 DOI: 10.3389/fonc.2022.841117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 02/05/2023] Open
Abstract
Immune effector cells (IEC) are a powerful and increasingly targeted tool, particularly for the control and eradication of malignant diseases. However, the infusion, expansion, and persistence of autologous or allogeneic IEC or engagement of endogenous immune cells can be associated with significant systemic multi-organ toxicities. Here we review the signs and symptoms, grading and pathophysiology of immune-related toxicities arising in the context of pediatric immunotherapies and haploidentical T cell replete Hematopoietic Cell Transplantation (HCT). Principles of management are discussed with particular focus on the intersection of these toxicities with the requirement for pediatric critical care level support.
Collapse
Affiliation(s)
- Susanne H. C. Baumeister
- Boston Children’s Hospital, Division of Pediatric Hematology-Oncology, Boston, MA, United States
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Susanne H. C. Baumeister,
| | - Gopi S. Mohan
- Boston Children’s Hospital, Division of Pediatric Hematology-Oncology, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Pediatric Critical Care, Massachusetts General Hospital, Boston, MA, United States
| | - Alaa Elhaddad
- Children’s Cancer Hospital of Egypt, National Cancer Institute Cairo, Cairo, Egypt
| | - Leslie Lehmann
- Boston Children’s Hospital, Division of Pediatric Hematology-Oncology, Boston, MA, United States
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
114
|
Moriyama S, Fukata M, Yokoyama T, Ueno S, Nunomura T, Mori Y, Kato K, Miyamoto T, Akashi K. Case Report: Cardiac Tamponade in Association With Cytokine Release Syndrome Following CAR-T Cell Therapy. Front Cardiovasc Med 2022; 9:848091. [PMID: 35387436 PMCID: PMC8977736 DOI: 10.3389/fcvm.2022.848091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/03/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been shown to have substantial efficacy against refractory hematopoietic malignancies. However, it frequently causes cytokine release syndrome (CRS) as a treatment-specific adverse event. Although cardiovascular events associated with CAR-T cell therapy have been increasingly reported recently, pericardial disease is a rare complication and its clinical course is not well characterized. Here, we report a case of acute pericardial effusion with cardiac tamponade after CAR-T cell therapy.
Collapse
Affiliation(s)
- Shohei Moriyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Mitsuhiro Fukata
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
- *Correspondence: Mitsuhiro Fukata
| | - Taku Yokoyama
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Shohei Ueno
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Takuya Nunomura
- Department of Hematology, Hiroshima Red Cross Hospital & Atomic-bomb Survivors Hospital, Hiroshima, Japan
| | - Yasuo Mori
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Kato
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Toshihiro Miyamoto
- Department of Hematology, Faculty of Medicine, Institute of Medical Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Koichi Akashi
- Department of Hematology, Oncology and Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
115
|
A novel TanCAR targeting IL13Rα2 and EphA2 for enhanced glioblastoma therapy. Mol Ther Oncolytics 2022; 24:729-741. [PMID: 35317513 PMCID: PMC8908045 DOI: 10.1016/j.omto.2022.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy has been shown to be an effective strategy for combatting non-solid tumors; however, CAR-T therapy is still a challenge for solid tumors, such as glioblastoma. To improve CAR-T therapy for glioblastoma, a new TanCAR, comprising the tandem arrangement of IL13 (4MS) and EphA2 scFv, was generated and validated in vitro and in vivo. In vitro, the novel TanCAR-redirected T cells killed glioblastoma tumor cells by recognizing either IL-13 receptor α2 (IL13Rα2) or EphA2 alone or together upon simultaneous encounter of both targets, but did not kill normal cells bearing only the IL13Rα1/IL4Rα receptor. As further proof of principle, the novel TanCAR was tested in a subcutaneous glioma xenograft mouse model. The results indicated that the novel TanCAR-redirected T cells produced greater glioma tumor regression than single CAR-T cells. Thus, the novel TanCAR-redirected T cells kill gliomas more efficiently and selectively than a single IL13 CAR or EphA2 scFv CAR, with the potential for preventing antigen escape and reduced off-target cytotoxicity.
Collapse
|
116
|
Al-Kindi S, Zidar DA. COVID-lateral damage: cardiovascular manifestations of SARS-CoV-2 infection. Transl Res 2022; 241:25-40. [PMID: 34780967 PMCID: PMC8588575 DOI: 10.1016/j.trsl.2021.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Early in the pandemic, concern that cardiovascular effects would accompany COVID-19 was fueled by lessons from the first SARS epidemic, knowledge that the SARS-COV2 entry receptor (Angiotensin-converting enzyme 2, ACE2) is highly expressed in the heart, early reports of myocarditis, and first-hand accounts by physicians caring for those with severe COVID-19. Over 18 months, our understanding of the cardiovascular manifestations has expanded greatly, leaving more new questions than those conclusively answered. Cardiac involvement is common (∼20%) but not uniformly observed in those who require treatment in a hospitalized setting. Cardiac MRI studies raise the possibility of manifestations in those with minimal symptoms. Some appear to experience protracted cardiovascular symptoms as part of a larger syndrome of post-acute sequelae of COVID-19. Instances of vaccine induced thrombosis and myocarditis are exceedingly rare but illustrate the need to monitor the cardiovascular safety of interventions that induce inflammation. Here, we will summarize the current understanding of potential cardiovascular manifestations of SARS-COV2. To provide proper context, paradigms of cardiovascular injury due to other inflammatory processes will also be discussed. Ongoing research and a deeper understanding COVID-19 may ultimately reveal new insight into the mechanistic underpinnings of cardiovascular disease. Thus, in this time of unprecedented suffering and risk to global health, there exists the opportunity that well conducted translational research of SARS-COV2 may provide health dividends that outlast the current pandemic.
Collapse
Key Words
- ace2, angiotensin-converting enzyme 2
- pasc, post-acute sequelae of covid-19
- cvd, cardiovascular disease
- tnf, tumor necrosis factor
- pamp, pathogen associated molecular patterns
- damps, damage associated molecular patterns
- car-t, chimeric antigen receptor therapy
- dvt, deep venous thrombosis
- tf, tissue factor
- psgl, p-selectin glycoprotein ligand
- nets, neutrophil extracellular traps
- lv, left ventricular
- crp, c-reactive protein
- lge, late gadolinium enhancement
- cbv, coxsackie virus b
- b19v, parvovirus b12
- car, coxsackievirus and adenovirus receptor
- ns1, nonstructural protein 1
- ec, endothelial cells
- scrnaseq, single cell rna sequencing
- embx, endomyocardial biopsy
- tte, transthoracic echocardiograms
- rv, right ventricular
- gls, global longitudinal strain
- hscrp, high sensitivity c-reative protein
- vitt, vaccine-induced immune thrombotic thrombocytopenia
- dtap, diphtheria, tetanus, and polio
- vaers, vaccine adverse event reporting system
Collapse
Affiliation(s)
- Sadeer Al-Kindi
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio
| | - David A Zidar
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio; Harrington Heart and Vascular Institute, University Hospitals, Cleveland, Ohio; Louis Stokes VA Medical Center, Cleveland, Ohio.
| |
Collapse
|
117
|
Ansari R, Caimi P, Zhengyi C, Rashidi A. Renal Outcomes after Chimeric Antigen Receptor T-Cell (CAR-T) therapy: A Single Center Perspective. Nephrol Dial Transplant 2022; 37:1777-1779. [PMID: 35218198 DOI: 10.1093/ndt/gfac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rehan Ansari
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, USA
| | - Paolo Caimi
- Department of Hematology and Medical Oncology, Cleveland Clinic, USA
| | - Chen Zhengyi
- Department of Population and Quantitative Health Science, Case Western Reserve University, USA
| | - Arash Rashidi
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center, USA
| |
Collapse
|
118
|
Shi X, Wu H. Recent advances in the prevention and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221078727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adoptive immunotherapy has recently garnered widespread interests owing to the successful application of chimeric antigen receptor T cell therapy. CAR-T cells are “living drugs” that can live in patients for several years and act as an effective antitumor agent. Over the last few years, five types of CAR-T cells have been approved by Food and Drug Administration (FDA) for treatment of hematologic malignancies. Despite their impressive clinical efficacy, the current application of CAR-T cell therapy is restricted by the uncontrollable release of cytokines (cytokine release syndrome and cytokine release syndrome) due to serious treatment-related toxicities resulting from synchronous activation and rapid proliferation of CAR-T cells. CRS is the most common toxicity and its severity can range from low-grade physical symptoms to a high-grade syndrome linked with life-threatening multiple organ dysfunction. Treatment-related deaths from severe CRS have been reported, suggesting the importance of appropriate intervention. Gaining a better understanding of CRS and developing new treatments for CRS are active areas of laboratory and clinical research. Herein, we summarize the current studies on prevention and management of CRS to expand the safety and applicability of CAR-T cell therapy in various malignancies.
Collapse
Affiliation(s)
- Xiaoxue Shi
- Affiliated Hospital of Hebei Engineering University, Hebei Province, Handan, China
| | - Hongfang Wu
- Affiliated Hospital of Hebei Engineering University, Hebei Province, Handan, China
| |
Collapse
|
119
|
Assumpção JAF, Pasquarelli-do-Nascimento G, Duarte MSV, Bonamino MH, Magalhães KG. The ambiguous role of obesity in oncology by promoting cancer but boosting antitumor immunotherapy. J Biomed Sci 2022; 29:12. [PMID: 35164764 PMCID: PMC8842976 DOI: 10.1186/s12929-022-00796-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity is nowadays considered a pandemic which prevalence's has been steadily increasingly in western countries. It is a dynamic, complex, and multifactorial disease which propitiates the development of several metabolic and cardiovascular diseases, as well as cancer. Excessive adipose tissue has been causally related to cancer progression and is a preventable risk factor for overall and cancer-specific survival, associated with poor prognosis in cancer patients. The onset of obesity features a state of chronic low-grade inflammation and secretion of a diversity of adipocyte-derived molecules (adipokines, cytokines, hormones), responsible for altering the metabolic, inflammatory, and immune landscape. The crosstalk between adipocytes and tumor cells fuels the tumor microenvironment with pro-inflammatory factors, promoting tissue injury, mutagenesis, invasion, and metastasis. Although classically established as a risk factor for cancer and treatment toxicity, recent evidence suggests mild obesity is related to better outcomes, with obese cancer patients showing better responses to treatment when compared to lean cancer patients. This phenomenon is termed obesity paradox and has been reported in different types and stages of cancer. The mechanisms underlying this paradoxical relationship between obesity and cancer are still not fully described but point to systemic alterations in metabolic fitness and modulation of the tumor microenvironment by obesity-associated molecules. Obesity impacts the response to cancer treatments, such as chemotherapy and immunotherapy, and has been reported as having a positive association with immune checkpoint therapy. In this review, we discuss obesity's association to inflammation and cancer, also highlighting potential physiological and biological mechanisms underlying this association, hoping to clarify the existence and impact of obesity paradox in cancer development and treatment.
Collapse
Affiliation(s)
| | | | - Mariana Saldanha Viegas Duarte
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martín Hernan Bonamino
- Immunology and Tumor Biology Program - Research Coordination, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice - Presidency of Research and Biological Collections (VPPCB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
120
|
Mehrabadi AZ, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Hamidinejad MA, Ghaleh HEG. Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomed Pharmacother 2022; 146:112512. [PMID: 34894519 DOI: 10.1016/j.biopha.2021.112512] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Although tremendous advancements in cancer therapy over the last several years, cancer still is a complex illness to cure. Traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, have a poor therapeutic effect, emphasizing the significance of employing innovative treatments like activated cell therapy. Chimeric antigen receptor T cell is one of the most prevalent types of activated cell therapy have been developed to direct T lymphocytes toward cancers (CAR-T cells). CAR-T cells therapy has illustrated poor impact versus solid tumors despite the remarkable success in patients suffering from hematological malignancies. CAR-T cells must overcome various hurdles to obtain full responses to solid tumors, including growth, stability, trafficking, and destiny inside tumors. As a result, novel treatment methods will entail overcoming the challenges that CAR-T cells face in solid tumors. The use of CAR-T cells in combination with other therapeutic approaches such as chemotherapy, radiotherapy, immuno-checkpoint inhibitors, and oncolytic viruses can promote the effectiveness of CAR-T cell therapy for the treatment of solid tumors. However, more research is needed to determine the safety and effectiveness of these therapies. CAR-T cell treatment success rates vary by type of disease, but are predicted to reach up to 90% in patients with leukemia. However, since this kind of immunotherapy is still in its infancy, there is much to learn about its efficacy. This review provided an in-depth examination of CAR-T cell therapy and its success and failure as a cancer treatment approach. We also discuss combination therapies with CAR-T Cell.
Collapse
Affiliation(s)
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Hamidinejad
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
121
|
Uppal NN, Workeneh BT, Rondon-Berrios H, Jhaveri KD. Electrolyte and Acid-Base Disorders associated with Cancer Immunotherapy. Clin J Am Soc Nephrol 2022; 17:922-933. [PMID: 35063968 PMCID: PMC9269647 DOI: 10.2215/cjn.14671121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Novel immunotherapy drugs have changed the landscape of cancer medicine. Immune checkpoint inhibitors and chimeric antigen receptor T cells are being used and investigated in almost all solid cancers. Immune-related adverse events have been associated with immunotherapies. Acute kidney injury has been the most commonly associated kidney adverse event. In this review, we showcase the several associated electrolyte disorders seen with immunotherapy. Immune checkpoint inhibitors can lead to hyponatremia by several mechanisms, with the syndrome of inappropriate antidiuresis being the most common. Endocrine causes of hyponatremia are rare. Hypokalemia is not uncommon and is associated with both proximal and distal renal tubular acidosis. Hypercalcemia associated with immune checkpoint inhibitors has led to some interesting observations including immune checkpoint inhibitor-induced parathyroid hormone - related peptide production, sarcoid-like granulomas, and hyper-progression of the disease. Hypocalcemia and hyperphosphatemia may be seen with immune checkpoint inhibitor-induced tumor lysis syndrome. Chimeric antigen receptor T cell therapy-associated electrolyte disorders are also common. This is associated chiefly with hyponatremia, although other electrolyte abnormalities can occur. Early recognition and prompt diagnosis may help providers manage the mechanistically varied and novel electrolyte disorders associated with immunotherapy.
Collapse
Affiliation(s)
- Nupur N. Uppal
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York
| | - Biruh T. Workeneh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Helbert Rondon-Berrios
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kenar D. Jhaveri
- Division of Kidney Diseases and Hypertension, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Great Neck, New York
| |
Collapse
|
122
|
Brickler M, Raskin A, Ryan TD. Current State of Pediatric Cardio-Oncology: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:127. [PMID: 35204848 PMCID: PMC8870613 DOI: 10.3390/children9020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The landscape of pediatric oncology has dramatically changed over the course of the past several decades with five-year survival rates surpassing 80%. Anthracycline therapy has been the cornerstone of many chemotherapy regimens for pediatric patients since its introduction in the 1960s, and recent improved survival has been in large part due to advancements in chemotherapy, refinement of supportive care treatments, and development of novel therapeutics such as small molecule inhibitors, chimeric antigen receptor T-cell therapy, and immune checkpoint inhibitors. Unfortunately, many cancer-targeted therapies can lead to acute and chronic cardiovascular pathologies. The range of cardiotoxicity can vary but includes symptomatic or asymptotic heart failure, arrhythmias, coronary artery disease, valvar disease, pericardial disease, hypertension, and peripheral vascular disease. There is lack of data guiding primary prevention and treatment strategies in the pediatric population, which leads to substantial practice variability. Several important future research directions have been identified, including as they relate to cardiac disease, prevention strategies, management of cardiovascular risk factors, risk prediction, early detection, and the role of genetic susceptibility in development of cardiotoxicity. Continued collaborative research will be key in advancing the field. The ideal model for pediatric cardio-oncology is a proactive partnership between pediatric cardiologists and oncologists in order to better understand, treat, and ideally prevent cardiac disease in pediatric oncology patients.
Collapse
Affiliation(s)
| | | | - Thomas D. Ryan
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| |
Collapse
|
123
|
Hu J, Yang Q, Zhang W, Du H, Chen Y, Zhao Q, Dao L, Xia X, Natalie Wall F, Zhang Z, Mahadeo K, Gorlick R, Kopetz S, Dotti G, Li S. Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors. J Immunother Cancer 2022; 10:jitc-2021-003633. [PMID: 35027427 PMCID: PMC8762133 DOI: 10.1136/jitc-2021-003633] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Adoptive T-cell transfer has become an attractive therapeutic approach for hematological malignancies but shows poor activity against large and heterogeneous solid tumors. Interleukin-12 (IL-12) exhibits potent antitumor efficacy against solid tumors, but its clinical application has been stalled because of toxicity. Here, we aimed to develop a safe approach to IL-12 T-cell therapy for eliminating large solid tumors. METHODS We generated a cell membrane-anchored IL-12 (aIL12), a tumor-targeted IL-12 (ttIL12), and a cell membrane-anchored and ttIL-12 (attIL12) and a cell membrane-anchored and tumor-targeted ttIL-12 (attIL12) armed T cells, chimeric antigen receptor-T cells, and T cell receptor-T (TCR-T) cells with each. We compared the safety and efficacy of these armed T cells in treating osteosarcoma patient-derived xenograft tumors and mouse melanoma tumors after intravenous infusions of the armed T cells. RESULTS attIL12-T cell infusion showed remarkable antitumor efficacy in human and mouse large solid tumor models. Mechanistically, attIL12-T cells targeted tumor cells expressing cell-surface vimentin, enriching effector T cell and interferon γ production in tumors, which in turn stimulates dendritic cell maturation for activating secondary T-cell responses and tumor antigen spreading. Both attIL12- and aIL12-T-cell transfer eliminated peripheral cytokine release and the associated toxic effects. CONCLUSIONS This novel approach sheds light on the safe application of IL-12-based T-cell therapy for large and heterogeneous solid tumors.
Collapse
Affiliation(s)
- Jiemiao Hu
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Qing Yang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendong Zhang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hongwei Du
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yuhui Chen
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Qingnan Zhao
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long Dao
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xueqing Xia
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Fowlkes Natalie Wall
- Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongting Zhang
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kris Mahadeo
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - S Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Gianpietro Dotti
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shulin Li
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
124
|
Dalal PJ, Patel NP, Feinstein MJ, Akhter N. Adverse Cardiac Effects of CAR T-Cell Therapy: Characteristics, Surveillance, Management, and Future Research Directions. Technol Cancer Res Treat 2022; 21:15330338221132927. [PMID: 36254553 PMCID: PMC9580078 DOI: 10.1177/15330338221132927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/17/2022] [Accepted: 09/27/2022] [Indexed: 12/03/2022] Open
Abstract
This review summarizes the current literature on the adverse cardiac effects of CAR T-cell therapy. Case reports and series suggest that major adverse cardiovascular events are not uncommon after CAR T-cell therapy; however, limited data exist regarding incidence, pathophysiology, and prevention strategies related to CAR T-associated cardiovascular events. As cellular therapy advances and the indications for its use continue to expand, it is essential to better understand its associated cardiovascular toxicities. Biomarkers, cardiac imaging, longitudinal data from larger populations, and translational research are all essential areas for further research. Interestingly, CAR T-cell therapy can also be used to reverse cardiac fibrosis in murine models. Altogether this underscores the need to broadly understand how T-cells, endogenous and engineered, may impact cardiovascular diseases.
Collapse
Affiliation(s)
- Prarthana J. Dalal
- Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Nikita P. Patel
- Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Feinstein
- Department of Medicine, Division of Cardiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Nausheen Akhter
- Department of Medicine, Division of Cardiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
125
|
Shimabukuro-Vornhagen A, Böll B, Schellongowski P, Valade S, Metaxa V, Azoulay E, von Bergwelt-Baildon M. Critical care management of chimeric antigen receptor T-cell therapy recipients. CA Cancer J Clin 2022; 72:78-93. [PMID: 34613616 DOI: 10.3322/caac.21702] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/30/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a promising immunotherapeutic treatment concept that is changing the treatment approach to hematologic malignancies. The development of CAR T-cell therapy represents a prime example for the successful bench-to-bedside translation of advances in immunology and cellular therapy into clinical practice. The currently available CAR T-cell products have shown high response rates and long-term remissions in patients with relapsed/refractory acute lymphoblastic leukemia and relapsed/refractory lymphoma. However, CAR T-cell therapy can induce severe life-threatening toxicities such as cytokine release syndrome, neurotoxicity, or infection, which require rapid and aggressive medical treatment in the intensive care unit setting. In this review, the authors provide an overview of the state-of-the-art in the clinical management of severe life-threatening events in CAR T-cell recipients. Furthermore, key challenges that have to be overcome to maximize the safety of CAR T cells are discussed.
Collapse
Affiliation(s)
- Alexander Shimabukuro-Vornhagen
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
| | - Boris Böll
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
| | - Peter Schellongowski
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Medicine I, Intensive Care Unit 13i2, Comprehensive Cancer Center, Center of Excellence in Medical Intensive Care (CEMIC), Medical University of Vienna, Vienna, Austria
| | - Sandrine Valade
- Medical Intensive Care Unit, St Louis Teaching Hospital, Public Assistance Hospitals of Paris, Paris, France
| | - Victoria Metaxa
- Department of Critical Care, King's College Hospital National Health Service Foundation Trust, London, United Kingdom
| | - Elie Azoulay
- Medical Intensive Care Unit, St Louis Teaching Hospital, Public Assistance Hospitals of Paris, Paris, France
| | - Michael von Bergwelt-Baildon
- Intensive Care in Hematologic and Oncologic Patients (iCHOP), Cologne, Germany
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Munich Comprehensive Cancer Center, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Bavarian Center for Cancer Research, Munich, Germany
- Nine-i Multinational Research Network, Service de Médecine Intensive et Réanimaton Médicale, Hôpital Saint-Louis, France
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| |
Collapse
|
126
|
Kim TJ, Lee YH, Koo KC. Current and future perspectives on CAR-T cell therapy for renal cell carcinoma: A comprehensive review. Investig Clin Urol 2022; 63:486-498. [PMID: 36067994 PMCID: PMC9448669 DOI: 10.4111/icu.20220103] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/22/2022] [Accepted: 07/06/2022] [Indexed: 01/02/2023] Open
Abstract
In the clinical setting of renal cell carcinoma (RCC), immune reactions such as tumor-specific T cell responses can be spontaneous events or can be elicited by checkpoint inhibitors, cytokines, and other immunotherapy modalities. The results from immunotherapy have led to significant advances in treatment methods and patient outcomes. The approval of nivolumab primarily as a second-line monotherapy and the latest approval of novel combination therapies as first-line treatment have established the significance of immunotherapy in the treatment of RCC. In this perspective, chimeric antigen receptor (CAR)-T cell therapy represents a major advance in the developing field of immunotherapy. This treatment modality facilitates T cells to express specific CARs on the cell surface which are reinfused to the patient to treat the analogous tumor cells. After showing treatment potential in hematological malignancies, this new therapeutic approach has become a strong candidate as a therapeutic modality for solid neoplasms. Although CAR-T cell therapy has shown promise and clinical benefit compared to previous T-cell modulated immunotherapies, further studies are warranted to overcome unfavorable physiological settings and hindrances such as the lack of specific molecular targets, depletion of CAR-T cells, a hostile tumor microenvironment, and on/off-tumor toxicities. Several approaches are being considered and research is ongoing to overcome these problems. In this comprehensive review, we provide the rationale and preliminary results of CAR-T cell therapy in RCC and discuss emerging novel strategies and future directions.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Urology, CHA University College of Medicine, CHA Bundang Medical Center, Seongnam, Korea
| | - Young Hwa Lee
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyo Chul Koo
- Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
127
|
Zhou L, Yu N, Li T, Ji H, Jiang L, Wang D, Xu B, Zhou X. Clinical characteristics and prognosis of 16 relapsed/refractory B-cell malignancy patients with CAR T-cell-related hyperferritinaemia. Front Oncol 2022; 12:912689. [PMID: 36313658 PMCID: PMC9600326 DOI: 10.3389/fonc.2022.912689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022] Open
Abstract
With the success of chimeric antigen receptor-modified (CAR) T-cell therapy for relapsed/refractory (r/r) B-cell malignancies, severe complications after CAR T-cell infusion have emerged as nonnegligible prognosis-related factors. However, the prognosis of patients with CAR T-cell-related hyperferritinaemia (HFA) is unclear. We report the efficacy and safety of CAR T-cell therapy in 16 r/r B-cell malignancy patients with CAR T-cell-related HFA. The rates of serum ferritin levels above 10,000 ng/ml during CAR T-cell therapy were 6.2% and 14.3% in B-cell non-Hodgkin's lymphoma (B-NHL) and acute B lymphocyte leukemia (B-ALL), respectively. These patients were characterized by an extremely high tumor burden and a high rate of extranodal involvement. In lymphoma, the complete remission (CR) rate was 37.5% (3/8), which was lower than that in the control group with the lowest value of ferritin (CR was 87.5% (7/8), P=0.0406), and it could also be seen that the OS of the control group (1-year OS rate 100%) had a better trend than HFA group (1-year OS rate 50%). In the B-ALL patients, the OS of the control group (1-year OS rate 100%) was higher than HFA group (1-year OS rate 45%, P=0.0189), although there was no significant difference in CR rate. High-grade CRS (≥3) occurred in 56.25% of the patients, and the mortality rate was 56.25%, which was significantly higher than control group (12.5% and 12.5%, P=0.009). The peak serum ferritin level in the patients who died of CRS was significantly higher than others (P=0.0168). Regardless of whether the CAR T-related MAS diagnostic criteria were met, there was no significant difference in ORR and OS in HFA group, however patients with MAS showed a higher rate of high-grade CRS. Interestingly, in our study, glucocorticoid intervention in HFA group showed little impact on expansion of CAR-T cells, whether compared with control group or compared within HFA group by dividing patients into high and low dosage subgroups based on the median dose of glucocorticoid. High mortality was observed in patients with CAR T-cell-related HFA. Early glucocorticoid intervention might be worth trying to improve the safety of CAR T therapy in these patients.
Collapse
Affiliation(s)
- Lanlan Zhou
- Department of Hematology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Nanzhou Yu
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongjuan Li
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Ji
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lijun Jiang
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wang
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Xu
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxi Zhou
- Department of Hematology, Tongji Hospital, TongJi Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Xiaoxi Zhou,
| |
Collapse
|
128
|
Bailey SR, Vatsa S, Larson RC, Bouffard AA, Scarfo I, Kann MC, Berger TR, Leick MB, Wehrli M, Schmidts A, Silva H, Lindell KA, Demato A, Gallagher KM, Frigault MJ, Maus MV. Blockade or deletion of IFNg reduces macrophage activation without compromising CAR-T function in hematologic malignancies. Blood Cancer Discov 2021; 3:136-153. [PMID: 35015685 PMCID: PMC9414118 DOI: 10.1158/2643-3230.bcd-21-0181] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR-T) induce impressive responses in patients with hematologic malignancies but can also trigger cytokine release syndrome (CRS), a systemic toxicity caused by activated CAR-T and innate immune cells. Although interferon-gamma (IFNg) production serves as a potency assay for CAR T cells, its biologic role in conferring responses in hematologic malignancies is not established. Here we show that pharmacologic blockade or genetic knockout of IFNg reduced immune checkpoint protein expression with no detrimental effect on anti-tumor efficacy against hematologic malignancies in vitro or in vivo. Furthermore, IFNg blockade reduced macrophage activation to a greater extent than currently used cytokine antagonists in immune cells from healthy donors and serum from CAR-T treated lymphoma patients who developed CRS. Collectively, these data show that IFNg is not required for CAR-T efficacy against hematologic malignancies, and blocking IFNg could simultaneously mitigate cytokine-related toxicities while preserving persistence and anti-tumor efficacy.
Collapse
Affiliation(s)
- Stefanie R Bailey
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | - Sonika Vatsa
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | - Rebecca C Larson
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | - Amanda A Bouffard
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | - Irene Scarfo
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | | | | | - Mark B Leick
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center
| | - Marc Wehrli
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | - Andrea Schmidts
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| | | | | | | | | | | | - Marcela V Maus
- Cancer Center, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
129
|
Caballero D, Abreu CM, Lima AC, Neves NN, Reis RL, Kundu SC. Precision biomaterials in cancer theranostics and modelling. Biomaterials 2021; 280:121299. [PMID: 34871880 DOI: 10.1016/j.biomaterials.2021.121299] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Despite significant achievements in the understanding and treatment of cancer, it remains a major burden. Traditional therapeutic approaches based on the 'one-size-fits-all' paradigm are becoming obsolete, as demonstrated by the increasing number of patients failing to respond to treatments. In contrast, more precise approaches based on individualized genetic profiling of tumors have already demonstrated their potential. However, even more personalized treatments display shortcomings mainly associated with systemic delivery, such as low local drug efficacy or specificity. A large amount of effort is currently being invested in developing precision medicine-based strategies for improving the efficiency of cancer theranostics and modelling, which are envisioned to be more accurate, standardized, localized, and less expensive. To this end, interdisciplinary research fields, such as biomedicine, material sciences, pharmacology, chemistry, tissue engineering, and nanotechnology, must converge for boosting the precision cancer ecosystem. In this regard, precision biomaterials have emerged as a promising strategy to detect, model, and treat cancer more efficiently. These are defined as those biomaterials precisely engineered with specific theranostic functions and bioactive components, with the possibility to be tailored to the cancer patient needs, thus having a vast potential in the increasing demand for more efficient treatments. In this review, we discuss the latest advances in the field of precision biomaterials in cancer research, which are expected to revolutionize disease management, focusing on their uses for cancer modelling, detection, and therapeutic applications. We finally comment on the needed requirements to accelerate their application in the clinic to improve cancer patient prognosis.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana C Lima
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno N Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
130
|
Pochon C, Courbon C, Bay JO, Moreau AS, Paul F, Picard M, Sterin A, Tudesq JJ, Vicente C, Yakoub-Agha M, Yakoub-Agha I. [Complications other than infections, CRS and ICANS following CAR T-cells therapy: Recommendations of the Francophone Society of bone marrow transplantation and cell therapy (SFGM-TC)]. Bull Cancer 2021; 108:S98-S103. [PMID: 34802718 DOI: 10.1016/j.bulcan.2021.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022]
Abstract
CAR-T cells are an innovative treatment for an increasing number of patients, particularly since the extension of their indication to mantle lymphoma and multiple myeloma. Several complications of CAR T-cell therapy, that were first described as exceptional, have now been reported in series of patients, since its first clinical use in 2011. Among them, cardiac complications, delayed cytopenias, acute and chronic Graft versus Host Disease, and tumoral lysis syndrome are recognized as specific potent complications following CAR T-cells infusion. During the twelfth edition of practice harmonization workshops of the Francophone society of bone marrow transplantation and cellular therapy (SFGM-TC), a working group focused its work on the management of these complications with focuses the epidemiology, the physiopathology and the risk factors of these 4 side effects. Our recommendations apply to commercial CAR-T cells, in order to guide strategies for the management of complications associated with this new therapeutic approach.
Collapse
Affiliation(s)
- Cécile Pochon
- CHRU de Nancy, service d'onco-hématologie pédiatrique, 54500 Vandœuvre-Lès-Nancy, France; Université de Lorraine, UMR 7365 CNRS-UL IMoPA, campus biologie santé, 9, avenue de la Forêt-de-Haye, 54505 Vandœuvre-Lès-Nancy, France.
| | - Corinne Courbon
- Institut de cancérologie de la Loire, service d'hématologie, 42270 Saint-Priest-en-Jarez, France
| | - Jacques-Olivier Bay
- CHU de Clermont-Ferrand, service de thérapie cellulaire et d'hématologie clinique adulte, site Estaing, 1, place Lucie-Aubrac, 63000 Clermont-Ferrand, France
| | - Anne-Sophie Moreau
- Hôpital Salengro, CHU de Lille, service de médecine intensive réanimation, rue Émile-Laine, 59037 Lille cedex, France
| | - Franciane Paul
- Université Montpellier, CHU de Montpellier, département d'hématologie clinique, Montpellier, France
| | - Muriel Picard
- CHU de Toulouse, réanimation polyvalente IUCT-oncopole, Toulouse, France
| | - Arthur Sterin
- Hôpital La Timone Enfants, service hémato-immunologie pédiatrique, 13005 Marseille, France
| | - Jean-Jacques Tudesq
- Université Montpellier, CHU de Montpellier, département d'hématologie clinique, Montpellier, France
| | - Céline Vicente
- CHU de Toulouse, service d'hématologie, IUCT-oncopole, 1, avenue Joliot-Curie, 31059 Toulouse, France
| | | | | |
Collapse
|
131
|
Sheikh IN, Ragoonanan D, Franklin A, Srinivasan C, Zhao B, Petropoulos D, Mahadeo KM, Tewari P, Khazal SJ. Cardiac Relapse of Acute Lymphoblastic Leukemia Following Hematopoietic Stem Cell Transplantation: A Case Report and Review of Literature. Cancers (Basel) 2021; 13:5814. [PMID: 34830969 PMCID: PMC8616080 DOI: 10.3390/cancers13225814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022] Open
Abstract
Isolated extramedullary relapse of acute lymphoblastic leukemia (ALL) occurs in soft tissues and various organs outside the testis and central nervous system. Treatments such as hematopoietic stem cell transplantation and more novel modalities such as immunotherapy have eradicated ALL at extramedullary sites. In some instances, survival times for relapsed ALL at these sites are longer than those for relapsed disease involving only the bone marrow. Isolated relapse of ALL in the myocardium is rare, especially in children, making diagnosis and treatment of it difficult. More recent treatment options such as chimeric antigen receptor T-cell therapy carry a high risk of cytokine release syndrome and associated risk of worsening cardiac function. Herein we present the case of an 11-year-old boy who presented with relapsed symptomatic B-cell ALL in the myocardium following allogeneic hematopoietic stem cell transplantation. This is an unusual presentation of relapsed ALL and this case demonstrates the associated challenges in its diagnosis and treatment. The case report is followed by a literature review of the advances in treatment of pediatric leukemia and their application to extramedullary relapse of this disease in particular.
Collapse
Affiliation(s)
- Irtiza N. Sheikh
- Division of Pediatrics and Patient Care, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Dristhi Ragoonanan
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (D.P.); (K.M.M.); (P.T.)
| | - Anna Franklin
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Chandra Srinivasan
- Cardiac Center, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Bhiong Zhao
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center McGovern Medical School, Houston, TX 77054, USA;
| | - Demetrios Petropoulos
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (D.P.); (K.M.M.); (P.T.)
| | - Kris M. Mahadeo
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (D.P.); (K.M.M.); (P.T.)
| | - Priti Tewari
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (D.P.); (K.M.M.); (P.T.)
| | - Sajad J. Khazal
- Department of Pediatrics, Pediatric Stem Cell Transplantation and Cellular Therapy, CARTOX Program, University of Texas at MD Anderson Cancer Center, Houston, TX 77030, USA; (D.R.); (D.P.); (K.M.M.); (P.T.)
| |
Collapse
|
132
|
Xiao X, Huang S, Chen S, Wang Y, Sun Q, Xu X, Li Y. Mechanisms of cytokine release syndrome and neurotoxicity of CAR T-cell therapy and associated prevention and management strategies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:367. [PMID: 34794490 PMCID: PMC8600921 DOI: 10.1186/s13046-021-02148-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/20/2021] [Indexed: 02/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has yielded impressive outcomes and transformed treatment algorithms for hematological malignancies. To date, five CAR T-cell products have been approved by the US Food and Drug Administration (FDA). Nevertheless, some significant toxicities pose great challenges to the development of CAR T-cell therapy, most notably cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Understanding the mechanisms underlying these toxicities and establishing prevention and treatment strategies are important. In this review, we summarize the mechanisms underlying CRS and ICANS and provide potential treatment and prevention strategies.
Collapse
Affiliation(s)
- Xinyi Xiao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Shengkang Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Sifei Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Yazhuo Wang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.,Medical College of Rehabilitation, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Qihang Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510623, People's Republic of China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, 510005, People's Republic of China.
| |
Collapse
|
133
|
Hong F, Shi M, Cao J, Wang Y, Gong Y, Gao H, Li Z, Zheng J, Zeng L, He A, Xu K. Predictive role of endothelial cell activation in cytokine release syndrome after chimeric antigen receptor T cell therapy for acute lymphoblastic leukaemia. J Cell Mol Med 2021; 25:11063-11074. [PMID: 34734474 PMCID: PMC8650023 DOI: 10.1111/jcmm.17029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
CD19-target chimeric antigen receptor (CAR)-T cell therapy is highly effective for relapsed/refractory (R/R) acute lymphoblastic leukaemia (ALL), but is often complicated by cytokine release syndrome (CRS), which is potentially life-threatening. Endothelial cells are the core regulator of CRS in many infectious diseases and may also play a key role after CAR-T cell therapy. We provided a detailed clinical, laboratory description and endothelial cell activation biomarkers in patients with CRS. Endothelial cell activation was associated with occurrence, development and severity of CRS, manifested by decreased serum angiopoietin (Ang)-1 levels and increased levels of von Willebrand Factor (VWF), Ang-2, Ang-2:Ang-1, sE-selectin, soluble intercellular adhesion molecule (sICAM-1) and soluble vascular cell adhesion molecule (sVCAM)-1. Besides, the endothelial activation was correlated with the hepatic, kidney and hematopoietic dysfunction in CRS patients. After infusion of CAR-T cells, we detected changes of endothelial activation-related biomarkers within 36 hours in patients who subsequently developed CRS, especially severe CRS. Using top tree models, we could predict which patients would develop CRS, especially severe CRS, or identify the severity of CRS by certain biomarkers of endothelial activation. These data provide a new idea and will help identify new targets for early intervention and prevention of CRS.
Collapse
Affiliation(s)
- Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Ying Wang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Yanqing Gong
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Hui Gao
- Jiangsu Bone Marrow Stem Cell Institute, Jiangsu, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Jiangsu, China
| | - Lingyu Zeng
- Jiangsu Bone Marrow Stem Cell Institute, Jiangsu, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, ShaanXi, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.,Jiangsu Bone Marrow Stem Cell Institute, Jiangsu, China
| |
Collapse
|
134
|
Arnesen VS, Gras Navarro A, Chekenya M. Challenges and Prospects for Designer T and NK Cells in Glioblastoma Immunotherapy. Cancers (Basel) 2021; 13:4986. [PMID: 34638471 PMCID: PMC8507952 DOI: 10.3390/cancers13194986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent, aggressive primary brain tumour with a dismal prognosis. Treatment at diagnosis has limited efficacy and there is no standardised treatment at recurrence. New, personalised treatment options are under investigation, although challenges persist for heterogenous tumours such as GBM. Gene editing technologies are a game changer, enabling design of novel molecular-immunological treatments to be used in combination with chemoradiation, to achieve long lasting survival benefits for patients. Here, we review the literature on how cutting-edge molecular gene editing technologies can be applied to known and emerging tumour-associated antigens to enhance chimeric antigen receptor T and NK cell therapies for GBM. A tight balance of limiting neurotoxicity, avoiding tumour antigen loss and therapy resistance, while simultaneously promoting long-term persistence of the adoptively transferred cells must be maintained to significantly improve patient survival. We discuss the opportunities and challenges posed by the brain contexture to the administration of the treatments and achieving sustained clinical responses.
Collapse
Affiliation(s)
| | - Andrea Gras Navarro
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| | - Martha Chekenya
- Department of Biomedicine, University of Bergen, Jonas Lies Vei 91, 5009 Bergen, Norway
| |
Collapse
|
135
|
Short Review on Advances in Hydrogel-Based Drug Delivery Strategies for Cancer Immunotherapy. Tissue Eng Regen Med 2021; 19:263-280. [PMID: 34596839 DOI: 10.1007/s13770-021-00369-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy has become the new paradigm of cancer treatment. The introduction and discovery of various therapeutic agents have also accelerated the application of immunotherapy in clinical trials. However, despite the significant potency and demonstrated advantages of cancer immunotherapy, its clinical application to patients faces several safety and efficacy issues, including autoimmune reactions, cytokine release syndrome, and vascular leak syndrome-related issues. In addressing these problems, biomaterials traditionally used for tissue engineering and drug delivery are attracting attention. Among them, hydrogels can be easily injected into tumors with drugs, and they can minimize side effects by retaining immune therapeutics at the tumor site for a long time. This article reviews the status of functional hydrogels for effective cancer immunotherapy. First, we describe the basic mechanisms of cancer immunotherapy and the advantages of using hydrogels to apply these mechanisms. Next, we summarize recent advances in the development of functional hydrogels designed to locally release various immunotherapeutic agents, including cytokines, cancer immune vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells. Finally, we briefly discuss the current problems and possible prospects of hydrogels for effective cancer immunotherapy.
Collapse
|
136
|
Montisci A, Vietri MT, Palmieri V, Sala S, Donatelli F, Napoli C. Cardiac Toxicity Associated with Cancer Immunotherapy and Biological Drugs. Cancers (Basel) 2021; 13:4797. [PMID: 34638281 PMCID: PMC8508330 DOI: 10.3390/cancers13194797] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/15/2021] [Accepted: 09/22/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer immunotherapy significantly contributed to an improvement in the prognosis of cancer patients. Immunotherapy, including human epidermal growth factor receptor 2 (HER2)-targeted therapies, immune checkpoint inhibitors (ICI), and chimeric antigen receptor-modified T (CAR-T), share the characteristic to exploit the capabilities of the immune system to kill cancerous cells. Trastuzumab is a monoclonal antibody against HER2 that prevents HER2-mediated signaling; it is administered mainly in HER2-positive cancers, such as breast, colorectal, biliary tract, and non-small-cell lung cancers. Immune checkpoint inhibitors (ICI) inhibit the binding of CTLA-4 or PD-1 to PDL-1, allowing T cells to kill cancerous cells. ICI can be used in melanomas, non-small-cell lung cancer, urothelial, and head and neck cancer. There are two main types of T-cell transfer therapy: tumor-infiltrating lymphocytes (or TIL) therapy and chimeric antigen receptor-modified T (CAR-T) cell therapy, mainly applied for B-cell lymphoma and leukemia and mantle-cell lymphoma. HER2-targeted therapies, mainly trastuzumab, are associated with left ventricular dysfunction, usually reversible and rarely life-threatening. PD/PDL-1 inhibitors can cause myocarditis, rare but potentially fulminant and associated with a high fatality rate. CAR-T therapy is associated with several cardiac toxic effects, mainly in the context of a systemic adverse effect, the cytokines release syndrome.
Collapse
Affiliation(s)
- Andrea Montisci
- Division of Cardiothoracic Intensive Care, ASST Spedali Civili, 25123 Brescia, Italy;
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
| | - Vittorio Palmieri
- Department of Cardiac Surgery and Transplantation, Ospedali dei Colli Monaldi-Cotugno-CTO, 80131 Naples, Italy;
| | - Silvia Sala
- Department of Anesthesia and Intensive Care, University of Brescia, 25121 Brescia, Italy;
| | - Francesco Donatelli
- Cardiac Surgery, University of Milan, 20122 Milan, Italy
- Department of Cardiac Surgery, Istituto Clinico Sant’Ambrogio, 20149 Milan, Italy
| | - Claudio Napoli
- Clinical Department of Internal Medicine and Specialistics, University Department of Advanced Clinical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy;
- IRCCS SDN, 80143 Naples, Italy
| |
Collapse
|
137
|
Martino M, Macheda S, Aguglia U, Arcudi L, Pucci G, Martino B, Altomonte M, Rossetti AM, Cusumano G, Russo L, Imbalzano L, Stelitano C, Alati C, Germano' J, Labate D, Amalfi V, Florenzano MT, Morabito A, Borzumati V, Dattola V, Gattuso C, Moschella A, Quattrone D, Curmaci F, Franzutti C, Scappatura G, Rao CM, Loddo V, Pontari A, Pellicano' M, Surace R, Sanguedolce C, Naso V, Ferreri A, Irrera G, Console G, Moscato T, Loteta B, Canale FA, Trimarchi A, Monteleone R, Al Sayyad S, Cirrone F, Bruno B. Identifying and managing CAR T-cell-mediated toxicities: on behalf of an Italian CAR-T multidisciplinary team. Expert Opin Biol Ther 2021; 22:407-421. [PMID: 34463175 DOI: 10.1080/14712598.2021.1974394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR)-T-cell therapy is a new treatment for patients with hematologic malignancies in which other therapies have failed. AREAS COVERED The review provides an overview for recognizing and managing the most acute toxicities related to CAR-T cells. EXPERT OPINION The development of immune-mediated toxicities is a common challenge of CAR-T therapy. The mechanism that determines this toxicity is still unclear, although an unfavorable tumor microenvironment and a pro-inflammatory state put patients at risk. The monitoring, diagnosis, and treatment of post-CAR-T toxicities must be determined and based on international guidelines and internal clinical practice. It is urgent to identify biomarkers that can identify patients at greater risk of developing complications. The adoption of consistent grading criteria is necessary to improve toxicity management strategies continually. The first-line therapy consists of supportive care and treatment with tocilizumab or corticosteroids. An early start of cytokine blockade therapies could mitigate toxicity. The plan will include cytokine release prophylaxis, a risk-adapted treatment, prevention of on-target/off-tumor effect, and a switch on/off CAR-T approach.
Collapse
Affiliation(s)
- Massimo Martino
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Sebastiano Macheda
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Umberto Aguglia
- Department of Medicine, Surgery and Health Sciences, Magna Græcia University, Catanzaro, Italy, Regional Epilepsy Centre, Great Metropolitan Hospital "Bianchi-melacrino-morelli," Reggio Calabria, Italy.,Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Luciano Arcudi
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giulia Pucci
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Stem Cell Processing Laboratory Unit, Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Bruno Martino
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Altomonte
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonio Maria Rossetti
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppa Cusumano
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Letteria Russo
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Lucrezia Imbalzano
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Stelitano
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Alati
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Jessyca Germano'
- Hematology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Demetrio Labate
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vincenzo Amalfi
- Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Teresa Florenzano
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonella Morabito
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vittoria Borzumati
- Pharmacy Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Vincenzo Dattola
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Caterina Gattuso
- Neurology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Antonio Moschella
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Domenico Quattrone
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Francesco Curmaci
- Pain Center Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Claudio Franzutti
- Radiology Department, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Scappatura
- Radiology Department, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Carmelo Massimiliano Rao
- Cardiology Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Viviana Loddo
- Catholic University of the Sacred Heart, Rome, Italy
| | - Antonella Pontari
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Stem Cell Processing Laboratory Unit, Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Maria Pellicano'
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Rosangela Surace
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Cristina Sanguedolce
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy.,Intensive Care Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Virginia Naso
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Anna Ferreri
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Irrera
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Giuseppe Console
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Tiziana Moscato
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Barbara Loteta
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Filippo Antonio Canale
- Stem Cell Transplant and Cellular Therapies Unit, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy.,Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Alfonso Trimarchi
- Immunotransfusion Service Unit, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli,", Reggio, Calabria, Italy
| | - Renza Monteleone
- Stem Cell Transplant Program CIC 587, Great Metropolitan Hospital "Bianchi-Melacrino-Morelli", Reggio, Calabria, Italy
| | - Said Al Sayyad
- Onco-hematology and Radiotherapy Department, Great Metropolitan Hospital "Bianchi-melacrino-morelli", Reggio, Calabria, Italy
| | - Frank Cirrone
- Department of Pharmacy, Nyu Langone Health, New York, NY
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino and Department of Oncology, Division of Hematology, A.o.u. Città Della Salute E Della Scienza Di Torino, Presidio Molinette, Torino, Italy.,Division Of Hematology And Medical Oncology, Perlmutter Cancer Center, Grossman School Of Medicine, NYU Langone Health, New York, Ny
| |
Collapse
|
138
|
DePriest BP, Vieira N, Bidgoli A, Paczesny S. An overview of multiplexed analyses of CAR T-cell therapies: insights and potential. Expert Rev Proteomics 2021; 18:767-780. [PMID: 34628995 PMCID: PMC8626704 DOI: 10.1080/14789450.2021.1992276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Cancer immunotherapy is a rapidly growing field with exponential advancement in engineered immune cell-based therapies. For instance, an engineered chimeric antigen receptor (CAR) can be introduced in T-cells or other immune cells and adoptively transferred to target and kill cancer cells in hematologic malignancies or solid tumors. The first CAR-T-cell (CAR-T) therapy has been developed against CD19, a B-cell marker expressed on lymphoma and lymphoblastic leukemia. To allow for personalized treatment, proteomics approaches could provide insights into biomarkers for CAR-T therapy efficacy and toxicity. AREAS COVERED We researched the most recent technology methods of biomarker evaluation used in the laboratory and clinical setting. Publications of CAR-T biomarkers were then systematically reviewed to provide a narrative of the most validated biomarkers of CAR-T efficacy and toxicity. Examples of biomarkers include CAR-T functionality and phenotype as well as interleukin-6 and other cytokines. EXPERT COMMENTARY Biomarkers of CAR-T efficacy and toxicity have been identified, but still need to be validated and standardized across institutions. Moreover, few are used in the clinical setting due to limitations in real-time technology. Expansion of biomarker research could provide better understanding of patient response and risk of life-threatening side effects with potential for improved precision medicine.
Collapse
Affiliation(s)
- Brittany Paige DePriest
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Noah Vieira
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Alan Bidgoli
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Pediatrics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
139
|
The role of the hospital pharmacist in immunocellular therapy with chimeric antigen receptor (CAR) T cells. DRUGS & THERAPY PERSPECTIVES 2021. [DOI: 10.1007/s40267-021-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
140
|
Browne EK, Daut E, Hente M, Turner K, Waters K, Duffy EA. Evidence-Based Recommendations for Nurse Monitoring and Management of Immunotherapy-Induced Cytokine Release Syndrome: A Systematic Review from the Children's Oncology Group. J Pediatr Oncol Nurs 2021; 38:399-409. [PMID: 34460332 DOI: 10.1177/10434542211040203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Children with B-precursor acute lymphoblastic leukemia and B-cell lymphoma, particularly those with relapsed or refractory disease, are increasingly enrolled on phase II and phase III clinical trials studying immunotherapies. These therapeutic agents may be associated with a high risk of cytokine release syndrome (CRS), and nurses lack standardized guidelines for monitoring and managing patients with CRS. Six studies and one clinical practice guideline were included in this systematic review that examined the evidence of CRS following administration of chimeric antigen receptor T-cell therapy or the bi-specific T-cell engager antibody, blinatumomab. Six nursing practice recommendations (five strong, one weak) were developed based on low or very low-quality evidence: three reflect preinfusion monitoring, one focuses on monitoring during and postinfusion, and three pertain to the nurse's role in CRS management.
Collapse
Affiliation(s)
- Emily K Browne
- Transition Oncology Program, 547309St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily Daut
- Siteman Kids, 547309St. Louis Children's Hospital-Washington University Physicians, St. Louis, MO, USA
| | - Monica Hente
- Siteman Kids, 547309St. Louis Children's Hospital-Washington University Physicians, St. Louis, MO, USA
| | - Kelly Turner
- 60081Perth Children's Hospital, Nedlands, Western Australia, USA
| | | | | |
Collapse
|
141
|
Herrera L, Juan M, Eguizabal C. Purification, Culture, and CD19-CAR Lentiviral Transduction of Adult and Umbilical Cord Blood NK Cells. ACTA ACUST UNITED AC 2021; 131:e108. [PMID: 33017099 DOI: 10.1002/cpim.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural killer cells, or NK cells, are a type of cytotoxic lymphocyte critical to the innate immune system. The role that NK cells play is analogous to that of cytotoxic T cells in that they provide rapid responses to virus-infected cells and responses to tumor formation. Unmodified NK cells have long been used in various immunotherapies to treat different tumors, with only marginal success. However, in the last few years, NK cells modified to express chimeric antigen receptors (CAR-NK cells) have emerged as particularly ideal cellular platforms for antigen-specific antitumor agents. Unlike CAR-T cells, they do not elicit allogeneic responses or graft-versus-host disease and therefore can be administered to recipients with differing MHC expression. This article outlines protocols to obtain CD19-CAR-NK cells, focusing on the importance of obtaining and culturing a purified NK cell population and how to attain good transfection efficiency. © 2020 Wiley Periodicals LLC Basic Protocol 1: Purification and culture of adult peripheral blood and umbilical cord blood NK cells Basic Protocol 2: CD19-CAR lentiviral transduction of adult peripheral blood or umbilical cord blood NK cells Support Protocol: Production of lentiviral supernatant.
Collapse
Affiliation(s)
- Lara Herrera
- Cell Therapy, Stem Cells and Tissues Group, Osakidetza, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Manel Juan
- Servei d'Immunologia, Hospital Clínic de Barcelona, Hospital Sant Joan de Déu, Institut d'Investigacions Biomèdiques August Pi i Sunyer Hospital, Universitat de Barcelona, Barcelona, Spain
| | - Cristina Eguizabal
- Cell Therapy, Stem Cells and Tissues Group, Osakidetza, Basque Centre for Blood Transfusion and Human Tissues, Galdakao, Spain.,Cell Therapy, Stem Cells and Tissues Group, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
142
|
Krzysztoń R, Wan Y, Petreczky J, Balázsi G. Gene-circuit therapy on the horizon: synthetic biology tools for engineered therapeutics. Acta Biochim Pol 2021; 68:377-383. [PMID: 34460209 PMCID: PMC8590856 DOI: 10.18388/abp.2020_5744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
Therapeutic genome modification requires precise control over the introduced therapeutic functions. Current approaches of gene and cell therapy fail to deliver such command and rely on semi-quantitative methods with limited influence on timing, contextuality and levels of transgene expression, and hence on therapeutic function. Synthetic biology offers new opportunities for quantitative functionality in designing therapeutic systems and their components. Here, we discuss synthetic biology tools in their therapeutic context, with examples of proof-of-principle and clinical applications of engineered synthetic biomolecules and higher-order functional systems, i.e. gene circuits. We also present the prospects of future development towards advanced gene-circuit therapy.
Collapse
Affiliation(s)
- Rafał Krzysztoń
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11974, USA
- The Louis & Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yiming Wan
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11974, USA
- The Louis & Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Julia Petreczky
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11974, USA
- The Louis & Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Gábor Balázsi
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11974, USA
- The Louis & Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
143
|
Chang JC, Matsubara D, Morgan RW, Diorio C, Nadaraj S, Teachey DT, Bassiri H, Behrens EM, Banerjee A. Skewed Cytokine Responses Rather Than the Magnitude of the Cytokine Storm May Drive Cardiac Dysfunction in Multisystem Inflammatory Syndrome in Children. J Am Heart Assoc 2021; 10:e021428. [PMID: 34365798 PMCID: PMC8475050 DOI: 10.1161/jaha.121.021428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Cardiac dysfunction is a prominent feature of multisystem inflammatory syndrome in children (MIS‐C), yet the etiology is poorly understood. We determined whether dysfunction is global or regional, and whether it is associated with the cytokine milieu, microangiopathy, or severity of shock. Methods and Results We analyzed echocardiographic parameters of myocardial deformation and compared global and segmental left ventricular strain between 43 cases with MIS‐C ≤18 years old and 40 controls. Primary outcomes included left ventricular global longitudinal strain, right ventricular free wall strain), and left atrial strain. We evaluated relationships between strain and profiles of 10 proinflammatory cytokines, microangiopathic features (soluble C5b9), and vasoactive‐inotropic requirements. Compared with controls, cases with MIS‐C had significant impairments in all parameters of systolic and diastolic function. 65% of cases with MIS‐C had abnormal left ventricular function (|global longitudinal strain|<17%), although elevations of cytokines were modest. All left ventricular segments were involved, without apical or basal dominance to suggest acute stress cardiomyopathy. Worse global longitudinal strain correlated with higher ratios of interleukin‐6 (ρ −0.43) and interleukin‐8 (ρ −0.43) to total hypercytokinemia, but not absolute levels of interleukin‐6 or interleukin‐8, or total hypercytokinemia. Similarly, worse right ventricular free wall strain correlated with higher relative interleukin‐8 expression (ρ −0.59). There were no significant associations between function and microangiopathy or vasoactive‐inotropic requirements. Conclusions Myocardial function is globally decreased in MIS‐C and not explained by acute stress cardiomyopathy. Cardiac dysfunction may be driven by the relative skew of the immune response toward interleukin‐6 and interleukin‐8 pathways, more so than degree of hyperinflammation, refining the current paradigm of myocardial involvement in MIS‐C.
Collapse
Affiliation(s)
- Joyce C Chang
- Division of Rheumatology Children's Hospital of Philadelphia PA.,Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA
| | | | - Ryan W Morgan
- Division of Critical Care Medicine Children's Hospital of Philadelphia PA.,Department of Anesthesiology and Critical Care Medicine University of Pennsylvania Perelman School of Medicine Philadelphia PA
| | - Caroline Diorio
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Division of Oncology Children's Hospital of Philadelphia PA
| | | | - David T Teachey
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Division of Oncology Children's Hospital of Philadelphia PA.,Immune Dysregulation Frontier Program Department of Pediatrics Children's Hospital of Philadelphia PA
| | - Hamid Bassiri
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Immune Dysregulation Frontier Program Department of Pediatrics Children's Hospital of Philadelphia PA.,Division of Infectious Diseases Department of Pediatrics Children's Hospital of Philadelphia PA
| | - Edward M Behrens
- Division of Rheumatology Children's Hospital of Philadelphia PA.,Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Immune Dysregulation Frontier Program Department of Pediatrics Children's Hospital of Philadelphia PA
| | - Anirban Banerjee
- Department of Pediatrics University of Pennsylvania Perelman School of Medicine Philadelphia PA.,Division of Cardiology Children's Hospital of Philadelphia PA
| |
Collapse
|
144
|
Lei W, Xie M, Jiang Q, Xu N, Li P, Liang A, Young KH, Qian W. Treatment-Related Adverse Events of Chimeric Antigen Receptor T-Cell (CAR T) in Clinical Trials: A Systematic Review and Meta-Analysis. Cancers (Basel) 2021; 13:3912. [PMID: 34359816 PMCID: PMC8345443 DOI: 10.3390/cancers13153912] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 07/28/2021] [Indexed: 01/01/2023] Open
Abstract
Chimeric antigen receptors T (CAR-T) cell therapy of cancer is a rapidly evolving field. It has been shown to be remarkably effective in cases of hematological malignancies, and its approval by the FDA has significantly increased the enthusiasm for wide clinical usage and development of novel CAR-T therapies. However, it has also challenged physicians and investigators to recognize and deal with treatment-associated toxicities. A total of 2592 patients were included from 84 eligible studies that were systematically searched and reviewed from the databases of PubMed, de, the American Society of Hematology and the Cochrane Library. The meta-analysis and subgroup analysis by a Bayesian logistic regression model were used to evaluate the incidences of therapy-related toxicities such as cytokine release syndrome (CRS) and neurological symptoms (NS), and the differences between different targets and cancer types were analyzed. The pooled all-grade CRS rate and grade ≥ 3 CRS rate was 77% and 29%, respectively, with a significantly higher incidence in the hematologic malignancies (all-grade: 81%; grade ≥ 3: 29%) than in solid tumors (all-grade: 37%; grade ≥ 3: 19%). The pooled estimate NS rate from the individual studies were 40% for all-grade and 28% for grade ≥ 3. It was also higher in the hematologic subgroup than in the solid tumors group. The subgroup analysis by cancer type showed that higher incidences of grade ≥ 3 CRS were observed in anti-CD19 CAR-T therapy for ALL and NHL, anti-BCMA CAR-T for MM, and anti-CEA CAR-T for solid tumors, which were between 24-36%, while higher incidences of grade ≥ 3 NS were mainly observed in CD19-ALL/NHL (23-37%) and BCMA-MM (12%). Importantly, subgroup analysis on anti-CD19 CAR-T studies showed that young patients (vs. adult patients), allologous T cell origin (vs. autologous origin), gamma retrovirus vector, and higher doses of CAR-T cells were associated with high-grade CRS. On the other hand, the patients with NHL (vs ALL), administered with higher dose of CAR-T, and adult patients (vs. young patients) had an increased incidence of grade ≥ 3 NS events. This study offers a comprehensive summary of treatment-related toxicity and will guide future clinical trials and therapeutic designs investigating CAR T cell therapy.
Collapse
Affiliation(s)
- Wen Lei
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China; (W.L.); (N.X.)
| | - Mixue Xie
- Department of Haematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Nengwen Xu
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China; (W.L.); (N.X.)
| | - Ping Li
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China; (P.L.); (A.L.)
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China; (P.L.); (A.L.)
| | - Ken H. Young
- Division of Hematopathology and Department of Pathology, Duke University Medical Center and Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China; (W.L.); (N.X.)
- Institute of Hematology, Zhejiang University, Hangzhou 310003, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
145
|
Pediatric onco-nephrology: time to spread the word : Part I: early kidney involvement in children with malignancy. Pediatr Nephrol 2021; 36:2227-2255. [PMID: 33245421 DOI: 10.1007/s00467-020-04800-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/28/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022]
Abstract
Onco-nephrology has been a growing field within the adult nephrology scope of practice. Even though pediatric nephrologists have been increasingly involved in the care of children with different forms of malignancy, there has not been an emphasis on developing special expertise in this area. The fast pace of discovery in this field, including the development of new therapy protocols with their own kidney side effects and the introduction of the CD19-targeted chimeric antigen receptor T cell (CAR-T) therapy, has introduced new challenges for general pediatric nephrologists because of the unique effects of these treatments on the kidney. Moreover, with the improved outcomes in children receiving cancer therapy come an increased number of survivors at risk for chronic kidney disease related to both their cancer diagnosis and therapy. Therefore, it is time for pediatric onco-nephrology to take its spot on the expanding subspecialties map in pediatric nephrology.
Collapse
|
146
|
Morris G, Bortolasci CC, Puri BK, Marx W, O'Neil A, Athan E, Walder K, Berk M, Olive L, Carvalho AF, Maes M. The cytokine storms of COVID-19, H1N1 influenza, CRS and MAS compared. Can one sized treatment fit all? Cytokine 2021; 144:155593. [PMID: 34074585 PMCID: PMC8149193 DOI: 10.1016/j.cyto.2021.155593] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
An analysis of published data appertaining to the cytokine storms of COVID-19, H1N1 influenza, cytokine release syndrome (CRS), and macrophage activation syndrome (MAS) reveals many common immunological and biochemical abnormalities. These include evidence of a hyperactive coagulation system with elevated D-dimer and ferritin levels, disseminated intravascular coagulopathy (DIC) and microthrombi coupled with an activated and highly permeable vascular endothelium. Common immune abnormalities include progressive hypercytokinemia with elevated levels of TNF-α, interleukin (IL)-6, and IL-1β, proinflammatory chemokines, activated macrophages and increased levels of nuclear factor kappa beta (NFκB). Inflammasome activation and release of damage associated molecular patterns (DAMPs) is common to COVID-19, H1N1, and MAS but does not appear to be a feature of CRS. Elevated levels of IL-18 are detected in patients with COVID-19 and MAS but have not been reported in patients with H1N1 influenza and CRS. Elevated interferon-γ is common to H1N1, MAS, and CRS but levels of this molecule appear to be depressed in patients with COVID-19. CD4+ T, CD8+ and NK lymphocytes are involved in the pathophysiology of CRS, MAS, and possibly H1N1 but are reduced in number and dysfunctional in COVID-19. Additional elements underpinning the pathophysiology of cytokine storms include Inflammasome activity and DAMPs. Treatment with anakinra may theoretically offer an avenue to positively manipulate the range of biochemical and immune abnormalities reported in COVID-19 and thought to underpin the pathophysiology of cytokine storms beyond those manipulated via the use of, canakinumab, Jak inhibitors or tocilizumab. Thus, despite the relative success of tocilizumab in reducing mortality in COVID-19 patients already on dexamethasone and promising results with Baricitinib, the combination of anakinra in combination with dexamethasone offers the theoretical prospect of further improvements in patient survival. However, there is currently an absence of trial of evidence in favour or contravening this proposition. Accordingly, a large well powered blinded prospective randomised controlled trial (RCT) to test this hypothesis is recommended.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | | | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Melbourne School of Population and Global Health, Melbourne, Australi
| | - Eugene Athan
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Lisa Olive
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, School of Psychology, Geelong, Australia
| | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, Canada, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
147
|
Liang JL, Luo GF, Chen WH, Zhang XZ. Recent Advances in Engineered Materials for Immunotherapy-Involved Combination Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007630. [PMID: 34050564 DOI: 10.1002/adma.202007630] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Immunotherapy that can activate immunity or enhance the immunogenicity of tumors has emerged as one of the most effective methods for cancer therapy. Nevertheless, single-mode immunotherapy is still confronted with several critical challenges, such as the low immune response, the low tumor infiltration, and the complex immunosuppression tumor microenvironment. Recently, the combination of immunotherapy with other therapeutic modalities has emerged as a powerful strategy to augment the therapeutic outcome in fighting against cancer. In this review, recent research advances of the combination of immunotherapy with chemotherapy, phototherapy, radiotherapy, sonodynamic therapy, metabolic therapy, and microwave thermotherapy are summarized. Critical challenges and future research direction of immunotherapy-based cancer therapeutic strategy are also discussed.
Collapse
Affiliation(s)
- Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
148
|
Constantinescu C, Pasca S, Tat T, Teodorescu P, Vlad C, Iluta S, Dima D, Tomescu D, Scarlatescu E, Tanase A, Sigurjonsson OE, Colita A, Einsele H, Tomuleasa C. Continuous renal replacement therapy in cytokine release syndrome following immunotherapy or cellular therapies? J Immunother Cancer 2021; 8:jitc-2020-000742. [PMID: 32474415 PMCID: PMC7264828 DOI: 10.1136/jitc-2020-000742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of novel drugs were approved in oncology and hematology. Nevertheless, pharmacology progress comes with a variety of side effects, of which cytokine release syndrome (CRS) is a potential complication of some immunotherapies that can lead to multiorgan failure if not diagnosed and treated accordingly. CRS generally occurs with therapies that lead to highly activated T cells, like chimeric antigen receptor T cells or in the case of bispecific T-cell engaging antibodies. This, in turn, leads to a proinflammatory state with subsequent organ damage. To better manage CRS there is a need for specific therapies or to repurpose strategies that are already known to be useful in similar situations. Current management strategies for CRS are represented by anticytokine directed therapies and corticosteroids. Based on its pathophysiology and the resemblance of CRS to sepsis and septic shock, as well as based on the principles of initiation of continuous renal replacement therapy (CRRT) in sepsis, we propose the rationale of using CRRT therapy as an adjunct treatment in CRS where all the other approaches have failed in controlling the clinically significant manifestations.
Collapse
Affiliation(s)
- Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Anesthesia - Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Tiberiu Tat
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Dana Tomescu
- Department of Anesthesia - Intensive Care, Carol Davila University of Medicine and Pharmacy, Bucuresti, Romania.,Department of Anesthesia - Intensive Care, Fundeni Clinical Institute, Bucuresti, Romania
| | - Ecaterina Scarlatescu
- Department of Stem Cell Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Olafur Eysteinn Sigurjonsson
- University of Reykjavik, Reykjavik, Iceland.,Bloodbank, Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Anca Colita
- Department of Stem Cell Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Bayern, Germany
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
149
|
Cheng GS, Hill JA. To Toci or Not to Toci for Coronavirus Disease 2019 (COVID-19): Is That Still the Question? Clin Infect Dis 2021; 73:e455-e457. [PMID: 32735642 PMCID: PMC7454367 DOI: 10.1093/cid/ciaa1133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Guang-Shing Cheng
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Joshua A Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
150
|
Mokhtari RB, Sambi M, Qorri B, Baluch N, Ashayeri N, Kumar S, Cheng HLM, Yeger H, Das B, Szewczuk MR. The Next-Generation of Combination Cancer Immunotherapy: Epigenetic Immunomodulators Transmogrify Immune Training to Enhance Immunotherapy. Cancers (Basel) 2021; 13:3596. [PMID: 34298809 PMCID: PMC8305317 DOI: 10.3390/cancers13143596] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy harnesses the immune system by targeting tumor cells that express antigens recognized by immune system cells, thus leading to tumor rejection. These tumor-associated antigens include tumor-specific shared antigens, differentiation antigens, protein products of mutated genes and rearrangements unique to tumor cells, overexpressed tissue-specific antigens, and exogenous viral proteins. However, the development of effective therapeutic approaches has proven difficult, mainly because these tumor antigens are shielded, and cells primarily express self-derived antigens. Despite innovative and notable advances in immunotherapy, challenges associated with variable patient response rates and efficacy on select tumors minimize the overall effectiveness of immunotherapy. Variations observed in response rates to immunotherapy are due to multiple factors, including adaptative resistance, competency, and a diversity of individual immune systems, including cancer stem cells in the tumor microenvironment, composition of the gut microbiota, and broad limitations of current immunotherapeutic approaches. New approaches are positioned to improve the immune response and increase the efficacy of immunotherapies, highlighting the challenges that the current global COVID-19 pandemic places on the present state of immunotherapy.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Bessi Qorri
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Neda Ashayeri
- Division of Hematology & Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran;
| | - Sushil Kumar
- QPS, Holdings LLC, Pencader Corporate Center, 110 Executive Drive, Newark, DE 19702, USA;
| | - Hai-Ling Margaret Cheng
- The Edward S. Rogers Sr. Department of Electrical & Computer Engineering, Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5G 1M1, Canada;
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Herman Yeger
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Bikul Das
- Department of Experimental Therapeutics, Thoreau Laboratory for Global Health, M2D2, University of Massachusetts, Lowell, MA 01852, USA;
- KaviKrishna Laboratory, Department of Cancer and Stem Cell Biology, GBP, Indian Institute of Technology, Guwahati 781039, India
| | - Myron R. Szewczuk
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (M.S.); (B.Q.)
| |
Collapse
|