101
|
Harris M, Caldwell JM, Mordecai EA. Climate drives spatial variation in Zika epidemics in Latin America. Proc Biol Sci 2019; 286:20191578. [PMID: 31455188 PMCID: PMC6732388 DOI: 10.1098/rspb.2019.1578] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Between 2015 and 2017, Zika virus spread rapidly through populations in the Americas with no prior exposure to the disease. Although climate is a known determinant of many Aedes-transmitted diseases, it is currently unclear whether climate was a major driver of the Zika epidemic and how climate might have differentially impacted outbreak intensity across locations within Latin America. Here, we estimated force of infection for Zika over time and across provinces in Latin America using a time-varying susceptible–infectious–recovered model. Climate factors explained less than 5% of the variation in weekly transmission intensity in a spatio-temporal model of force of infection by province over time, suggesting that week to week transmission within provinces may be too stochastic to predict. By contrast, climate and population factors were highly predictive of spatial variation in the presence and intensity of Zika transmission among provinces, with pseudo-R2 values between 0.33 and 0.60. Temperature, temperature range, rainfall and population size were the most important predictors of where Zika transmission occurred, while rainfall, relative humidity and a nonlinear effect of temperature were the best predictors of Zika intensity and burden. Surprisingly, force of infection was greatest in locations with temperatures near 24°C, much lower than previous estimates from mechanistic models, potentially suggesting that existing vector control programmes and/or prior exposure to other mosquito-borne diseases may have limited transmission in locations most suitable for Aedes aegypti, the main vector of Zika, dengue and chikungunya viruses in Latin America.
Collapse
Affiliation(s)
- Mallory Harris
- Odum School of Ecology, University of Georgia, 140 E Green St, Athens, GA 30602, USA
| | - Jamie M Caldwell
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, USA
| | - Erin A Mordecai
- Biology Department, Stanford University, 371 Serra Mall, Stanford, CA, USA
| |
Collapse
|
102
|
Fox SJ, Bellan SE, Perkins TA, Johansson MA, Meyers LA. Downgrading disease transmission risk estimates using terminal importations. PLoS Negl Trop Dis 2019; 13:e0007395. [PMID: 31199809 PMCID: PMC6594658 DOI: 10.1371/journal.pntd.0007395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 06/26/2019] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
As emerging and re-emerging infectious arboviruses like dengue, chikungunya, and Zika threaten new populations worldwide, officials scramble to assess local severity and transmissibility, with little to no epidemiological history to draw upon. Indirect estimates of risk from vector habitat suitability maps are prone to great uncertainty, while direct estimates from epidemiological data are only possible after cases accumulate and, given environmental constraints on arbovirus transmission, cannot be widely generalized beyond the focal region. Combining these complementary methods, we use disease importation and transmission data to improve the accuracy and precision of a priori ecological risk estimates. We demonstrate this approach by estimating the spatiotemporal risks of Zika virus transmission throughout Texas, a high-risk region in the southern United States. Our estimates are, on average, 80% lower than published ecological estimates-with only six of 254 Texas counties deemed capable of sustaining a Zika epidemic-and they are consistent with the number of autochthonous cases detected in 2017. Importantly our method provides a framework for model comparison, as our mechanistic understanding of arbovirus transmission continues to improve. Real-time updating of prior risk estimates as importations and outbreaks arise can thereby provide critical, early insight into local transmission risks as emerging arboviruses expand their global reach.
Collapse
Affiliation(s)
- Spencer J. Fox
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Steven E. Bellan
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, United States of America
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, Gerogia, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lauren Ancel Meyers
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
103
|
Hernández-Triana LM, Barrero E, Delacour-Estrella S, Ruiz-Arrondo I, Lucientes J, Fernández de Marco MDM, Thorne L, Lumley S, Johnson N, Mansfield KL, Fooks AR. Evidence for infection but not transmission of Zika virus by Aedes albopictus (Diptera: Culicidae) from Spain. Parasit Vectors 2019; 12:204. [PMID: 31053164 PMCID: PMC6500059 DOI: 10.1186/s13071-019-3467-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022] Open
Abstract
Background A number of mosquito-borne viruses such as dengue virus (DENV), Usutu virus (USUV), West Nile virus (WNV) are autochthonously transmitted in Europe and six invasive mosquito species have been detected in this temperate region. This has increased the risk for the emergence of further mosquito-borne diseases. However, there is a paucity of information on whether European populations of invasive mosquito species are competent to transmit arboviruses. In this study, the susceptibility of Aedes albopictus originating from Spain and a laboratory-adapted colony of Aedes aegypti, was assessed for infection with, and transmission of Zika virus (ZIKV). Vertical transmission in both species was also assessed. Methods Aedes albopictus colonised from eggs collected in Spain and an existing colony of Ae. aegypti were fed infectious blood meals containing ZIKV (Polynesian strain) at 1.6 × 107 PFU/ml. Blood-fed mosquitoes were separated and maintained at 20 °C or 25 °C. Legs, saliva and bodies were sampled from specimens at 7, 14 and 21 days post-infection (dpi) in order to determine infection, dissemination and transmission rates. All samples were analysed by real-time RT-PCR using primers targeting the ZIKV NS1 gene. Results At 14 dpi and 21 dpi, ZIKV RNA was detected in the bodies of both species at both temperatures. However, live virus only was detected in the saliva of Ae. aegypti at 25 °C with a transmission rate of 44%. No evidence for virus expectoration was obtained for Ae. albopictus under any condition. Notably, ZIKV RNA was not detectable in the saliva of Ae. aegypti at 20 °C after 21 days. No vertical transmission of ZIKV was detected in this study. Conclusions Experimental infection of Ae. albopictus colonized from Spain with ZIKV did not result in expectoration of virus in saliva in contrast to results for Ae. aegypti. No evidence of vertical transmission of virus was observed in this study. This suggests that this strain of Ae. albopictus is not competent for ZIKV transmission under the conditions tested.
Collapse
Affiliation(s)
- Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.
| | - Elsa Barrero
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Sarah Delacour-Estrella
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Ignacio Ruiz-Arrondo
- Center for Rickettsiosis and Vector-Borne Diseases Group, Hospital Universitario San Pedro-CIBIR, Logroño, Spain
| | - Javier Lucientes
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Zaragoza, Zaragoza, Spain
| | - Maria Del Mar Fernández de Marco
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Leigh Thorne
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Sarah Lumley
- Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.,Faculty of Health and Medicine, University of Surrey, Guildford, Surrey, GU27XH, UK
| | - Karen L Mansfield
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
104
|
Climate and land-use change homogenise terrestrial biodiversity, with consequences for ecosystem functioning and human well-being. Emerg Top Life Sci 2019; 3:207-219. [DOI: 10.1042/etls20180135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 12/21/2022]
Abstract
Abstract
Biodiversity continues to decline under the effect of multiple human pressures. We give a brief overview of the main pressures on biodiversity, before focusing on the two that have a predominant effect: land-use and climate change. We discuss how interactions between land-use and climate change in terrestrial systems are likely to have greater impacts than expected when only considering these pressures in isolation. Understanding biodiversity changes is complicated by the fact that such changes are likely to be uneven among different geographic regions and species. We review the evidence for variation in terrestrial biodiversity changes, relating differences among species to key ecological characteristics, and explaining how disproportionate impacts on certain species are leading to a spatial homogenisation of ecological communities. Finally, we explain how the overall losses and homogenisation of biodiversity, and the larger impacts upon certain types of species, are likely to lead to strong negative consequences for the functioning of ecosystems, and consequently for human well-being.
Collapse
|
105
|
Gehman AM, Harley CDG. Symbiotic endolithic microbes alter host morphology and reduce host vulnerability to high environmental temperatures. Ecosphere 2019. [DOI: 10.1002/ecs2.2683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Alyssa‐Lois M. Gehman
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Hakai Institute, End of Kwakshua Channel Calvert Island British Columbia Canada
| | - Christopher D. G. Harley
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
106
|
Tramonte AR, Christofferson RC. Investigating the probability of establishment of Zika virus and detection through mosquito surveillance under different temperature conditions. PLoS One 2019; 14:e0214306. [PMID: 30921386 PMCID: PMC6438564 DOI: 10.1371/journal.pone.0214306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/11/2019] [Indexed: 01/21/2023] Open
Abstract
Because of the increasing threat that Zika virus (ZIKV) poses to more sub-tropical area due to increased global travel, there is a need for better understanding of the effect(s) of temperature on the establishment potential of ZIKV within these subtropical, temperate, and/or seasonal Ae. aegypti populations. The first step to determining risk establishment of ZIKV in these regions is to assess ZIKV's ability to infect mosquitoes at less tropical temperatures, and thus be detected through common surveillance programs. To that end, the effect of two rearing temperatures (RT) and extrinsic incubation temperatures (EIT) on infection and dissemination rates was evaluated, as well as the interactions of such. Total, there were four combinations (RT24-EIT24, RT24-EIT28, RT28-EIT24, RT28-EIT28). Further, a stochastic SEIR framework was adapted to determine whether observed data could lead to differential success of establishment of ZIKV in naive mosquito populations. There was no consistent pattern in significant differences found across treatments for either infection or dissemination rates (p>0.05), where only a significant difference was found in infection rates between RT24-EIT24 (44%) and RT28-EIT24 (82.6%). Across all temperature conditions, the model predicted between a 76.4% and 95.4% chance of successful establishment of ZIKV in naive mosquito populations under model assumptions. We further show that excluding the maximum observed infection and dissemination rates likely overestimates the probability of local establishment of ZIKV. These results indicate that 1) there is no straightforward relationship between RT, EIT, and infection/dissemination rates, 2) in more temperate climates, ZIKV may still have the ability to establish in populations of Aedes aegypti, 3) despite an overall lack of significant differences in infection/dissemination rates, temperature may still alter the kinetics of ZIKV within the mosquito enough to affect the likelihood of infection establishment and detection within the context of mosquito surveillance programs, and 4) both the temporal and magnitude qualities of vector competence are necessary for parameterization of within-mosquito virus kinetics.
Collapse
Affiliation(s)
- A. Ryan Tramonte
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
107
|
Ryan SJ, Carlson CJ, Mordecai EA, Johnson LR. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl Trop Dis 2019; 13:e0007213. [PMID: 30921321 PMCID: PMC6438455 DOI: 10.1371/journal.pntd.0007213] [Citation(s) in RCA: 421] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/04/2019] [Indexed: 12/22/2022] Open
Abstract
Forecasting the impacts of climate change on Aedes-borne viruses-especially dengue, chikungunya, and Zika-is a key component of public health preparedness. We apply an empirically parameterized model of viral transmission by the vectors Aedes aegypti and Ae. albopictus, as a function of temperature, to predict cumulative monthly global transmission risk in current climates, and compare them with projected risk in 2050 and 2080 based on general circulation models (GCMs). Our results show that if mosquito range shifts track optimal temperature ranges for transmission (21.3-34.0°C for Ae. aegypti; 19.9-29.4°C for Ae. albopictus), we can expect poleward shifts in Aedes-borne virus distributions. However, the differing thermal niches of the two vectors produce different patterns of shifts under climate change. More severe climate change scenarios produce larger population exposures to transmission by Ae. aegypti, but not by Ae. albopictus in the most extreme cases. Climate-driven risk of transmission from both mosquitoes will increase substantially, even in the short term, for most of Europe. In contrast, significant reductions in climate suitability are expected for Ae. albopictus, most noticeably in southeast Asia and west Africa. Within the next century, nearly a billion people are threatened with new exposure to virus transmission by both Aedes spp. in the worst-case scenario. As major net losses in year-round transmission risk are predicted for Ae. albopictus, we project a global shift towards more seasonal risk across regions. Many other complicating factors (like mosquito range limits and viral evolution) exist, but overall our results indicate that while climate change will lead to increased net and new exposures to Aedes-borne viruses, the most extreme increases in Ae. albopictus transmission are predicted to occur at intermediate climate change scenarios.
Collapse
Affiliation(s)
- Sadie J. Ryan
- Department of Geography, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Colin J. Carlson
- Department of Biology, Georgetown University, Washington, DC, United States of America
- National Socio-Environmental Synthesis Center, University of Maryland, Annapolis, Maryland, United States of America
| | - Erin A. Mordecai
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Leah R. Johnson
- Department of Statistics, Virginia Polytechnic and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
108
|
Jansen S, Heitmann A, Lühken R, Jöst H, Helms M, Vapalahti O, Schmidt-Chanasit J, Tannich E. Experimental transmission of Zika virus by Aedes japonicus japonicus from southwestern Germany. Emerg Microbes Infect 2018; 7:192. [PMID: 30482893 PMCID: PMC6258727 DOI: 10.1038/s41426-018-0195-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
The invasive mosquito species Aedes japonicus japonicus (Ae. japonicus) is widely distributed in Central Europe and is a known vector of various arboviruses in the laboratory, including flaviviruses such as Japanese Encephalitis virus or West Nile virus. However, the vector competence of Ae. japonicus for the recently emerging Zika virus (ZIKV) has not been determined. Therefore, field-caught Ae. japonicus from Germany were orally infected with ZIKV and incubated at 21, 24, or 27 °C to evaluate the vector competence under climate conditions representative of the temperate regions (21 °C) in the species' main distribution area in Europe and of Mediterranean regions (27 °C). Aedes japonicus was susceptible to ZIKV at all temperatures, showing infection rates between 10.0% (21 °C) and 66.7% (27 °C). However, virus transmission was detected exclusively at 27 °C with a transmission rate of 14.3% and a transmission efficiency of 9.5%. Taking into account the present distribution of Ae. japonicus in the temperate regions of Central Europe, the risk of ZIKV transmission by the studied Ae. japonicus population in Central Europe has to be considered as low. Nevertheless, due to the species' vector competence for ZIKV and other mosquito-borne viruses, in combination with the possibility of further spread to Mediterranean regions, Ae. japonicus must be kept in mind as a potential vector of pathogens inside and outside of Europe.
Collapse
Affiliation(s)
- Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany.
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Hanna Jöst
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
| | - Olli Vapalahti
- University of Helsinki and Helsinki University Hospital, 00100, Helsinki, Finland
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner site Hamburg-Luebeck-Borstel-Riems, 20359, Hamburg, Germany
| |
Collapse
|
109
|
Tesla B, Demakovsky LR, Mordecai EA, Ryan SJ, Bonds MH, Ngonghala CN, Brindley MA, Murdock CC. Temperature drives Zika virus transmission: evidence from empirical and mathematical models. Proc Biol Sci 2018; 285:20180795. [PMID: 30111605 PMCID: PMC6111177 DOI: 10.1098/rspb.2018.0795] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022] Open
Abstract
Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C-34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.
Collapse
Affiliation(s)
- Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Leah R Demakovsky
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Sadie J Ryan
- Quantitative Disease Ecology and Conservation Laboratory, Department of Geography, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- College of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Matthew H Bonds
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Population Health, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Courtney C Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center of Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
- River Basin Center, University of Georgia, Athens, GA, USA
| |
Collapse
|