101
|
A Review of Intraocular Pressure (IOP) and Axial Myopia. J Ophthalmol 2022; 2022:5626479. [PMID: 35855886 PMCID: PMC9288324 DOI: 10.1155/2022/5626479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
The pathogenesis of myopia is driven by genetic and environmental risk factors. Accommodation not only alters the curvature and shape of the lens but also involves contraction of the ciliary and extraocular muscles, which influences intraocular pressure (IOP). Scleral matrix remodeling has been shown to contribute to the biomechanical susceptibility of the sclera to accommodation-induced IOP fluctuations, resulting in reduced scleral thickness, axial length (AL) elongation, and axial myopia. The rise in IOP can increase the burden of scleral stretching and cause axial lengthening. Although the accommodation and IOP hypotheses were proposed long ago, they have not been validated. This review provides a brief and updated overview on studies investigating the potential role of accommodation and IOP in myopia progression.
Collapse
|
102
|
Li X, Huang Y, Zhang J, Ding C, Chen Y, Chen H, Bao J. Treatment zone decentration promotes retinal reshaping in Chinese myopic children wearing orthokeratology lenses. Ophthalmic Physiol Opt 2022; 42:1124-1132. [PMID: 35598145 PMCID: PMC9544447 DOI: 10.1111/opo.12996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE To investigate whether the treatment zone (TZ) decentration in orthokeratology (OK) lenses affects retinal expansion in Chinese children with myopia. METHODS Children aged 8 to 13 years (n = 30) were assessed over 13 months comprising 12 months of OK lens wear followed by discontinuation of lens wear for 1 month. Corneal topography was measured at 0, 1, 3, 6, 9, 12 and 13 months. TZ decentration of the OK lens was calculated, and subjects were subdivided into a small decentration group (group S) and a large decentration group (group L) based on the median value of the weighted average decentration (dave ). Central axial length (AL) and peripheral eye lengths (PELs) at the central retina, as well as 10°, 20° and 30° nasally and temporally were measured at 0 and 13 months under cycloplegia. Second-order polynomial (y = ax2 + bx + c) and linear fits (y = Kx + B) were applied to the peripheral relative eye length (PREL), and the coefficients 'a' and 'K' were used to describe the shape of the eye. RESULTS Mean AL growth for one year was 0.28 ± 0.17 mm. In a multiple linear regression model, AL elongation was related to the baseline age (β = -0.41, p = 0.01) and the dave (β = -0.37, p = 0.03) (R2 = 0.34, p = 0.002). When compared with smaller dave (0.45 ± 0.15 mm), a larger dave (0.89 ± 0.17 mm) was associated with slower ocular growth (central: 0.20 ± 0.13 mm vs. 0.35 ± 0.17 mm, p = 0.009; 10° nasal: 0.26 ± 0.18 mm vs. 0.45 ± 0.21 mm, p = 0.02; 10° temporal: 0.17 ± 0.14 mm vs. 0.32 ± 0.19 mm, p = 0.02) and more oblate retina shape ('a': -0.13 ± 0.02 vs. -0.14 ± 0.02, p = 0.02; Knasal : 0.35 ± 0.11 vs. 0.39 ± 0.09, p = 0.02; Ktemporal : -0.42 ± 0.08 vs. -0.46 ± 0.08, p = 0.004). CONCLUSIONS Greater TZ decentration with the use of OK lenses was associated with slower axial growth and a more oblate retinal shape. TZ decentration caused local defocusing changes, which may inhibit myopic progression. These findings may have important implications for improving optical designs for myopia control.
Collapse
Affiliation(s)
- Xue Li
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yingying Huang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jiali Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Chenglu Ding
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Yunyun Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Hao Chen
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| | - Jinhua Bao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China.,National Clinical Research Center for Ocular Diseases, Wenzhou, China
| |
Collapse
|
103
|
Mori K, Kuroha S, Hou J, Jeong H, Ogawa M, Ikeda SI, Kang JX, Negishi K, Torii H, Arita M, Kurihara T, Tsubota K. Lipidomic analysis revealed n-3 polyunsaturated fatty acids suppressed choroidal thinning and myopia progression in mice. FASEB J 2022; 36:e22312. [PMID: 35532744 DOI: 10.1096/fj.202101947r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Myopia is increasing worldwide and its preventable measure should urgently be pursued. N-3 polyunsaturated fatty acids (PUFAs) have been reported to have various effects such as vasodilative and anti-inflammatory, which myopia may be involved in. This study is to investigate the inhibitory effect of PUFAs on myopia progression. A lens-induced myopia (LIM) model was prepared using C57B L6/J 3-week-old mice, which were equipped with a -30 diopter lens to the right eye. Chows containing two different ratios of n-3/n-6 PUFA were administered to the mice, and myopic shifts were confirmed in choroidal thickness, refraction, and axial length in the n-3 PUFA-enriched chow group after 5 weeks. To exclude the possibility that the other ingredients in the chow may have taken the suppressive effect, fat-1 transgenic mice, which can produce n-3 PUFAs endogenously, demonstrated significant suppression of myopia. To identify what elements in n-3 PUFAs took effects on myopia suppression, enucleated eyes were used for targeted lipidomic analysis, and eicosapentaenoic acid (EPA) were characteristically distributed. Administration of EPA to the LIM model confirmed the inhibitory effect on choroidal thinning and myopia progression. Subsequently, to identify the elements and the metabolites of fatty acids effective on myopia suppression, targeted lipidomic analysis was performed and it demonstrated that metabolites of EPA were involved in myopia suppression, whereas prostaglandin E2 and 14,15-dihydrotestosterone were associated with progression of myopia. In conclusion, EPA and its metabolites are related to myopia suppression and inhibition of choroidal thinning.
Collapse
Affiliation(s)
- Kiwako Mori
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Sayoko Kuroha
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Jing Hou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Heonuk Jeong
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Ogawa
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Jing X Kang
- Laboratory for Lipid Medicine and Technology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Hidemasa Torii
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Arita
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Tokyo, Japan.,Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Toshihide Kurihara
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan.,Tsubota Laboratory, Inc., Tokyo, Japan
| |
Collapse
|
104
|
Dhakal R, Shah R, Huntjens B, Verkicharla PK, Lawrenson J. Time spent outdoors as an intervention for myopia prevention and control in children: an overview of systematic reviews. Ophthalmic Physiol Opt 2022; 42:545-558. [PMID: 35072278 PMCID: PMC9305934 DOI: 10.1111/opo.12945] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Outdoor light exposure is considered a safe and effective strategy to reduce myopia development and aligns with existing public health initiatives to promote healthier lifestyles in children. However, it is unclear whether this strategy reduces myopia progression in eyes that are already myopic. This study aims to conduct an overview of systematic reviews (SRs) reporting time spent outdoors as a strategy to prevent myopia or slow its progression in children. METHODS We searched the Cochrane Library, EMBASE, MEDLINE and CINAHL from inception to 1 November 2020 to identify SRs that evaluated the association between outdoor light exposure and myopia development or progression in children. Outcomes included incident myopia, prevalent myopia and change in spherical equivalent refraction (SER) and axial length (AL) to evaluate annual rates of myopia progression. The methodological quality and risk of bias of included SRs were assessed using the AMSTAR-2 and ROBIS tools, respectively. RESULTS Seven SRs were identified, which included data from 47 primary studies with 63,920 participants. Pooled estimates (risk or odds ratios) consistently demonstrated that time outdoors was associated with a reduction in prevalence and incidence of myopia. In terms of slowing progression in eyes that were already myopic, the reported annual reductions in SER and AL from baseline were small (0.13-0.17 D) and regarded as clinically insignificant. Methodological quality assessment using AMSTAR-2 found that all reviews had one or more critical flaws and the ROBIS tool identified a low risk of bias in only two of the included SRs. CONCLUSION This overview found that increased exposure to outdoor light reduces myopia development. However, based on annual change in SER and AL, there is insufficient evidence for a clinically significant effect on myopia progression. The poor methodological quality and inconsistent reporting of the included systematic reviews reduce confidence in the estimates of effect.
Collapse
Affiliation(s)
- Rohit Dhakal
- Myopia Research LabProf. Brien Holden Eye Research CentreL V Prasad Eye InstituteHyderabadIndia
- Centre for Applied Vision ResearchSchool of Health Sciences, CityUniversity of LondonLondonUK
| | - Rakhee Shah
- Centre for Applied Vision ResearchSchool of Health Sciences, CityUniversity of LondonLondonUK
| | - Byki Huntjens
- Centre for Applied Vision ResearchSchool of Health Sciences, CityUniversity of LondonLondonUK
| | - Pavan K Verkicharla
- Myopia Research LabProf. Brien Holden Eye Research CentreL V Prasad Eye InstituteHyderabadIndia
| | - John G Lawrenson
- Centre for Applied Vision ResearchSchool of Health Sciences, CityUniversity of LondonLondonUK
| |
Collapse
|
105
|
Mutti DO, Sinnott LT, Brennan NA, Cheng X, Zadnik K. The Limited Value of Prior Change in Predicting Future Progression of Juvenile-onset Myopia. Optom Vis Sci 2022; 99:424-433. [PMID: 35511119 PMCID: PMC9096964 DOI: 10.1097/opx.0000000000001883] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Identifying children at highest risk for rapid myopia progression and/or rapid axial elongation could help prioritize who should receive clinical treatment or be enrolled in randomized clinical trials. Our models suggest that these goals are difficult to accomplish. PURPOSE This study aimed to develop models predicting future refractive error and axial length using children's baseline data and history of myopia progression and axial elongation. METHODS Models predicting refractive error and axial length were created using randomly assigned training and test data sets from 916 myopic participants in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error Study. Subjects were 7 to 14 years of age at study entry with three consecutive annual visits that included cycloplegic A-scan ultrasound and autorefraction. The effect of adding prior change in axial length and refractive error was evaluated for each model. RESULTS Age, ethnicity, and greater myopia were significant predictors of future refractive error and axial length, whereas prior progression or elongation, near work, time outdoors, and parental myopia were not. The 95% limits for the difference between actual and predicted change were ±0.22 D and ±0.14 mm without prior change data compared with ±0.26 D and ±0.16 mm with prior change data. Sensitivity and specificity for identifying fast progressors were between 60.8 and 63.2%, respectively, when the cut points were close to the sample average. Positive predictive value and sample yield were even lower when the cut points were more extreme. CONCLUSIONS Young, more myopic Asian American children in the Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error Study were the most likely to progress rapidly. Clinical trials should expect average progression rates that reflect sample demographics and may have difficulty recruiting generalizable samples that progress faster than that average. Knowing progression or elongation history does not seem to help the clinical decision regarding initiating myopia control.
Collapse
Affiliation(s)
| | | | | | - Xu Cheng
- The Ohio State University College of Optometry, Columbus, Ohio
| | - Karla Zadnik
- The Ohio State University College of Optometry, Columbus, Ohio
| |
Collapse
|
106
|
Myopia: Mechanisms, Interventional Strategies, and Clinical Evidence. Optom Vis Sci 2022; 99:321. [PMID: 35383730 DOI: 10.1097/opx.0000000000001895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
107
|
Redondo B, Vera J, Molina R, Galán T, Machado P, Jiménez R. Changes in accommodation and behavioural performance with a contact lens for myopia management: A comparison between a dual-focus and a single-vision soft contact lens. Ophthalmic Physiol Opt 2022; 42:753-761. [PMID: 35305040 PMCID: PMC9313609 DOI: 10.1111/opo.12978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/02/2022]
Abstract
Introduction Dual‐focus soft contact lenses for myopia management have demonstrated to be an effective strategy to reduce myopia progression. However, this optical design has been shown to alter visual quality and accommodative function. The aim of this study was to examine the accommodative and behavioural performance during the execution of a psychomotor vigilance task (PVT) while wearing dual‐focus and single‐vision soft contact lenses. Methods The steady‐state accommodative response was recorded with the WAM‐5500 binocular open‐field autorefractor during the execution of a 10‐min PVT at 50 cm either with the dual‐focus (MiSight 1‐day) or single‐vision (Proclear 1‐day) soft contact lenses, using a sample of 23 healthy young adults. Each experimental session was performed on two different days in a counterbalanced order. Results A greater lag of accommodation, variability of accommodation and reaction time was found while wearing dual‐focus in comparison with single‐vision soft contact lenses (mean differences during the 10‐min PVT were 0.58 ± 0.81 D, p < 0.001; 0.31 ± 0.17 D, p < 0.001 and 15.22 ± 20.93 ms, p = 0.002, respectively). Also, a time‐on‐task effect was found for the variability of accommodation and reaction time (p = 0.001 and p < 0.001, respectively), observing higher values over time. However, the lag of accommodation did not change significantly as a function of time‐on‐task (p = 0.33). Conclusion Dual‐focus soft contact lens wear influences the steady‐state accommodative response and behavioural performance during the execution of a visual vigilance task in the short‐term. Eye care practitioners should be aware of these effects when prescribing these lenses for myopia management, and provide specific recommendations according to the individual visual needs.
Collapse
Affiliation(s)
- Beatriz Redondo
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Jesús Vera
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Rubén Molina
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Tomás Galán
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Pedro Machado
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| | - Raimundo Jiménez
- CLARO (Clinical and Laboratory Applications of Research in Optometry) Research Group, Department of Optics, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
108
|
Abstract
ABSTRACT Myopia is a global epidemic on the rise, garnering increased attention, particularly in therapeutics and prevention, and the field of myopia control. This study reviews the current management options including contact lenses, spectacles, atropine, and environmental and behavioral modifications. Particular attention is given to the US perspective.
Collapse
|
109
|
Carnt NA, Man REK, Fenwick EK, Lamoureux EL, Keay LJ. Impact of Acanthamoeba Keratitis on the Vision-Related Quality of Life of Contact Lens Wearers. Cornea 2022; 41:206-210. [PMID: 35037904 DOI: 10.1097/ico.0000000000002901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 08/29/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim of this study was to determine the impact of Acanthamoeba keratitis (AK) caused by contact lens (CL) use on vision-related quality of life (VRQOL) and the sociodemographic factors and disease outcome associated with VRQOL. METHODS Sixty-one CL-associated AK cases and 59 asymptomatic CL wearers (mean age ±SD 39.4 ± 16.5 vs. 45.5 ± 15.2 yrs, P = 0.04) were recruited from Moorfields Eye Hospital and Institute for Optometry, London. AK cases were surveyed during active disease and were stratified into "poor" and "good" outcomes based on clinical features. VRQOL was measured using Rasch-transformed scores from the Emotional, Mobility, and Reading domains of the 32-item Impact of Visual Impairment questionnaire. AK cases were compared with controls and "poor" outcomes compared with "good" with multivariable linear regression. Multivariable linear regression models were also used to identify the sociodemographic factors and disease outcome associated with VRQOL. RESULTS AK was associated with significant and substantial reductions in all 3 evaluated domains of VRQOL (Reading -59.6%, Mobility -59.8%, and Emotional -66.2%) compared with controls, independent of sociodemographic factors. Patients with AK who experienced poor outcomes, those who were of British White race (compared with all other races) and female, had lower VRQOL scores across all domains. Patients with AK with lower incomes scored worse on Reading and Mobility domains, whereas those with lower education had poorer Emotional scores. CONCLUSIONS AK has a considerable detrimental impact on VRQOL. Clinicians should consider the importance of referring patients with AK for rehabilitative support and counseling as part of active disease management.
Collapse
Affiliation(s)
- Nicole A Carnt
- School of Optometry and Vision Science, Kensington UNSW, Sydney, Australia
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ryan E K Man
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore ; and
- Duke-NUS Medical School, Singapore
| | - Eva K Fenwick
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore ; and
- Duke-NUS Medical School, Singapore
| | - Ecosse L Lamoureux
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore ; and
- Duke-NUS Medical School, Singapore
| | - Lisa J Keay
- School of Optometry and Vision Science, Kensington UNSW, Sydney, Australia
| |
Collapse
|
110
|
The impact of the COVID-19 pandemic, online-learning on the state of visual system and psychological state of students. EUREKA: HEALTH SCIENCES 2022. [DOI: 10.21303/2504-5679.2022.002277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study: to identify and analyze changes in the lifestyle and psychological sphere of students who are undergoing online training in quarantine isolation due to the COVID-19 pandemic.
Material and methods: 160 students were examined for the myopic refraction using the Duochrome Test, as well as shifts in the quality of vision as a result of online learning. All participants were also interviewed to ascertain living conditions and psychological status during domestic learning related to COVID-19 isolation.
Result: it was found that 42.5 % participants have myopia, most of them students of 1 and 4 courses (26.5 % and 30.9 %, respectively). 85.6 % respondents noted deterioration in health after long-term visual work with personal computer and/or smartphone. The leading symptoms associated with work on digital displays were: decreased visual acuity and binocular vision disorders (81.9 %), headache (75.6 %), back muscle pain (71.9 %), eyes redness (55.6 %), dry and itchy eyes (45 % of respondents). It has been established what 75.6 % respondents indicated deterioration in their psychological condition as a result of quarantine restrictions: 68.1 % – stress, 48.8 % – emotional instability (irritability), 51.9 % – sleep disorders (insomnia), 16.3 % – depression. It is determined that daily average working time in the conditions of domestic online learning was 6.4±2.6 hours (compared to 4.1±1.7 hours in the pre-quarantine period).
Conclusion: revealed deterioration in the quality of vision, general well-being and the psychological sphere of students who are undergoing online quarantine training due to the COVID-19 pandemic.
Collapse
|
111
|
|
112
|
Tran D, Heinrich C, Ali SF. The Myopia Epidemic: Treatment Options in the Pediatric Population. Int Ophthalmol Clin 2022; 62:231-240. [PMID: 34965237 DOI: 10.1097/iio.0000000000000404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
113
|
Effect of Violet Light-Transmitting Eyeglasses on Axial Elongation in Myopic Children: A Randomized Controlled Trial. J Clin Med 2021; 10:jcm10225462. [PMID: 34830743 PMCID: PMC8624215 DOI: 10.3390/jcm10225462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
The fact that outdoor light environment is an important suppressive factor against myopia led us to invent violet light-transmitting eyeglasses (VL glasses) which can transmit violet light (VL), 360-400 nm in wavelength, for the suppression of myopia, and can meanwhile block harmful ultraviolet waves from sunlight. The current study is a double-blinded randomized clinical trial to investigate the myopia-suppressive effect of VL glasses compared to conventional eyeglasses (placebo glasses) that do not transmit VL. The subjects were children aged from 6 to 12 years old, the population in which myopia progression is generally accelerated, and the myopia suppressive effect was followed up for two years in a city in Japan. Periodical ophthalmic examinations, interviews, and measurements of reflection and axial length under mydriasis were performed at the initial visit (the baseline) and at 1, 6, 12, 18, and 24 months. The mean change in axial length in the VL glasses group was significantly smaller than in the placebo glasses group when time for near-work was less than 180 min and when the subjects were limited to those who had never used eyeglasses before this trial (p < 0.01); however, this change was not significant without subgrouping. The suppressive rate for axial elongation in the VL glasses group was 21.4% for two years.
Collapse
|
114
|
Lipson MJ, Boland B, McAlinden C. Vision-related quality of life with myopia management: A review. Cont Lens Anterior Eye 2021; 45:101538. [PMID: 34802915 DOI: 10.1016/j.clae.2021.101538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/03/2022]
Abstract
The disease of myopia has come into focus as a worldwide public health concern. Myopia has shown increasing prevalence, incidence at earlier age and progression to a higher degree. Progressive increase in degree of myopia is strongly associated with increase in axial length of the eye. Various interventions have been shown to slow axial elongation in children. These interventions have been studied to assess efficacy in slowing axial elongation and correction of vision. In addition, research into quality of vision, risk of adverse events, overall safety and impact on vision-related quality (VR-QoL) of life has been pursued. In contrast, studies have been published to demonstrate the risks of myopia, high myopia and increased axial length. This review will discuss VR-QoL assessment on the most effective and most commonly prescribed interventions to slow axial elongation and myopia progression. The patient attributes considered are VR-QoL scores from validated instruments. The development and use of validated survey instruments to assess the patient-reported outcomes is discussed. The review demonstrates that there are numerous factors that may impact VR-QoL to evaluate in the decision-making process when eye care providers consider when, how and if to prescribe myopia management (MM) for children with myopia.
Collapse
Affiliation(s)
- Michael J Lipson
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center (Retired), Independent Consultant, United States.
| | - Brittany Boland
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, United States
| | - Colm McAlinden
- Department of Ophthalmology, Singleton Hospital, Swansea University Health Board, Swansea, UK; Department of Ophthalmology, Royal Gwent Hospital, Aneurin Bevan University Health Board, Newport, UK; Wenzhou Medical University, Wenzhou, China; Eye & ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
115
|
Lee YS, Choi SE, Hahm J, Kim MJ, Bae HS, Yi K, Lim HT, Hyon JY. Digital Therapeutics: Exploring the Possibilities of Digital Intervention for Myopia. Front Digit Health 2021; 3:710644. [PMID: 34713181 PMCID: PMC8521975 DOI: 10.3389/fdgth.2021.710644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 11/23/2022] Open
Abstract
Pediatric myopia is increasing globally and has become a major public health issue. However, the mechanism of pediatric myopia is still poorly understood, and there is no effective treatment to prevent its progression. Based on results from animal and clinical studies, certain neuronal–humoral factors (NHFs), such as IGF-1, dopamine, and cortisol may be involved in the progression of pediatric myopia. Digital therapeutics uses evidence-based software as therapeutic interventions and it has the potential to offer innovative treatment strategies for pediatric myopia beyond conventional treatment methods. In this perspective article, we introduce digital therapeutics SAT-001, a software algorithm that modulates the level of NHFs to reduce the progression of pediatric myopia. The proposed mechanism is based on a theoretical hypothesis derived from scientific research and clinical studies and will be further confirmed by evidence generated from clinical studies involving pediatric myopia.
Collapse
Affiliation(s)
| | | | - Jarang Hahm
- S-Alpha Therapeutics, Inc., Seoul, South Korea
| | - Myoung Joon Kim
- S-Alpha Therapeutics, Inc., Seoul, South Korea.,Renew Seoul Eye Center, Seoul, South Korea
| | | | - Kayoung Yi
- Department of Ophthalmology, Hallym University Kangnam Sacred Heart Hospital, Seoul, South Korea
| | - Hyun Taek Lim
- Department of Ophthalmology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Joon Young Hyon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
116
|
Yang Y, Cheung SW, Cho P, Vincent SJ. Comparison between estimated and measured myopia progression in Hong Kong children without myopia control intervention. Ophthalmic Physiol Opt 2021; 41:1363-1370. [PMID: 34596263 PMCID: PMC9291478 DOI: 10.1111/opo.12895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Purpose To compare myopia progression estimated by the Brien Holden Vision Institute (BHVI) Myopia Calculator with cycloplegic measures in Hong Kong children wearing single‐vision distance spectacles over a 1‐ and 2‐year period. Methods Baseline age, spherical equivalent refraction (SER) and ethnicity of control participants from previous longitudinal myopia studies were input into the BHVI Myopia Calculator to generate an estimate of the SER at 1 and 2 years. Differences between the measured and estimated SER (116 and 100 participants with 1‐ and 2‐year subjective refraction data, respectively, and 111 and 95 participants with 1‐ and 2‐year objective refraction, respectively) were analysed, and the measured SER compared with the 95% confidence interval (CI) of the estimated SER. Results In children aged 7–13 years, 36% progressed within the 95% CI of the Myopia Calculator's estimate, whereas 33% became less myopic than predicted (range 0.31 to 1.92 D less at 2 years) and 31% became more myopic than predicted (range 0.25 to 2.33 D more myopic at 2 years). The average difference between the estimated and measured subjective or objective SER at 1 and 2 years of follow‐up was not clinically significant (<0.25 D). Conclusions On average, the BHVI Myopia Calculator estimated SER was in close agreement with measured cycloplegic SER after 1 and 2 years of follow‐up (mean differences < 0.25 D). However, the measured myopia progression only fell within the 95% CI of the estimated SER for 32%–38% of children, suggesting that the BHVI ‘without management’ progression data should be interpreted with caution. The inclusion of additional data, modified to include axial elongation, from longitudinal studies of longer duration with larger sample sizes and a range of racial backgrounds may improve the Calculator's ability to predict future myopia progression for individual children.
Collapse
Affiliation(s)
- Yajing Yang
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Sin Wan Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Pauline Cho
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Stephen J Vincent
- Centre for Vision and Eye Research, School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Contact Lens and Visual Optics Laboratory, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
117
|
A Cooperative Management App for Parents with Myopic Children Wearing Orthokeratology Lenses: Mixed Methods Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910316. [PMID: 34639618 PMCID: PMC8507754 DOI: 10.3390/ijerph181910316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022]
Abstract
Orthokeratology (OK) lens wear is an effective modality to inhibit axial elongation in myopic children. Willingness for commitment from both parents and children contributes to the success of OK treatment. We aimed to develop and assess the usability of a mobile application on OK lens wear by quantitatively and qualitatively evaluating parents with myopic children and eye care professionals (ECPs). Moreover, the preliminary outcome was also evaluated in this study. The app was developed and tested using a co-design approach involving key stakeholders. Two prototype tests were conducted during the feasibility and utility assessment. The app features include self-reported compliance documentation, analytics, and personalized and generalized messages for compliance behaviors of OK lenses. After the trial period, the full usage of app functions ranged from 40% to 60% among the enrolled parents. After app implementation, the compliance with follow-up visits substantially improved. Qualitative data show that the high-satisfaction app functions reported by parents were the app’s reminder and axial length recording, although it was recommended that the number of compliance questions should be reduced to minimize the survey completion time. Additionally, who should complete the recording of the axial length data as well as the management and reminder for the follow-up visit remained controversial. This is the first app developed to improve parents of myopic children’s compliance with OK lens wear and to assist ECPs and parents in collaboratively monitoring and managing the use and care of OK lenses among myopic children. This study highlights the importance of interdisciplinary collaboration in the design, development, and validation of such an app.
Collapse
|
118
|
Gao Y, Lim EW, Yang A, Drobe B, Bullimore MA. The impact of spectacle lenses for myopia control on visual functions. Ophthalmic Physiol Opt 2021; 41:1320-1331. [PMID: 34529275 PMCID: PMC9291741 DOI: 10.1111/opo.12878] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022]
Abstract
Purpose Spectacle lenses containing multiple small peripheral elements have been developed for myopia control in children. It is important that their effect on vision be quantified by (i) fixation through the peripheral portion, thereby using foveal vision and (ii) by fixation through the central portion and presentation of peripheral targets. Methods The above approaches were used in five studies to evaluate two novel spectacle lens designs: spectacle lenses with Highly Aspherical Lenslets (HAL) and Slightly Aspherical Lenslets (SAL). A single vision lens served as a control. Visually normal adults participated in each study. The first two studies had subjects fixate through the periphery of the lenses. High and low (10%) contrast visual acuity was measured with the Freiburg Vision Test and reading speed for high and low contrast words measured with a sentence generator. The other three studies assessed peripheral vision while subjects fixated through the central portion of the lens. Peripheral contrast sensitivity was measured using two cycles per degree drifting Gabor stimuli. Peripheral motion perception was further evaluated using random dot stimuli. Finally, attention was measured using an established test of useful field of view with three levels of complexity. Results The periphery of the HAL lens significantly reduced low contrast visual acuity, but not high contrast visual acuity, while the effect of the SAL lens was not significant for either. Neither test lens affected reading speed for high contrast words, but the HAL lens significantly affected performance for low contrast words. Neither test lens affected peripheral motion perception or useful field of view. Conclusions Low contrast visual acuity and reading was slightly reduced while high contrast visual acuity was unaffected when fixating through the periphery of the novel lens designs. None of the peripheral measures of vision was affected by the novel lens designs.
Collapse
Affiliation(s)
- Yi Gao
- Research & Development, Vision Sciences AMERA, Essilor International, Singapore, Singapore
| | - Ee Woon Lim
- Research & Development, Vision Sciences AMERA, Essilor International, Singapore, Singapore
| | - Adeline Yang
- Research & Development, Vision Sciences AMERA, Essilor International, Singapore, Singapore
| | - Björn Drobe
- Research & Development, Vision Sciences AMERA, Essilor International, Singapore, Singapore
| | - Mark A Bullimore
- College of Optometry, University of Houston, Houston, Texas, USA
| |
Collapse
|
119
|
Efron N, Morgan PB, Jones LW, Nichols JJ. Topical Review: Bibliometric Analysis of the Emerging Field of Myopia Management. Optom Vis Sci 2021; 98:1039-1044. [PMID: 34469928 DOI: 10.1097/opx.0000000000001766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
SIGNIFICANCE Identification of the most impactful articles, authors, institutions, countries, and journals in myopia management provides a useful baseline reference for clinicians, researchers, and funding agencies in respect of this emerging field.This work aims to assemble publication metrics for myopia management to identify the most impactful articles, authors, institutions, countries, and journals in this emerging field of research. A search of the titles of articles was undertaken on the Scopus database to identify myopia management-related articles. The 25 most highly cited articles were determined from the total list of 1064 articles found. Rank-order lists by count were assembled for the top 25 in each of four categories: authors, institutions, countries, and journals. A subject-specific myopia management-related h-index (hMM-index) was derived for the entire field, in addition to each of the four categories, to serve as measures of impact in the field. Top 15 lists were generated for each category ranked by hMM-index and tabulated for consideration. An article by Christine Wildsoet and colleagues, describing choroidal and scleral mechanisms of compensation for spectacle lenses in chicks, has generated the most citations (412); Earl Smith is the most impactful author (hMM = 19); the University of Houston produces the most impactful articles (hMM = 31); the United States is the most highly ranked country (hMM = 60); and Optometry and Vision Science is the most impactful journal. Although still in its infancy, myopia management is a topic of emerging interest in the clinical and scientific ophthalmic literature. Impactful authors, institutions, countries, and journals are identified. Optometry is revealed as the leading profession in relation to the publication of myopia management-related articles.
Collapse
Affiliation(s)
| | - Philip B Morgan
- Eurolens Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
| | | | - Jason J Nichols
- School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
120
|
Hair LA, Steffensen EM, Berntsen DA. The Effects of Center-near and Center-distance Multifocal Contact Lenses on Peripheral Defocus and Visual Acuity. Optom Vis Sci 2021; 98:983-994. [PMID: 34393205 PMCID: PMC8405543 DOI: 10.1097/opx.0000000000001753] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SIGNIFICANCE Multifocal contact lenses (MFCLs) are being used clinically for myopia control. Center-distance designs caused myopic changes in defocus across the retina that varied by lens design, whereas the center-near design caused peripheral hyperopic changes. Multifocal lenses caused reductions in low-contrast vision that varied by lens design, affecting visual performance. PURPOSE The purpose of this study was to compare changes in defocus with four MFCLs, three center-distance and one center-near. METHODS Two cohorts of 25 nonpresbyopic myopic adults were enrolled. The first cohort was fitted with Proclear D and Biofinity D MFCL (center-distance, +2.50 D add), and the second cohort was fitted with NaturalVue MFCL (center-distance) and Clariti 1-Day MFCL (center-near, high add), both in random order. Overrefraction was performed to maximize visual acuity. Cycloplegic autorefraction was performed with each lens and without a lens along the line of sight and at nasal and temporal retinal locations out to 40°. Data were analyzed with repeated-measures ANOVAs with post hoc t tests, when indicated. RESULTS Changes in defocus at each location differed between MFCL designs (lens by location; both, P < .001). Clariti 1-Day caused peripheral hyperopic retinal changes (40 and 30° nasal, and 20, 30, and 40° temporal; all, P < .05). NaturalVue MFCL caused myopic changes centrally and hyperopic changes at 40° nasal and 30° temporal (all, P < .05). The remaining center-distance designs caused myopic changes at multiple locations (all, P < .05). CONCLUSIONS After overrefraction, the center-near MFCL design caused hyperopic defocus at multiple peripheral locations, which is not hypothesized to slow myopia progression. NaturalVue MFCL caused myopic changes in defocus centrally but hyperopic changes in the far periphery. Biofinity D and Proclear D caused myopic changes in retinal defocus. Further work is warranted to determine whether defocus profile differences between the center-distance designs influence any slowing of myopia progression.
Collapse
Affiliation(s)
- Lea A Hair
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas
| | - Elaine M Steffensen
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas
| | | |
Collapse
|
121
|
Klaver C, Polling JR. Myopia management in the Netherlands. Ophthalmic Physiol Opt 2021; 40:230-240. [PMID: 32202320 DOI: 10.1111/opo.12676] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE A trend that myopia is becoming gradually more common is shown in studies worldwide. Highest frequencies have been found in East Asian urban populations (96.5%) but also a study in Europe shows that nearly half of the 25-29 year olds has myopia. With the increase in prevalence, high myopia, i.e. a spherical equivalent of -6 or more and an axial length of 26 mm or more is also on the rise. High myopia particularly carries a significant risk of ocular pathology related to the long axial length. This highlights the need for myopia management in children with progressive myopia, in particular progression to high myopia. RECENT FINDINGS During the last decade, many intervention studies for myopia progression have emerged. Although lifestyle adjustments are effective, pharmacological and optical interventions have shown the highest efficacy on reduction of eye growth. High concentration atropine (0.5%-1.0%) shows the most reduction in axial length progression, but has drawbacks of light sensitivity and loss of accommodation. Nevertheless, when these side effects are mitigated by multifocal photochromatic glasses, the long-term adherence to high dose atropine is high. Lower concentrations of atropine are less effective, but have less side effects. Studies on optical interventions have reported reduction of progression for Ortho-K and multifocal contact lenses, but are in need for replication in larger studies with longer duration. SUMMARY The field of myopia management is rapidly evolving, and a position on the best approach for daily clinics is desirable. Over the last 10 years, our team of clinical researchers has developed a strategy which involves decision-making based on age, axial length, position on the axial length growth chart, progression rate, risk of high myopia, risk profile based on lifestyle and familial risk, side effects, and individual preference. This personalised approach ensures the most optimal long-term myopia control, and helps fight against visual impairment and blindness in the next generations of elderly.
Collapse
Affiliation(s)
- Caroline Klaver
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands.,Institute for Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Jan Roelof Polling
- Department of Ophthalmology and Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Optometry and Orthoptics, Hogeschool Utrecht, University of Applied Science, Utrecht, the Netherlands
| | | |
Collapse
|
122
|
Wang M, Gan L, Cui J, Shan G, Chen T, Wang X, Wang Y, Pan L, Li Z, Cui S, Yang A, Li W, Jia G, Han X, He H, Zhong Y, Ma J. Prevalence and risk factors of refractive error in Qinghai, China: a cross-sectional study in Han and Tibetan adults in Xining and surrounding areas. BMC Ophthalmol 2021; 21:260. [PMID: 34144693 PMCID: PMC8214277 DOI: 10.1186/s12886-021-01996-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/04/2021] [Indexed: 11/13/2022] Open
Abstract
Background Our study aimed to explore the prevalence and risk factors of refractive error (RE) in Han and Tibetan population aged 50–79 years in Xining and surrounding areas in Qinghai Province on Qinghai-Tibet Plateau. Methods As part of the China National Health Survey, our cross-sectional study compared the age-adjusted prevalence of RE in Han and Tibetan older adults aged 50–79 years in Xining and surrounding areas. A multivariate logistic regression model was used to identify risk factors for myopia and hyperopia. Results Among 769 Han participants and 476 Tibetan participants, the age-adjusted prevalence of myopia (spherical equivalent (SE) < − 0.5D), hyperopia (SE > + 0.5D), high myopia (SE < -6.0D) and astigmatism (cylindrical equivalent > = 0.5D) is 28.56, 22.82, 2.80, and 69.38%. Han participants have higher age-adjusted prevalence of myopia (32.93% vs 21.64%, p < 0.001), high myopia (3.93% vs 1.02%, p = 0.001) and astigmatism (72.14% vs 64.94%, p = 0.021) compared to Tibetan participants. Being Tibetan is the protective factor of myopia compared to being Han (OR 0.58, 95%CI 0.42–0.79, p < 0.001). Older age (p = 0.032), longer time length in rural area (p = 0.048), undergraduate/graduate education level (p = 0.031), lighter active level (p = 0.007) and lower BMI (p = 0.015) are risk factors for myopia. Older age (all p < 0.001) and pterygium status of the same eye (p = 0.013) also increase the hyperopia risk. Conclusions Our study found an overall prevalence of myopia of 28.56% in Xining and surrounding areas in adults older than 50 years. Han population has higher myopia risk than Tibetan population. More medical and social resources should be allocated to improve the vision and life quality of older adults.
Collapse
Affiliation(s)
| | | | - Jiantao Cui
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, China
| | - Guangliang Shan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, China
| | - Xianghua Wang
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhan Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, China
| | - Li Pan
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhanquan Li
- Qinghai University Affiliated Hospital, Xining City, Qinghai, China
| | - Sen Cui
- Qinghai University Affiliated Hospital, Xining City, Qinghai, China
| | - Airong Yang
- Qinghai University Affiliated Hospital, Xining City, Qinghai, China
| | - Wenfang Li
- Qinghai University Affiliated Hospital, Xining City, Qinghai, China
| | - Guoqiang Jia
- Qinghai University Affiliated Hospital, Xining City, Qinghai, China
| | - Ximing Han
- Qinghai University Affiliated Hospital, Xining City, Qinghai, China
| | - Huijing He
- Department of Epidemiology and Statistics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yong Zhong
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, China.
| | - Jin Ma
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifu Yuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
123
|
Ohno-Matsui K, Wu PC, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, Lai TYY, Ikuno Y, Cohen SY, Gaudric A, Jonas JB. IMI Pathologic Myopia. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 33909033 PMCID: PMC8083114 DOI: 10.1167/iovs.62.5.5] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathologic myopia is a major cause of visual impairment worldwide. Pathologic myopia is distinctly different from high myopia. High myopia is a high degree of myopic refractive error, whereas pathologic myopia is defined by a presence of typical complications in the fundus (posterior staphyloma or myopic maculopathy equal to or more serious than diffuse choroidal atrophy). Pathologic myopia often occurs in eyes with high myopia, however its complications especially posterior staphyloma can also occur in eyes without high myopia. Owing to a recent advance in ocular imaging, an objective and accurate diagnosis of pathologic myopia has become possible. Especially, optical coherence tomography has revealed novel lesions like dome-shaped macula and myopic traction maculopathy. Wide-field optical coherence tomography has succeeded in visualizing the entire extent of large staphylomas. The effectiveness of new therapies for complications have been shown, such as anti-VEGF therapies for myopic macular neovascularization and vitreoretinal surgery for myopic traction maculopathy. Myopia, especially childhood myopia, has been increasing rapidly in the world. In parallel with an increase in myopia, the prevalence of high myopia has also been increasing. However, it remains unclear whether or not pathologic myopia will increase in parallel with an increase of myopia itself. In addition, it has remained unclear whether genes responsible for pathologic myopia are the same as those for myopia in general, or whether pathologic myopia is genetically different from other myopia.
Collapse
Affiliation(s)
- Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kenji Yamashiro
- Department of Ophthalmology and Visual Sciences, University Graduate School of Medicine, Kyoto, Japan.,Department of Ophthalmology, Otsu Red-Cross Hospital, Otsu, Japan
| | | | - Yuxin Fang
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Timothy Y Y Lai
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong Eye Hospital, Hong Kong
| | - Yasushi Ikuno
- Ikuno Eye Center, 2-9-10-3F Juso-Higashi, Yodogawa-Ku, Osaka 532-0023, Japan.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Ophthalmology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Salomon Yves Cohen
- Centre Ophtalmologique d'Imagerie et de Laser, Paris, France.,Department of Ophthalmology and University Paris Est, Creteil, France
| | - Alain Gaudric
- Department of Ophthalmology, APHP, Hôpital Lariboisière and Université de Paris, Paris, France.,Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
124
|
Flitcroft's model of refractive development in childhood and the possible identification of children at risk of developing significant myopia. Cont Lens Anterior Eye 2021; 45:101451. [PMID: 33975784 DOI: 10.1016/j.clae.2021.101451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE To better understand juvenile myopia in the context of overall refractive development during childhood and to suggest more informative ways of analysing relevant data, particularly in relation to early identification of those children who are likely to become markedly myopic and would therefore benefit from myopia control. METHODS Examples of the frequency distributions of childhood mean spherical refractive errors (MSEs) at different ages, taken from previously-published longitudinal and cross-sectional studies, are analysed in terms of Flitcroft's model of a linear combination of two Gaussian distributions with different means and standard deviations. Flitcroft hypothesises that one, relatively-narrow, Gaussian (Mode 1) represents a "regulated" population which maintains normal emmetropisation and the other, broader, Gaussian (Mode 2) a "dysregulated" population. RESULTS Analysis confirms that Flitcroft's model successfully describes the major features of the frequency distribution of MSEs in randomly-selected populations of children of the same age. The narrow "regulated" Gaussian typically changes only slightly between the ages of about 6 and 15, whereas the mean of the broader "dysregulated" Gaussian changes with age more rapidly in the myopic direction and its standard deviation increases. These effects vary with the ethnicity, environment and other characteristics of the population involved. At all ages there is considerable overlap between the two Gaussians. This limits the utility of simple refractive cut-off values to identify those children likely to show marked myopic progression. CONCLUSIONS Analysing the frequency distributions for individual MSEs in terms of bi-Gaussian models can provide useful insights into childhood refractive change. A wider exploration of the methodology and its extension to include individual progression rates is warranted, using a range of populations of children exposed to different ethnic, environmental and other factors.
Collapse
|
125
|
Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, Flitcroft DI. The Risks and Benefits of Myopia Control. Ophthalmology 2021; 128:1561-1579. [PMID: 33961969 DOI: 10.1016/j.ophtha.2021.04.032] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/09/2023] Open
Abstract
PURPOSE The prevalence of myopia is increasing around the world, stimulating interest in methods to slow its progression. The primary justification for slowing myopia progression is to reduce the risk of vision loss through sight-threatening ocular pathologic features in later life. The article analyzes whether the potential benefits of slowing myopia progression by 1 diopter (D) justify the potential risks associated with treatments. METHODS First, the known risks associated with various methods of myopia control are summarized, with emphasis on contact lens wear. Based on available data, the risk of visual impairment and predicted years of visual impairment are estimated for a range of incidence levels. Next, the increased risk of potentially sight-threatening conditions associated with different levels of myopia are reviewed. Finally, a model of the risk of visual impairment as a function of myopia level is developed, and the years of visual impairment associated with various levels of myopia and the years of visual impairment that could be prevented with achievable levels of myopia control are estimated. RESULTS Assuming an incidence of microbial keratitis between 1 and 25 per 10 000 patient-years and that 15% of cases result in vision loss leads to the conclusion that between 38 and 945 patients need to be exposed to 5 years of wear to produce 5 years of vision loss. Each additional 1 D of myopia is associated with a 58%, 20%, 21%, and 30% increase in the risk of myopic maculopathy, open-angle glaucoma, posterior subcapsular cataract, and retinal detachment, respectively. The predicted mean years of visual impairment ranges from 4.42 in a person with myopia of -3 D to 9.56 in a person with myopia of -8 D, and a 1-D reduction would lower these by 0.74 and 1.21 years, respectively. CONCLUSIONS The potential benefits of myopia control outweigh the risks: the number needed to treat to prevent 5 years of visual impairment is between 4.1 and 6.8, whereas fewer than 1 in 38 will experience a loss of vision as a result of myopia control.
Collapse
Affiliation(s)
| | - Eric R Ritchey
- College of Optometry, University of Houston, Houston, Texas
| | - Sunil Shah
- Birmingham and Midland Eye Centre, Birmingham, United Kingdom; Ophthalmic and Vision Sciences Research Group, Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Nicolas Leveziel
- Service d'ophtalmologie, Centre Hospitalier Universitaire (CHU) Poitiers, Poitiers, France; University of Poitiers, Poitiers, France; Centre d'Investigation Clinique (CIC 1402), Poitiers, France; Institut National de la Santé et de la Recherche Médicale (INSERM 1084), Poitiers, France; Vision & Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom
| | - Rupert R A Bourne
- Vision & Eye Research Institute, School of Medicine, Anglia Ruskin University, Cambridge, United Kingdom; Department of Ophthalmology, Cambridge University Hospital, Cambridge, United Kingdom
| | - D Ian Flitcroft
- Department of Ophthalmology, Children's University Hospital, Dublin, Ireland; Centre for Eye Research Ireland, School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
126
|
Chamberlain P, Lazon de la Jara P, Arumugam B, Bullimore MA. Axial length targets for myopia control. Ophthalmic Physiol Opt 2021; 41:523-531. [PMID: 33951213 PMCID: PMC8252804 DOI: 10.1111/opo.12812] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE Both emmetropic and myopic eyes elongate throughout childhood. The goals of this study were to compare axial elongation among untreated progressing myopes, progressing myopes treated with a myopia control contact lens and emmetropes, in order to place axial elongation in the context of normal eye growth in emmetropic children, and to consider whether normal physiological eye growth places limits on what might be achieved with myopia control. METHODS Axial elongation data were taken from the 3-year randomised clinical trial of a myopia control dual-focus (MiSight® 1 day) contact lens. These were compared with data for myopic and emmetropic children in two large cohort studies: the Orinda Longitudinal Study of Myopia (OLSM) and the Singapore Cohort Study of the Risk Factors for Myopia (SCORM). Each study's published equations were used to calculate annual axial elongation. Four virtual cohorts-myopic and emmetropic for each model-were created, each with the same age distribution as the MiSight clinical trial subjects and the predicted cumulative elongation calculated at years 1, 2 and 3 for myopes and emmetropes using both the OLSM and SCORM models. RESULTS The untreated control myopes in the MiSight clinical trial showed mean axial elongation over 3 years (0.62 mm) similar to the virtual cohorts based on the OLSM (0.70 mm) and SCORM (0.65 mm) models. The predicted 3-year axial elongation for the virtual cohorts of emmetropes was 0.24 mm for both the OLSM and SCORM models-similar to the mean 3-year elongation in MiSight-treated myopes (0.30 mm). CONCLUSIONS The 3-year elongation in MiSight-treated myopes approached that of virtual cohorts of emmetropes with the same age distribution. It is hypothesised that myopic axial elongation is superimposed on an underlying physiological axial elongation observed in emmetropic eyes, which reflects increases in body stature. We speculate that optically based myopia control treatments may minimise the myopic axial elongation but retain the underlying physiological elongation observed in emmetropic eyes.
Collapse
|
127
|
Jong M, Jonas JB, Wolffsohn JS, Berntsen DA, Cho P, Clarkson-Townsend D, Flitcroft DI, Gifford KL, Haarman AEG, Pardue MT, Richdale K, Sankaridurg P, Tedja MS, Wildsoet CF, Bailey-Wilson JE, Guggenheim JA, Hammond CJ, Kaprio J, MacGregor S, Mackey DA, Musolf AM, Klaver CCW, Verhoeven VJM, Vitart V, Smith EL. IMI 2021 Yearly Digest. Invest Ophthalmol Vis Sci 2021; 62:7. [PMID: 33909031 PMCID: PMC8088231 DOI: 10.1167/iovs.62.5.7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose The International Myopia Institute (IMI) Yearly Digest highlights new research considered to be of importance since the publication of the first series of IMI white papers. Methods A literature search was conducted for articles on myopia between 2019 and mid-2020 to inform definitions and classifications, experimental models, genetics, interventions, clinical trials, and clinical management. Conference abstracts from key meetings in the same period were also considered. Results One thousand articles on myopia have been published between 2019 and mid-2020. Key advances include the use of the definition of premyopia in studies currently under way to test interventions in myopia, new definitions in the field of pathologic myopia, the role of new pharmacologic treatments in experimental models such as intraocular pressure-lowering latanoprost, a large meta-analysis of refractive error identifying 336 new genetic loci, new clinical interventions such as the defocus incorporated multisegment spectacles and combination therapy with low-dose atropine and orthokeratology (OK), normative standards in refractive error, the ethical dilemma of a placebo control group when myopia control treatments are established, reporting the physical metric of myopia reduction versus a percentage reduction, comparison of the risk of pediatric OK wear with risk of vision impairment in myopia, the justification of preventing myopic and axial length increase versus quality of life, and future vision loss. Conclusions Large amounts of research in myopia have been published since the IMI 2019 white papers were released. The yearly digest serves to highlight the latest research and advances in myopia.
Collapse
Affiliation(s)
- Monica Jong
- Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australian Capital Territory, Australia
- Brien Holden Vision Institute, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Jost B. Jonas
- Department of Ophthalmology Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - James S. Wolffsohn
- Optometry and Vision Science Research Group, Aston University, Birmingham, United Kingdom
| | - David A. Berntsen
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States
| | - Pauline Cho
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Gangarosa Department of Environmental Health, Emory University, Atlanta, Georgia, United States
| | - Daniel I. Flitcroft
- Department of Ophthalmology, Children's University Hospital, Dublin, Ireland
| | - Kate L. Gifford
- Myopia Profile Pty Ltd, Brisbane, Queensland, Australia
- Queensland University of Technology (QUT) School of Optometry and Vision Science, Kelvin Grove, Queensland, Australia
| | - Annechien E. G. Haarman
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Machelle T. Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Healthcare System, Decatur, Georgia, United States
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States
| | - Kathryn Richdale
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, New South Wales, Australia
- School of Optometry and Vision Science, School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Milly S. Tedja
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Joan E. Bailey-Wilson
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States
| | - Jeremy A. Guggenheim
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Christopher J. Hammond
- Section of Academic Ophthalmology, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Stuart MacGregor
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - David A. Mackey
- Centre for Eye Research Australia, Ophthalmology, Department of Surgery, University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia
- Department of Ophthalmology, Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Centre for Ophthalmology and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony M. Musolf
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States
| | - Caroline C. W. Klaver
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Virginie J. M. Verhoeven
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Earl L. Smith
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
128
|
Sankaridurg P, Tahhan N, Kandel H, Naduvilath T, Zou H, Frick KD, Marmamula S, Friedman DS, Lamoureux E, Keeffe J, Walline JJ, Fricke TR, Kovai V, Resnikoff S. IMI Impact of Myopia. Invest Ophthalmol Vis Sci 2021; 62:2. [PMID: 33909036 PMCID: PMC8083082 DOI: 10.1167/iovs.62.5.2] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 01/15/2023] Open
Abstract
The global burden of myopia is growing. Myopia affected nearly 30% of the world population in 2020 and this number is expected to rise to 50% by 2050. This review aims to analyze the impact of myopia on individuals and society; summarizing the evidence for recent research on the prevalence of myopia and high myopia, lifetime pathological manifestations of myopia, direct health expenditure, and indirect costs such as lost productivity and reduced quality of life (QOL). The principal trends are a rising prevalence of myopia and high myopia, with a disproportionately greater increase in the prevalence of high myopia. This forecasts a future increase in vision loss due to uncorrected myopia as well as high myopia-related complications such as myopic macular degeneration. QOL is affected for those with uncorrected myopia, high myopia, or complications of high myopia. Overall the current global cost estimates related to direct health expenditure and lost productivity are in the billions. Health expenditure is greater in adults, reflecting the added costs due to myopia-related complications. Unless the current trajectory for the rising prevalence of myopia and high myopia change, the costs will continue to grow. The past few decades have seen the emergence of several novel approaches to prevent and slow myopia. Further work is needed to understand the life-long impact of myopia on an individual and the cost-effectiveness of the various novel approaches in reducing the burden.
Collapse
Affiliation(s)
- Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia
| | - Nina Tahhan
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia
| | - Himal Kandel
- Save Sight Institute, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Thomas Naduvilath
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia
| | - Haidong Zou
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Kevin D. Frick
- Johns Hopkins Carey Business School, Baltimore, Maryland, United States
| | - Srinivas Marmamula
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye care, L V Prasad Eye Institute, Hyderabad, India
| | - David S. Friedman
- Glaucoma Center of Excellence, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States
| | - Ecosse Lamoureux
- Duke - NUS Medical School, Singapore; Singapore Eye Research Institute, Singapore
| | - Jill Keeffe
- Gullapalli Pratibha Rao International Centre for Advancement of Rural Eye care, L V Prasad Eye Institute, Hyderabad, India
| | - Jeffrey J. Walline
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | | | - Vilas Kovai
- Health Promotion Service, Population Health, Liverpool Hospital, SWSLHD, Health - New South Wales, New South Wales, Australia
| | - Serge Resnikoff
- Brien Holden Vision Institute, Sydney, Australia
- School of Optometry and Vision Science, University of New South Wales, New South Wales, Australia
| |
Collapse
|
129
|
Jonas JB, Ang M, Cho P, Guggenheim JA, He MG, Jong M, Logan NS, Liu M, Morgan I, Ohno-Matsui K, Pärssinen O, Resnikoff S, Sankaridurg P, Saw SM, Smith EL, Tan DTH, Walline JJ, Wildsoet CF, Wu PC, Zhu X, Wolffsohn JS. IMI Prevention of Myopia and Its Progression. Invest Ophthalmol Vis Sci 2021; 62:6. [PMID: 33909032 PMCID: PMC8083117 DOI: 10.1167/iovs.62.5.6] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The prevalence of myopia has markedly increased in East and Southeast Asia, and pathologic consequences of myopia, including myopic maculopathy and high myopia-associated optic neuropathy, are now some of the most common causes of irreversible blindness. Hence, strategies are warranted to reduce the prevalence of myopia and the progression to high myopia because this is the main modifiable risk factor for pathologic myopia. On the basis of published population-based and interventional studies, an important strategy to reduce the development of myopia is encouraging schoolchildren to spend more time outdoors. As compared with other measures, spending more time outdoors is the safest strategy and aligns with other existing health initiatives, such as obesity prevention, by promoting a healthier lifestyle for children and adolescents. Useful clinical measures to reduce or slow the progression of myopia include the daily application of low-dose atropine eye drops, in concentrations ranging between 0.01% and 0.05%, despite the side effects of a slightly reduced amplitude of accommodation, slight mydriasis, and risk of an allergic reaction; multifocal spectacle design; contact lenses that have power profiles that produce peripheral myopic defocus; and orthokeratology using corneal gas-permeable contact lenses that are designed to flatten the central cornea, leading to midperipheral steeping and peripheral myopic defocus, during overnight wear to eliminate daytime myopia. The risk-to-benefit ratio needs to be weighed up for the individual on the basis of their age, health, and lifestyle. The measures listed above are not mutually exclusive and are beginning to be examined in combination.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Marcus Ang
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Department of Ophthalmology and Visual Science, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Pauline Cho
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Ming Guang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yatsen University, Guangzhou, China.,Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Discipline of Optometry and Vision Science, University of Canberra, Australia
| | - Nicola S Logan
- School of Optometry, Aston University, Birmingham, United Kingdom
| | - Maria Liu
- School of Optometry, University of California, Berkeley, Berkeley, California, United States
| | - Ian Morgan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yatsen University, Guangzhou, China.,Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Olavi Pärssinen
- Department of Ophthalmology, Central Hospital of Central Finland, Jyväskylä, Finland.,Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Serge Resnikoff
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Seang-Mei Saw
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Eye & Retina Surgeons, Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - Earl L Smith
- Brien Holden Vision Institute, Sydney, Australia.,College of Optometry, University of Houston, Houston, Texas, United States
| | - Donald T H Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore.,Department of Ophthalmology and Visual Science, Duke-NUS Graduate Medical School, Singapore, Singapore.,Eye & Retina Surgeons, Singapore, Singapore
| | - Jeffrey J Walline
- The Ohio State University College of Optometry, Columbus, Ohio, United States
| | - Christine F Wildsoet
- School of Optometry, University of California, Berkeley, Berkeley, California, United States
| | - Pei-Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Xiaoying Zhu
- Biological and Vision Sciences, State University of New York, College of Optometry, New York, New York, United States
| | | |
Collapse
|
130
|
Wolffsohn JS, Jong M, Smith EL, Resnikoff SR, Jonas JB, Logan NS, Morgan I, Sankaridurg P, Ohno-Matsui K. IMI 2021 Reports and Digest - Reflections on the Implications for Clinical Practice. Invest Ophthalmol Vis Sci 2021; 62:1. [PMID: 33909037 PMCID: PMC8083124 DOI: 10.1167/iovs.62.5.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The International Myopia Institute's (IMI) mission is to advance research, education, and management of myopia to decrease future vision impairment and blindness associated with increasing myopia. Its approach is to bring together scientists, clinicians, policymakers, government members, and educators into the field of myopia to stimulate collaboration and sharing of knowledge. The latest reports are on pathologic myopia, the impact of myopia, risk factors for myopia, accommodation and binocular vision in myopia development and progression, and the prevention of myopia and its progression. Together with the digest updating the 2019 International Myopia Institute white papers using the research published in the last 18 months, these evidence-based consensus white papers help to clarify the imperative for myopia control and the role of environmental modification initiatives, informing an evidence-based clinical approach. This guidance includes who to treat and when to start or stop treatment, and the advantages and limitations of different management approaches.
Collapse
Affiliation(s)
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.,Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australia
| | - Earl L Smith
- Brien Holden Vision Institute, Sydney, Australia.,College of Optometry, University of Houston, Houston, Texas, United States
| | - Serge R Resnikoff
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nicola S Logan
- School of Optometry, Aston University, Birmingham, United Kingdom
| | - Ian Morgan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yatsen University, Guangzhou, China.,Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Kyoko Ohno-Matsui
- Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
131
|
Vincent SJ, Cho P, Chan KY, Fadel D, Ghorbani-Mojarrad N, González-Méijome JM, Johnson L, Kang P, Michaud L, Simard P, Jones L. CLEAR - Orthokeratology. Cont Lens Anterior Eye 2021; 44:240-269. [DOI: 10.1016/j.clae.2021.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/25/2022]
|
132
|
Truckenbrod C, Meigen C, Brandt M, Vogel M, Sanz Diez P, Wahl S, Jurkutat A, Kiess W. Longitudinal analysis of axial length growth in a German cohort of healthy children and adolescents. Ophthalmic Physiol Opt 2021; 41:532-540. [PMID: 33792977 DOI: 10.1111/opo.12817] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE To generate continuous growth curves for axial length (AL) in German children. We hypothesise that percentile curves of AL can be used as a predictive measure of myopia. METHODS In this longitudinal and cross-sectional LIFE Child Study, children's non-cycloplegic refraction data was collected using the Zeiss i.Profiler plus while AL was measured using the Haag-Streit Lenstar. Reference growth curves were estimated as a continuous non-parametric function of age. RESULTS Data from 4511 visits of 1965 participants (1021 boys and 944 girls) between 3 and 18 years of age were analysed. For all ages and percentiles, the estimated AL was higher in boys than girls. AL differences between boys and girls were most pronounced in the 98th percentile at 3 years of age, being 0.93 mm longer eyes in boys. This difference decreased to 0.21 mm at 18 years of age. While the lower percentiles of AL reach their final value around age 13, the 50th percentile was still increasing by 0.05 mm per year until the end of the observation period. While, in general, children with longer eyes are more likely to develop myopia, this relationship is weaker between the ages of 5 and 8. CONCLUSION The LIFE Child Study data provides European AL data. In both Germany and China, AL has comparable growth rates when the baseline ALs are compared as percentiles. Thus, percentile curves of AL can be used as a predictive measure for the likelihood of developing as well as the progression of myopia.
Collapse
Affiliation(s)
- Carolin Truckenbrod
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Leipzig, Germany
| | - Christof Meigen
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Leipzig, Germany
| | - Manuela Brandt
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Leipzig, Germany
| | - Mandy Vogel
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Leipzig, Germany
| | - Pablo Sanz Diez
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Siegfried Wahl
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Tuebingen, Germany.,Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Anne Jurkutat
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Leipzig, Germany
| | - Wieland Kiess
- Leipzig Research Center for Civilization Diseases (LIFE), Leipzig University, Leipzig, Germany.,Department of Women and Child Health, University Hospital for Children and Adolescents and Center for Pediatric Research, Leipzig University, Leipzig, Germany.,Center for Pediatric Research, Leipzig University, Leipzig, Germany
| |
Collapse
|
133
|
Is Overnight Orthokeratology OK for Kids? Eye Contact Lens 2021; 47:230-231. [PMID: 33734129 DOI: 10.1097/icl.0000000000000780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2020] [Indexed: 11/26/2022]
|
134
|
Morgan PB, Murphy PJ, Gifford KL, Gifford P, Golebiowski B, Johnson L, Makrynioti D, Moezzi AM, Moody K, Navascues-Cornago M, Schweizer H, Swiderska K, Young G, Willcox M. CLEAR - Effect of contact lens materials and designs on the anatomy and physiology of the eye. Cont Lens Anterior Eye 2021; 44:192-219. [PMID: 33775377 DOI: 10.1016/j.clae.2021.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
This paper outlines changes to the ocular surface caused by contact lenses and their degree of clinical significance. Substantial research and development to improve oxygen permeability of rigid and soft contact lenses has meant that in many countries the issues caused by hypoxia to the ocular surface have largely been negated. The ability of contact lenses to change the axial growth characteristics of the globe is being utilised to help reduce the myopia pandemic and several studies and meta-analyses have shown that wearing orthokeratology lenses or soft multifocal contact lenses can reduce axial length growth (and hence myopia). However, effects on blinking, ptosis, the function of Meibomian glands, fluorescein and lissamine green staining of the conjunctiva and cornea, production of lid-parallel conjunctival folds and lid wiper epitheliopathy have received less research attention. Contact lens wear produces a subclinical inflammatory response manifested by increases in the number of dendritiform cells in the conjunctiva, cornea and limbus. Papillary conjunctivitis is also a complication of all types of contact lenses. Changes to wear schedule (daily disposable from overnight wear) or lens materials (hydrogel from SiHy) can reduce papillary conjunctivitis, but the effect of such changes on dendritic cell migration needs further study. These changes may be associated with decreased comfort but confirmatory studies are needed. Contact lenses can affect the sensitivity of the ocular surface to mechanical stimulation, but whether these changes affect comfort requires further investigation. In conclusion, there have been changes to lens materials, design and wear schedules over the past 20+ years that have improved their safety and seen the development of lenses that can reduce the myopia development. However, several changes to the ocular surface still occur and warrant further research effort in order to optimise the lens wearing experience.
Collapse
Affiliation(s)
- Philip B Morgan
- Eurolens Research, Division of Pharmacy and Optometry, University of Manchester, UK.
| | - Paul J Murphy
- University of Waterloo, School of Optometry and Vision Science, Waterloo, Canada
| | - Kate L Gifford
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Paul Gifford
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | | | - Leah Johnson
- CooperVision Specialty EyeCare, Gilbert, AZ, United States
| | - Dimitra Makrynioti
- School of Health Rehabilitation Sciences, University of Patras (Aigio), Greece
| | - Amir M Moezzi
- Centre for Ocular Research and Education, University of Waterloo, Canada
| | - Kurt Moody
- Johnson & Johnson Vision Care, Jacksonville, FL, United States
| | | | | | - Kasandra Swiderska
- Eurolens Research, Division of Pharmacy and Optometry, University of Manchester, UK
| | | | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Australia
| |
Collapse
|
135
|
Relationship between Axial Length and Corneo-Scleral Topography: A Preliminary Study. Diagnostics (Basel) 2021; 11:diagnostics11030542. [PMID: 33803709 PMCID: PMC8002979 DOI: 10.3390/diagnostics11030542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
The main objective of the current study was to investigate further the relationship of the overall length of the eye with a great variety of anterior segment parameters, including scleral geometry. A total of 64 eyes of 32 participants with ages from 12 to 52 years were included in this prospective non-randomized single-center study. All participants underwent a complete eye examination, including an analysis of corneo-scleral shape with a Fourier-domain profilometer. A strong negative correlation was found between axial length and temporal-nasal ocular sagittal height difference for different chord lengths. For the right eye, a consistent and stable linear model was obtained to predict the axial length from the spherical equivalent, the corneal diameter, the high-order aberrations root mean square, and the minimum sagittal height for 13- and 14-mm chord. For the left eye, a model was obtained to predict the axial length from the spherical equivalent and the mean corneal curvature, including other parameters such as corneal diameter or high-order aberrations, depending on the chord length, considered for estimating the sagittal height values. More studies with larger samples are needed to confirm these preliminary outcomes.
Collapse
|
136
|
Abstract
Myopia, also known as short-sightedness or near-sightedness, is a very common condition that typically starts in childhood. Severe forms of myopia (pathologic myopia) are associated with a risk of other associated ophthalmic problems. This disorder affects all populations and is reaching epidemic proportions in East Asia, although there are differences in prevalence between countries. Myopia is caused by both environmental and genetic risk factors. A range of myopia management and control strategies are available that can treat this condition, but it is clear that understanding the factors involved in delaying myopia onset and slowing its progression will be key to reducing the rapid rise in its global prevalence. To achieve this goal, improved data collection using wearable technology, in combination with collection and assessment of data on demographic, genetic and environmental risk factors and with artificial intelligence are needed. Improved public health strategies focusing on early detection or prevention combined with additional effective therapeutic interventions to limit myopia progression are also needed.
Collapse
|
137
|
Brennan NA, Toubouti YM, Cheng X, Bullimore MA. Efficacy in myopia control. Prog Retin Eye Res 2020; 83:100923. [PMID: 33253901 DOI: 10.1016/j.preteyeres.2020.100923] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022]
Abstract
There is rapidly expanding interest in interventions to slow myopia progression in children and teenagers, with the intent of reducing risk of myopia-associated complications later in life. Despite many publications dedicated to the topic, little attention has been devoted to understanding 'efficacy' in myopia control and its application. Treatment effect has been expressed in multiple ways, making comparison between therapies and prognosis for an individual patient difficult. Available efficacy data are generally limited to two to three years making long-term treatment effect uncertain. From an evidence-based perspective, efficacy projection should be conservative and not extend beyond that which has been empirically established. Using this principle, review of the literature, data from our own clinical studies, assessment of demonstrated myopia control treatments and allowance for the limitations and context of available data, we arrive at the following important interpretations: (i) axial elongation is the preferred endpoint for assessing myopic progression; (ii) there is insufficient evidence to suggest that faster progressors, or younger myopes, derive greater benefit from treatment; (iii) the initial rate of reduction of axial elongation by myopia control treatments is not sustained; (iv) consequently, using percentage reduction in progression as an index to describe treatment effect can be very misleading and (v) cumulative absolute reduction in axial elongation (CARE) emerges as a preferred efficacy metric; (vi) maximum CARE that has been measured for existing myopia control treatments is 0.44 mm (which equates to about 1 D); (vii) there is no apparent superior method of treatment, although commonly prescribed therapies such as 0.01% atropine and progressive addition spectacles lenses have not consistently provided clinically important effects; (viii) while different treatments have shown divergent efficacy in the first year, they have shown only small differences after this; (ix) rebound should be assumed until proven otherwise; (x) an illusion of inflated efficacy is created by measurement error in refraction, sample bias in only treating 'measured' fast progressors and regression to the mean; (xi) decision to treat should be based on age of onset (or refraction at a given age), not past progression; (xii) the decreased risk of complications later in life provided by even modest reductions in progression suggest treatment is advised for all young myopes and, because of limitations of available interventions, should be aggressive.
Collapse
Affiliation(s)
- Noel A Brennan
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA.
| | - Youssef M Toubouti
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA
| | - Xu Cheng
- Johnson & Johnson Vision, 7500 Centurion Pkwy, Jacksonville, FL, 32256, USA
| | | |
Collapse
|
138
|
Khanal S, Rathod SN, Phillips JR. The acute effect of atropine eye drops on the human full-field electroretinogram. Doc Ophthalmol 2020; 142:315-328. [PMID: 33231734 DOI: 10.1007/s10633-020-09806-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/17/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Atropine eye drops are a common and effective treatment for slowing myopia progression, but the site and mode of action of atropine in controlling myopia are unclear. We investigated the early retinal sites of action of atropine by examining its effects on the human full-field electroretinogram (ffERG). METHOD Baseline ffERGs were recorded in both eyes of 24 healthy subjects (mean ± SD: 21.0 ± 2.3 years; spherical equivalent refraction, range: + 1.63 to - 0.75 D) using 6 standard ISCEV protocols, 30 min after bilateral pupil dilation with 1% Tropicamide. Atropine (1 drop, 0.1%) was then instilled into the non-dominant eye. 24 h later, ffERGs were again recorded in both eyes. Ratios (post-atropine: pre-atropine) of dark-adapted (DA) and light-adapted (LA) ffERGs were compared between atropine-treated and control eyes using multivariate repeated measures general linear models. RESULTS Atropine-treated eyes responded with 14% lower DA3.0 OP (oscillatory potential) amplitude (p = 0.003) and 4% delay in the DA10.0 a-wave peak time (p = 0.00099) compared with control eyes. Amplitudes and peak times were not different between atropine-treated and control eyes for DA0.01, LA3.0, and LA3.0 flicker ERGs. While atropine caused a small (1.26 mm2, p = 0.03) extra increase in pupil area in the treated eye, atropine-induced changes in ffERG responses bore no relationship with changes in pupil area (R2 = 2-5%, p > 0.05). CONCLUSIONS The observed changes in oscillatory potentials corroborate previous findings that atropine affects neural activity in the inner retina. However, observed changes to the a-wave suggest that atropine also affects activity in photoreceptors.
Collapse
Affiliation(s)
- Safal Khanal
- Myopia Laboratory, School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand.,School of Optometry, The University of Alabama At Birmingham, Birmingham, AL, 35294, USA
| | - Sachi Nitinkumar Rathod
- Myopia Laboratory, School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand
| | - John R Phillips
- Myopia Laboratory, School of Optometry and Vision Science, The University of Auckland, Auckland, New Zealand. .,Department of Optometry, Asia University, Taichung, Taiwan.
| |
Collapse
|
139
|
Charman WN, Radhakrishnan H. Do optical treatments for the control of myopia progression produce proportional or absolute reductions in progression rates? Ophthalmic Physiol Opt 2020; 41:192-197. [PMID: 33119904 DOI: 10.1111/opo.12750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 01/06/2023]
Affiliation(s)
- W Neil Charman
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Hema Radhakrishnan
- Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
140
|
Eccentricity-dependent effects of simultaneous competing defocus on emmetropization in infant rhesus monkeys. Vision Res 2020; 177:32-40. [PMID: 32942214 DOI: 10.1016/j.visres.2020.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Dual-focus lenses that impose simultaneous competing myopic defocus over the entire visual field produce axial hyperopic shifts in refractive error. The purpose of this study was to characterize the effects of eccentricity on the ability of myopic defocus signals to influence central refractive development in infant monkeys. From 24 to 152 days of age, rhesus monkeys were reared with binocular, dual-focus lenses that had central, zero-powered zones surrounded by alternating concentric annular power zones of +3D and zero power. Between subject groups the diameter of the central, zero-powered zone was varied from 2 mm to 8 mm in 2 mm steps (+3D/pl 2 mm, n = 6; +3D/pl 4 mm, n = 6; +3D/pl 6 mm, n = 8, or + 3D/pl 8 mm, n = 6). For the treatment lens with 2, 4, 6 and 8 mm central zones, objects at eccentricities beyond 11°, 16°, 19° and 23°, respectively, were imaged exclusively through the dual-power peripheral zones. Refractive status (retinoscopy), corneal power (keratometry) and axial dimensions (ultrasonography) were measured at two-week intervals. Comparison data were obtained from monkeys reared with binocular, single-vision +3D full-field lenses (+3D FF, n = 6) and 41 normal control monkeys reared with unrestricted vision. At the end of the rearing period, with the exception of the +3D/pl 8 mm group (median = +3.64 D), the ametropias for the other lens-reared groups (medians: FF = +4.39 D, 2 mm = +5.19 D, 4 mm = +5.59 D, 6 mm = +3.50 D) were significantly more hyperopic than that for the normal monkeys (+2.50 D). These hyperopic errors were associated with shallower vitreous chambers. The key finding was that the extent and consistency of these hyperopic ametropias varied with the eccentricity of the dual-focus zones. The results confirm that myopic defocus in the near periphery can slow axial growth, but that imposed defocus beyond about 20° from the fovea does not consistently alter central refractive development.
Collapse
|
141
|
Ruiz-Pomeda A, Villa-Collar C. Slowing the Progression of Myopia in Children with the MiSight Contact Lens: A Narrative Review of the Evidence. Ophthalmol Ther 2020; 9:783-795. [PMID: 32915454 PMCID: PMC7708530 DOI: 10.1007/s40123-020-00298-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/16/2022] Open
Abstract
Myopia has become a major public health problem in the world due to the increase in its prevalence in the past few decades and due to sight-threatening pathologies associated with high myopia such as cataracts, glaucoma and especially myopic maculopathy. This article is a narrative review of the evidence that currently exists on a contact lenses (CLs) specifically designed to correct myopia and to slow its progression. To contextualise the topic we discuss the different classifications and definitions that have been used for myopia, the current burden of being myopic, and current treatment options to prevent and control its progression. There is evidence that exposure to sunlight reduces the risk of myopia onset and pharmacological treatment with atropine has been shown to be the most effective therapy for controlling its progression, followed by optical interventions such as CL fitting (orthokeratology or CLs specific for myopia control) designed to decrease retinal peripheral hyperopic defocus that seems to be the theory that suggests that axial elongation is driven by this defocus and explains why the eye continues to grow abnormally after emmetropisation and generates myopia. We will especially focus on MiSight CLs. MiSight is a daily replacement soft contact lens that has been clinically proven and approved by the US Food and Drug Administration (FDA) to control the progression of myopia in children. We analyse the optical design of MiSight CLs, as well as the results of the different efficacy and safety studies that led to the approval of the lens by the FDA. We also expose current knowledge gaps, limitations and future directions.
Collapse
Affiliation(s)
- Alicia Ruiz-Pomeda
- Department of Ophthalmology, Hospital Universitario de Mostoles, Mostoles, 28935, Madrid, Spain
| | - César Villa-Collar
- Department of Pharmacy, Biotechnology, Nutrition and Optics and Optometry, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Madrid, Spain.
| |
Collapse
|
142
|
Wong CW, Foo LL, Morjaria P, Morgan I, Mueller A, Davis A, Keys D, He M, Sankaridurg P, Zhu JF, Hendicott P, Tan D, Saw SM, Cheng CY, Lamoureux EL, Crowston JG, Gemmy Cheung CM, Sng C, Chan C, Wong D, Lee SY, Agrawal R, Hoang QV, Su X, Koh A, Ngo C, Chen H, Wu PC, Chia A, Jonas JB, Wong TY, Ang M. Highlights from the 2019 International Myopia Summit on 'controversies in myopia'. Br J Ophthalmol 2020; 105:1196-1202. [PMID: 32816799 DOI: 10.1136/bjophthalmol-2020-316475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Myopia is an emerging public health issue with potentially significant economic and social impact, especially in East Asia. However, many uncertainties about myopia and its clinical management remain. The International Myopia Summit workgroup was convened by the Singapore Eye Research Institute, the WHO Regional Office for the Western Pacific and the International Agency for the Prevention of Blindness in 2019. The aim of this workgroup was to summarise available evidence, identify gaps or unmet needs and provide consensus on future directions for clinical research in myopia. In this review, among the many 'controversies in myopia' discussed, we highlight three main areas of consensus. First, development of interventions for the prevention of axial elongation and pathologic myopia is needed, which may require a multifaceted approach targeting the Bruch's membrane, choroid and/or sclera. Second, clinical myopia management requires co-operation between optometrists and ophthalmologists to provide patients with holistic care and a tailored approach that balances risks and benefits of treatment by using optical and pharmacological interventions. Third, current diagnostic technologies to detect myopic complications may be improved through collaboration between clinicians, researchers and industry. There is an unmet need to develop new imaging modalities for both structural and functional analyses and to establish normative databases for myopic eyes. In conclusion, the workgroup's call to action advocated for a paradigm shift towards a collaborative approach in the holistic clinical management of myopia.
Collapse
Affiliation(s)
- Chee Wai Wong
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Li Lian Foo
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Priya Morjaria
- International Centre for Eye Health, London School of Hygiene and Tropical Medicine
| | - Ian Morgan
- Research School of Biology, Australian National University, Australia
| | - Andreas Mueller
- World Health Organization Regional Office for the Western Pacific.,Centre for Eye Research Australia, Australia
| | - Amanda Davis
- International Agency for Prevention of Blindness, London, United Kingdom
| | - Drew Keys
- International Agency for Prevention of Blindness, London, United Kingdom
| | | | - Padmaja Sankaridurg
- Brien Holden Vision Institute, Sydney, Australia.,School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Jian Feng Zhu
- Department of Preventative Ophthalmology Shanghai Eye Diseases Prevention & Treatment Centre, Shanghai Eye Hospital, China
| | - Peter Hendicott
- Queensland University of Technology (QUT), School of Optometry and Vision Science, Brisbane, Australia
| | - Donald Tan
- Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Seang-Mei Saw
- Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Ching Yu Cheng
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Ecosse Luc Lamoureux
- Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Jonathan G Crowston
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Chui Ming Gemmy Cheung
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Chelvin Sng
- Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, National University Hospital, Singapore
| | | | - Doric Wong
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Shu Yen Lee
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Rupesh Agrawal
- Singapore Eye Research Institute, Singapore.,National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
| | - Quan V Hoang
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore.,Department of Ophthalmology, Columbia University, New York, USA
| | - Xinyi Su
- Department of Ophthalmology, National University Hospital, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Adrian Koh
- Singapore National Eye Centre, Singapore
| | - Cheryl Ngo
- Department of Ophthalmology, National University Hospital, Singapore
| | - Hao Chen
- Department of Ophthalmology, Wenzhou Medical College, China
| | - Pei Chang Wu
- Department of Ophthalmology, Kaohsiung Chang Gung Memorial Hospital, Taiwan.,Chang Gung University College of Medicine, Taiwan
| | - Audrey Chia
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Tien Yin Wong
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| | - Marcus Ang
- Singapore National Eye Centre, Singapore .,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
143
|
Pucker AD, Tichenor AA. A Review of Contact Lens Dropout. CLINICAL OPTOMETRY 2020; 12:85-94. [PMID: 32612404 PMCID: PMC7323801 DOI: 10.2147/opto.s198637] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 05/23/2023]
Abstract
PURPOSE Contact lens (CL) dropout is likely a major factor contributing to the near stagnant growth in the CL market. The purpose of this review is to summarize the current state of knowledge related to the frequency of CL dropout and the factors associated with it. METHODS PubMed.gov was searched on or before March 22, 2020, with the terms "contact lens" with "dropout" or "cessation" or "disruption" or "discomfort". Pertinent articles were collected. The references from these articles were likewise searched to identify additional relevant articles. Only manuscripts written in English were included. No study design or date exclusions were imposed on this review. RESULTS This literature review found that CL dropout was frequent across developed countries, with a CL dropout frequency that ranged between 12.0% and 27.4% (pooled mean = 21.7%). The top cited reason for CL dropout in established CL wearers was discomfort, while vision was the top reason in neophyte CL wearers. If given the chance, CL dropouts are often able to successfully resume CL wear up to 74% of the time. While the literature is mixed with regard to factors promoting CL dropout, meibomian gland dysfunction appears to promote CL dropout. CONCLUSION CL dropout is a frequently encountered condition that may be curtailed by early detection, patient education, alterative CL options, or early treatment of underlying ocular surface diseases such as meibomian gland dysfunction.
Collapse
Affiliation(s)
- Andrew D Pucker
- School of Optometry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna A Tichenor
- School of Optometry, Indiana University, Bloomington, IN, USA
| |
Collapse
|
144
|
García García M, Breher K, Ohlendorf A, Wahl S. To Correct or Not Correct? Actual Evidence, Controversy and the Questions That Remain Open. J Clin Med 2020; 9:jcm9061975. [PMID: 32599775 PMCID: PMC7356996 DOI: 10.3390/jcm9061975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/31/2022] Open
Abstract
Clinical studies and basic research have attempted to establish a relationship between myopia progression and single vision spectacle wear, albeit with unclear results. Single vision spectacle lenses are continuously used as the control group in myopia control trials. Hence, it is a matter of high relevance to investigate further whether they yield any shift on the refractive state, which could have been masked by being used as a control. In this review, eye development in relation to eyes fully corrected versus those under-corrected is discussed, and new guidelines are provided for the analysis of structural eye changes due to optical treatments. These guidelines are tested and optimised, while ethical implications are revisited. This newly described methodology can be translated to larger clinical trials, finally exerting the real effect of full correction via single vision spectacle lens wear on eye growth and myopia progression.
Collapse
Affiliation(s)
- Miguel García García
- Carl Zeiss Vision International GmbH, ZEISS Group, Turnstrasse 27, 73430 Aalen, Germany; (A.O.); (S.W.)
- Ophthalmic Research Institute, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany;
- Correspondence:
| | - Katharina Breher
- Ophthalmic Research Institute, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany;
| | - Arne Ohlendorf
- Carl Zeiss Vision International GmbH, ZEISS Group, Turnstrasse 27, 73430 Aalen, Germany; (A.O.); (S.W.)
- Ophthalmic Research Institute, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany;
| | - Siegfried Wahl
- Carl Zeiss Vision International GmbH, ZEISS Group, Turnstrasse 27, 73430 Aalen, Germany; (A.O.); (S.W.)
- Ophthalmic Research Institute, Elfriede-Aulhorn-Straße 7, 72076 Tuebingen, Germany;
| |
Collapse
|
145
|
Bullimore MA, Richdale K. Myopia Control 2020: Where are we and where are we heading? Ophthalmic Physiol Opt 2020; 40:254-270. [DOI: 10.1111/opo.12686] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
|
146
|
Bullimore MA, Johnson LA. Overnight orthokeratology. Cont Lens Anterior Eye 2020; 43:322-332. [PMID: 32331970 DOI: 10.1016/j.clae.2020.03.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
Overnight orthokeratology lenses are approved in countries all over the world for the temporary reduction in myopia, and recently, one lens design has received regulatory approval for myopia control in Europe. The modern orthokeratology lens has a substantial history from its origins of attempting to flatten the corneal curvature with a spherical rigid contact lens to sophisticated gas permeable lenses, designed to reshape the cornea. These lenses are predominantly prescribed for children to slow myopia progression and limit axial elongation of the eye. This article reviews the peer-reviewed literature on the efficacy of orthokeratology for myopia control, sustainability after treatment is discontinued, and the safety concerns of overnight contact lens wear. Future avenues of research are discussed.
Collapse
Affiliation(s)
- Mark A Bullimore
- University of Houston, College of Optometry, 4901 Calhoun Rd., Houston, TX, 77204, United States.
| | - Leah A Johnson
- University of Houston, College of Optometry, 4901 Calhoun Rd., Houston, TX, 77204, United States; Paragon Vision Sciences, 2120 West Guadalupe Road, Suite 112, Gilbert, AZ, 85233, United States.
| |
Collapse
|
147
|
Truckenbrod C, Meigen C, Brandt M, Vogel M, Wahl S, Jurkutat A, Kiess W. Reference curves for refraction in a German cohort of healthy children and adolescents. PLoS One 2020; 15:e0230291. [PMID: 32160245 PMCID: PMC7065770 DOI: 10.1371/journal.pone.0230291] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/25/2020] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Percentile curves of refractive development for German children were generated. We hypothesize that refraction in children in central Europe might differ from data in central Asia. METHODS Non-cycloplegic refraction was measured using the ZEISS i.Profiler plus (Carl Zeiss Vision GmbH, Germany) in 1999 children, of which were 1046 male and 953 female, aged 3 to 18 years. Reference curves were calculated with the R-package GAMLSS as continuous function of age. RESULTS There were only little differences for all centiles between the genders at 3 years and a general trend towards more myopia with increasing age. For the 97th centile and the 3rd centile, girls showed higher myopia/ less hyperopia than boys. Between the age of 3 and 18, the median refraction became -0.68 D and -0.74 D more myopic for boys and girls, respectively. At the same time, the 97th centile for boys changed +0.29 D towards hyperopia and in girls -0.52 D towards myopia. A general myopic trend was seen in the 3rd centile, which was -2.46 D for boys and -2.98 D for girls. For both genders, the median became less than zero at the age of 10 years but did not become myopic (less than -0.5 D) up to the age of 18. CONCLUSION Our analysis presents the first reference curve for refraction in central Europe. In comparison to data from China and Korea, there is only little difference at the age of 5 years in all centiles which then increases continuously. For all ethnicities, a trend towards myopia with increasing age could be observed, but myopia progression is much higher in China and Korea than in Germany. The most marked differences can be seen in the lower centiles. Further investigations should clarify whether commencement of preschool activities with prolonged near-work initiates the divergence in refractive development.
Collapse
Affiliation(s)
- Carolin Truckenbrod
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- * E-mail:
| | - Christof Meigen
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Women and Child Health, University Hospital for Children and Adolescents and Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Manuela Brandt
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Mandy Vogel
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Women and Child Health, University Hospital for Children and Adolescents and Center for Pediatric Research, Leipzig University, Leipzig, Germany
| | - Siegfried Wahl
- Institute for Ophthalmic Research, Eberhard Karls University Tuebingen, Tuebingen, Germany
- Carl Zeiss Vision International GmbH, Aalen, Germany
| | - Anne Jurkutat
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Wieland Kiess
- LIFE Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Women and Child Health, University Hospital for Children and Adolescents and Center for Pediatric Research, Leipzig University, Leipzig, Germany
- Center for Pediatric Research, Leipzig University, Leipzig, Germany
| |
Collapse
|
148
|
Gifford KL. Childhood and lifetime risk comparison of myopia control with contact lenses. Cont Lens Anterior Eye 2019; 43:26-32. [PMID: 31796370 DOI: 10.1016/j.clae.2019.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The relative risks of ocular pathology with increasing myopia have been described; the absolute lifetime risk of vision impairment from myopia is yet to be compared to the childhood and lifetime risks of contact lens wear for myopia control. METHODS Using peer-reviewed data, the absolute risks of microbial keratitis (MK) in daily disposable soft, reusable soft and orthokeratology contact lens (CL) wear were calculated over both a childhood (age 8-18) and a lifetime (age 8-65) of CL wear. This was compared to the previously published cumulative risk of vision impairment by age 75 based on increasing myopia and axial length. Data were converted utilizing the Council of International Organizations of Medical Sciences (CIOMS) classification system for frequency of adverse events, with 95 % confidence intervals included. RESULTS The lifetime risk of vision impairment in axial lengths over 26 mm and more than 6D of myopia is greater than the lifetime risk of MK in any CL modality, except for adult SCL extended wear. If axial length is below 26 mm and myopia lower than 3D, a lifetime of CL wear is more risky in comparison, except in the case of daily disposable wear. Ten years of childhood CL wear of any modality presents lower likelihood of MK than any comparable risk of vision impairment. CONCLUSION The comparative lifetime risks of contact lens wear commenced at age 8 for myopia control are less than the lifetime risks of vision impairment with myopia more than 6D or axial length more than 26 mm. When only childhood CL wear is considered, the risk comparison is clearly skewed towards the positive impact of CL wear, especially in daily disposable wear. Clinicians should be confident to proactively recommend myopia control CL wear to younger children, as both the safety profile and potential preventative ocular health benefits are evident.
Collapse
Affiliation(s)
- Kate L Gifford
- School of Optometry and Vision Science, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059 Australia.
| |
Collapse
|