101
|
Bleasby K, Houle R, Hafey M, Lin M, Guo J, Lu B, Sanchez RI, Fillgrove KL. Islatravir Is Not Expected to Be a Victim or Perpetrator of Drug-Drug Interactions via Major Drug-Metabolizing Enzymes or Transporters. Viruses 2021; 13:1566. [PMID: 34452431 PMCID: PMC8402619 DOI: 10.3390/v13081566] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Islatravir (MK-8591) is a nucleoside reverse transcriptase translocation inhibitor in development for the treatment and prevention of HIV-1. The potential for islatravir to interact with commonly co-prescribed medications was studied in vitro. Elimination of islatravir is expected to be balanced between adenosine deaminase-mediated metabolism and renal excretion. Islatravir did not inhibit uridine diphosphate glucuronosyltransferase 1A1 or cytochrome p450 (CYP) enzymes CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4, nor did it induce CYP1A2, 2B6, or 3A4. Islatravir did not inhibit hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter (OCT) 1, bile salt export pump (BSEP), multidrug resistance-associated protein (MRP) 2, MRP3, or MRP4. Islatravir was neither a substrate nor a significant inhibitor of renal transporters organic anion transporter (OAT) 1, OAT3, OCT2, multidrug and toxin extrusion protein (MATE) 1, or MATE2K. Islatravir did not significantly inhibit P-glycoprotein and breast cancer resistance protein (BCRP); however, it was a substrate of BCRP, which is not expected to be of clinical significance. These findings suggest islatravir is unlikely to be the victim or perpetrator of drug-drug interactions with commonly co-prescribed medications, including statins, diuretics, anti-diabetic drugs, proton pump inhibitors, anticoagulants, benzodiazepines, and selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kerry L. Fillgrove
- Merck & Co., Inc., Kenilworth, NJ 07033, USA; (K.B.); (R.H.); (M.H.); (M.L.); (J.G.); (B.L.); (R.I.S.)
| |
Collapse
|
102
|
Barliana MI, Kusuma ASW, Insani WN, Alfian SD, Diantini A, Mutakin M, Rostinawati T, Herlambang H, Puspitasari IM, Suwantika AA, Abdulah R. Genetic variation of ABCB1 (rs1128503, rs1045642) and CYP2E1 rs3813867 with the duration of tuberculosis therapy: a pilot study among tuberculosis patients in Indonesia. BMC Res Notes 2021; 14:295. [PMID: 34332626 PMCID: PMC8325820 DOI: 10.1186/s13104-021-05711-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objective The risk of contracting tuberculosis (TB) and the efficacy of TB therapy are affected by several factors, including genetic variation among populations. In the Indonesian population, data on the genes involved in drug transport and metabolism of TB therapy are limited. The aim of this study was to identify the genetic profile of the ABCB1 gene (rs1128503 and rs1045642) and CYP2E1 gene (rs3813867) in Indonesians with TB. This study was a cross-sectional study of 50 TB outpatients in Jambi city, Indonesia. Sociodemographic characteristics were obtained from medical records. Whole blood was collected, and genomic DNA was isolated. Single nucleotide polymorphisms were determined using polymerase chain reaction-restriction fragment length polymorphism with HaeIII, MboI, and PstI for rs1128503, rs1045642 (ABCB1), and rs3813867 (CYP2E1), respectively. Result The frequency of alleles of each gene was analyzed by Hardy–Weinberg equilibrium. The genetic profiles of ABCB1 rs1128503 and rs1045642 were varied (CC, CT, TT), while CYP2E1 rs3813867 was present in CC (wild type). The genetic variations of ABCB1 and CYP2E1 may have no significant correlation with the duration of TB therapy. Nevertheless, this study may provide as preliminary results for the genetic profiles of ABCB1 (rs1128503, rs1045642) and CYP2E1 (rs3813867) in the Indonesia population. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-021-05711-8.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia. .,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.
| | - Arif Satria Wira Kusuma
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia.,Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia
| | - Widya Norma Insani
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Sofa Dewi Alfian
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Mutakin Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Tina Rostinawati
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Jatinangor, Bandung, 45363, Indonesia
| | | | - Irma Melyani Puspitasari
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Auliya Abdurrohim Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Bandung, Indonesia.,Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
103
|
Niedrig DF, Rahmany A, Heib K, Hatz KD, Ludin K, Burden AM, Béchir M, Serra A, Russmann S. Clinical Relevance of a 16-Gene Pharmacogenetic Panel Test for Medication Management in a Cohort of 135 Patients. J Clin Med 2021; 10:jcm10153200. [PMID: 34361984 PMCID: PMC8347064 DOI: 10.3390/jcm10153200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
There is a growing number of evidence-based indications for pharmacogenetic (PGx) testing. We aimed to evaluate clinical relevance of a 16-gene panel test for PGx-guided pharmacotherapy. In an observational cohort study, we included subjects tested with a PGx panel for variants of ABCB1, COMT, CYP1A2, CYP2B6, CYP3A4, CYP3A5, CYP2C9, CYP2C19, CYP2D6, CYP4F2, DPYD, OPRM1, POR, SLCO1B1, TPMT and VKORC1. PGx-guided pharmacotherapy management was supported by the PGx expert system SONOGEN XP. The primary study outcome was PGx-based changes and recommendations regarding current and potential future medication. PGx-testing was triggered by specific drug-gene pairs in 102 subjects, and by screening in 33. Based on PharmGKB expert guidelines we identified at least one "actionable" variant in all 135 (100%) tested patients. Drugs that triggered PGx-testing were clopidogrel in 60, tamoxifen in 15, polypsychopharmacotherapy in 9, opioids in 7, and other in 11 patients. Among those, PGx variants resulted in clinical recommendations to change PGx-triggering drugs in 33 (32.4%), and other current pharmacotherapy in 23 (22.5%). Additional costs of panel vs. single gene tests are moderate, and the efficiency of PGx panel testing challenges traditional cost-benefit calculations for single drug-gene pairs. However, PGx-guided pharmacotherapy requires specialized expert consultations with interdisciplinary collaborations.
Collapse
Affiliation(s)
- David F. Niedrig
- Drugsafety.ch, 8703 Kusnacht, Switzerland; (D.F.N.); (A.R.)
- Hospital Pharmacy, Clinic Hirslanden Zurich, 8032 Zurich, Switzerland
| | - Ali Rahmany
- Drugsafety.ch, 8703 Kusnacht, Switzerland; (D.F.N.); (A.R.)
- Swiss Federal Institute of Technology Zurich (ETHZ), 8093 Zurich, Switzerland;
| | - Kai Heib
- INTLAB AG, 8707 Uetikon am See, Switzerland; (K.H.); (K.-D.H.)
| | | | - Katja Ludin
- Labor Risch, Molecular Genetics, 3097 Berne, Switzerland;
| | - Andrea M. Burden
- Swiss Federal Institute of Technology Zurich (ETHZ), 8093 Zurich, Switzerland;
| | - Markus Béchir
- Center for Internal Medicine, Clinic Hirslanden Aarau, 5001 Aarau, Switzerland;
| | - Andreas Serra
- Institute of Internal Medicine and Nephrology, Clinic Hirslanden Zurich, 8032 Zurich, Switzerland;
| | - Stefan Russmann
- Drugsafety.ch, 8703 Kusnacht, Switzerland; (D.F.N.); (A.R.)
- Swiss Federal Institute of Technology Zurich (ETHZ), 8093 Zurich, Switzerland;
- Institute of Internal Medicine and Nephrology, Clinic Hirslanden Zurich, 8032 Zurich, Switzerland;
- Correspondence: ; Tel.: +41-(0)44-221-1003
| |
Collapse
|
104
|
McQuerry JA, Chen J, Chang JT, Bild AH. Tepoxalin increases chemotherapy efficacy in drug-resistant breast cancer cells overexpressing the multidrug transporter gene ABCB1. Transl Oncol 2021; 14:101181. [PMID: 34298440 PMCID: PMC8322466 DOI: 10.1016/j.tranon.2021.101181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
The COX-2 encoding gene PTGS2 is up-regulated upon ABCB1 overexpression in mammary epithelial cells. The 5-LOX, COX-1/2 inhibitor tepoxalin plus chemotherapy improves treatment efficacy in ABCB1-expressing cells. Tepoxalin reduces chemotherapy-induced selection for drug-resistant ABCB1-expressing cells.
Effective cancer chemotherapy treatment requires both therapy delivery and retention by malignant cells. Cancer cell overexpression of the multidrug transmembrane transporter gene ABCB1 (MDR1, multi-drug resistance protein 1) thwarts therapy retention, leading to a drug-resistant phenotype. We explored the phenotypic impact of ABCB1 overexpression in normal human mammary epithelial cells (HMECs) via acute adenoviral delivery and in breast cancer cell lines with stable integration of inducible ABCB1 expression. One hundred sixty-two genes were differentially expressed between ABCB1-expressing and GFP-expressing HMECs, including the gene encoding the cyclooxygenase-2 protein, PTGS2. Several breast cancer cell lines with inducible ABCB1 expression demonstrated sensitivity to the 5-lipoxygenase, cyclooxygenase-1/2 inhibitor tepoxalin in two-dimensional drug response assays, and combination treatment of tepoxalin either with chemotherapies or with histone deacetylase (HDAC) inhibitors improved therapeutic efficacy in these lines. Moreover, selection for the ABCB1-expressing cell population was reduced in three-dimensional co-cultures of ABCB1-expressing and GFP-expressing cells when chemotherapy was given in combination with tepoxalin. Further study is warranted to ascertain the clinical potential of tepoxalin, an FDA-approved therapeutic for use in domesticated mammals, to restore chemosensitivity and improve drug response in patients with ABCB1-overexpressing drug-resistant breast cancers.
Collapse
Affiliation(s)
- Jasmine A McQuerry
- Department of Oncological Sciences, School of Medicine, University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA; Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA
| | - Jinfeng Chen
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA
| | - Jeffrey T Chang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope, 1218 S Fifth Avenue, Monrovia, CA 91016, USA.
| |
Collapse
|
105
|
Denecke S, Rankić I, Driva O, Kalsi M, Luong NBH, Buer B, Nauen R, Geibel S, Vontas J. Comparative and functional genomics of the ABC transporter superfamily across arthropods. BMC Genomics 2021; 22:553. [PMID: 34281528 PMCID: PMC8290562 DOI: 10.1186/s12864-021-07861-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The ATP-binding cassette (ABC) transporter superfamily is comprised predominantly of proteins which directly utilize energy from ATP to move molecules across the plasma membrane. Although they have been the subject of frequent investigation across many taxa, arthropod ABCs have been less well studied. While the manual annotation of ABC transporters has been performed in many arthropods, there has so far been no systematic comparison of the superfamily within this order using the increasing number of sequenced genomes. Furthermore, functional work on these genes is limited. RESULTS Here, we developed a standardized pipeline to annotate ABCs from predicted proteomes and used it to perform comparative genomics on ABC families across arthropod lineages. Using Kruskal-Wallis tests and the Computational Analysis of gene Family Evolution (CAFE), we were able to observe significant expansions of the ABC-B full transporters (P-glycoproteins) in Lepidoptera and the ABC-H transporters in Hemiptera. RNA-sequencing of epithelia tissues in the Lepidoptera Helicoverpa armigera showed that the 7 P-glycoprotein paralogues differ substantially in their tissue distribution, suggesting a spatial division of labor. It also seems that functional redundancy is a feature of these transporters as RNAi knockdown showed that most transporters are dispensable with the exception of the highly conserved gene Snu, which is probably due to its role in cuticular formation. CONCLUSIONS We have performed an annotation of the ABC superfamily across > 150 arthropod species for which good quality protein annotations exist. Our findings highlight specific expansions of ABC transporter families which suggest evolutionary adaptation. Future work will be able to use this analysis as a resource to provide a better understanding of the ABC superfamily in arthropods.
Collapse
Affiliation(s)
- Shane Denecke
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.
| | - Ivan Rankić
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czechia
| | - Olympia Driva
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Megha Kalsi
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Ngoc Bao Hang Luong
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece
| | - Benjamin Buer
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Ralf Nauen
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - Sven Geibel
- CropScience Division, Bayer AG, R&D Pest Control, D-40789, Monheim, Germany
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, 100 N. Plastira Street, 700 13, Heraklion Crete, Greece.,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
106
|
Li Z, Chen C, Chen L, Hu D, Yang X, Zhuo W, Chen Y, Yang J, Zhou Y, Mao M, Zhang X, Xu L, Ju S, Shen J, Wang Q, Dong M, Xie S, Wei Q, Jia Y, Zhou J, Wang L. STAT5a Confers Doxorubicin Resistance to Breast Cancer by Regulating ABCB1. Front Oncol 2021; 11:697950. [PMID: 34336684 PMCID: PMC8320598 DOI: 10.3389/fonc.2021.697950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chemoresistance is a daunting challenge to the prognosis of patients with breast cancer. Signal transducer and activator of transcription (STAT) 5a plays vital roles in the development of various cancers, but its function in breast cancer is controversial, and its role in chemoresistance in breast cancer remains unexplored. Here we identified STAT5a as a chemoresistance inducer that regulates the expression of ABCB1 in breast cancer and can be targeted by pimozide, an FDA-approved psychotropic drug. First, we found that STAT5a and ABCB1 were expressed at higher levels in doxorubicin-resistant cell lines and chemoresistant patients, and their expression was positively correlated. Then, we confirmed the essential roles of STAT5a and ABCB1 in doxorubicin resistance in breast cancer cells and the regulation of ABCB1 transcription by STAT5a. Subsequently, the efficacy of pimozide in inhibiting STAT5a and sensitizing doxorubicin-resistant breast cancer cells was tested. Finally, we verified the role of STAT5a in doxorubicin resistance in breast cancer and the efficacy of pimozide in reversing this resistance in vivo. Our study demonstrated the vital role of STAT5a in doxorubicin resistance in breast cancer. Targeting STAT5a might be a promising strategy for treating doxorubicin-resistant breast cancer. Moreover, repurposing pimozide for doxorubicin resensitization is attractive due to the safety profile of pimozide.
Collapse
Affiliation(s)
- Zhaoqing Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Cong Chen
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Lini Chen
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Dengdi Hu
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Xiqian Yang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Breast Surgical Department, Shaoxing Maternity and Child Health Care Hospital, Shaoxing, China
| | - Wenying Zhuo
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Yongxia Chen
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jingjing Yang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yulu Zhou
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Misha Mao
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xun Zhang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ling Xu
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Siwei Ju
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jun Shen
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Qinchuan Wang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Minjun Dong
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Shuduo Xie
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Qun Wei
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yunlu Jia
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jichun Zhou
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Linbo Wang
- Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| |
Collapse
|
107
|
Ma L, Xiang Q, Zhao N, Hu C, Fang M, Tan Y, Chen S, Wang Z, Liu P, Sun K, Li Y, Wu F, Tian H, Fang M, Zhao X, Wang G, Cui Y. Effects of CYP2D6, CYP3A5, and ABCB1 gene polymorphisms on the pharmacokinetics of two risperidone long-acting injection microsphere formulations. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110241. [PMID: 33400943 DOI: 10.1016/j.pnpbp.2020.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND LY03004, a novel investigational risperidone long-acting injection (LAI) microsphere formulation, can release risperidone more quickly after injection than Risperdal Consta®. This study aimed to investigate the effects of genetic polymorphisms on the pharmacokinetics of LY03004 compared with those on Risperdal Consta®. METHODS A total of 100 Chinese patients with stable schizophrenia were randomly assigned to the LY03004 or Risperdal Consta® treatment group. Each patient received five biweekly intramuscular injections of 25 mg risperidone long-acting injection microspheres. A total of 34 blood samples before and after injections from Day 1 to Day 113 were collected from each patient, and polymorphic alleles of cytochrome P450 enzymes CYP2D6 (*4, *10, *14), CYP3A5 (*3), and ABCB1 (C1236 > T, G2677T/A, and C3435T) were analyzed using Sanger sequencing and polymerase chain reaction-restriction fragment length polymorphism. RESULTS The risperidone Cmax,ss, Cmin,ss, AUC0-tau,ss, and the ratio of risperidone to 9-hydroxyrisperidone (9-OH-R) in CYP2D6 intermediate metabolizers (IMs) were significantly different compared with those in normal metabolizers (NMs) in both the LY03004 and Risperdal Consta® groups (P < 0.05). However, 9-OH-R was not significantly different between IMs and NMs (P > 0.05). The AUC0-tau,ss of the active moiety (risperidone plus 9-OH-R) was 6.51 ± 3.34 in NMs and 7.00 ± 1.81 in IMs (P = 0.071) in the LY03004 group and 6.07 ± 2.31 and 7.95 ± 3.42 (P = 0.053) in NMs and IMs, respectively, in the Risperdal Consta® group. In the LY03004 group, the Cmax,ss of risperidone in carriers of the ABCB1-C3435T TT variant was significantly lower than that in CC and CT carriers (TT 7.76 ± 4.23 ng/mL, CT 11.6 ± 8.27 ng/mL, CC 14.3 ± 7.66 ng/ml; P = 0.045), but no significant differences were found in the active moiety. In the Risperdal Consta® group, C3435T TT carriers had significantly lower Cmin,ss of the active moiety (TT 5.09 ± 4.38 ng/mL, CT 11.4 ± 8.42 ng/mL, CC 14.3 ± 6.43 ng/mL; P = 0.007). Furthermore, Cmin,ss of the active moiety was significantly different among all ABCB1-G2677T/A genotypes (P < 0.05). CONCLUSION The pharmacokinetics of risperidone and the ratio of risperidone to 9-OH-R were highly dependent on CYP2D6 activity. However, there was no significant effect in 9-OH-R. A future study involving a larger sample is required to verify whether CYP2D6 IMs have lower risperidone active moiety clearance than CYP2D6 NMs for LAI formulations. In addition, the risperidone active moiety was eliminated faster in ABCB1-G2677T/A and C3435T TT carriers receiving Risperdal Consta®.
Collapse
Affiliation(s)
- Lingyue Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Nan Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Changqing Hu
- Beijing Anding Hospital of Capital Medical University, Beijing, China
| | - Meng Fang
- Beijing Anding Hospital of Capital Medical University, Beijing, China
| | - Yunlong Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Song Chen
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Pinglan Liu
- Shandong Luye Pharmaceutical Co., Ltd, Yantai, China
| | - Kaoxiang Sun
- Shandong Luye Pharmaceutical Co., Ltd, Yantai, China; School of Pharmacy in Yantai university, Yantai, China
| | - Youxin Li
- Shandong Luye Pharmaceutical Co., Ltd, Yantai, China
| | - Fuxi Wu
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | | - Xia Zhao
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Gang Wang
- Beijing Anding Hospital of Capital Medical University, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China.
| |
Collapse
|
108
|
Winiarczyk M, Winiarczyk D, Michalak K, Kaarniranta K, Adaszek Ł, Winiarczyk S, Mackiewicz J. Dysregulated Tear Film Proteins in Macular Edema Due to the Neovascular Age-Related Macular Degeneration Are Involved in the Regulation of Protein Clearance, Inflammation, and Neovascularization. J Clin Med 2021; 10:3060. [PMID: 34300228 PMCID: PMC8307956 DOI: 10.3390/jcm10143060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 12/29/2022] Open
Abstract
Macular edema and its further complications due to the leakage from the choroidal neovascularization in course of the age-related macular degeneration (AMD) is a leading cause of blindness among elderly individuals in developed countries. Changes in tear film proteomic composition have been reported to occur in various ophthalmic and systemic diseases. There is an evidence that the acute form of neovascular AMD may be reflected in the tear film composition. Tear film was collected with Schirmer strips from patients with neovascular AMD and sex- and age-matched control patients. Two-dimensional electrophoresis was performed followed by MALDI-TOF mass spectrometry for identification of differentially expressed proteins. Quantitative analysis of the differential electrophoretic spots was performed with Delta2D software. Altogether, 11 significantly differentially expressed proteins were identified; of those, 8 were downregulated, and 3 were upregulated in the tear film of neovascular AMD patients. The differentially expressed proteins identified in tear film were involved in signaling pathways associated with impaired protein clearance, persistent inflammation, and neovascularization. Tear film protein analysis is a novel way to screen AMD-related biomarkers.
Collapse
Affiliation(s)
- Mateusz Winiarczyk
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-079 Lublin, Poland
| | - Dagmara Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, 20-400 Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology, University of Life Sciences of Lublin, 20-400 Lublin, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, 70211 Kuopio, Finland
| | - Łukasz Adaszek
- Department of Epizootiology, University of Life Sciences of Lublin, 20-400 Lublin, Poland
| | - Stanisław Winiarczyk
- Department of Epizootiology, University of Life Sciences of Lublin, 20-400 Lublin, Poland
| | - Jerzy Mackiewicz
- Department of Vitreoretinal Surgery, Medical University of Lublin, 20-079 Lublin, Poland
| |
Collapse
|
109
|
Chae YJ, Chang JE, Lee MK, Lim J, Shin KH, Lee KR. Regulation of drug transporters by microRNA and implications in disease treatment. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00538-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
110
|
Hepatic drug-metabolizing enzymes and drug transporters in Wilson's disease patients with liver failure. Pharmacol Rep 2021; 73:1427-1438. [PMID: 34117631 PMCID: PMC8460590 DOI: 10.1007/s43440-021-00290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Background Wilson’s disease is a genetic disorder inherited in a recessive manner, caused by mutations in the copper-transporter ATP7B. Although it is a well-known disease, currently available treatments are far from satisfactory and their efficacy varies in individual patients. Due to the lack of information about drug-metabolizing enzymes and drug transporters profile in Wilson’s disease livers, we aimed to evaluate the mRNA expression and protein abundance of selected enzymes and drug transporters in this liver disorder. Methods We analyzed gene expression (qPCR) and protein abundance (LC–MS/MS) of 14 drug-metabolizing enzymes and 16 drug transporters in hepatic tissue from Wilson’s disease patients with liver failure (n = 7, Child–Pugh class B and C) and metastatic control livers (n = 20). Results In presented work, we demonstrated a downregulation of majority of CYP450 and UGT enzymes. Gene expression of analyzed enzymes ranged between 18 and 65% compared to control group and significantly lower protein content of CYP1A1, CYP1A2, CYP2C8, CYP2C9, CYP3A4 and CYP3A5 enzymes was observed in Wilson’s disease. Moreover, a general decrease in hepatocellular uptake carriers from SLC superfamily (significant at protein level for NTCP and OATP2B1) was observed. As for ABC transporters, the protein abundance of BSEP and MRP2 was significantly lower, while levels of P-gp and MRP4 transporters were significantly higher in Wilson’s disease. Conclusions Altered hepatic expression of drug‐metabolizing enzymes and drug transporters in Wilson’s disease patients with liver failure may result in changes of drug pharmacokinetics in that group of patients. Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00290-8.
Collapse
|
111
|
Iwata H, Umeyama Y, Liu Y, Zhang Z, Schnell P, Mori Y, Fletcher O, Marshall JC, Johnson JG, Wood LS, Toi M, Finn RS, Turner NC, Bartlett CH, Cristofanilli M. Evaluation of the Association of Polymorphisms With Palbociclib-Induced Neutropenia: Pharmacogenetic Analysis of PALOMA-2/-3. Oncologist 2021; 26:e1143-e1155. [PMID: 33955129 PMCID: PMC8265363 DOI: 10.1002/onco.13811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/20/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The most frequently reported treatment-related adverse event in clinical trials with the cyclin-dependent kinase 4/6 (CDK4/6) inhibitor palbociclib is neutropenia. Allelic variants in ABCB1 and ERCC1 might be associated with early occurrence (i.e., end of week 2 treatment) of grade 3/4 neutropenia. Pharmacogenetic analyses were performed to uncover associations between single nucleotide polymorphisms (SNPs) in these genes, patient baseline characteristics, and early occurrence of grade 3/4 neutropenia. MATERIALS AND METHODS ABCB1 (rs1045642, rs1128503) and ERCC1 (rs3212986, rs11615) were analyzed in germline DNA from palbociclib-treated patients from PALOMA-2 (n = 584) and PALOMA-3 (n = 442). SNP, race, and cycle 1 day 15 (C1D15) absolute neutrophil count (ANC) data were available for 652 patients. Univariate and multivariable analyses evaluated associations between SNPs, patient baseline characteristics, and early occurrence of grade 3/4 neutropenia. Analyses were stratified by Asian (n = 122) and non-Asian (n = 530) ethnicity. Median progression-free survival (mPFS) was estimated using the Kaplan-Meier method. The effect of genetic variants on palbociclib pharmacokinetics was analyzed. RESULTS ABCB1 and ERCC1_rs11615 SNP frequencies differed between Asian and non-Asian patients. Multivariable analysis showed that low baseline ANC was a strong independent risk factor for C1D15 grade 3/4 neutropenia regardless of race (Asians: odds ratio [OR], 6.033, 95% confidence interval [CI], 2.615-13.922, p < .0001; Non-Asians: OR, 6.884, 95% CI, 4.138-11.451, p < .0001). ABCB1_rs1128503 (C/C vs. T/T: OR, 0.57, 95% CI, 0.311-1.047, p = .070) and ERCC1_rs11615 (A/A vs. G/G: OR, 1.75, 95% CI, 0.901-3.397, p = .098) were potential independent risk factors for C1D15 grade 3/4 neutropenia in non-Asian patients. Palbociclib mPFS was consistent across genetic variants; exposure was not associated with ABCB1 genotype. CONCLUSION This is the first comprehensive assessment of pharmacogenetic data in relationship to exposure to a CDK4/6 inhibitor. Pharmacogenetic testing may inform about potentially increased likelihood of patients developing severe neutropenia (NCT01740427, NCT01942135). IMPLICATIONS FOR PRACTICE Palbociclib plus endocrine therapy improves hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer outcomes, but is commonly associated with neutropenia. Genetic variants in ABCB1 may influence palbociclib exposure, and in ERCC1 are associated with chemotherapy-induced severe neutropenia. Here, the associations of single nucleotide polymorphisms in these genes and baseline characteristics with neutropenia were assessed. Low baseline absolute neutrophil count was a strong risk factor (p < .0001) for grade 3/4 neutropenia. There was a trend indicating that ABCB1_rs1128503 and ERCC1_rs11615 were potential risk factors (p < .10) for grade 3/4 neutropenia in non-Asian patients. Pharmacogenetic testing could inform clinicians about the likelihood of severe neutropenia with palbociclib.
Collapse
Affiliation(s)
| | | | - Yuan Liu
- Pfizer Inc, San Diego, California, USA
| | - Zhe Zhang
- Pfizer Inc, San Diego, California, USA
| | | | | | - Olivia Fletcher
- Breast Cancer Now Toby Robins Research Centre, The Institute for Cancer Research, London, United Kingdom
| | | | | | | | - Masakazu Toi
- Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Richard S Finn
- David Geffen School of Medicine, University of California Los Angeles, Santa Monica, California, USA
| | - Nicholas C Turner
- Breast Cancer Now Toby Robins Research Centre, The Institute for Cancer Research, London, United Kingdom.,Royal Marsden Hospital, London, United Kingdom
| | | | | |
Collapse
|
112
|
Almeida-Calpe A, López de Frutos L, Medrano-Engay B, García-García CB, Ribate MP, Giraldo P. Metabolizing profile of the cytochrome pathway CYP2D6, CYP3A4 and the ABCB 1 transporter in Spanish patients affected by Gaucher disease. Chem Biol Interact 2021; 345:109527. [PMID: 34058179 DOI: 10.1016/j.cbi.2021.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/15/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Several therapeutic options are available for type 1 Gaucher disease (GD1), including enzymatic replacement therapy (ERT) and substrate reduction therapy (SRT). Eliglustat is a selective inhibitor of glucosylceramide synthase that is extensively metabolized by CYP2D6 and, to a lesser extent by CYP3A4; it is also an inhibitor of the P-gp transporter. The aim of this study is to evaluate the metabolizer profile of these cytochrome isoforms in 61 GD1 patients, and to analyze interferences with concomitant therapies. Patients were selected from the Spanish Gaucher Disease Registry considering clinical data, GBA genotype, severity score index, comorbidities, concomitant drugs, type and response to therapy and adverse effects. The polymorphisms of CYP2D6, CYP3A4 and three ABCB1 transporter variants were analyzed by Polymerase Chain Reaction (PCR). The most frequent metabolizer profile was extensive or intermediate for CYP2D6, extensive for CYP3A4*1B and CYP3A4*22 and normal activity for ABCB1. Correlations between metabolizer profile and other variables were analyzed by multiple regression study. Twenty-eight patients received ERT, 17 eliglustat and seven miglustat. Forty-two patients (68.8%) had associated diseases and 54.5% were taking daily concomitant medication. Nine patients under eliglustat therapy received concomitant drugs that interact with the CYPs and/or ABCB1, five of these did not reach therapeutic goals and three presented mild or moderate adverse effects (headache and gastrointestinal disorders). Detailed analysis in four patients with TTT haplotype, corresponding to lack of activity of the transporter, was performed. In order to apply personalized medicine and avoid interferences and adverse effects, the individual CYP metabolizer profile and transporter must be considered when choosing the concomitant medication and/or making dose adjustments.
Collapse
Affiliation(s)
- A Almeida-Calpe
- Facultad de Ciencias de la Salud. Universidad San Jorge, Zaragoza, Spain
| | - L López de Frutos
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain; Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012), Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Grupo Español de Enfermedades de Depósito Lisosomal, Sociedad Española de Hematología y Hemoterapia, Zaragoza, Spain
| | - B Medrano-Engay
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain
| | - C B García-García
- Facultad de Ciencias de la Salud. Universidad San Jorge, Zaragoza, Spain
| | - M P Ribate
- Facultad de Ciencias de la Salud. Universidad San Jorge, Zaragoza, Spain
| | - P Giraldo
- Fundación Española para el Estudio y Terapéutica de la Enfermedad de Gaucher y otras lisosomales (FEETEG), Zaragoza, Spain; Grupo de Investigación en Enfermedades Metabólicas y Hematológicas Raras (GIIS-012), Instituto de Investigación Sanitaria Aragón, Zaragoza, Spain; Grupo Español de Enfermedades de Depósito Lisosomal, Sociedad Española de Hematología y Hemoterapia, Zaragoza, Spain.
| |
Collapse
|
113
|
Cheli S, Fusi M, De Silvestri A, Bonini I, Clementi E, Cattaneo D, Montrasio C, Baldelli S. In linezolid underexposure, pharmacogenetics matters: The role of CYP3A5. Biomed Pharmacother 2021; 139:111631. [PMID: 33940510 DOI: 10.1016/j.biopha.2021.111631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The exposure to linezolid is characterized by a large inter-individual variability; age, renal dysfunction and body weight explain this variability only to a limited extent and a considerable portion of it remains unexplained; therefore, we decided to investigate the role of individual genetic background focusing in particular on the risk of linezolid underexposure. 191 patients in therapy with linezolid at the standard dose of 600 mg twice daily were considered. Linezolid plasma concentration was determined at the steady state and classified as "below", "within" or "above" reference range. Genetic polymorphisms for ATP Binding Cassette Subfamily B Member 1 (ABCB1), Cytochrome P450 (CYP) enzymes CYP3A4 and CYP3A5, and Cytochrome P450 Oxidoreductase (POR) were investigated. Age significantly correlated with drug exposure, and patients CYP3A5 expressers (GA and AA) were found at high risk to be underexposed to the drug when treated at standard dose. This association was confirmed even after correction with age. No association was found with ABCB1 polymorphism. Our data suggest that CYP3A5 polymorphisms might significantly affect linezolid disposition, putting patients at higher risk to be underexposed, while P-glycoprotein polymorphism seem not to play any role.
Collapse
Affiliation(s)
- Stefania Cheli
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Marta Fusi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Dept Biomedical and Clinical Sciences, L. Sacco University Hospital, Università di Milano, 20157 Milano, Italy
| | - Annalisa De Silvestri
- Clinical Epidemiology and Biometry Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Igor Bonini
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Emilio Clementi
- Clinical Pharmacology Unit, CNR Institute of Neuroscience, Dept Biomedical and Clinical Sciences, L. Sacco University Hospital, Università di Milano, 20157 Milano, Italy; Scientific Institute IRCCS Eugenio Medea, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Cristina Montrasio
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy
| | - Sara Baldelli
- Unit of Clinical Pharmacology, L. Sacco University Hospital, Milano, Italy.
| |
Collapse
|
114
|
Effect of four ABCB1 genetic polymorphisms on the accumulation of darunavir in HEK293 recombinant cell lines. Sci Rep 2021; 11:9000. [PMID: 33903659 PMCID: PMC8076219 DOI: 10.1038/s41598-021-88365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/04/2021] [Indexed: 11/11/2022] Open
Abstract
The intracellular penetration of darunavir, a second-generation HIV protease inhibitor, is limited by the activity of the efflux P-glycoprotein (ABCB1). ABCB1 expression and/or activity levels can vary between individuals due to genetic polymorphisms including the c.1199G>A, c.1236C>T, c.2677G>T and c.3435C>T variants, which could in part explain why the pharmacokinetics of darunavir are so variable from one individual to another. While a few clinical studies have failed to demonstrate an influence of these polymorphisms on darunavir pharmacokinetics, drug-drug interactions and methodological limitations may have prevented them from revealing the true influence of ABCB1 variants. In this work, we report on the intracellular accumulation of darunavir in recombinant HEK293 cell lines expressing wild-type ABCB1 or one of several variants: ABCB1 1199A, ABCB1 3435T, and ABCB1 1236T/2677T/3435T. We demonstrate that while ABCB1 expression limits intracellular accumulation of darunavir, there is no significant difference in efflux activity between cells expressing wild-type ABCB1 and those that express any of the studied variants.
Collapse
|
115
|
Li Y, Umbach DM, Krahn JM, Shats I, Li X, Li L. Predicting tumor response to drugs based on gene-expression biomarkers of sensitivity learned from cancer cell lines. BMC Genomics 2021; 22:272. [PMID: 33858332 PMCID: PMC8048084 DOI: 10.1186/s12864-021-07581-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Background Human cancer cell line profiling and drug sensitivity studies provide valuable information about the therapeutic potential of drugs and their possible mechanisms of action. The goal of those studies is to translate the findings from in vitro studies of cancer cell lines into in vivo therapeutic relevance and, eventually, patients’ care. Tremendous progress has been made. Results In this work, we built predictive models for 453 drugs using data on gene expression and drug sensitivity (IC50) from cancer cell lines. We identified many known drug-gene interactions and uncovered several potentially novel drug-gene associations. Importantly, we further applied these predictive models to ~ 17,000 bulk RNA-seq samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database to predict drug sensitivity for both normal and tumor tissues. We created a web site for users to visualize and download our predicted data (https://manticore.niehs.nih.gov/cancerRxTissue). Using trametinib as an example, we showed that our approach can faithfully recapitulate the known tumor specificity of the drug. Conclusions We demonstrated that our approach can predict drugs that 1) are tumor-type specific; 2) elicit higher sensitivity from tumor compared to corresponding normal tissue; 3) elicit differential sensitivity across breast cancer subtypes. If validated, our prediction could have relevance for preclinical drug testing and in phase I clinical design. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07581-7.
Collapse
Affiliation(s)
- Yuanyuan Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA
| | - Juno M Krahn
- Genome Integrity & Structural Biology Laboratory, Research Triangle Park, Durham, NC, 27709, USA
| | - Igor Shats
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, 27709, USA
| | - Leping Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle Park, MD A3-03, Durham, NC, 27709, USA.
| |
Collapse
|
116
|
Munisamy M, Munisamy S, Kumar JP, Jose A, Thomas L, Baburaj G, Subbiah V. Pharmacogenetics of ATP binding cassette transporter MDR1(1236C>T) gene polymorphism with glioma patients receiving Temozolomide-based chemoradiation therapy in Indian population. THE PHARMACOGENOMICS JOURNAL 2021; 21:262-272. [PMID: 33589792 DOI: 10.1038/s41397-021-00206-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 12/18/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
Temozolomide (TMZ), an alkylating agent with a broad-spectrum antitumor activity, ability to cross blood-brain barrier (BBB), shown to be effective against malignant glioma. This study aims to investigate the effect of 1236C>T (rs1128503) single-nucleotide gene polymorphisms of ABCB1 (MDR1) in north-Indian patients diagnosed with glioma undergoing TMZ-based chemoradiotherapy. Genotyping was performed in 100 patients diagnosed with malignant glioma (50 anaplastic astrocytoma (AA) patients and 50 glioblastoma multiforme (GBM) patients) and 150 age and sex-matched controls by polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) method, followed by sanger sequencing. TMZ plasma levels were analyzed by reverse phase HPLC method. Glioma patient's survival time was analyzed by Kaplan-Meier's curve. Results of MDR1 gene 1236C>T polymorphism showed significant allelic and genotypic frequency association between glioma patients and controls. The plasma TMZ levels between metabolizers group in Grade III and Grade IV were found to be statistically significant (p < 0.05). The mutant genotype (TT) has less survival benefit compared with other genotypes (CT/CC) and the survival difference between AA and GBM was found to be statistically significant (p < 0.05). Though CT and TT polymorphisms have significant association with lower TMZ levels in both Grade III (AA) and IV (GBM) tumors, the survival difference seems to be mainly among patients with Grade III tumors. Our findings suggest that the MDR1 gene polymorphism plays a role in plasma TMZ levels and in survival time of glioma patients and, hence, TMZ therapy in malignant glioma can be predicted by genotyping MDR1 (1236C>T) gene polymorphism.
Collapse
Affiliation(s)
- Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Neuro Biochemistry, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Srinivasan Munisamy
- Department of Neuro Biochemistry, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Julka Pramod Kumar
- Department of Radiotherapy, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Levin Thomas
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vivekanandhan Subbiah
- Department of Neuro Biochemistry, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
117
|
Sultana B, Panzini MA, Veilleux Carpentier A, Comtois J, Rioux B, Gore G, Bauer PR, Kwon CS, Jetté N, Josephson CB, Keezer MR. Incidence and Prevalence of Drug-Resistant Epilepsy: A Systematic Review and Meta-analysis. Neurology 2021; 96:805-817. [PMID: 33722992 DOI: 10.1212/wnl.0000000000011839] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/29/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the incidence and prevalence of drug-resistant epilepsy (DRE) as well as its predictors and correlates, we conducted a systematic review and meta-analysis of observational studies. METHODS Our protocol was registered with PROSPERO, and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Meta-analysis of Observational Studies in Epidemiology reporting standards were followed. We searched MEDLINE, Embase, and Web of Science. We used a double arcsine transformation and random-effects models to perform our meta-analyses. We performed random-effects meta-regressions using study-level data. RESULTS Our search strategy identified 10,794 abstracts. Of these, 103 articles met our eligibility criteria. There was high interstudy heterogeneity and risk of bias. The cumulative incidence of DRE was 25.0% (95% confidence interval [CI]: 16.8-34.3) in child studies but 14.6% (95% CI: 8.8-21.6) in adult/mixed age studies. The prevalence of DRE was 13.7% (95% CI: 9.2-19.0) in population/community-based populations but 36.3% (95% CI: 30.4-42.4) in clinic-based cohorts. Meta-regression confirmed that the prevalence of DRE was higher in clinic-based populations and in focal epilepsy. Multiple predictors and correlates of DRE were identified. The most reported of these were having a neurologic deficit, an abnormal EEG, and symptomatic epilepsy. The most reported genetic predictors of DRE were polymorphisms of the ABCB1 gene. CONCLUSIONS Our observations provide a basis for estimating the incidence and prevalence of DRE, which vary between populations. We identified numerous putative DRE predictors and correlates. These findings are important to plan epilepsy services, including epilepsy surgery, a crucial treatment option for people with disabling seizures and DRE.
Collapse
Affiliation(s)
- Bushra Sultana
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Marie-Andrée Panzini
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Ariane Veilleux Carpentier
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Jacynthe Comtois
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Bastien Rioux
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Geneviève Gore
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Prisca R Bauer
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Churl-Su Kwon
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Nathalie Jetté
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Colin B Josephson
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada
| | - Mark R Keezer
- From the Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM) (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.); Department of Neurosciences (B.S., M.-A.P., A.V.C., J.C., B.R., M.R.K.), Université de Montréal, Quebec; Schulich Library of Physical Sciences (G.G.), Life Sciences, and Engineering, McGill University, Montreal, Quebec, Canada; Department of Psychosomatic Medicine and Psychotherapy (P.R.B.), University Medical Center Freiburg, Germany; Department of Neurology (C.-S.K., N.J.), Icahn School of Medicine at Mount Sinai, New York; Department of Clinical Neurosciences and Hotchkiss Brain Institute (N.J., C.B.J.), University of Calgary, Alberta; and School of Public Health of the Université de Montréal (M.R.K.), Quebec, Canada.
| |
Collapse
|
118
|
di Leo N, Moscato S, Borso’ M, Sestito S, Polini B, Bandini L, Grillone A, Battaglini M, Saba A, Mattii L, Ciofani G, Chiellini G. Delivery of Thyronamines (TAMs) to the Brain: A Preliminary Study. Molecules 2021; 26:molecules26061616. [PMID: 33799468 PMCID: PMC7999687 DOI: 10.3390/molecules26061616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022] Open
Abstract
Recent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1). Currently, several research groups are investigating the pharmacological effects of T1AM systemic administration in the search of novel therapeutic approaches for the treatment of interlinked pathologies, such as metabolic and neurodegenerative diseases (NDDs). A critical aspect in the development of new drugs for NDDs is to know their distribution in the brain, which is fundamentally related to their ability to cross the blood–brain barrier (BBB). To this end, in the present study we used the immortalized mouse brain endothelial cell line bEnd.3 to develop an in vitro model of BBB and evaluate T1AM and TA1 permeability. Both drugs, administered at 1 µM dose, were assayed by high-performance liquid chromatography coupled to mass spectrometry. Our results indicate that T1AM is able to efficiently cross the BBB, whereas TA1 is almost completely devoid of this property.
Collapse
Affiliation(s)
- Nicoletta di Leo
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
- The Biorobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Stefania Moscato
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
- Department of Clinical & Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy;
| | - Marco Borso’
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Simona Sestito
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Beatrice Polini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Lavinia Bandini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Agostina Grillone
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
| | - Matteo Battaglini
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
| | - Alessandro Saba
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
| | - Letizia Mattii
- Department of Clinical & Experimental Medicine, University of Pisa, Via Savi 10, 56126 Pisa, Italy;
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy or (N.d.L.); (S.M.); (A.G.); (M.B.); (G.C.)
| | - Grazia Chiellini
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56100 Pisa, Italy; (M.B.); or (S.S.); (B.P.); (L.B.) (A.S.)
- Correspondence:
| |
Collapse
|
119
|
Fricke-Galindo I, Falfán-Valencia R. Pharmacogenetics Approach for the Improvement of COVID-19 Treatment. Viruses 2021; 13:413. [PMID: 33807592 PMCID: PMC7998786 DOI: 10.3390/v13030413] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of coronavirus disease 2019 (COVID-19) has been a challenge. The efficacy of several drugs has been evaluated and variability in drug response has been observed. Pharmacogenetics could explain this variation and improve patients' outcomes with this complex disease; nevertheless, several disease-related issues must be carefully reviewed in the pharmacogenetic study of COVID-19 treatment. We aimed to describe the pharmacogenetic variants reported for drugs used for COVID-19 treatment (remdesivir, oseltamivir, lopinavir, ritonavir, azithromycin, chloroquine, hydroxychloroquine, ivermectin, and dexamethasone). In addition, other factors relevant to the design of pharmacogenetic studies were mentioned. Variants in CYP3A4, CYP3A5, CYP2C8, CY2D6, ABCB1, ABCC2, and SLCO1B1, among other variants, could be included in pharmacogenetic studies of COVID-19 treatment. Besides, nongenetic factors such as drug-drug interactions and inflammation should be considered in the search for personalized therapy of COVID-19.
Collapse
Affiliation(s)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| |
Collapse
|
120
|
Shetty R, Kumar NR, Subramani M, Krishna L, Murugeswari P, Matalia H, Khamar P, Dadachanji ZV, Mohan RR, Ghosh A, Das D. Safety and efficacy of combination of suberoylamilide hydroxyamic acid and mitomycin C in reducing pro-fibrotic changes in human corneal epithelial cells. Sci Rep 2021; 11:4392. [PMID: 33623133 PMCID: PMC7902619 DOI: 10.1038/s41598-021-83881-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Corneal haze post refractive surgery is prevented by mitomycin c (MMC) treatment though it can lead to corneal endothelial damage, persistent epithelial defects and necrosis of cells. Suberanilohydroxamic acid (SAHA) however has been proposed to prevent corneal haze without any adverse effects. For clinical application we have investigated the short and long term outcome of cells exposed to SAHA. Human donor cornea, cultured limbal epithelial cells, corneal rims and lenticules were incubated with SAHA and MMC. The cells/tissue was then analyzed by RT-qPCR, immunofluorescence and western blot for markers of apoptosis and fibrosis. The results reveal that short term exposure of SAHA and SAHA + MMC reduced apoptosis levels and increased αSMA expression compared to those treated with MMC. Epithelial cells derived from cultured corneal rim that were incubated with the MMC, SAHA or MMC + SAHA revealed enhanced apoptosis, reduced levels of CK3/CK12, ∆NP63 and COL4A compared to other treatments. In SAHA treated lenticules TGFβ induced fibrosis was reduced. The results imply that MMC treatment for corneal haze has both short term and long term adverse effects on cells and the cellular properties. However, a combinatorial treatment of SAHA + MMC prevents expression of corneal fibrotic markers without causing any adverse effect on cellular properties.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Nimisha Rajiv Kumar
- GROW Laboratory, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Nethralaya, Narayana Health City, Bommasandra, , Bangalore, Karnataka, 560 099, India
| | - Murali Subramani
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Lekshmi Krishna
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Ponnalagu Murugeswari
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Pooja Khamar
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Zelda V Dadachanji
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Rajiv R Mohan
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO, 65211, USA. .,Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA. .,Harry S Truman Veterans' Memorial Hospital, Columbia, MO, 65201, USA.
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Post Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Nethralaya, Narayana Health City, Bommasandra, , Bangalore, Karnataka, 560 099, India.
| | - Debashish Das
- Stem Cell Research Lab, GROW Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya, Bangalore, Karnataka, India.
| |
Collapse
|
121
|
Juan-Carlos PDM, Perla-Lidia PP, Stephanie-Talia MM, Mónica-Griselda AM, Luz-María TE. ABC transporter superfamily. An updated overview, relevance in cancer multidrug resistance and perspectives with personalized medicine. Mol Biol Rep 2021; 48:1883-1901. [PMID: 33616835 DOI: 10.1007/s11033-021-06155-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/12/2021] [Indexed: 12/25/2022]
Abstract
The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.
Collapse
Affiliation(s)
- Pérez-De Marcos Juan-Carlos
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, México.,Postgraduate Degree in Pharmacology, National Polytechnic Institute, Mexico City, México
| | | | | | | | | |
Collapse
|
122
|
Mugosa S, Todorovic Z, Cukic J, Sahman-Zaimovic M, Djordjevic N. ABCB1 polymorphism in clopidogrel-treated Montenegrin patients. Open Life Sci 2021; 16:142-149. [PMID: 33817306 PMCID: PMC7968540 DOI: 10.1515/biol-2021-0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Clopidogrel is an antiplatelet drug that displays significant interindividual variability in treatment response. Its bioavailability depends on the function of P-glycoprotein (P-gp), which is coded by a highly polymorphic ABCB1 gene. Thus, the aim of this study was to investigate the effect of ABCB1 genetic polymorphism on clopidogrel efficacy and safety and to determine the frequency distribution of its most common single nucleotide polymorphisms (SNPs) in 106 Montenegrin cardiology patients. Clopidogrel efficacy and safety were followed up during 1 year after hospitalization, with the lack of efficacy and adverse drug reactions observed in 11 (10.4%) and 8 patients (7.5%), respectively. Genotyping for ABCB1 SNPs rs1128503 (1236C > T), rs2032582 (2677G > A/T), and rs1045642 (3435C > T) was performed by the real-time PCR method, and the variant alleles were detected with the frequencies of 42.9, 44.8, and 52.8%, respectively. No significant association was observed between any of the examined genotypes and clopidogrel efficacy (p = 0.253) or safety (p = 0.424). Due to small sample size, co-treatment with other drugs, and other genetic factors not taken into account, we believe the absence of correlation between ABCB1 genotypes and indicators of clopidogrel efficacy and safety in this study should be apprehended conditionally, and that larger and better-controlled studies are warranted.
Collapse
Affiliation(s)
- Snezana Mugosa
- Faculty of Medicine, Department of Pharmacology, University of Montenegro, 81104 Podgorica, Montenegro
- Institute for Medicines and Medical Devices of Montenegro, 81104 Podgorica, Montenegro
| | - Zoran Todorovic
- Department of Pharmacology, Clinical Pharmacology Toxicology, Faculty of Medicine, University of Belgrade, University Medical Center “Bežanijska kosa”, 11000 Belgrade, Serbia
| | - Jelena Cukic
- Department for Immunology and Virology, Public Health Institute, 34000 Kragujevac, Serbia
| | - Majda Sahman-Zaimovic
- Faculty of Medicine, Department of Pharmacology, University of Montenegro, 81104 Podgorica, Montenegro
- Institute for Medicines and Medical Devices of Montenegro, 81104 Podgorica, Montenegro
| | - Natasa Djordjevic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
123
|
Seyedmirzaei H, Keshavarz-Fathi M, Razi S, Gity M, Rezaei N. Recent progress in immunotherapy of breast cancer targeting the human epidermal growth factor receptor 2 (HER2). J Oncol Pharm Pract 2021; 27:1235-1244. [PMID: 33530866 DOI: 10.1177/1078155221991636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Breast cancer is responsible for most of the cancer-induced deaths in women around the world. The current review will discuss different approaches of targeting HER2, an epidermal growth factor overexpressed in 30% of breast cancer cases. DATA SOURCES We conducted a search on Pubmed and Scopus databases to find studies relevant to HER2+ breast cancers and targeting HER2 as means of immunotherapy. Out of 1043 articles, 105 studies were included in this review. DATA SUMMARY As well as the introduction of HER2 and breast cancer subtypes, we discussed various aspects of HER2-targeting immunotherapy including monoclonal antibodies, Antibody-drug conjugates (ADCs), Chimeric Antigen Receptor (CAR) T-cells and vaccines. CONCLUSIONS Despite several ways of controlling breast cancer, the need to investigate new drugs and approaches seems to be much significant as this cancer still has a heavy burden on people's health and survival.
Collapse
Affiliation(s)
- Homa Seyedmirzaei
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Keshavarz-Fathi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Gity
- Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Breast Disease Research Center (BDRC), Advanced Imaging Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
124
|
Castelli V, Giordano A, Benedetti E, Giansanti F, Quintiliani M, Cimini A, d’Angelo M. The Great Escape: The Power of Cancer Stem Cells to Evade Programmed Cell Death. Cancers (Basel) 2021; 13:328. [PMID: 33477367 PMCID: PMC7830655 DOI: 10.3390/cancers13020328] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the primary causes of death worldwide. Tumour malignancy is related to tumor heterogeneity, which has been suggested to be due to a small subpopulation of tumor cells named cancer stem cells (CSCs). CSCs exert a key role in metastasis development, tumor recurrence, and also epithelial-mesenchymal transition, apoptotic resistance, self-renewal, tumorigenesis, differentiation, and drug resistance. Several current therapies fail to eradicate tumors due to the ability of CSCs to escape different programmed cell deaths. Thus, developing CSC-selective and programmed death-inducing therapeutic approaches appears to be of primary importance. In this review, we discuss the main programmed cell death occurring in cancer and the promising CSC-targeting agents developed in recent years. Even if the reported studies are encouraging, further investigations are necessary to establish a combination of agents able to eradicate CSCs or inhibit their growth and proliferation.
Collapse
Affiliation(s)
- Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Francesco Giansanti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Massimiliano Quintiliani
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
- Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (V.C.); (E.B.); (F.G.); (M.Q.)
| |
Collapse
|
125
|
Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med 2021; 11:jpm11010037. [PMID: 33440670 PMCID: PMC7826504 DOI: 10.3390/jpm11010037] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Dabigatran, rivaroxaban, apixaban, edoxaban, and betrixaban are direct oral anticoagulants (DOACs). Their inter-individual variability in pharmacodynamics and pharmacokinetics (transport and metabolism) is high, and could result from genetic polymorphisms. As recommended by the French Network of Pharmacogenetics (RNPGx), the management of some treatments in cardiovascular diseases (as antiplatelet agents, oral vitamin K antagonists, and statins) can rely on genetic testing in order to improve healthcare by reducing therapeutic resistance or toxicity. This paper is a review of association studies between single nucleotide polymorphisms (SNPs) and systemic exposure variation of DOACs. Most of the results presented here have a lot to do with some SNPs of CES1 (rs2244613, rs8192935, and rs71647871) and ABCB1 (rs1128503, rs2032582, rs1045642, and rs4148738) genes, and dabigatran, rivaroxaban, and apixaban. Regarding edoxaban and betrixaban, as well as SNPs in the CYP3A4 and CYP3A5 genes, literature is scarce, and further studies are needed.
Collapse
|
126
|
Ganoci L, Trkulja V, Živković M, Božina T, Šagud M, Lovrić M, Božina N. ABCB1, ABCG2 and CYP2D6 polymorphism effects on disposition and response to long-acting risperidone. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110042. [PMID: 32682874 DOI: 10.1016/j.pnpbp.2020.110042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/15/2020] [Accepted: 07/12/2020] [Indexed: 02/08/2023]
Abstract
The relevance of the multidrug resistance (ABCB1) and breast cancer resistance (ABCG2) protein transporter polymorphisms for treatment with long-acting intramuscular (LAI) risperidone is largely unknown. We explored the relationship between these polymorphisms and cytochrome P450 (CYP) 2D6 genotype-predicted phenotype in their effects on drug disposition and clinical outcomes in adults with schizophrenia. In a 24-week observational study, patients initiated on LAI-risperidone (n=101) were genotyped [enzymes (CYP2D6 dupl,*3,*4,*5,*6,*41; CYP3A4*22, CYP3A5*3), transporters (ABCG2 421C>A; ABCB1 1236C>T, 2677G>T/A, 3435C>T)] and evaluated for steady-state (weeks 6-8) serum levels of dose-corrected risperidone, 9-OH-risperidone, risperidone+9-OH-risperidone (active moiety), and for response to treatment (PANSS, reduction vs. baseline ≥30% at week 12 and ≥45% at week 24). CYP2D6 normal/ultrarapid metabolizers (NM/UM) (vs. other) had lower risperidone (29%) and active moiety levels (24%) (9-OH-risperidone not affected). The effect on the three analytes was mild (0 to 23% reduction) in ABCG2 wild-type homozygotes and pronounced (44-55% reduction) in ABCG2 variant allele carriers. ABCG2 variant had no effect on disposition in CYP2D6 "other" phenotypes, while the effect was pronounced in CYP2D6 NM/UM subjects (31-37% reduction). ABCB1 polymorphisms had no effect on exposure to risperidone. CYP2D6 NM/UM phenotype tended to lower odds of PANSS response, ABCG2 variant was associated with 4-fold higher odds and ABCB1 (1236C>T, 2677G>T/A, 3435C>T) overall mainly wild-type genotype was associated with around 4--fold lower odds of response. In patients treated with LAI-risperidone, CYP2D6 phenotype effect on systemic exposure is conditional on the ABCG2 421C>A polymorphism. ABCG2 and ABCB1 polymorphisms affect clinical response independently of systemic risperidone disposition.
Collapse
Affiliation(s)
- Lana Ganoci
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Živković
- Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Tamara Božina
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marina Šagud
- Department of Psychiatry, University Hospital Centre Zagreb, Zagreb, Croatia; Department of Psychiatry, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mila Lovrić
- Analytical Toxicology and Pharmacology Division, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nada Božina
- Division of Pharmacogenomics and Therapy Individualization, Department of Laboratory Diagnostics, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia; Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
127
|
Lopes BCH, Zeppelini D, Pontes DS, Amado EM. First characterization of multixenobiotic activity in Collembola: An approach on cadmium-induced response. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108850. [PMID: 32777464 DOI: 10.1016/j.cbpc.2020.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/12/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
ATP-binding cassette (ABC) efflux pumps mediate the activity of the Multixenobiotic Resistance (MXR) mechanism and have been proposed as a biomarker of environmental pollution mainly in aquatic invertebrates. MXR activity was never investigated in Collembola and represents a potential tool for soil biomonitoring. This study aimed to characterize for the first time the activity of ABC efflux pumps in the gut of collembolan species, and investigate its responsiveness to cadmium (Cd), a common stressor found in polluted soils. We performed in vitro rhodamine-B accumulation assays in the presence of model inhibitors of ABC efflux pumps: verapamil hydrochloride as P-gp (P-glycoprotein) inhibitor, and MK571, as MRPs (multidrug resistance-related proteins) inhibitor. We also performed rhodamine-B accumulation assays under Cd-exposure (209 μg/L;1 μM). Our results showed that all species presented basal (noninduced) level of MXR activity in their gut. Efflux pumps P-gp and/or MRPs activity were confirmed in Cyphoderus innominatus, Cyphoderus similis, and Folsomia candida, the standard species. The rhodamine-B accumulation assays performed with Cd, applied as soil pollutant, showed that the gut of non-standard species C. similis and Trogolaphysa sp. presented an increase of MXR activity for both P-gp and MRP transporters, indicating the potential of these species as test organisms for soil ecotoxicology studies in Neotropical region. Our findings suggest a functional role of ABC transporters in the collembolan gut and their cellular involvement in Cd defense response, corroborating that MXR phenotype in Collembola can be a promising tool for bioindication of soil contamination.
Collapse
Affiliation(s)
- Bruna Carolline Honório Lopes
- Laboratório de Sistemática de Collembola e Conservação, Universidade Estadual da Paraíba Campus V, Centro de Ciências Biológicas e Sociais Aplicadas, Depto. Biologia. 58070-450 João Pessoa, PB, Brazil; Laboratório de Ecofisiologia Animal, Universidade Estadual da Paraíba Campus V, Centro de Ciências Biológicas e Sociais Aplicadas, Depto. Biologia. 58070-450 João Pessoa, PB, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Zoologia, Universidade Federal da Paraíba Campus I, Centro de Ciências Exatas e da Natureza, Depto. Biologia. 58051-900 João Pessoa, PB, Brazil
| | - Douglas Zeppelini
- Laboratório de Sistemática de Collembola e Conservação, Universidade Estadual da Paraíba Campus V, Centro de Ciências Biológicas e Sociais Aplicadas, Depto. Biologia. 58070-450 João Pessoa, PB, Brazil; Programa de Pós-Graduação em Ciências Biológicas - Zoologia, Universidade Federal da Paraíba Campus I, Centro de Ciências Exatas e da Natureza, Depto. Biologia. 58051-900 João Pessoa, PB, Brazil
| | - Daniela Santos Pontes
- Laboratório de Biologia Molecular, Universidade Estadual da Paraíba Campus V, Centro de Ciências Biológicas e Sociais Aplicadas, Depto. Biologia. 58070-450 João Pessoa, PB, Brazil
| | - Enelise Marcelle Amado
- Laboratório de Ecofisiologia Animal, Universidade Estadual da Paraíba Campus V, Centro de Ciências Biológicas e Sociais Aplicadas, Depto. Biologia. 58070-450 João Pessoa, PB, Brazil.
| |
Collapse
|
128
|
Yip VLM, Pertinez H, Meng X, Maggs JL, Carr DF, Park BK, Marson AG, Pirmohamed M. Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. Br J Clin Pharmacol 2020; 87:2572-2588. [PMID: 33217013 PMCID: PMC8247401 DOI: 10.1111/bcp.14667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Aims Carbamazepine can cause hypersensitivity reactions in ~10% of patients. An immunogenic effect can be produced by the electrophilic 10,11‐epoxide metabolite but not by carbamazepine. Hypothetically, certain single nucleotide polymorphisms might increase the formation of immunogenic metabolites, leading ultimately to hypersensitivity reactions. This study explores the role of clinical and genetic factors in the pharmacokinetics (PK) of carbamazepine and 3 metabolites known to be chemically reactive or formed through reactive intermediates. Methods A combination of rich and sparse PK samples were collected from healthy volunteers and epilepsy patients. All subjects were genotyped for 20 single nucleotide polymorphisms in 11 genes known to be involved in the metabolism or transport of carbamazepine and carbamazepine 10,11‐epoxide. Nonlinear mixed effects modelling was used to build a population‐PK model. Results In total, 248 observations were collected from 80 subjects. A 1‐compartment PK model with first‐order absorption and elimination best described the parent carbamazepine data, with a total clearance of 1.96 L/h, central distribution volume of 164 L and absorption rate constant of 0.45 h−1. Total daily dose and coadministration of phenytoin were significant covariates for total clearance of carbamazepine. EPHX1‐416G/G genotype was a significant covariate for the clearance of carbamazepine 10,11‐epoxide. Conclusion Our data indicate that carbamazepine clearance was affected by total dose and phenytoin coadministration, but not by genetic factors, while carbamazepine 10,11‐epoxide clearance was affected by a variant in the microsomal epoxide hydrolase gene. A much larger sample size would be required to fully evaluate the role of genetic variation in carbamazepine pharmacokinetics, and thereby predisposition to carbamazepine hypersensitivity.
Collapse
Affiliation(s)
- Vincent L M Yip
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK.,The Wolfson Centre for Personalised Medicine, Department of Molecular and Clinical Pharmacology, The University of Liverpool, UK
| | - Henry Pertinez
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - James L Maggs
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Daniel F Carr
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK.,The Wolfson Centre for Personalised Medicine, Department of Molecular and Clinical Pharmacology, The University of Liverpool, UK
| | - B Kevin Park
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, The University of Liverpool, Liverpool, UK.,The Wolfson Centre for Personalised Medicine, Department of Molecular and Clinical Pharmacology, The University of Liverpool, UK
| |
Collapse
|
129
|
Carvalho Henriques B, Yang EH, Lapetina D, Carr MS, Yavorskyy V, Hague J, Aitchison KJ. How Can Drug Metabolism and Transporter Genetics Inform Psychotropic Prescribing? Front Genet 2020; 11:491895. [PMID: 33363564 PMCID: PMC7753050 DOI: 10.3389/fgene.2020.491895] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/25/2020] [Indexed: 12/11/2022] Open
Abstract
Many genetic variants in drug metabolizing enzymes and transporters have been shown to be relevant for treating psychiatric disorders. Associations are strong enough to feature on drug labels and for prescribing guidelines based on such data. A range of commercial tests are available; however, there is variability in included genetic variants, methodology, and interpretation. We herein provide relevant background for understanding clinical associations with specific variants, other factors that are relevant to consider when interpreting such data (such as age, gender, drug-drug interactions), and summarize the data relevant to clinical utility of pharmacogenetic testing in psychiatry and the available prescribing guidelines. We also highlight areas for future research focus in this field.
Collapse
Affiliation(s)
| | - Esther H. Yang
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Diego Lapetina
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Michael S. Carr
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Vasyl Yavorskyy
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Joshua Hague
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Katherine J. Aitchison
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
130
|
Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S, Iemwimangsa N, Fukunaga K, Mushiroda T, Chantratita W, Ali BR. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci Rep 2020; 10:21310. [PMID: 33277594 PMCID: PMC7718919 DOI: 10.1038/s41598-020-78231-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic variations have an established impact on the pharmacological response. Investigating this variation resulted in a compilation of variants in "pharmacogenes". The emergence of next-generation sequencing facilitated large-scale pharmacogenomic studies and exhibited the extensive variability of pharmacogenes. Some rare and population-specific variants proved to be actionable, suggesting the significance of population pharmacogenomic research. A profound gap exists in the knowledge of pharmacogenomic variants enriched in some populations, including the United Arab Emirates (UAE). The current study aims to explore the landscape of variations in relevant pharmacogenes among healthy Emiratis. Through the resequencing of 100 pharmacogenes for 100 healthy Emiratis, we identified 1243 variants, of which 63% are rare (minor allele frequency ≤ 0.01), and 30% were unique. Filtering the variants according to Pharmacogenomics Knowledge Base (PharmGKB) annotations identified 27 diplotypes and 26 variants with an evident clinical relevance. Comparison with global data illustrated a significant deviation of allele frequencies in the UAE population. Understudied populations display a distinct allelic architecture and various rare and unique variants. We underscored pharmacogenes with the highest variation frequencies and provided investigators with a list of candidate genes for future studies. Population pharmacogenomic studies are imperative during the pursuit of global pharmacogenomics implementation.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
131
|
Maillard M, Chevreau C, Le Louedec F, Cassou M, Delmas C, Gourdain L, Blay JY, Cupissol D, Bompas E, Italiano A, Isambert N, Delcambre-Lair C, Penel N, Bertucci F, Guillemet C, Plenecassagnes J, Foulon S, Chatelut É, Le Cesne A, Thomas F. Pharmacogenetic Study of Trabectedin-Induced Severe Hepatotoxicity in Patients with Advanced Soft Tissue Sarcoma. Cancers (Basel) 2020; 12:E3647. [PMID: 33291741 PMCID: PMC7761985 DOI: 10.3390/cancers12123647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/26/2023] Open
Abstract
Hepatotoxicity is an important concern for nearly 40% of the patients treated with trabectedin for advanced soft tissue sarcoma (ASTS). The mechanisms underlying these liver damages have not yet been elucidated but they have been suggested to be related to the production of reactive metabolites. The aim of this pharmacogenetic study was to identify genetic variants of pharmacokinetic genes such as CYP450 and ABC drug transporters that could impair the trabectedin metabolism in hepatocytes. Sixty-three patients with ASTS from the TSAR clinical trial (NCT02672527) were genotyped by next-generation sequencing for 11 genes, and genotype-toxicity association analyses were performed with R package SNPassoc. Among the results, ABCC2 c.1249A allele (rs2273697) and ABCG2 intron variant c.-15994T (rs7699188) were associated with an increased risk of severe cytolysis, whereas ABCC2 c.3563A allele had a protective effect, as well as ABCB1 variants rs2032582 and rs1128503 (p-value < 0.05). Furthermore, CYP3A5*1 rs776746 (c.6986A > G) increased the risk of severe overall hepatotoxicity (p = 0.012, odds ratio (OR) = 5.75), suggesting the implication of metabolites in the hepatotoxicity. However, these results did not remain significant after multiple analysis correction. These findings need to be validated on larger cohorts of patients, with mechanistic studies potentially being able to validate the functional consequences of these variants.
Collapse
Affiliation(s)
- Maud Maillard
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Christine Chevreau
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Félicien Le Louedec
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Manon Cassou
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Caroline Delmas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Laure Gourdain
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Jean-Yves Blay
- Medical Oncology Department, Centre Léon Bérard, 69008 Lyon, France;
| | - Didier Cupissol
- Medical Oncology Department, Institut Régional du Cancer Val d’Aurelle, 34090 Montpellier, France;
| | - Emmanuelle Bompas
- Medical Oncology Department, Institut de Cancérologie de l’Ouest, 44800 Saint-Herblain, France;
| | - Antoine Italiano
- Medical Oncology Department, Institut Bergonié, 33000 Bordeaux, France;
| | - Nicolas Isambert
- Medical Oncology Department, Centre Georges François Leclerc, 21000 Dijon, France;
| | | | - Nicolas Penel
- Medical Oncology Department, Centre Oscar Lambret—Université de Lille, 59000 Lille, France;
| | - François Bertucci
- Medical Oncology Department, Institut Paoli-Calmettes, 13009 Marseille, France;
| | - Cécile Guillemet
- Medical Oncology Department, Centre Henri Becquerel, 76038 Rouen, France;
| | - Julien Plenecassagnes
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Stéphanie Foulon
- Department of Biostatistics and Epidemiology, Gustave Roussy, University Paris-Saclay, 94805 Villejuif, France;
- Oncostat U1018, Inserm, University Paris-Saclay, Labeled Ligue Contre le Cancer, 94805 Villejuif, France
| | - Étienne Chatelut
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| | - Axel Le Cesne
- Medical Oncology Department, Gustave Roussy, 94805 Villejuif, France;
| | - Fabienne Thomas
- Centre de Recherches en Cancérologie de Toulouse (CRCT), Inserm UMR1037, 31059 Toulouse, France; (M.M.); (F.L.L.); (C.D.); (L.G.); (É.C.)
- Université Paul Sabatier—Toulouse III, 31400 Toulouse, France
- Institut Claudius Regaud, Institut Universitaire du Cancer (IUCT)—Oncopole, 31059 Toulouse, France; (C.C.); (M.C.); (J.P.)
| |
Collapse
|
132
|
McAleese CE, Choudhury C, Butcher NJ, Minchin RF. Hypoxia-mediated drug resistance in breast cancers. Cancer Lett 2020; 502:189-199. [PMID: 33278499 DOI: 10.1016/j.canlet.2020.11.045] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Tissue hypoxia in solid tumors is caused by several pathological changes associated with tumor growth, including altered microvasculature structure, increased diffusional distances, and tumor-associated anemia. As the oxygen tension decreases, tumor cells adapt to the limited oxygen supply. Previous studies have shown that such adaptation leads to an aggressive phenotype that is resistant to many anti-cancer therapies. Induction of hypoxia inducible factors (HIFs) mediates many proteomic and genomic changes associated with tumor hypoxia. In breast cancers, HIFs not only predict poor prognosis, but also promote metastasis and drug resistance. Several studies have proposed HIF-1α as a druggable target in drug-resistant breast cancers, leading to the synthesis and development of small molecule inhibitors. Disappointingly, however, none of these small molecule inhibitors have progressed to clinical use. In this review, we briefly discuss the role of HIF-1α in breast cancer drug resistance and summarize the current and future approaches to targeting this transcription factor in breast cancer treatment.
Collapse
Affiliation(s)
- Courtney E McAleese
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Chandra Choudhury
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia
| | - Rodney F Minchin
- School of Biomedical Sciences, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
133
|
Xiao Q, Zhou Y, Lauschke VM. Impact of variants in ATP-binding cassette transporters on breast cancer treatment. Pharmacogenomics 2020; 21:1299-1310. [DOI: 10.2217/pgs-2020-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
There has been substantial interest in the impact of ATP-binding cassette (ABC) transporter variability on breast cancer drug resistance. Here, we provide a systematic review of ABC variants in breast cancer therapy. Notably, most studies used small heterogeneous cohorts and their identified associations lack statistical stringency, replication and mechanistic support. We conclude that commonly studied ABC polymorphisms are not suitable to accurately predict therapy response or toxicity in breast cancer patients and cannot guide treatment decisions. However, recent research shows that ABC transporters harbor a plethora of rare variants with individually small effect sizes, and we argue that a shift in strategy from target variant interrogation to comprehensive profiling might hold promise to drastically improve the predictive power of outcome models.
Collapse
Affiliation(s)
- Qingyang Xiao
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology & Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
134
|
Muderrisoglu A, Babaoglu E, Korkmaz ET, Ongun MC, Karabulut E, Iskit AB, Emri S, Babaoglu MO. Effects of Genetic Polymorphisms of Drug Transporter ABCB1 (MDR1) and Cytochrome P450 Enzymes CYP2A6, CYP2B6 on Nicotine Addiction and Smoking Cessation. Front Genet 2020; 11:571997. [PMID: 33329709 PMCID: PMC7734344 DOI: 10.3389/fgene.2020.571997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/12/2020] [Indexed: 01/08/2023] Open
Abstract
Objectives To determine the effects of genetic polymorphisms of ABCB1 (MDR1), CYP2A6, CYP2B6 on smoking status, and clinical outcomes of smoking cessation therapies in a Turkish population. Methods 130 smokers and 130 non-smokers were recruited. Individuals who never smoked were described as non-smokers. 130 smokers were treated with nicotine replacement therapy (NRT) (n = 40), bupropion (n = 47), bupropion + NRT (n = 15), and varenicline (n = 28). Smokers were checked by phone after 12 weeks of treatment whether they were able to quit smoking or not. Genotyping and phenotyping were performed. Results Cessation rates were as follows; 20.0% for NRT, 29.8% for bupropion, 40.0% for bupropion + NRT, 57.1% for varenicline (p = 0.013). The frequency of ABCB1 1236TT-2677TT-3435TT haplotype was significantly higher in non-smokers as compared to smokers (21.5% vs. 10.8, respectively; p = 0.018). Neither smoking status nor smoking cessation rates were associated with genetic variants of CYP2A6 (p = 0.652, p = 0.328, respectively), or variants of CYP2B6 (p = 0.514, p = 0.779, respectively). Conclusion Genetic variants of the drug transporter ABCB1 and the 1236TT-2677TT-3435TT haplotype was significantly associated with non-smoking status. Neither ABCB1 nor CYP2A6, CYP2B6 genetic variants were associated with smoking cessation rates at the 12th week of drug treatment.
Collapse
Affiliation(s)
- Ahmet Muderrisoglu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elif Babaoglu
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elif Tugce Korkmaz
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mert C Ongun
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper B Iskit
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Salih Emri
- Department of Chest Diseases, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Melih O Babaoglu
- Department of Pharmacology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
135
|
Ivermectin: An Anthelmintic, an Insecticide, and Much More. Trends Parasitol 2020; 37:48-64. [PMID: 33189582 DOI: 10.1016/j.pt.2020.10.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
Here we tell the story of ivermectin, describing its anthelmintic and insecticidal actions and recent studies that have sought to reposition ivermectin for the treatment of other diseases that are not caused by helminth and insect parasites. The standard theory of its anthelmintic and insecticidal mode of action is that it is a selective positive allosteric modulator of glutamate-gated chloride channels found in nematodes and insects. At higher concentrations, ivermectin also acts as an allosteric modulator of ion channels found in host central nervous systems. In addition, in tissue culture, at concentrations higher than anthelmintic concentrations, ivermectin shows antiviral, antimalarial, antimetabolic, and anticancer effects. Caution is required before extrapolating from these preliminary repositioning experiments to clinical use, particularly for Covid-19 treatment, because of the high concentrations of ivermectin used in tissue-culture experiments.
Collapse
|
136
|
Mordi IR, Chan BK, Yanez ND, Palmer CNA, Lang CC, Chalmers JD. Genetic and pharmacological relationship between P-glycoprotein and increased cardiovascular risk associated with clarithromycin prescription: An epidemiological and genomic population-based cohort study in Scotland, UK. PLoS Med 2020; 17:e1003372. [PMID: 33226983 PMCID: PMC7682888 DOI: 10.1371/journal.pmed.1003372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are conflicting reports regarding the association of the macrolide antibiotic clarithromycin with cardiovascular (CV) events. A possible explanation may be that this risk is partly mediated through drug-drug interactions and only evident in at-risk populations. To the best of our knowledge, no studies have examined whether this association might be mediated via P-glycoprotein (P-gp), a major pathway for clarithromycin metabolism. The aim of this study was to examine CV risk following prescription of clarithromycin versus amoxicillin and in particular, the association with P-gp, a major pathway for clarithromycin metabolism. METHODS AND FINDINGS We conducted an observational cohort study of patients prescribed clarithromycin or amoxicillin in the community in Tayside, Scotland (population approximately 400,000) between 1 January 2004 and 31 December 2014 and a genomic observational cohort study evaluating genotyped patients from the Genetics of Diabetes Audit and Research Tayside Scotland (GoDARTS) study, a longitudinal cohort study of 18,306 individuals with and without type 2 diabetes recruited between 1 December 1988 and 31 December 2015. Two single-nucleotide polymorphisms associated with P-gp activity were evaluated (rs1045642 and rs1128503 -AA genotype associated with lowest P-gp activity). The primary outcome for both analyses was CV hospitalization following prescription of clarithromycin versus amoxicillin at 0-14 days, 15-30 days, and 30 days to 1 year. In the observational cohort study, we calculated hazard ratios (HRs) adjusted for likelihood of receiving clarithromycin using inverse proportion of treatment weighting as a covariate, whereas in the pharmacogenomic study, HRs were adjusted for age, sex, history of myocardial infarction, and history of chronic obstructive pulmonary disease. The observational cohort study included 48,026 individuals with 205,227 discrete antibiotic prescribing episodes (34,074 clarithromycin, mean age 73 years, 42% male; 171,153 amoxicillin, mean age 74 years, 45% male). Clarithromycin use was significantly associated with increased risk of CV hospitalization compared with amoxicillin at both 0-14 days (HR 1.31; 95% CI 1.17-1.46, p < 0.001) and 30 days to 1 year (HR 1.13; 95% CI 1.06-1.19, p < 0.001), with the association at 0-14 days modified by use of P-gp inhibitors or substrates (interaction p-value: 0.029). In the pharmacogenomic study (13,544 individuals with 44,618 discrete prescribing episodes [37,497 amoxicillin, mean age 63 years, 56% male; 7,121 clarithromycin, mean age 66 years, 47% male]), when prescribed clarithromycin, individuals with genetically determined lower P-gp activity had a significantly increased risk of CV hospitalization at 30 days to 1 year compared with heterozygotes or those homozygous for the non-P-gp-lowering allele (rs1045642 AA: HR 1.39, 95% CI 1.20-1.60, p < 0.001, GG/GA: HR 0.99, 95% CI 0.89-1.10, p = 0.85, interaction p-value < 0.001 and rs1128503 AA 1.41, 95% CI 1.18-1.70, p < 0.001, GG/GA: HR 1.04, 95% CI 0.95-1.14, p = 0.43, interaction p-value < 0.001). The main limitation of our study is its observational nature, meaning that we are unable to definitively determine causality. CONCLUSIONS In this study, we observed that the increased risk of CV events with clarithromycin compared with amoxicillin was associated with an interaction with P-glycoprotein.
Collapse
Affiliation(s)
- Ify R. Mordi
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - Benjamin K. Chan
- School of Public Health, Oregon Health and Science University and Portland State University, Portland, Oregon, United States of America
| | - N. David Yanez
- School of Public Health, Oregon Health and Science University and Portland State University, Portland, Oregon, United States of America
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, University of Dundee, Dundee, United Kingdom
| | - Chim C. Lang
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| | - James D. Chalmers
- Division of Molecular and Clinical Medicine, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
137
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
138
|
Khunweeraphong N, Mitchell-White J, Szöllősi D, Hussein T, Kuchler K, Kerr ID, Stockner T, Lee JY. Picky ABCG5/G8 and promiscuous ABCG2 - a tale of fatty diets and drug toxicity. FEBS Lett 2020; 594:4035-4058. [PMID: 32978801 PMCID: PMC7756502 DOI: 10.1002/1873-3468.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Structural data on ABCG5/G8 and ABCG2 reveal a unique molecular architecture for subfamily G ATP‐binding cassette (ABCG) transporters and disclose putative substrate‐binding sites. ABCG5/G8 and ABCG2 appear to use several unique structural motifs to execute transport, including the triple helical bundles, the membrane‐embedded polar relay, the re‐entry helices, and a hydrophobic valve. Interestingly, ABCG2 shows extreme substrate promiscuity, whereas ABCG5/G8 transports only sterol molecules. ABCG2 structures suggest a large internal cavity, serving as a binding region for substrates and inhibitors, while mutational and pharmacological analyses support the notion of multiple binding sites. By contrast, ABCG5/G8 shows a collapsed cavity of insufficient size to hold substrates. Indeed, mutational analyses indicate a sterol‐binding site at the hydrophobic interface between the transporter and the lipid bilayer. In this review, we highlight key differences and similarities between ABCG2 and ABCG5/G8 structures. We further discuss the relevance of distinct and shared structural features in the context of their physiological functions. Finally, we elaborate on how ABCG2 and ABCG5/G8 could pave the way for studies on other ABCG transporters.
Collapse
Affiliation(s)
- Narakorn Khunweeraphong
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria.,CCRI-St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - James Mitchell-White
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dániel Szöllősi
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Toka Hussein
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Karl Kuchler
- Max Perutz Labs Vienna, Campus Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Ian D Kerr
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
139
|
Zappe K, Cichna-Markl M. Aberrant DNA Methylation of ABC Transporters in Cancer. Cells 2020; 9:cells9102281. [PMID: 33066132 PMCID: PMC7601986 DOI: 10.3390/cells9102281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role in multidrug resistance (MDR) of cancers. They function as efflux pumps, resulting in limited effectiveness or even failure of therapy. Increasing evidence suggests that ABC transporters are also involved in tumor initiation, progression, and metastasis. Tumors frequently show multiple genetic and epigenetic abnormalities, including changes in histone modification and DNA methylation. Alterations in the DNA methylation status of ABC transporters have been reported for a variety of cancer types. In this review, we outline the current knowledge of DNA methylation of ABC transporters in cancer. We give a brief introduction to structure, function, and gene regulation of ABC transporters that have already been investigated for their DNA methylation status in cancer. After giving an overview of the applied methodologies and the CpGs analyzed, we summarize and discuss the findings on aberrant DNA methylation of ABC transporters by cancer types. We conclude our review with the discussion of the potential to target aberrant DNA methylation of ABC transporters for cancer therapy.
Collapse
|
140
|
Shockley KR, Cora MC, Malarkey DE, Jackson-Humbles D, Vallant M, Collins BJ, Mutlu E, Robinson VG, Waidyanatha S, Zmarowski A, Machesky N, Richey J, Harbo S, Cheng E, Patton K, Sparrow B, Dunnick JK. Comparative toxicity and liver transcriptomics of legacy and emerging brominated flame retardants following 5-day exposure in the rat. Toxicol Lett 2020; 332:222-234. [PMID: 32679240 PMCID: PMC7903589 DOI: 10.1016/j.toxlet.2020.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/13/2022]
Abstract
The relative toxicity of three legacy and six emerging brominated flame retardants* was studied in the male Harlan Sprague Dawley rat. The hepatocellular and thyroid toxicity of each flame retardant was evaluated following five-day exposure to each of the nine flame retardants (oral gavage in corn oil) at 0.1-1000 μmol/kg body weight per day. Histopathology and transcriptomic analysis were performed on the left liver lobe. Centrilobular hypertrophy of hepatocytes and increases in liver weight were seen following exposure to two legacy (PBDE-47, HBCD) and to one emerging flame retardant (HCDBCO). Total thyroxine (TT4) concentrations were reduced to the greatest extent after PBDE-47 exposure. The PBDE-47, decaBDE, and HBCD liver transcriptomes were characterized by upregulation of liver disease-related and/or metabolic transcripts. Fewer liver disease or metabolic transcript changes were detected for the other flame retardants studied (TBB, TBPH, TBBPA-DBPE, BTBPE, DBDPE, or HCDBCO). PBDE-47 exhibited the most disruption of hepatocellular toxic endpoints, with the Nrf2 antioxidant pathway transcripts upregulated to the greatest extent, although some activation of this pathway also occurred after decaBDE, HBCD, TBB, and HCBCO exposure. These studies provide information that can be used for prioritizing the need for more in-depth brominated flame retardant toxicity studies.
Collapse
Affiliation(s)
- Keith R Shockley
- Biostatistics & Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Michelle C Cora
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - David E Malarkey
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Daven Jackson-Humbles
- Cellular & Molecular Pathology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Molly Vallant
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Brad J Collins
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Esra Mutlu
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Veronica G Robinson
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | - Surayma Waidyanatha
- Program Operations Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States
| | | | | | | | - Sam Harbo
- Battelle, Columbus, Ohio, 43210, United States
| | - Emily Cheng
- Battelle, Columbus, Ohio, 43210, United States
| | | | | | - June K Dunnick
- Toxicology Branch, National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, United States.
| |
Collapse
|
141
|
Chandak P, Tatonetti NP. Using Machine Learning to Identify Adverse Drug Effects Posing Increased Risk to Women. PATTERNS (NEW YORK, N.Y.) 2020; 1:100108. [PMID: 33179017 PMCID: PMC7654817 DOI: 10.1016/j.patter.2020.100108] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 11/27/2022]
Abstract
Adverse drug reactions are the fourth leading cause of death in the US. Although women take longer to metabolize medications and experience twice the risk of developing adverse reactions compared with men, these sex differences are not comprehensively understood. Real-world clinical data provide an opportunity to estimate safety effects in otherwise understudied populations, i.e., women. These data, however, are subject to confounding biases and correlated covariates. We present AwareDX, a pharmacovigilance algorithm that leverages advances in machine learning to predict sex risks. Our algorithm mitigates these biases and quantifies the differential risk of a drug causing an adverse event in either men or women. AwareDX demonstrates high precision during validation against clinical literature and pharmacogenetic mechanisms. We present a resource of 20,817 adverse drug effects posing sex-specific risks. AwareDX, and this resource, present an opportunity to minimize adverse events by tailoring drug prescription and dosage to sex.
Collapse
Affiliation(s)
- Payal Chandak
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
142
|
Kotlyarov SN, Kotlyarova AA. Participation of ABC-transporters in lipid metabolism and pathogenesis of atherosclerosis. GENES & CELLS 2020; 15:22-28. [DOI: 10.23868/202011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Atherosclerosis is one of the key causes of morbidity and mortality worldwide. It is known that a leading role in the development and progression of atherosclerosis is played by a violation of lipid metabolism. ABC transporters provide lipid cell homeostasis, performing a number of transport functions - moving lipids inside the cell, in the plasma membrane, and also removing lipids from the cell. In a large group of ABC transporters, about 20 take part in lipid homeostasis, playing, among other things, an important role in the pathogenesis of atherosclerosis. It was shown that cholesterol is not only a substrate for a number of ABC transporters, but also able to modulate their activity. Regulation of activity is carried out due to specific lipid-protein interactions.
Collapse
|
143
|
Guerrero Camacho JL, Corona Vázquez T, Flores Rivera JJ, Ochoa Morales A, Martínez Ruano L, Torres Ramírez de Arellano I, Dávila Ortiz de Montellano DJ, Jara Prado A. ABCB1 gene variants as risk factors and modulators of age of onset of demyelinating disease in Mexican patients. Neurologia 2020; 38:S0213-4853(20)30216-4. [PMID: 32912743 DOI: 10.1016/j.nrl.2020.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The C1236T, G2677T/A, and C3435T variants of the ABCB1 gene alter the functioning of P-glycoprotein and the transport of endogenous and exogenous substances across the blood-brain barrier, and act as risk factors for some neurodegenerative diseases. This study aimed to determine the association between demyelinating disease and the C1236T, G2677T/A, and C3435T variants of ABCB1 and its haplotypes and combinations of genotypes. METHODS Polymerase chain reaction with restriction fragment length polymorphism analysis (PCR-RFLP) and Sanger sequencing were used to genotype 199 patients with demyelinating disease and 200 controls, all Mexicans of mixed race; frequencies of alleles, genotypes, haplotypes, and genotype combinations were compared between patients and controls. We conducted a logistic regression analysis and calculated chi-square values and 95% confidence intervals (CI); odds ratios (OR) were calculated to evaluate the association with demyelinating disease. RESULTS The TTT and CGC haplotypes were most frequent in both patients and controls. The G2677 allele was associated with demyelinating disease (OR: 1.79; 95% CI: 1.12-2.86; P=.015), as were the genotypes GG2677 (OR: 2.72; 95% CI: 1.11-6.68; P=.025) and CC3435 (OR: 1.82; 95% CI: 1.15-2.90; P=.010), the combination GG2677/CC3435 (OR: 2.02; 95% CI, 1.17-3.48; P=.010), and the CAT haplotype (OR: 0.21; 95% CI: 0.05-0.66; P=.001). TTTTTT carriers presented the earliest age of onset (23.0±7.7 years, vs. 31.6±10.7; P=.0001). CONCLUSIONS The GG2677/CC3435 genotype combination is associated with demyelinating disease in this sample, particularly among men, who may present toxic accumulation of P-glycoprotein substrates. In our study, the G2677 allele of ABCB1 may differentially modulate age of onset of demyelinating disease in men and women.
Collapse
Affiliation(s)
- J L Guerrero Camacho
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - T Corona Vázquez
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - J J Flores Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Ochoa Morales
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - L Martínez Ruano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - I Torres Ramírez de Arellano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - D J Dávila Ortiz de Montellano
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México
| | - A Jara Prado
- Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México, México.
| |
Collapse
|
144
|
Degraeve AL, Moudio S, Haufroid V, Chaib Eddour D, Mourad M, Bindels LB, Elens L. Predictors of tacrolimus pharmacokinetic variability: current evidences and future perspectives. Expert Opin Drug Metab Toxicol 2020; 16:769-782. [PMID: 32721175 DOI: 10.1080/17425255.2020.1803277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.
Collapse
Affiliation(s)
- Alexandra L Degraeve
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Serge Moudio
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| | - Vincent Haufroid
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium.,Department of Clinical Chemistry, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Djamila Chaib Eddour
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Michel Mourad
- Kidney and Pancreas Transplantation Unit, Cliniques Universitaires Saint-Luc , Brussels, Belgium
| | - Laure B Bindels
- Metabolism and Nutrition Research Group (Mnut), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics (PMGK), Louvain Drug Research Institute (LDRI), Université Catholique De Louvain , Brussels, Belgium.,Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut De Recherche Expérimentale Et Clinique (IREC), Université Catholique De Louvain , Brussels, Belgium
| |
Collapse
|
145
|
Jeong YS, Lam TG, Jeong S, Ahn SG. Metformin Derivative HL156A Reverses Multidrug Resistance by Inhibiting HOXC6/ERK1/2 Signaling in Multidrug-Resistant Human Cancer Cells. Pharmaceuticals (Basel) 2020; 13:E218. [PMID: 32872293 PMCID: PMC7560051 DOI: 10.3390/ph13090218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance is a significant clinical crisis in cancer treatment and has been linked to the cellular expression of multidrug efflux transporters. The aim of this study was to examine the effects and mechanisms of the metformin derivative HL156A on human multidrug resistance (MDR) cancer cells. Here, HL156A significantly suppressed cell growth and colony formation through G2/M phase cell cycle arrest in MDR cancer cells. HL156A also reduced the wound closure rate and cell migration and induced caspase-3-dependent apoptosis. We found that HL156A inhibited the expression of MDR1 by inhibiting the HOXC6-mediated ERK1/2 signaling pathway and increased the sensitivity to paclitaxel or doxorubicin in MDR cells. Furthermore, HL156A significantly inhibited angiogenesis in a chicken chorioallantoic membrane (CAM) assay. These results suggest the potential of the metformin derivative HL156A as a candidate therapeutic modality for the treatment of human multidrug-resistant cancers.
Collapse
Affiliation(s)
| | | | - Seho Jeong
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju 61452, Korea; (Y.S.J.); (T.G.L.); (S.J.)
| |
Collapse
|
146
|
Boddy AM, Harrison TM, Abegglen LM. Comparative Oncology: New Insights into an Ancient Disease. iScience 2020; 23:101373. [PMID: 32738614 PMCID: PMC7394918 DOI: 10.1016/j.isci.2020.101373] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer has deep evolutionary roots and is an important source of selective pressure in organismal evolution. Yet, we find a great deal of variation in cancer vulnerabilities across the tree of life. Comparative oncology offers insights into why some species vary in their susceptibility to cancer and the mechanisms responsible for the diversity of cancer defenses. Here we provide an overview for why cancer persists across the tree of life. We then summarize current data on cancer in mammals, reptiles, and birds in comparison with commonly reported human cancers. We report on both novel and shared mechanisms of cancer protection in animals. Cross-discipline collaborations, including zoological and aquarium institutions, wildlife and evolutionary biologists, veterinarians, medical doctors, cancer biologists, and oncologists, will be essential for progress in the field of comparative oncology. Improving medical treatment of humans and animals with cancer is the ultimate promise of comparative oncology.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA, USA.
| | - Tara M Harrison
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Lisa M Abegglen
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
147
|
Gerhard AP, Krücken J, Heitlinger E, Janssen IJI, Basiaga M, Kornaś S, Beier C, Nielsen MK, Davis RE, Wang J, von Samson-Himmelstjerna G. The P-glycoprotein repertoire of the equine parasitic nematode Parascaris univalens. Sci Rep 2020; 10:13586. [PMID: 32788636 PMCID: PMC7423980 DOI: 10.1038/s41598-020-70529-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
P-glycoproteins (Pgp) have been proposed as contributors to the widespread macrocyclic lactone (ML) resistance in several nematode species including a major pathogen of foals, Parascaris univalens. Using new and available RNA-seq data, ten different genomic loci encoding Pgps were identified and characterized by transcriptome-guided RT-PCRs and Sanger sequencing. Phylogenetic analysis revealed an ascarid-specific Pgp lineage, Pgp-18, as well as two paralogues of Pgp-11 and Pgp-16. Comparative gene expression analyses in P. univalens and Caenorhabditis elegans show that the intestine is the major site of expression but individual gene expression patterns were not conserved between the two nematodes. In P. univalens, PunPgp-9, PunPgp-11.1 and PunPgp-16.2 consistently exhibited the highest expression level in two independent transcriptome data sets. Using RNA-Seq, no significant upregulation of any Pgp was detected following in vitro incubation of adult P. univalens with ivermectin suggesting that drug-induced upregulation is not the mechanism of Pgp-mediated ML resistance. Expression and functional analyses of PunPgp-2 and PunPgp-9 in Saccharomyces cerevisiae provide evidence for an interaction with ketoconazole and ivermectin, but not thiabendazole. Overall, this study established reliable reference gene models with significantly improved annotation for the P. univalens Pgp repertoire and provides a foundation for a better understanding of Pgp-mediated anthelmintic resistance.
Collapse
Affiliation(s)
- Alexander P Gerhard
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Jürgen Krücken
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Emanuel Heitlinger
- Institute of Biology, Molecular Parasitology, Humboldt-Universität Zu Berlin, Berlin, Germany.,Leibniz Institute for Zoo and Wildlife Research, Research Group Ecology and Evolution of Parasite Host Interactions, Berlin, Germany
| | - I Jana I Janssen
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Marta Basiaga
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Kraków, Poland
| | - Sławomir Kornaś
- Department of Zoology and Animal Welfare, University of Agriculture in Kraków, Kraków, Poland
| | - Céline Beier
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Martin K Nielsen
- Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, USA
| | - Richard E Davis
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, USA
| | - Jianbin Wang
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, USA.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
148
|
Brazeau DA, Attwood K, Meaney CJ, Wilding GE, Consiglio JD, Chang SS, Gundroo A, Venuto RC, Cooper L, Tornatore KM. Beyond Single Nucleotide Polymorphisms: CYP3A5∗3∗6∗7 Composite and ABCB1 Haplotype Associations to Tacrolimus Pharmacokinetics in Black and White Renal Transplant Recipients. Front Genet 2020; 11:889. [PMID: 32849848 PMCID: PMC7433713 DOI: 10.3389/fgene.2020.00889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Interpatient variability in tacrolimus pharmacokinetics is attributed to metabolism by cytochrome P-450 3A5 (CYP3A5) isoenzymes and membrane transport by P-glycoprotein. Interpatient pharmacokinetic variability has been associated with genotypic variants for both CYP3A5 or ABCB1. Tacrolimus pharmacokinetics was investigated in 65 stable Black and Caucasian post-renal transplant patients by assessing the effects of multiple alleles in both CYP3A5 and ABCB1. A metabolic composite based upon the CYP3A5 polymorphisms: ∗3(rs776746), ∗6(10264272), and ∗7(41303343), each independently responsible for loss of protein expression was used to classify patients as extensive, intermediate and poor metabolizers. In addition, the role of ABCB1 on tacrolimus pharmacokinetics was assessed using haplotype analysis encompassing the single nucleotide polymorphisms: 1236C > T (rs1128503), 2677G > T/A(rs2032582), and 3435C > T(rs1045642). Finally, a combined analysis using both CYP3A5 and ABCB1 polymorphisms was developed to assess their inter-related influence on tacrolimus pharmacokinetics. Extensive metabolizers identified as homozygous wild type at all three CYP3A5 loci were found in 7 Blacks and required twice the tacrolimus dose (5.6 ± 1.6 mg) compared to Poor metabolizers [2.5 ± 1.1 mg (P < 0.001)]; who were primarily Whites. These extensive metabolizers had 2-fold faster clearance (P < 0.001) with 50% lower AUC∗ (P < 0.001) than Poor metabolizers. No differences in C12 h were found due to therapeutic drug monitoring. The majority of blacks (81%) were classified as either Extensive or Intermediate Metabolizers requiring higher tacrolimus doses to accommodate the more rapid clearance. Blacks who were homozygous for one or more loss of function SNPS were associated with lower tacrolimus doses and slower clearance. These values are comparable to Whites, 82% of who were in the Poor metabolic composite group. The ABCB1 haplotype analysis detected significant associations of the wildtype 1236T-2677T-3435T haplotype to tacrolimus dose (P = 0.03), CL (P = 0.023), CL/LBW (P = 0.022), and AUC∗ (P = 0.078). Finally, analysis combining CYP3A5 and ABCB1 genotypes indicated that the presence of the ABCB1 3435 T allele significantly reduced tacrolimus clearance for all three CPY3A5 metabolic composite groups. Genotypic associations of tacrolimus pharmacokinetics can be improved by using the novel composite CYP3A5∗3∗4∗5 and ABCB1 haplotypes. Consideration of multiple alleles using CYP3A5 metabolic composites and drug transporter ABCB1 haplotypes provides a more comprehensive appraisal of genetic factors contributing to interpatient variability in tacrolimus pharmacokinetics among Whites and Blacks.
Collapse
Affiliation(s)
- Daniel A. Brazeau
- Department of Pharmacy Practice, Administration and Research, School of Pharmacy, Marshall University, Huntington, WV, United States
| | - Kristopher Attwood
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Calvin J. Meaney
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Gregory E. Wilding
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Joseph D. Consiglio
- Department of Biostatistics, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - Shirley S. Chang
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Aijaz Gundroo
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Rocco C. Venuto
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
- Erie County Medical Center, Buffalo, NY, United States
| | - Louise Cooper
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
| | - Kathleen M. Tornatore
- Immunosuppressive Pharmacology Research Program, Translational Pharmacology Research Core, NYS Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, United States
- School of Pharmacy and Pharmaceutical Sciences, Buffalo, NY, United States
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
149
|
DNA extraction from fresh and frozen plasma: an alternative for real-time PCR genotyping in pharmacogenetics. Mol Biol Rep 2020; 47:6451-6455. [DOI: 10.1007/s11033-020-05664-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
|
150
|
Hsin CH, Stoffel MS, Gazzaz M, Schaeffeler E, Schwab M, Fuhr U, Taubert M. Combinations of common SNPs of the transporter gene ABCB1 influence apparent bioavailability, but not renal elimination of oral digoxin. Sci Rep 2020; 10:12457. [PMID: 32719417 PMCID: PMC7385621 DOI: 10.1038/s41598-020-69326-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Effects of different genotypes on the pharmacokinetics of probe substrates may support their use as phenotyping agents for the activity of the respective enzyme or transporter. Digoxin is recommended as a probe substrate to assess the activity of the transporter P-glycoprotein (P-gp) in humans. Current studies on the individual effects of three commonly investigated single nucleotide polymorphisms (SNPs) of the ABCB1 gene encoding P-gp (C1236T, G2677T/A, and C3435T) on digoxin pharmacokinetics are inconclusive. Since SNPs are in incomplete linkage disequilibrium, considering combinations of these SNPs might be necessary to assess the role of polymorphisms in digoxin pharmacokinetics accurately. In this study, the relationship between SNP combinations and digoxin pharmacokinetics was explored via a population pharmacokinetic approach in 40 volunteers who received oral doses of 0.5 mg digoxin. Concerning the SNPs 1236/2677/3435, the following combinations were evaluated: CGC, CGT, and TTT. Carriers of CGC/CGT and TTT/TTT had 35% higher apparent bioavailability compared to the reference group CGC/CGC, while no difference was seen in CGC/TTT carriers. No significant effect on renal clearance was observed. The population pharmacokinetic model supports the use of oral digoxin as a phenotyping substrate of intestinal P-gp, but not to assess renal P-gp activity.
Collapse
Affiliation(s)
- Chih-Hsuan Hsin
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Marc S Stoffel
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Malaz Gazzaz
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany.,Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elke Schaeffeler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Clinical Pharmacology, University of Tuebingen, Tuebingen, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
| | - Uwe Fuhr
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany
| | - Max Taubert
- Faculty of Medicine and University Hospital Cologne, Center for Pharmacology, Department I of Pharmacology, University of Cologne, Cologne, Germany.
| |
Collapse
|