101
|
Kim YS, Kim JY, Shin DM, Huh JW, Lee SW, Oh YM. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema. Tuberc Respir Dis (Seoul) 2014; 77:116-23. [PMID: 25309606 PMCID: PMC4192309 DOI: 10.4046/trd.2014.77.3.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/25/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) obtained from bone marrow or adipose tissue can successfully repair emphysematous animal lungs, which is a characteristic of chronic obstructive pulmonary disease. Here, we describe the cellular distribution of MSCs that were intravenously injected into mice with elastase-induced emphysema. The distributions were also compared to the distributions in control mice without emphysema. Methods We used fluorescence optical imaging with quantum dots (QDs) to track intravenously injected MSCs. In addition, we used a human Alu sequence-based real-time polymerase chain reaction method to assess the lungs, liver, kidney, and spleen in mice with elastase-induced emphysema and control mice at 1, 4, 24, 72, and 168 hours after MSCs injection. Results The injected MSCs were detected with QD fluorescence at 1- and 4-hour postinjection, and the human Alu sequence was detected at 1-, 4- and 24-hour postinjection in control mice (lungs only). Injected MSCs remained more in mice with elastase-induced emphysema at 1, 4, and 24 hours after MSCs injection than the control lungs without emphysema. Conclusion In conclusion, our results show that injected MSCs were observed at 1 and 4 hours post injection and more MSCs remain in lungs with emphysema.
Collapse
Affiliation(s)
- You-Sun Kim
- Asan Institute for Life Science, Seoul, Korea. ; University of Ulsan College of Medicine, Seoul, Korea
| | | | - Dong-Myung Shin
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asthma Center, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, Seoul, Korea
| | - Sei Won Lee
- Department of Pulmonary and Critical Care Medicine, Asthma Center, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, Seoul, Korea
| | - Yeon-Mok Oh
- Asan Institute for Life Science, Seoul, Korea. ; University of Ulsan College of Medicine, Seoul, Korea. ; Department of Pulmonary and Critical Care Medicine, Asthma Center, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, Seoul, Korea
| |
Collapse
|
102
|
Stem cells, cell therapies, and bioengineering in lung biology and diseases. Comprehensive review of the recent literature 2010-2012. Ann Am Thorac Soc 2014; 10:S45-97. [PMID: 23869446 DOI: 10.1513/annalsats.201304-090aw] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A conference, "Stem Cells and Cell Therapies in Lung Biology and Lung Diseases," was held July 25 to 28, 2011 at the University of Vermont to review the current understanding of the role of stem and progenitor cells in lung repair after injury and to review the current status of cell therapy and ex vivo bioengineering approaches for lung diseases. These are rapidly expanding areas of study that provide further insight into and challenge traditional views of mechanisms of lung repair after injury and pathogenesis of several lung diseases. The goals of the conference were to summarize the current state of the field, to discuss and debate current controversies, and to identify future research directions and opportunities for basic and translational research in cell-based therapies for lung diseases. The goal of this article, which accompanies the formal conference report, is to provide a comprehensive review of the published literature in lung regenerative medicine from the last conference report through December 2012.
Collapse
|
103
|
Bustos ML, Huleihel L, Kapetanaki MG, Lino-Cardenas CL, Mroz L, Ellis BM, McVerry BJ, Richards TJ, Kaminski N, Cerdenes N, Mora AL, Rojas M. Aging mesenchymal stem cells fail to protect because of impaired migration and antiinflammatory response. Am J Respir Crit Care Med 2014; 189:787-98. [PMID: 24559482 DOI: 10.1164/rccm.201306-1043oc] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Aging is characterized by functional impairment and reduced capacity to respond appropriately to environmental stimuli and injury. With age, there is an increase in the incidence and severity of chronic and acute lung diseases. However, the relationship between age and the lung's reduced ability to repair is far from established and necessitates further research in the field. OBJECTIVES Little is currently known about age-related phenomena in mesenchymal stem cells (MSCs). On account of their ability to protect the endothelium and the alveolar epithelium through multiple paracrine mechanisms, we looked for adverse effects that aging might cause in MSC biology. Such age-related changes might partly account for the increased susceptibility of the aging lung to injury. MEASUREMENTS AND MAIN RESULTS We demonstrated that old mice have more inflammation in response to acute lung injury. To investigate the causes, we compared the global gene expression of aged and young bone marrow-derived MSCs (B-MSCs). Our results revealed that the expression levels of inflammatory response genes depended on the age of the B-MSCs. We demonstrated that the age-dependent decrease in expression of several cytokine and chemokine receptors is important for the migration and activation of B-MSCs. Finally, we showed by adoptive transfer of aged B-MSCs to young endotoxemic mice that aged cells lacked the antiinflammatory protective effect of their young counterparts. CONCLUSIONS Taken together, the decreased expression of cytokine and chemokine receptors in aged B-MSCs compromises their protective role by perturbing the potential of B-MSCs to become activated and mobilize to the site of injury.
Collapse
Affiliation(s)
- Martha L Bustos
- 1 Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, and
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Rojas M, Cárdenes N, Kocyildirim E, Tedrow JR, Cáceres E, Deans R, Ting A, Bermúdez C. Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep. Stem Cell Res Ther 2014; 5:42. [PMID: 24670268 PMCID: PMC4055116 DOI: 10.1186/scrt430] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is the most common cause of respiratory failure among critically ill subjects, sepsis and severe bacterial pneumonia being its most common causes. The only interventions that have proven beneficial are protective ventilation strategies and fluid conservation approaches. New therapies are needed to address this common clinical problem. Others and we have previously shown the beneficial effect of infusion of exogenous adult stem cells in different pre-clinical models of ARDS. METHODS In the present study endotoxin was infused intravenously into 14 sheep from which 6 received different doses of adult stem cells by intrabronchial delivery to evaluate the effect of stem cell therapy. RESULTS After administration of endotoxin, there was a rapid decline in oxygenation to hypoxemic values, indicative of severe-to-moderate ARDS. None of the animals treated with saline solution recovered to normal baseline values during the 6 hours that the animals were followed. In contrast, sheep treated with a dose of 40 million adult stem cells returned their levels of oxygen in their blood to baseline two hours after the cells were infused. Similarly, improvements in carbon dioxide (CO2) clearance, pulmonary vascular pressures and inflammation were observed and confirmed by histology and by the decrease in lung edema. CONCLUSIONS We concluded that instillation of adult non-hematopoietic stem cells can diminish the impact of endotoxin and accelerate recovery of oxygenation, CO2 removal and inflammation in the ovine model, making the use of adult stem cells a real alternative for future therapies for ARDS.
Collapse
|
105
|
Hervy M, Weber JL, Pecheul M, Dolley-Sonneville P, Henry D, Zhou Y, Melkoumian Z. Long term expansion of bone marrow-derived hMSCs on novel synthetic microcarriers in xeno-free, defined conditions. PLoS One 2014; 9:e92120. [PMID: 24638103 PMCID: PMC3956887 DOI: 10.1371/journal.pone.0092120] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/17/2014] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) present an attractive target for cell therapy given their wide availability, immunomodulatory properties, and multipotent nature for differentiation into chondrocytes, osteocytes, and adipocytes. With the progression of hMSC clinical studies, there is an increasing demand for development of technologies that enable efficient cell scale-up into clinically relevant quantities. Commercial scale manufacturing of hMSCs will require a large surface area which is not cost effective with available two-dimensional culture vessels. Recent studies showed that microcarriers provide a three-dimensional culture environment suitable for hMSC expansion. Traditionally, biological coatings and/or serum-containing medium are required to facilitate hMSC attachment and expansion in dynamic conditions. These limitations may hinder the use of microcarriers as a scale-up technology for hMSC therapeutics, where cell products, and therefore patient safety, are more controlled with the use of xeno-free, defined culture conditions. Here we report the long term culture of hMSCs on novel synthetic Synthemax II microcarriers in two different xeno-free media. Cells were maintained over 40 days on sterile, ready-to-use microcarriers in spinner flasks with programmed agitation. hMSC expansion was obtained by addition of fresh beads without the need for enzymatic dissociation. We achieved a cumulative cell expansion of >10,000 fold, and cells retained normal hMSC phenotype, karyotype, and tri-lineage differentiation potential. To our knowledge, this report is the first example of long term culture of hMSCs on synthetic microcarriers in xeno-free, defined conditions.
Collapse
Affiliation(s)
- Martial Hervy
- Corning European Technology Center, Corning Incorporated, Avon, France
| | - Jennifer L Weber
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| | - Marylene Pecheul
- Corning European Technology Center, Corning Incorporated, Avon, France
| | - Paula Dolley-Sonneville
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| | - David Henry
- Corning European Technology Center, Corning Incorporated, Avon, France
| | - Yue Zhou
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| | - Zara Melkoumian
- Corning Life Sciences Development, Corning Incorporated, Corning, New York, United States of America
| |
Collapse
|
106
|
Chang Y, Park SH, Huh JW, Lim CM, Koh Y, Hong SB. Intratracheal administration of umbilical cord blood-derived mesenchymal stem cells in a patient with acute respiratory distress syndrome. J Korean Med Sci 2014; 29:438-40. [PMID: 24616596 PMCID: PMC3945142 DOI: 10.3346/jkms.2014.29.3.438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 09/01/2013] [Indexed: 01/15/2023] Open
Abstract
Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) have been introduced as a possible therapy in acute lung injury and acute respiratory distress syndrome (ARDS). This case history is reported of a 59-yr-old man who was treated with MSCs in the course of ARDS and subsequent pulmonary fibrosis. He received a long period of mechanical ventilation and weaning proved difficult. On hospital day 114, he underwent the intratracheal administration of UCB-derived MSCs at a dose of 1 × 10(6)/kg. After cell infusion, an immediate improvement was shown in his mental status, his lung compliance (from 22.7 mL/cmH2O to 27.9 mL/cmH2O), PaO2/FiO2 ratio (from 191 mmHg to 334 mmHg) and his chest radiography over the course of three days. Even though he finally died of repeated pulmonary infection, our current findings suggest the possibility of using MSCs therapy in an ARDS patient. It is the first clinical case of UCB-derived MSCs therapy ever reported.
Collapse
Affiliation(s)
- Youjin Chang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - So Hee Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Jin-Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Chae-Man Lim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea
| |
Collapse
|
107
|
Zhao YF, Xiong W, Wu XL. Mesenchymal stem cell-based developmental endothelial locus-1 gene therapy for acute lung injury induced by lipopolysaccharide in mice. Mol Med Rep 2014; 9:1583-9. [PMID: 24573341 DOI: 10.3892/mmr.2014.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 02/11/2014] [Indexed: 11/06/2022] Open
Abstract
Studies have suggested that bone marrow-derived mesenchymal stem cells (MSCs) may be used as a tool for gene therapy. Developmental endothelial locus-1 (Del-1) is a critical factor for cell migration and infiltration via the inhibition of the function of a major leukocyte adhesion receptor LFA-1 which prevents leukocyte adhesion to the endothelium. In the present study, we hypothesized that MSC-based Del-1 gene therapy may have potential therapeutic applications for lipopolysaccharide (LPS)-induced lung injury. The MSCs in the present assay were isolated from 6 week-old male mice. In order to investigate the therapeutic effect of the Del-1 gene on LPS-induced ALI mice, a lentivirus vector containing the Del-1 gene was constructed and transduced into the MSCs. In the in vivo assay, we induced lung injury with LPS injection and treated mice with different groups of MSCs, and compared with groups treated with MSCs alone, we observed that the administration with MSCs carrying Del-1 (MSCs-Del1) markedly alleviated the LPS-induced lung injury. There were significant decreases in the number of neutrophils in bronchoalveolar lavage (BAL) and the serum levels of TNF-α and IL-6 in the Del-1-expressed MSC-treated mice. Furthermore, compared with MSCs treated alone, Del1-MSC-treated mice also exhibited low lung injury scores, high protein concentrations and myeloperoxidase activity. In conclusion, treatment with Del-1-expressed MSCs significantly decreases the severity of endotoxin-induced acute lung injury and the level of inflammatory cytokines in mice.
Collapse
Affiliation(s)
- Yun-Feng Zhao
- Department of Respiratory Medicine, Pudong New Area, Gongli Hospital, Shanghai 200135, P.R. China
| | - Wei Xiong
- Department of Respiratory Medicine, Pudong New Area, Gongli Hospital, Shanghai 200135, P.R. China
| | - Xue-Ling Wu
- Institute of Respiratory Medicine, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
108
|
McAuley DF, Curley GF, Hamid UI, Laffey JG, Abbott J, McKenna DH, Fang X, Matthay MA, Lee JW. Clinical grade allogeneic human mesenchymal stem cells restore alveolar fluid clearance in human lungs rejected for transplantation. Am J Physiol Lung Cell Mol Physiol 2014; 306:L809-15. [PMID: 24532289 DOI: 10.1152/ajplung.00358.2013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The lack of suitable donors for all solid-organ transplant programs is exacerbated in lung transplantation by the low utilization of potential donor lungs, due primarily to donor lung injury and dysfunction, including pulmonary edema. The current studies were designed to determine if intravenous clinical-grade human mesenchymal stem (stromal) cells (hMSCs) would be effective in restoring alveolar fluid clearance (AFC) in the human ex vivo lung perfusion model, using lungs that had been deemed unsuitable for transplantation and had been subjected to prolonged ischemic time. The human lungs were perfused with 5% albumin in a balanced electrolyte solution and oxygenated with continuous positive airway pressure. Baseline AFC was measured in the control lobe and if AFC was impaired (defined as <10%/h), the lungs received either hMSC (5 × 10(6) cells) added to the perfusate or perfusion only as a control. AFC was measured in a different lung lobe at 4 h. Intravenous hMSC restored AFC in the injured lungs to a normal level. In contrast, perfusion only did not increase AFC. This positive effect on AFC was reduced by intrabronchial administration of a neutralizing antibody to keratinocyte growth factor (KGF). Thus, intravenous allogeneic hMSCs are effective in restoring the capacity of the alveolar epithelium to remove alveolar fluid at a normal rate, suggesting that this therapy may be effective in enhancing the resolution of pulmonary edema in human lungs deemed clinically unsuitable for transplantation.
Collapse
Affiliation(s)
- D F McAuley
- Health Sciences Bldg., 97, Lisburn Rd., Belfast, Northern Ireland, BT9 7BL.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Li J, Huang S, Wu Y, Gu C, Gao D, Feng C, Wu X, Fu X. Paracrine factors from mesenchymal stem cells: a proposed therapeutic tool for acute lung injury and acute respiratory distress syndrome. Int Wound J 2013; 11:114-21. [PMID: 24373614 DOI: 10.1111/iwj.12202] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 12/22/2022] Open
Abstract
Despite extensive researches in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), current pharmacological therapies and respiratory support are still the main methods to treat patients with ALI and ARDS and the effects remain limited. Hence, innovative therapies are needed to decrease the morbidity and mortality. Because of the proven therapeutic effects in other fields, mesenchymal stem cells (MSCs) might be considered as a promising alternative to treat ALI and ARDS. Numerous documents demonstrate that MSCs can exert multiple functions, such as engraftment, differentiation and immunoregulation, but now the key researches are concentrated on paracrine factors secreted by MSCs that can mediate endothelial and epithelial permeability, increase alveolar fluid clearance and other potential mechanisms. This review aimed to review the current researches in terms of the effects of MSCs on ALI and ARDS and to analyse these paracrine factors, as well as to predict the potential directions and challenges of the application in this field.
Collapse
Affiliation(s)
- Jiwei Li
- Department of Thoracic and Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P. R. China; Key Laboratory of Wound Repair and Regeneration of PLA, The First Affiliated Hospital, General Hospital of PLA, Trauma Center of Postgraduate Medical College, Beijing, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Wang CY, Chiou GY, Chien Y, Wu CC, Wu TC, Lo WT, Chen SJ, Chiou SH, Peng HJ, Huang CF. Induced pluripotent stem cells without c-Myc reduce airway responsiveness and allergic reaction in sensitized mice. Transplantation 2013; 96:958-965. [PMID: 23989473 DOI: 10.1097/tp.0b013e3182a53ef7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergic disorders have increased substantially in recent years. Asthma is characterized by airway damage and remodeling. Reprogramming induced pluripotent stem cells (iPSCs) from adult somatic cells transfected by Oct-4/Sox-2/Klf-4, but not c-Myc, has shown the potential of embryonic-like cells. These cells have potential for multilineage differentiation and provide a resource for stem cell-based utility. However, the therapeutic potential of iPSCs without c-Myc (iPSC-w/o-c-Myc) in allergic diseases and airway hyperresponsiveness has not been investigated. The aim of this study was to evaluate the therapeutic effect of iPSC-w/o-c-Myc transplantation in a murine asthma model. METHODS BALB/c mice were sensitized with alum-adsorbed ovalbumin (OVA) and then challenged with aerosolized OVA. Phosphate-buffered saline or iPSC-w/o-c-Myc was then intravenously injected after inhalation. Serum allergen-specific antibody levels, airway hyperresponsiveness, cytokine levels in spleen cells and bronchoalveolar lavage fluid (BALF), and cellular distribution in BALF were then examined. RESULTS Treatment with iPSC-w/o-c-Myc effectively suppressed both Th1 and Th2 antibody responses, which was characterized by reduction in serum allergen-specific IgE, IgG, IgG1, and IgG2a levels as well as in interleukin-5 and interferon-γ levels in BALF and in OVA-incubated splenocytes. Meanwhile, regulatory cytokine, interleukin-10, was enhanced. Transplantation of iPSC-w/o-c-Myc also significantly attenuated cellular infiltration in BALF and allergic airway hyperresponsiveness. However, no tumor formation was observed 6 months after transplantation. CONCLUSIONS Administration of iPSC-w/o-c-Myc not only inhibited Th1 inflammatory responses but also had therapeutic effects on systemic allergic responses and airway hyperresponsiveness. iPSC-w/o-c-Myc transplantation may be a potential modality for treating allergic reactions and bronchial asthma.
Collapse
Affiliation(s)
- Chien-Ying Wang
- 1 Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan. 2 School of Medicine, National Yang-Ming University, Taipei, Taiwan. 3 Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan. 4 Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan. 5 Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. 6 Address correspondence to: Ching-Feng Huang, M.D., Ph.D., Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Gong Road, Neihu District, Taipei 114, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol 2013; 4:201. [PMID: 24027567 PMCID: PMC3761350 DOI: 10.3389/fimmu.2013.00201] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/04/2013] [Indexed: 12/23/2022] Open
Abstract
The advent of mesenchymal stem cell (MSC)-based therapies for clinical therapeutics has been an exciting and new innovation for the treatment of a variety of diseases associated with inflammation, tissue damage, and subsequent regeneration and repair. Application-based ability to measure MSC potency and fate of the cells post-MSC therapy are the variables that confound the use of MSCs therapeutics in human diseases. An evaluation of MSC function and applications with attention to detail in the preparation as well as quality control and quality assurance are only as good as the assays that are developed. In vivo measures of efficacy and potency require an appreciation of the overall pathophysiology of the model and standardization of outcome measures. The new concepts of how MSC’s participate in the tissue regeneration and wound repair process and further, how this is impacted by estimates of efficacy and potency are important new topics. In this regard, this chapter will review some of the in vitro and in vivo assays for MSC function and activity and their application to the clinical arena.
Collapse
Affiliation(s)
- Amy M Dimarino
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University , Cleveland, OH , USA
| | | | | |
Collapse
|
112
|
Boyle AJ, Mac Sweeney R, McAuley DF. Pharmacological treatments in ARDS; a state-of-the-art update. BMC Med 2013; 11:166. [PMID: 23957905 PMCID: PMC3765621 DOI: 10.1186/1741-7015-11-166] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 12/20/2022] Open
Abstract
Despite its high incidence and devastating outcomes, acute respiratory distress syndrome (ARDS) has no specific treatment, with effective therapy currently limited to minimizing potentially harmful ventilation and avoiding a positive fluid balance. Many pharmacological therapies have been investigated with limited success to date. In this review article we provide a state-of-the-art update on recent and ongoing trials, as well as reviewing promising future pharmacological therapies in ARDS.
Collapse
Affiliation(s)
- Andrew James Boyle
- Centre for Infection and Immunity, Health Sciences Building, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | |
Collapse
|
113
|
Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS, Khakoo AY, Holcomb JB, Dash PK, Pati S. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med 2013; 4:161ra150. [PMID: 23175708 DOI: 10.1126/scitranslmed.3004660] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) may be useful for treating a variety of disease states associated with vascular instability including traumatic brain injury (TBI). A soluble factor, tissue inhibitor of matrix metalloproteinase-3 (TIMP3), produced by MSCs is shown to recapitulate the beneficial effects of MSCs on endothelial function and to ameliorate the effects of a compromised blood-brain barrier (BBB) due to TBI. Intravenous administration of recombinant TIMP3 inhibited BBB permeability caused by TBI, whereas attenuation of TIMP3 expression in intravenously administered MSCs blocked the beneficial effects of the MSCs on BBB permeability and stability. MSCs increased circulating concentrations of soluble TIMP3, which blocked vascular endothelial growth factor-A-induced breakdown of endothelial cell adherens junctions in vitro and in vivo. These findings elucidate a potential molecular mechanism for the beneficial effects of MSCs on the BBB after TBI and demonstrate a role for TIMP3 in the regulation of BBB integrity.
Collapse
Affiliation(s)
- Tyler Menge
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Prime-O-glucosylcimifugin attenuates lipopolysaccharide-induced acute lung injury in mice. Int Immunopharmacol 2013; 16:139-47. [PMID: 23623941 PMCID: PMC7106058 DOI: 10.1016/j.intimp.2013.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/07/2013] [Accepted: 04/11/2013] [Indexed: 12/14/2022]
Abstract
Prime-O-glucosylcimifugin is an active chromone isolated from Saposhnikovia root which has been reported to have various activities, such as anti-convulsant, anticancer, anti-inflammatory properties. The purpose of this study was to evaluate the effect of prime-O-glucosylcimifugin on acute lung injury (ALI) induced by lipopolysaccharide in mice. BALB/c mice received intraperitoneal injection of Prime-O-glucosylcimifugin 1h before intranasal instillation (i.n.) of lipopolysaccharide (LPS). Concentrations of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and interleukin (IL)-6 in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Pulmonary histological changes were evaluated by hematoxylin-eosin, myeloperoxidase (MPO) activity in the lung tissue and lung wet/dry weight ratios were observed. Furthermore, the mitogen-activated protein kinases (MAPK) signaling pathway activation and the phosphorylation of IκBα protein were determined by Western blot analysis. Prime-O-glucosylcimifugin showed promising anti-inflammatory effect by inhibiting the activation of MAPK and NF-κB signaling pathway.
Collapse
|
115
|
Rojas M, Parker RE, Thorn N, Corredor C, Iyer SS, Bueno M, Mroz L, Cardenes N, Mora AL, Stecenko AA, Brigham KL. Infusion of freshly isolated autologous bone marrow derived mononuclear cells prevents endotoxin-induced lung injury in an ex-vivo perfused swine model. Stem Cell Res Ther 2013; 4:26. [PMID: 23497755 PMCID: PMC3706906 DOI: 10.1186/scrt174] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 03/04/2013] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION The acute respiratory distress syndrome (ARDS), affects up to 150,000 patients per year in the United States. We and other groups have demonstrated that bone marrow derived mesenchymal stromal stem cells prevent ARDS induced by systemic and local administration of endotoxin (lipopolysaccharide (LPS)) in mice. METHODS A study was undertaken to determine the effects of the diverse populations of bone marrow derived cells on the pathophysiology of ARDS, using a unique ex-vivo swine preparation, in which only the ventilated lung and the liver are perfused with autologous blood. Six experimental groups were designated as: 1) endotoxin alone, 2) endotoxin + total fresh whole bone marrow nuclear cells (BMC), 3) endotoxin + non-hematopoietic bone marrow cells (CD45 neg), 4) endotoxin + hematopoietic bone marrow cells (CD45 positive), 5) endotoxin + buffy coat and 6) endotoxin + in vitro expanded swine CD45 negative adherent allogeneic bone marrow cells (cultured CD45neg). We measured at different levels the biological consequences of the infusion of the different subsets of cells. The measured parameters were: pulmonary vascular resistance (PVR), gas exchange (PO2), lung edema (lung wet/dry weight), gene expression and serum concentrations of the pro-inflammatory cytokines IL-1β, TNF-α and IL-6. RESULTS Infusion of freshly purified autologous total BMCs, as well as non-hematopoietic CD45(-) bone marrow cells significantly reduced endotoxin-induced pulmonary hypertension and hypoxemia and reduced the lung edema. Also, in the groups that received BMCs and cultured CD45neg we observed a decrease in the levels of IL-1β and TNF-α in plasma. Infusion of hematopoietic CD45(+) bone marrow cells or peripheral blood buffy coat cells did not protect against LPS-induced lung injury. CONCLUSIONS We conclude that infusion of freshly isolated autologous whole bone marrow cells and the subset of non-hematopoietic cells can suppress the acute humoral and physiologic responses induced by endotoxemia by modulating the inflammatory response, mechanisms that do not involve engraftment or trans-differentiation of the cells. These observations may have important implications for the design of future cell therapies for ARDS.
Collapse
|
116
|
Angelini DJ, Dorsey RM, Willis KL, Hong C, Moyer RA, Oyler J, Jensen NS, Salem H. Chemical warfare agent and biological toxin-induced pulmonary toxicity: could stem cells provide potential therapies? Inhal Toxicol 2013; 25:37-62. [DOI: 10.3109/08958378.2012.750406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
117
|
Bonfield TL, Lennon D, Ghosh SK, DiMarino AM, Weinberg A, Caplan AI. Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/scd.2013.32019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
118
|
Lalu MM, McIntyre L, Pugliese C, Fergusson D, Winston BW, Marshall JC, Granton J, Stewart DJ, Canadian Critical Care Trials Group. Safety of cell therapy with mesenchymal stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 2012; 7:e47559. [PMID: 23133515 PMCID: PMC3485008 DOI: 10.1371/journal.pone.0047559] [Citation(s) in RCA: 840] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 09/18/2012] [Indexed: 02/06/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs, “adult stem cells”) have been widely used experimentally in a variety of clinical contexts. There is interest in using these cells in critical illness, however, the safety profile of these cells is not well known. We thus conducted a systematic review of clinical trials that examined the use MSCs to evaluate their safety. Methods and Findings MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials (to June 2011), were searched. Prospective clinical trials that used intravascular delivery of MSCs (intravenously or intra-arterially) in adult populations or mixed adult and pediatric populations were identified. Studies using differentiated MSCs or additional cell types were excluded. The primary outcome adverse events were grouped according to immediate events (acute infusional toxicity, fever), organ system complications, infection, and longer term adverse events (death, malignancy). 2347 citations were reviewed and 36 studies met inclusion criteria. A total of 1012 participants with clinical conditions of ischemic stroke, Crohn's disease, cardiomyopathy, myocardial infarction, graft versus host disease, and healthy volunteers were included. Eight studies were randomized control trials (RCTs) and enrolled 321 participants. Meta-analysis of the RCTs did not detect an association between acute infusional toxicity, organ system complications, infection, death or malignancy. There was a significant association between MSCs and transient fever. Conclusions Based on the current clinical trials, MSC therapy appears safe. However, further larger scale controlled clinical trials with rigorous reporting of adverse events are required to further define the safety profile of MSCs.
Collapse
Affiliation(s)
- Manoj M. Lalu
- Department of Anesthesiology, University of Ottawa, Ottawa, Canada
- The Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Canada
| | - Lauralyn McIntyre
- Department of Medicine (Division of Critical Care), University of Ottawa, Ottawa, Canada
- The Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Canada
- * E-mail:
| | - Christina Pugliese
- The Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Canada
| | - Dean Fergusson
- The Ottawa Hospital Research Institute, Clinical Epidemiology Program, Ottawa, Canada
| | - Brent W. Winston
- Department of Critical Care Medicine, University of Calgary, Calgary, Canada
| | - John C. Marshall
- Department of Surgery (Critical Care), University of Toronto, Toronto, Canada
| | - John Granton
- Department of Medicine (Critical Care), University of Toronto, Toronto, Canada
| | - Duncan J. Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | |
Collapse
|
119
|
Yunhe F, Bo L, Xiaosheng F, Fengyang L, Dejie L, Zhicheng L, Depeng L, Yongguo C, Xichen Z, Naisheng Z, Zhengtao Y. The effect of magnolol on the toll-like receptor 4/nuclear factor kappa B signaling pathway in lipopolysaccharide-induced acute lung injury in mice. Eur J Pharmacol 2012; 689:255-61. [DOI: 10.1016/j.ejphar.2012.05.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/22/2012] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
120
|
Hocking AM. Mesenchymal Stem Cell Therapy for Cutaneous Wounds. Adv Wound Care (New Rochelle) 2012; 1:166-171. [PMID: 24527299 DOI: 10.1089/wound.2011.0294] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) treatment of wounds results in accelerated wound closure, increased granulation tissue formation, and increased angiogenesis. These adult stem cells exert their therapeutic effects primarily by secreting soluble factors that regulate cellular responses to cutaneous injury. THE PROBLEM There is an urgent need for novel therapies for the treatment of wounds with delayed healing. Current treatment options for chronic nonhealing wounds and burns are limited and not always effective, despite significant advances in wound care including application of bioengineered skin equivalents and growth factors. BASIC/CLINICAL SCIENCE ADVANCES The three target articles advance the field by addressing critical gaps in knowledge about MSC function and mechanism during wound healing. The first target article provides the first evidence that MSCs regulate macrophage phenotype in wounds. The second target article demonstrates that diabetes mellitus impairs the ability of MSCs to promote wound healing and this can be rescued by a novel lipid mediator deficit in diabetic wounds. The final target article reports that the surgical technique of tissue expansion is enhanced by MSCs. CLINICAL CARE RELEVANCE MSC therapy suppresses inflammation in wounds and may be more effective when used in conjunction with other therapeutics that modulate the diabetic wound environment. It also shows potential as an adjunctive therapy for surgical tissue expansion. CONCLUSION MSCs represent promising emerging therapies for wounds with delayed healing such as chronic nonhealing wounds and burns.
Collapse
Affiliation(s)
- Anne M. Hocking
- Department of Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
121
|
McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L364-81. [PMID: 22728467 DOI: 10.1152/ajplung.00354.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.
Collapse
Affiliation(s)
- Mark McVey
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
122
|
Da Rocha AR, Alves FR, Neto NMA, Dos Santos LF, De Almeida HM, De Carvalho YKP, Bezerra DDO, Ferraz MS, Pessoa GT, De Carvalho MAM. Hematopoietic progenitor constituents and adherent cell progenitor morphology isolated from black-rumped agouti (Dasyprocta prymnolopha, Wagler 1831) bone marrow. Microsc Res Tech 2012; 75:1376-82. [DOI: 10.1002/jemt.22077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/29/2012] [Indexed: 01/08/2023]
|
123
|
Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, Rowlands DJ, Quadri SK, Bhattacharya S, Bhattacharya J. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med 2012; 18:759-65. [PMID: 22504485 DOI: 10.1038/nm.2736] [Citation(s) in RCA: 1106] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/16/2012] [Indexed: 12/11/2022]
Abstract
Bone marrow-derived stromal cells (BMSCs) protect against acute lung injury (ALI). To determine the role of BMSC mitochondria in this protection, we airway-instilled mice first with lipopolysaccharide (LPS) and then with either mouse BMSCs (mBMSCs) or human BMSCs (hBMSCs). Live optical studies revealed that the mBMSCs formed connexin 43 (Cx43)-containing gap junctional channels (GJCs) with the alveolar epithelia in these mice, releasing mitochondria-containing microvesicles that the epithelia engulfed. The presence of BMSC-derived mitochondria in the epithelia was evident optically, as well as by the presence of human mitochondrial DNA in mouse lungs instilled with hBMSCs. The mitochondrial transfer resulted in increased alveolar ATP concentrations. LPS-induced ALI, as indicated by alveolar leukocytosis and protein leak, inhibition of surfactant secretion and high mortality, was markedly abrogated by the instillation of wild-type mBMSCs but not of mutant, GJC-incompetent mBMSCs or mBMSCs with dysfunctional mitochondria. This is the first evidence, to our knowledge, that BMSCs protect against ALI by restituting alveolar bioenergetics through Cx43-dependent alveolar attachment and mitochondrial transfer.
Collapse
Affiliation(s)
- Mohammad Naimul Islam
- Lung Biology Laboratory, Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, College of Physicians and Surgeons of Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Casado JG, Gomez-Mauricio G, Alvarez V, Mijares J, Tarazona R, Bernad A, Sanchez-Margallo FM. Comparative phenotypic and molecular characterization of porcine mesenchymal stem cells from different sources for translational studies in a large animal model. Vet Immunol Immunopathol 2012; 147:104-12. [PMID: 22521281 DOI: 10.1016/j.vetimm.2012.03.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 01/30/2023]
Abstract
Mesenchymal stem cells have demonstrated their potentiality for therapeutic use in treating diseases or repairing damaged tissues. However, in some cases, the results of clinical trials have been disappointing or have not worked out as well as hoped. These disappointing results can be attributed to an inadequate or insufficient preclinical study. For medical and surgical purposes, the similarities between the anatomy of pig and human make this animal an attractive preclinical model. In this sense, for mesenchymal stem cell-based therapy, it is strongly necessary to have well characterized animal-derived mesenchymal stem cell lines to validate preclinical effectiveness of these cells. In this work, porcine mesenchymal stem cells (pMSCs) were isolated from bone marrow, adipose tissue and peripheral blood and compared in terms of differentiation potential, cell surface markers and gene expression. Our results demonstrated that the isolation and in vitro expansion protocols were feasible and effective. The data presented in this work are relevant because they provide an extensive phenotypic characterization; genetic study and differentiation behavior of the most commonly used stem cell lines for clinical practices. These pMSCs are widely available to scientists and could be a valuable tool to evaluate the safety and efficacy of adoptively transferred cells.
Collapse
Affiliation(s)
- Javier G Casado
- Stem Cell Therapy Unit, Minimally Invasive Surgery Centre Jesus Uson, Caceres, Spain.
| | | | | | | | | | | | | |
Collapse
|
125
|
Roddy GW, Oh JY, Lee RH, Bartosh TJ, Ylostalo J, Coble K, Rosa RH, Prockop DJ. Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6. Stem Cells 2012; 29:1572-9. [PMID: 21837654 DOI: 10.1002/stem.708] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous reports demonstrated that the deleterious effects of chemical injury to the cornea were ameliorated by local or systemic administration of adult stem/progenitor cells from bone marrow referred to as mesenchymal stem or stromal cells (MSCs). However, the mechanisms for the beneficial effects of MSCs on the injured cornea were not clarified. Herein, we demonstrated that human MSCs (hMSCs) were effective in reducing corneal opacity and inflammation without engraftment after either intraperitoneal (i.p.) or intravenous (i.v.) administration following chemical injury to the rat cornea. A quantitative assay for human mRNA for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) demonstrated that less than 10 hMSCs were present in the corneas of rats 1-day and 3 days after i.v. or i.p. administration of 1 × 10(7) hMSCs. In vitro experiments using a transwell coculture system demonstrated that chemical injury to corneal epithelial cells activated hMSCs to secrete the multipotent anti-inflammatory protein TNF-α stimulated gene/protein 6 (TSG-6). In vivo, the effects of i.v. injection of hMSCs were largely abrogated by knockdown of TSG-6. Also, the effects of hMSCs were essentially duplicated by either i.v. or topical administration of TSG-6. Therefore, the results demonstrated that systemically administered hMSCs reduce inflammatory damage to the cornea without engraftment and primarily by secretion of the anti-inflammatory protein TSG-6 in response to injury signals from the cornea.
Collapse
Affiliation(s)
- Gavin W Roddy
- Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine at Scott & White, Temple, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Cargnoni A, Ressel L, Rossi D, Poli A, Arienti D, Lombardi G, Parolini O. Conditioned medium from amniotic mesenchymal tissue cells reduces progression of bleomycin-induced lung fibrosis. Cytotherapy 2011; 14:153-61. [PMID: 21954836 PMCID: PMC3279140 DOI: 10.3109/14653249.2011.613930] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background and aims We have demonstrated recently that transplantation of placental membrane-derived cells reduces bleomycin-induced lung fibrosis in mice, despite a limited presence of transplanted cells in host lungs. Because placenta-derived cells are known to release factors with potential immunomodulatory and trophic activities, we hypothesized that transplanted cells may promote lung tissue repair via paracrine-acting molecules. To test this hypothesis, we examined whether administration of conditioned medium (CM) generated from human amniotic mesenchymal tissue cells (AMTC) was able to reduce lung fibrosis in this same animal model. Methods Bleomycin-challenged mice were either treated with AMTC-CM or control medium, or were left untreated (Bleo group). After 9 and 14 days, the distribution and severity of lung fibrosis were assessed histologically with a scoring system. Collagen deposition was also evaluated by quantitative image analysis. Results At day 14, lung fibrosis scores in AMTC-CM-treated mice were significantly lower (P<0.05) compared with mice of the Bleo group, in terms of fibrosis distribution [1.0 (interquartile range, IQR 0.9) versus 3.0 (IQR 1.8)], fibroblast proliferation [0.8 (IQR 0.4) versus 1.6 (IQR 1.0)], collagen deposition [1.4 (IQR 0.5) versus 2.0 (IQR 1.2)] and alveolar obliteration [2.3 (IQR 0.8) versus 3.2 (IQR 0.5)]. No differences were observed between mice of the Bleo group and mice treated with control medium. Quantitative analysis of collagen deposition confirmed these findings. Importantly, AMTC-CM treatment significantly reduced the fibrosis progression between the two observation time-points. Conclusions This pilot study supports the notion that AMTC exert anti-fibrotic effects through release of yet unknown soluble factors.
Collapse
Affiliation(s)
- Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | | | | | | | | | | |
Collapse
|
127
|
Serakinci N, Christensen R, Fahrioglu U, Sorensen FB, Dagnæs-Hansen F, Hajek M, Jensen TH, Kolvraa S, Keith NW. Mesenchymal stem cells as therapeutic delivery vehicles targeting tumor stroma. Cancer Biother Radiopharm 2011; 26:767-73. [PMID: 21877908 DOI: 10.1089/cbr.2011.1024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The field of stem cell biology continues to evolve by characterization of further types of stem cells and by exploring their therapeutic potential for experimental and clinical applications. Human mesenchymal stem cells (hMSCs) are one of the most promising candidates simply because of their easiness of both ex vivo expansion in culture dishes and genetic manipulation. Despite many extensive isolation and expansion studies, relatively little has been done with regard to hMSCs' therapeutic potential. Although clinical trials using hMSCs are underway, their use in cancer therapy still needs better understanding and in vivo supporting data. The homing ability of hMSCs was investigated by creating a human xenograft model by transplanting an ovarian cancer cell line into immunocompromised mice. Then, genetically engineered hMSC-telo1 cells were injected through the tail vein and the contribution and distribution of hMSCs to the tumor stroma were investigated by immunohistochemistry and PCR specific to the telomerase gene. Results show that exogenously administered hMSCs preferentially home, engraft, and proliferate at tumor sites and contribute to the population of stromal fibroblasts. In conclusion, this study provides support for the capacity of hMSCs to home to tumor site and serve as a delivery platform for chemotherapeutic agents.
Collapse
Affiliation(s)
- Nedime Serakinci
- Telomere and Aging Group, Institute of Regional Health Research (IRS), Southern Denmark University, Vejle, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Telocytes and putative stem cells in the lungs: electron microscopy, electron tomography and laser scanning microscopy. Cell Tissue Res 2011; 345:391-403. [PMID: 21858462 PMCID: PMC3168741 DOI: 10.1007/s00441-011-1229-z] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 12/17/2022]
Abstract
This study describes a novel type of interstitial (stromal) cell — telocytes (TCs) — in the human and mouse respiratory tree (terminal and respiratory bronchioles, as well as alveolar ducts). TCs have recently been described in pleura, epicardium, myocardium, endocardium, intestine, uterus, pancreas, mammary gland, etc. (see www.telocytes.com). TCs are cells with specific prolongations called telopodes (Tp), frequently two to three per cell. Tp are very long prolongations (tens up to hundreds of μm) built of alternating thin segments known as podomers (≤ 200 nm, below the resolving power of light microscope) and dilated segments called podoms, which accommodate mitochondria, rough endoplasmic reticulum and caveolae. Tp ramify dichotomously, making a 3-dimensional network with complex homo- and heterocellular junctions. Confocal microscopy reveals that TCs are c-kit- and CD34-positive. Tp release shed vesicles or exosomes, sending macromolecular signals to neighboring cells and eventually modifying their transcriptional activity. At bronchoalveolar junctions, TCs have been observed in close association with putative stem cells (SCs) in the subepithelial stroma. SCs are recognized by their ultrastructure and Sca-1 positivity. Tp surround SCs, forming complex TC-SC niches (TC-SCNs). Electron tomography allows the identification of bridging nanostructures, which connect Tp with SCs. In conclusion, this study shows the presence of TCs in lungs and identifies a TC-SC tandem in subepithelial niches of the bronchiolar tree. In TC-SCNs, the synergy of TCs and SCs may be based on nanocontacts and shed vesicles.
Collapse
|
129
|
Kim ES, Chang YS, Choi SJ, Kim JK, Yoo HS, Ahn SY, Sung DK, Kim SY, Park YR, Park WS. Intratracheal transplantation of human umbilical cord blood-derived mesenchymal stem cells attenuates Escherichia coli-induced acute lung injury in mice. Respir Res 2011; 12:108. [PMID: 21843339 PMCID: PMC3166924 DOI: 10.1186/1465-9921-12-108] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 08/15/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) attenuate hyperoxic neonatal lung injury primarily through anti-inflammatory effects. We hypothesized that intratracheal transplantation of human UCB-derived MSCs could attenuate Escherichia coli (E. coli)-induced acute lung injury (ALI) in mice by suppressing the inflammatory response. METHODS Eight-week-old male ICR mice were randomized to control or ALI groups. ALI was induced by intratracheal E. coli instillation. Three-hours after E. coli instillation, MSCs, fibroblasts or phosphate-buffered saline were intratracheally administered randomly and survival was analyzed for 7 days post-injury. Lung histology including injury scores, myeloperoxidase (MPO) activity, and protein levels of interleukin (IL)-1α, IL-1β, IL-6, tumor necrosis factor (TNF)-α, and macrophage inflammatory protein (MIP)-2 as well as the wet-dry lung ratio and bacterial counts from blood and bronchoalveolar lavage (BAL) were evaluated at 1, 3, and 7 days post-injury. Levels of inflammatory cytokines in the lung were also profiled using protein macroarrays at day 3 post-injury which showed peak inflammation. RESULTS MSC transplantation increased survival and attenuated lung injuries in ALI mice, as evidenced by decreased injury scores on day 3 post-injury and reduced lung inflammation including increased MPO activity and protein levels of IL-1α, IL-1β, IL-6, TNF-α, and MIP-2 on day 3 and 7 post-injury. Inflammatory cytokine profiles in the lungs at day 3 post-injury were attenuated by MSC transplantation. MSCs also reduced the elevated lung water content at day 3 post-injury and bacterial counts in blood and BAL on day 7 post-injury. CONCLUSIONS Intratracheal transplantation of UCB-derived MSCs attenuates E. coli-induced ALI primarily by down-modulating the inflammatory process and enhancing bacterial clearance.
Collapse
Affiliation(s)
- Eun Sun Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Vadász I, Sznajder JI. Update in acute lung injury and critical care 2010. Am J Respir Crit Care Med 2011; 183:1147-52. [PMID: 21531954 DOI: 10.1164/rccm.201102-0327up] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- István Vadász
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392 Giessen, Germany.
| | | |
Collapse
|
131
|
Hoffman AM, Paxson JA, Mazan MR, Davis AM, Tyagi S, Murthy S, Ingenito EP. Lung-derived mesenchymal stromal cell post-transplantation survival, persistence, paracrine expression, and repair of elastase-injured lung. Stem Cells Dev 2011; 20:1779-92. [PMID: 21585237 DOI: 10.1089/scd.2011.0105] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
While multipotent mesenchymal stromal cells have been recently isolated from adult lung (L-MSCs), there is very limited data on their biological properties and therapeutic potential in vivo. How L-MSCs compare with bone marrow-derived MSCs (BM-MSCs) is also unclear. In this study, we characterized L-MSC phenotype, clonogenicity, and differentiation potential, and compared L-MSCs to BM-MSCs in vivo survival, retention, paracrine gene expression, and repair or elastase injury after transplantation. L-MSCs were highly clonogenic, frequently expressed aldehyde dehydrogenase activity, and differentiated into osteocytes, chondrocytes, adipocytes, myofibroblasts, and smooth muscle cells. After intravenous injection (2 h), L-MSCs showed greater survival than BM-MSCs; similarly, L-MSCs were significantly more resistant than BM-MSCs to anchorage independent culture (4 h) in vitro. Long after transplantation (4 or 32 days), a significantly higher number of CD45(neg) L-MSCs were retained than BM-MSCs. By flow cytometry, L-MSCs expressed more intercellular adhesion molecule-1 (ICAM-1), platelet derived growth factor receptor alpha (PDGFRα), and integrin α2 than BM-MSCs; these proteins were found to modulate endothelial adherence, directional migration, and migration across Matrigel in L-MSCs. Further, L-MSCs with low ICAM-1 showed poorer lung retention and higher phagocytosis in vivo. Compared with BM-MSCs, L-MSCs expressed higher levels of several transcripts (e.g., Ccl2, Cxcl2, Cxcl10, IL-6, IL-11, Hgf, and Igf2) in vitro, although gene expression in vivo was increased by L-MSCs and BM-MSCs equivalently. Accordingly, both L-MSCs and BM-MSCs reduced elastase injury to the same extent. This study demonstrates that tissue-specific L-MSCs possess mechanisms that enhance their lung retention after intravenous transplantation, and produce substantial healing of elastase injury comparable to BM-MSCs.
Collapse
Affiliation(s)
- Andrew M Hoffman
- Tufts University Cummings School of Veterinary Medicine, North Grafton, Massachusetts 01536, USA.
| | | | | | | | | | | | | |
Collapse
|
132
|
Letourneau PA, Menge TD, Wataha KA, Wade CE, S Cox C, Holcomb JB, Pati S. Human Bone Marrow Derived Mesenchymal Stem Cells Regulate Leukocyte-Endothelial Interactions and Activation of Transcription Factor NF-Kappa B. ACTA ACUST UNITED AC 2011; Suppl 3:001. [PMID: 25309818 DOI: 10.4172/2157-7552.s3-001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bone marrow derived mesenchymal stem cells (MSCs) have been shown to demonstrate benefit in multiple disease models characterized by inflammation such as sepsis and acute lung injury. Mechanistically we hypothesized that MSCs exhibit these properties through inhibition of leukocyte activation and modulation of leukocyte-endothelial interactions; key interlinked processes involved in the deleterious effects of injury and inflammation. In this paper we found that MSCs co-cultured with a monocytoid line, U937, inhibit U937 binding to pulmonary endothelial cells (PECs) stimulated with the inflammatory cytokine TNFα. Furthermore, we show that these effects on functional adhesion are not due to changes in inflammatory adhesion molecule expression on U937s. No changes were found in CD62L, CD29, CD11b and CD18 expression on U937s co-cultured with MSCs. To determine if the effects of MSCs on leukocyte-endothelial interactions are due to the effects of MSCs on leukocyte activation, we investigated whether MSCs affect functional activation of the transcription factor NF-Kappa B. We found that MSCs significantly inhibit transcriptional activation of NF-kappa B in U937s. We also found that MSCs inhibit DNA binding of NF-kappa B subunits p50 and p65 to putative NF-kappa B DNA binding sites. Concomitant with a decrease in NF-kappa B activation was a significant increase in IL-10, an anti-inflammatory cytokine known to inhibit activation of NF-kappa B. Taken together, these findings show that MSCs have potent effects on leukocyte-endothelial interactions which may be due to the direct effects of MSCs on IL-10 and NF-kB. These findings suggest a potential therapeutic role for MSCs in diseases characterized by inflammation such as acute lung injury or multi-organ failure induced by traumatic injury.
Collapse
Affiliation(s)
- Phillip A Letourneau
- Center for Translational Injury Research, Texas Medical School at Houston, Houston, TX, USA ; Department of Surgery, Texas Medical School at Houston, Houston, TX, USA
| | - Tyler D Menge
- Center for Translational Injury Research, Texas Medical School at Houston, Houston, TX, USA
| | - Kathryn A Wataha
- Center for Translational Injury Research, Texas Medical School at Houston, Houston, TX, USA
| | - Charles E Wade
- Center for Translational Injury Research, Texas Medical School at Houston, Houston, TX, USA ; Department of Surgery, Texas Medical School at Houston, Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, Texas Medical School at Houston, Houston, TX, USA
| | - John B Holcomb
- Center for Translational Injury Research, Texas Medical School at Houston, Houston, TX, USA ; Department of Surgery, Texas Medical School at Houston, Houston, TX, USA
| | - Shibani Pati
- Center for Translational Injury Research, Texas Medical School at Houston, Houston, TX, USA ; Department of Surgery, Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|