101
|
Ye R, Quinlan MA, Iwamoto H, Wu HH, Green NH, Jetter CS, McMahon DG, Veestra-VanderWeele J, Levitt P, Blakely RD. Physical Interactions and Functional Relationships of Neuroligin 2 and Midbrain Serotonin Transporters. Front Synaptic Neurosci 2016; 7:20. [PMID: 26793096 PMCID: PMC4707279 DOI: 10.3389/fnsyn.2015.00020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/14/2015] [Indexed: 12/31/2022] Open
Abstract
The neurotransmitter serotonin [5-hydroxytryptamine (5-HT)] modulates many key brain functions including those subserving sensation, emotion, reward, and cognition. Efficient clearance of 5-HT after release is achieved by the antidepressant-sensitive 5-HT transporter (SERT, SLC6A4). To identify novel SERT regulators, we pursued a proteomic analysis of mouse midbrain SERT complexes, evaluating findings in the context of prior studies that established a SERT-linked transcriptome. Remarkably, both efforts converged on a relationship of SERT with the synaptic adhesion protein neuroligin 2 (NLGN2), a post-synaptic partner for presynaptic neurexins, and a protein well-known to organize inhibitory GABAergic synapses. Western blots of midbrain reciprocal immunoprecipitations confirmed SERT/NLGN2 associations, and also extended to other NLGN2 associated proteins [e.g., α-neurexin (NRXN), gephyrin]. Midbrain SERT/NLGN2 interactions were found to be Ca(2+)-independent, supporting cis vs. trans-synaptic interactions, and were absent in hippocampal preparations, consistent with interactions arising in somatodendritic compartments. Dual color in situ hybridization confirmed co-expression of Tph2 and Nlgn2 mRNA in the dorsal raphe, with immunocytochemical studies confirming SERT:NLGN2 co-localization in raphe cell bodies but not axons. Consistent with correlative mRNA expression studies, loss of NLGN2 expression in Nlgn2 null mice produced significant reductions in midbrain and hippocampal SERT expression and function. Additionally, dorsal raphe 5-HT neurons from Nlgn2 null mice exhibit reduced excitability, a loss of GABAA receptor-mediated IPSCs, and increased 5-HT1A autoreceptor sensitivity. Finally, Nlgn2 null mice display significant changes in behaviors known to be responsive to SERT and/or 5-HT receptor manipulations. We discuss our findings in relation to the possible coordination of intrinsic and extrinsic regulation afforded by somatodendritic SERT:NLGN2 complexes.
Collapse
Affiliation(s)
- Ran Ye
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Meagan A Quinlan
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Hideki Iwamoto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Hsiao-Huei Wu
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Noah H Green
- Department of Biological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Christopher S Jetter
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Douglas G McMahon
- Department of Pharmacology, Vanderbilt University School of Medicine, NashvilleTN, USA; Department of Biological Sciences, Vanderbilt University School of Medicine, NashvilleTN, USA
| | - Jeremy Veestra-VanderWeele
- Department of Psychiatry, NYS Psychiatric Institute, Columbia University Medical Center, New York NY, USA
| | - Pat Levitt
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Randy D Blakely
- Department of Pharmacology, Vanderbilt University School of Medicine, NashvilleTN, USA; Department of Psychiatry, Vanderbilt University School of Medicine, NashvilleTN, USA
| |
Collapse
|
102
|
Commons KG. Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct 2016; 221:3347-60. [PMID: 26740230 DOI: 10.1007/s00429-015-1176-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Forebrain serotonin relevant for many psychological disorders arises in the hindbrain, primarily within the dorsal and median raphe nuclei (DR and MR). These nuclei are heterogeneous, containing several distinct groups of serotonin neurons. Here, new insight into the afferent and efferent connectivity of these areas is reviewed in correlation with their developmental origin. These data suggest that the caudal third of the DR, the area originally designated B6, may be misidentified as part of the DR as it shares many features of connectivity with the MR. By considering the rostral DR independently and affiliating the B6 to the MR, the diverse subgroups of serotonin neurons can be arranged with more coherence into two umbrella groups, each with distinctive domains of influence. Serotonin neurons within the rostral DR are uniquely interconnected with brain areas associated with emotion and motivation such as the amygdala, accumbens and ventral pallidum. In contrast serotonin neurons in the B6 and MR are characterized by their dominion over the septum and hippocampus. This distinction between the DR and B6/MR parallels their developmental origin and likely impacts their role in both behavior and psychopathology. Implications and further subdivisions within these areas are discussed.
Collapse
Affiliation(s)
- Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital, 300 Longwood Ave., Boston, MA, 02115, USA. .,Department of Anaesthesia, Harvard Medical School, Boston, USA.
| |
Collapse
|
103
|
Kalueff AV, Echevarria DJ, Homechaudhuri S, Stewart AM, Collier AD, Kaluyeva AA, Li S, Liu Y, Chen P, Wang J, Yang L, Mitra A, Pal S, Chaudhuri A, Roy A, Biswas M, Roy D, Podder A, Poudel MK, Katare DP, Mani RJ, Kyzar EJ, Gaikwad S, Nguyen M, Song C. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:297-309. [PMID: 26372090 DOI: 10.1016/j.aquatox.2015.08.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 05/25/2023]
Abstract
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics.
Collapse
Affiliation(s)
- Allan V Kalueff
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia; Chemical-Technological Institute and Institute of Natural Sciences, Ural Federal University, Ekaterinburg 620002, Russia.
| | - David J Echevarria
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | - Sumit Homechaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adam Michael Stewart
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Adam D Collier
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS 39406, USA
| | | | - Shaomin Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Yingcong Liu
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Peirong Chen
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - JiaJia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Lei Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Anisa Mitra
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Subharthi Pal
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Adwitiya Chaudhuri
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anwesha Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Missidona Biswas
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Dola Roy
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Anupam Podder
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India
| | - Manoj K Poudel
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Deepshikha P Katare
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Ruchi J Mani
- Proteomics and Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201303, UP, India
| | - Evan J Kyzar
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 W Taylor St., Chicago, IL 60612, USA
| | - Siddharth Gaikwad
- Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| | - Michael Nguyen
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; ZENEREI Institute, 309 Palmer Court, Slidell, LA 70458, USA
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China; Graduate Institute of Neural and Cognitive Sciences, China Medical University Hospital, Taichung 40402, Taiwan
| |
Collapse
|
104
|
Courtney NA, Ford CP. Mechanisms of 5-HT1A receptor-mediated transmission in dorsal raphe serotonin neurons. J Physiol 2015; 594:953-65. [PMID: 26634643 DOI: 10.1113/jp271716] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/30/2015] [Indexed: 02/01/2023] Open
Abstract
KEY POINTS In the dorsal raphe nucleus, it is known that serotonin release activates metabotropic 5-HT1A autoreceptors located on serotonin neurons that leads to an inhibition of firing through the activation of G-protein-coupled inwardly rectifying potassium channels. We found that in mouse brain slices evoked serotonin release produced a 5-HT1A receptor-mediated inhibitory postsynaptic current (IPSC) that resulted in only a transient pause in firing. While spillover activation of receptors contributed to evoked IPSCs, serotonin reuptake transporters prevented pooling of serotonin in the extrasynaptic space from activating 5-HT1A -IPSCs. As a result, the decay of 5-HT1A -IPSCs was independent of the intensity of stimulation or the probability of transmitter release. These results indicate that evoked serotonin transmission in the dorsal raphe nucleus mediated by metabotropic 5-HT1A autoreceptors may occur via point-to-point synapses rather than by paracrine mechanisms. ABSTRACT In the dorsal raphe nucleus (DRN), feedback activation by Gαi/o -coupled 5-HT1A autoreceptors reduces the excitability of serotoninergic neurons, which decreases serotonin release both locally within the DRN and in projection regions. Serotonin transmission within the DRN is thought to occur via transmitter spillover and paracrine activation of extrasynaptic receptors. Here, we tested the volume transmission hypothesis in mouse DRN brain slices by recording 5-HT1A receptor-mediated inhibitory postsynaptic currents (5-HT1A -IPSCs) generated by the activation of G-protein-coupled inwardly rectifying potassium channels (GIRKs). We found that in the DRN of ePET1-EYFP mice, which selectively express enhanced yellow fluorescent protein in serontonergic neurons, the local release of serotonin generated 5-HT1A -IPSCs in serotonin neurons that rose and fell within a second. The transient activation of 5-HT1A autoreceptors resulted in brief pauses in neuron firing that did not alter the overall firing rate. The duration of 5-HT1A -IPSCs was primarily shaped by receptor deactivation due to clearance via serotonin reuptake transporters. Slowing diffusion with dextran prolonged the rise and reduced the amplitude the IPSCs and the effects were potentiated when uptake was inhibited. By examining the decay kinetics of IPSCs, we found that while spillover may allow for the activation of extrasynaptic receptors, efficient uptake by serotonin reuptake transporters (SERTs) prevented the pooling of serotonin from prolonging the duration of transmission when multiple inputs were active. Together the results suggest that the activation of 5-HT1A receptors in the DRN results from the local release of serotonin rather than the extended diffusion throughout the extracellular space.
Collapse
Affiliation(s)
- Nicholas A Courtney
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106-4970, USA
| | - Christopher P Ford
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106-4970, USA.,Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Ave, Cleveland, OH, 44106-4970, USA
| |
Collapse
|
105
|
Raz L, Hunter LV, Dowling NM, Wharton W, Gleason CE, Jayachandran M, Anderson L, Asthana S, Miller VM. Differential effects of hormone therapy on serotonin, vascular function and mood in the KEEPS. Climacteric 2015; 19:49-59. [PMID: 26652904 DOI: 10.3109/13697137.2015.1116504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) is modulated by sex steroid hormones and affects vascular function and mood. In the Kronos Early Estrogen Prevention Cognitive and Affective Ancillary Study (KEEPS-Cog), women randomized to oral conjugated equine estrogens (oCEE) showed greater benefit on affective mood states than women randomized to transdermal 17β-estradiol (tE2) or placebo (PL). This study examined the effect of these treatments on the platelet content of 5-HT as a surrogate measure of 5-HT synthesis and uptake in the brain. METHODS The following were measured in a subset (n = 79) of women enrolled in KEEPS-Cog: 5-HT by ELISA, carotid intima-medial thickness (CIMT) by ultrasound, endothelial function by reactive hyperemic index (RHI), and self-reported symptoms of affective mood states by the Profile of Mood States (POMS) questionnaire. RESULTS Mean platelet content of 5-HT increased by 107.0%, 84.5% and 39.8%, in tE2, oCEE and PL groups, respectively. Platelet 5-HT positively correlated with estrone in the oCEE group and with 17β- estradiol in the tE2 group. Platelet 5-HT showed a positive association with RHI, but not CIMT, in the PL and oCEE groups. Reduction in mood scores for depression-dejection and anger-hostility was associated with elevations in platelet 5-HT only in the oCEE group (r = -0.5, p = 0.02). CONCLUSIONS Effects of oCEE compared to tE2 on RHI and mood may be related to mechanisms involving platelet, and perhaps neuronal, uptake and release of 5-HT and reflect conversion of estrone to bioavailable 17β-estradiol in platelets and the brain.
Collapse
Affiliation(s)
- L Raz
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , Minnesota , USA
| | - L V Hunter
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , Minnesota , USA
| | - N M Dowling
- b Department of Biostatistics and Medical Informatics , University of Wisconsin , Madison , WI , USA ;,c Department of Medicine , University of Wisconsin and Geriatric Research, Education and Clinical Center, Madison VA Hospital , Madison , WI , USA
| | - W Wharton
- d Department of Neurology , Emory University , Atlanta , GA , USA
| | - C E Gleason
- c Department of Medicine , University of Wisconsin and Geriatric Research, Education and Clinical Center, Madison VA Hospital , Madison , WI , USA
| | - M Jayachandran
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , Minnesota , USA
| | - L Anderson
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , Minnesota , USA
| | - S Asthana
- c Department of Medicine , University of Wisconsin and Geriatric Research, Education and Clinical Center, Madison VA Hospital , Madison , WI , USA
| | - V M Miller
- a Department of Physiology and Biomedical Engineering , Mayo Clinic , Rochester , Minnesota , USA ;,e Department of Surgery , Mayo Clinic , Rochester , Minnesota , USA
| |
Collapse
|
106
|
Fernandez SP, Cauli B, Cabezas C, Muzerelle A, Poncer JC, Gaspar P. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct Funct 2015; 221:4007-4025. [PMID: 26608830 DOI: 10.1007/s00429-015-1142-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/02/2015] [Indexed: 11/28/2022]
Abstract
Serotonergic neurons of the raphe nuclei exhibit anatomical, neurochemical and elecrophysiological heterogeneity that likely underpins their specific role in multiple behaviors. However, the precise organization of serotonin (5-HT) neurons to orchestrate 5-HT release patterns throughout the brain is not well understood. We compared the electrophysiological and neurochemical properties of dorsal and median raphe 5-HT neurons projecting to the medial prefrontal cortex (mPFC), amygdala (BLA) and dorsal hippocampus (dHP), combining retrograde tract tracing with brain slice electrophysiology and single-cell RT-PCR in Pet1-EGFP mice. Our results show that 5-HT neurons projecting to the dHP and the mPFC and the BLA form largely non-overlapping populations and that BLA-projecting neurons have characteristic excitability and membrane properties. In addition, using an unbiased clustering method that correlates anatomical, molecular and electrophysiological phenotypes, we find that 5-HT neurons with projections to the mPFC and the dHP segregate from those projecting to the BLA. Single-cell gene profiling showed a restricted expression of the peptide galanin in the population of 5-HT neurons projecting to the mPFC. Finally, cluster analysis allowed identifying an atypical subtype of 5-HT neuron with low excitability, long firing delays and preferential expression of the vesicular glutamate transporter type 3. Overall, these findings allow to define correlated anatomical and physiological identities of serotonin raphe neurons that help understanding how discrete raphe cells subpopulations account for the heterogeneous activities of the midbrain serotonergic system.
Collapse
Affiliation(s)
- Sebastian Pablo Fernandez
- Institut du Fer à Moulin, INSERM U839, 17 rue du Fer à Moulin, 75005, Paris, France. .,Université Pierre et Marie Curie, Paris, France. .,Institut du Fer a Moulin, Paris, France.
| | - Bruno Cauli
- Université Pierre et Marie Curie, Paris, France.,CNRS, UMR 8246, Neuroscience Paris Seine, 75005, Paris, France.,Inserm UMR-S 1130, Neuroscience Paris Seine, 75005, Paris, France
| | - Carolina Cabezas
- Institut du Fer à Moulin, INSERM U839, 17 rue du Fer à Moulin, 75005, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Institut du Fer a Moulin, Paris, France
| | - Aude Muzerelle
- Institut du Fer à Moulin, INSERM U839, 17 rue du Fer à Moulin, 75005, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Institut du Fer a Moulin, Paris, France
| | - Jean-Christophe Poncer
- Institut du Fer à Moulin, INSERM U839, 17 rue du Fer à Moulin, 75005, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Institut du Fer a Moulin, Paris, France
| | - Patricia Gaspar
- Institut du Fer à Moulin, INSERM U839, 17 rue du Fer à Moulin, 75005, Paris, France. .,Université Pierre et Marie Curie, Paris, France. .,Institut du Fer a Moulin, Paris, France.
| |
Collapse
|
107
|
Okaty BW, Freret ME, Rood BD, Brust RD, Hennessy ML, deBairos D, Kim JC, Cook MN, Dymecki SM. Multi-Scale Molecular Deconstruction of the Serotonin Neuron System. Neuron 2015; 88:774-91. [PMID: 26549332 DOI: 10.1016/j.neuron.2015.10.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 08/06/2015] [Accepted: 09/28/2015] [Indexed: 02/01/2023]
Abstract
Serotonergic (5HT) neurons modulate diverse behaviors and physiology and are implicated in distinct clinical disorders. Corresponding diversity in 5HT neuronal phenotypes is becoming apparent and is likely rooted in molecular differences, yet a comprehensive approach characterizing molecular variation across the 5HT system is lacking, as is concomitant linkage to cellular phenotypes. Here we combine intersectional fate mapping, neuron sorting, and genome-wide RNA-seq to deconstruct the mouse 5HT system at multiple levels of granularity-from anatomy, to genetic sublineages, to single neurons. Our unbiased analyses reveal principles underlying system organization, 5HT neuron subtypes, constellations of differentially expressed genes distinguishing subtypes, and predictions of subtype-specific functions. Using electrophysiology, subtype-specific neuron silencing, and conditional gene knockout, we show that these molecularly defined 5HT neuron subtypes are functionally distinct. Collectively, this resource classifies molecular diversity across the 5HT system and discovers sertonergic subtypes, markers, organizing principles, and subtype-specific functions with potential disease relevance.
Collapse
Affiliation(s)
- Benjamin W Okaty
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Morgan E Freret
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Benjamin D Rood
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rachael D Brust
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Morgan L Hennessy
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Danielle deBairos
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Jun Chul Kim
- Psychology Department, University of Toronto, 100 St. George Street, Toronto ON, M5S 3G3, Canada
| | - Melloni N Cook
- Department of Psychology, University of Memphis, 400 Innovation Drive, Memphis, TN 38152, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
108
|
Morandini L, Ramallo MR, Moreira RG, Höcht C, Somoza GM, Silva A, Pandolfi M. Serotonergic outcome, stress and sexual steroid hormones, and growth in a South American cichlid fish fed with an L-tryptophan enriched diet. Gen Comp Endocrinol 2015; 223:27-37. [PMID: 26449161 DOI: 10.1016/j.ygcen.2015.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/11/2015] [Accepted: 10/04/2015] [Indexed: 11/24/2022]
Abstract
Reared animals for edible or ornamental purposes are frequently exposed to high aggression and stressful situations. These factors generally arise from conspecifics in densely breeding conditions. In vertebrates, serotonin (5-HT) has been postulated as a key neuromodulator and neurotransmitter involved in aggression and stress. The essential amino acid L-tryptophan (trp) is crucial for the synthesis of 5-HT, and so, leaves a gateway for indirectly augmenting brain 5-HT levels by means of a trp-enriched diet. The cichlid fish Cichlasoma dimerus, locally known as chanchita, is an autochthonous, potentially ornamental species and a fruitful laboratory model which behavior and reproduction has been studied over the last 15years. It presents complex social hierarchies, and great asymmetries between subordinate and dominant animals in respect to aggression, stress, and reproductive chance. The first aim of this work was to perform a morphological description of chanchita's brain serotonergic system, in both males and females. Then, we evaluated the effects of a trp-supplemented diet, given during 4weeks, on brain serotonergic activity, stress and sexual steroid hormones, and growth in isolated specimens. Results showed that chanchita's brain serotonergic system is composed of several populations of neurons located in three main areas: pretectum, hypothalamus and raphe, with no clear differences between males and females at a morphological level. Animals fed with trp-enriched diets exhibited higher forebrain serotonergic activity and a significant reduction in their relative cortisol levels, with no effects on sexual steroid plasma levels or growth parameters. Thus, this study points to food trp enrichment as a "neurodietary'' method for elevating brain serotonergic activity and decreasing stress, without affecting growth or sex steroid hormone levels.
Collapse
Affiliation(s)
- Leonel Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güirlades 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Roberto Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güirlades 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Departamento de Fisiologia, Instituto de Biociências-USP, Rua do Matão, travessa 14, n.321, sala 220 CidadeUniversitária, São Paulo, Brazil
| | - Christian Höcht
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina
| | - Gustavo Manuel Somoza
- IIB-INTECH (CONICET-UNSAM), Av. Intendente Marino km 8.2 (B 7130IWA) Chascomús, Buenos Aires, Argentina
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Avda. Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE e IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Intendente Güirlades 2160, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
109
|
Nathan FM, Ogawa S, Parhar IS. Neuronal connectivity between habenular glutamate-kisspeptin1 co-expressing neurons and the raphe 5-HT system. J Neurochem 2015; 135:814-29. [PMID: 26250886 PMCID: PMC5049628 DOI: 10.1111/jnc.13273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 01/24/2023]
Abstract
The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5‐HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5‐HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss‐R1); using this primary antibody we found intense immunohistochemical labeling in the ventro‐anterior corner of the MR (vaMR) but not in 5‐HT neurons, suggesting the potential involvement of interneurons in 5‐HT modulation by Kiss1. Double‐fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5‐HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5‐HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons.
The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5‐HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5‐HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5‐HT system by the habenula‐raphe pathway.
Collapse
Affiliation(s)
- Fatima M Nathan
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
110
|
Kusek M, Sowa J, Kamińska K, Gołembiowska K, Tokarski K, Hess G. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin. Front Cell Neurosci 2015; 9:324. [PMID: 26347612 PMCID: PMC4539517 DOI: 10.3389/fncel.2015.00324] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/05/2015] [Indexed: 01/17/2023] Open
Abstract
The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons.
Collapse
Affiliation(s)
- Magdalena Kusek
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Katarzyna Kamińska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Krystyna Gołembiowska
- Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland
| | - Grzegorz Hess
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences Krakow, Poland ; Institute of Zoology, Jagiellonian University Krakow, Poland
| |
Collapse
|
111
|
Sutoh M, Kasuya E, Yayou KI, Ohtani F, Kobayashi Y. Intravenous tryptophan administration attenuates cortisol secretion induced by intracerebroventricular injection of noradrenaline. Anim Sci J 2015; 87:266-70. [PMID: 26260296 DOI: 10.1111/asj.12409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/06/2015] [Accepted: 02/12/2015] [Indexed: 11/30/2022]
Abstract
This study was conducted to investigate the possibility of suppression of stress-induced cortisol (CORT) secretion by tryptophan (TRP) administration and to better understand its regulatory mechanisms by using a noradrenaline (NA) injection into the third ventricle (3V) as a stress model in cattle. A total of 25 Holstein steers with a cannula in the 3V were used. First, the increase in CORT secretion was observed following a NA injection into the 3V in a dose-dependent manner, verifying the appropriateness of this treatment as a stress model of CORT secretion (Experiment 1). The effect of prior-administration of TRP into peripheral blood with a dose that has been demonstrated to increase brain 5-hydroxytryptamine levels on the elevation of plasma CORT induced by NA or corticotropin-releasing hormone (CRH) was then examined (Experiment 2). The prior administration of TRP suppressed NA-induced, but not CRH-induced, CORT elevation. These results suggest that an increase in TRP absorption into peripheral blood could suppress the stress-induced CORT secretion in cattle via the attenuation of the stimulatory effect of NA on the hypothalamic CRH release.
Collapse
Affiliation(s)
- Madoka Sutoh
- Animal Physiology and Nutrition Research Division, National Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Etsuko Kasuya
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Ken-ichi Yayou
- Animal Physiology Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Fumihiro Ohtani
- Animal Physiology and Nutrition Research Division, National Institute of Livestock and Grassland Science, Tsukuba, Japan
| | - Yosuke Kobayashi
- Animal Physiology and Nutrition Research Division, National Institute of Livestock and Grassland Science, Tsukuba, Japan
| |
Collapse
|
112
|
Prasad P, Ogawa S, Parhar IS. Serotonin reuptake inhibitor citalopram inhibits GnRH synthesis and spermatogenesis in the male zebrafish. Biol Reprod 2015; 93:102. [PMID: 26157069 DOI: 10.1095/biolreprod.115.129965] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants for the treatment of depression. However, SSRIs cause sexual side effects such as anorgasmia, erectile dysfunction, and diminished libido that are thought to be mediated through the serotonin (5-hydroxytryptamine, 5-HT) system. In vertebrates, gonadotropin-releasing hormone (GnRH) neurons play an important role in the control of reproduction. To elucidate the neuroendocrine mechanisms of SSRI-induced reproductive failure, we examined the neuronal association between 5-HT and GnRH (GnRH2 and GnRH3) systems in the male zebrafish. Double-label immunofluorescence and confocal laser microscopy followed by three-dimensional construction analysis showed close associations between 5-HT fibers with GnRH3 fibers and preoptic-GnRH3 cell bodies, but there was no association with GnRH2 cell bodies and fibers. Quantitative real-time PCR showed that short-term treatment (2 wk) with low to medium doses (4 and 40 μg/L, respectively) of citalopram significantly decreased mRNA levels of gnrh3, gonadotropins (lhb and fshb) and 5-HT-related genes (tph2 and sert) in the male zebrafish. In addition, short-term citalopram treatment significantly decreased the fluorescence density of 5-HT and GnRH3 fibers compared with controls. Short-term treatment with low, medium, and high (100 μg/L) citalopram doses had no effects on the profiles of different stages of spermatogenesis, while long-term (1 mo) citalopram treatment with medium and high doses significantly inhibited the different stages of spermatogenesis. These results show morphological and functional associations between the 5-HT and the hypophysiotropic GnHR3 system, which involve SSRI-induced reproductive failures.
Collapse
Affiliation(s)
- Parvathy Prasad
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
113
|
Prasad P, Ogawa S, Parhar IS. Role of serotonin in fish reproduction. Front Neurosci 2015; 9:195. [PMID: 26097446 PMCID: PMC4456567 DOI: 10.3389/fnins.2015.00195] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/18/2015] [Indexed: 11/13/2022] Open
Abstract
The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in teleost may also play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.
Collapse
Affiliation(s)
- Parvathy Prasad
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Selangor, Malaysia
| |
Collapse
|
114
|
Liu Y, Kelly MA, Sexton TJ, Neumaier JF. 5-HT1B autoreceptors differentially modulate the expression of conditioned fear in a circuit-specific manner. Neuroscience 2015; 298:436-47. [PMID: 25907441 DOI: 10.1016/j.neuroscience.2015.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Located in the nerve terminals of serotonergic neurons, 5-HT1B autoreceptors are poised to modulate synaptic 5-HT levels with precise temporal and spatial control, and play an important role in various emotional behaviors. This study characterized two novel, complementary viral vector strategies to investigate the contribution of 5-HT1B autoreceptors to fear expression, displayed as freezing, during contextual fear conditioning. Increased expression of 5-HT1B autoreceptors throughout the brain significantly decreased fear expression in both wild-type (WT) and 5-HT1B knockout (1BKO) mice when receptor levels were increased with a cell-type-specific herpes simplex virus (HSV) vector injected into the dorsal raphe nucleus (DRN). Additional studies used an intersectional viral vector strategy, in which an adeno-associated virus containing a double-floxed inverted sequence for the 5-HT1B receptor (AAV-DIO-1B) was combined with the retrogradely transported canine adenovirus-2 expressing Cre (CAV-Cre) in order to increase 5-HT1B autoreceptor expression only in neurons projecting from the DRN to the amygdala. Surprisingly, selective expression of 5-HT1B autoreceptors in just this circuit led to an increase in fear expression in WT, but not 1BKO, mice. These results suggest that activation of 5-HT1B autoreceptors throughout the brain may have an overall effect of attenuating fear expression, but activation of subsets of 5-HT1B autoreceptors in particular brain regions, reflecting distinct projections of serotonergic neurons from the DRN, may have disparate contributions to the ultimate response.
Collapse
Affiliation(s)
- Y Liu
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - M A Kelly
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - T J Sexton
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| | - J F Neumaier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
115
|
Brain serotonin signaling does not determine sexual preference in male mice. PLoS One 2015; 10:e0118603. [PMID: 25706994 PMCID: PMC4338231 DOI: 10.1371/journal.pone.0118603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/15/2014] [Indexed: 11/19/2022] Open
Abstract
It was reported recently that male mice lacking brain serotonin (5-HT) lose their preference for females (Liu et al., 2011, Nature, 472, 95–100), suggesting a role for 5-HT signaling in sexual preference. Regulation of sex preference by 5-HT lies outside of the well established roles in this behavior established for the vomeronasal organ (VNO) and the main olfactory epithelium (MOE). Presently, mice with a null mutation in the gene for tryptophan hydroxylase 2 (TPH2), which are depleted of brain 5-HT, were tested for sexual preference. When presented with inanimate (urine scents from male or estrous female) or animate (male or female mouse in estrus) sexual stimuli, TPH2-/- males show a clear preference for female over male stimuli. When a TPH2-/- male is offered the simultaneous choice between an estrous female and a male mouse, no sexual preference is expressed. However, when confounding behaviors that are seen among 3 mice in the same cage are controlled, TPH2-/- mice, like their TPH2+/+ counterparts, express a clear preference for female mice. Female TPH2-/- mice are preferred by males over TPH2+/+ females but this does not lead to increased pregnancy success. In fact, if one or both partners in a mating pair are TPH2-/- in genotype, pregnancy success rates are significantly decreased. Finally, expression of the VNO-specific cation channel TRPC2 and of CNGA2 in the MOE of TPH2-/- mice is normal, consistent with behavioral findings that sexual preference of TPH2-/- males for females is intact. In conclusion, 5-HT signaling in brain does not determine sexual preference in male mice. The use of pharmacological agents that are non-selective for the 5-HT neuronal system and that have serious adverse effects may have contributed historically to the stance that 5-HT regulates sexual behavior, including sex partner preference.
Collapse
|
116
|
Functional and developmental identification of a molecular subtype of brain serotonergic neuron specialized to regulate breathing dynamics. Cell Rep 2014; 9:2152-65. [PMID: 25497093 DOI: 10.1016/j.celrep.2014.11.027] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/23/2014] [Accepted: 11/18/2014] [Indexed: 11/22/2022] Open
Abstract
Serotonergic neurons modulate behavioral and physiological responses from aggression and anxiety to breathing and thermoregulation. Disorders involving serotonin (5HT) dysregulation are commensurately heterogeneous and numerous. We hypothesized that this breadth in functionality derives in part from a developmentally determined substructure of distinct subtypes of 5HT neurons each specialized to modulate specific behaviors. By manipulating developmentally defined subgroups one by one chemogenetically, we find that the Egr2-Pet1 subgroup is specialized to drive increased ventilation in response to carbon dioxide elevation and acidosis. Furthermore, this subtype exhibits intrinsic chemosensitivity and modality-specific projections-increasing firing during hypercapnic acidosis and selectively projecting to respiratory chemosensory but not motor centers, respectively. These findings show that serotonergic regulation of the respiratory chemoreflex is mediated by a specialized molecular subtype of 5HT neuron harboring unique physiological, biophysical, and hodological properties specified developmentally and demonstrate that the serotonergic system contains specialized modules contributing to its collective functional breadth.
Collapse
|
117
|
Herculano AM, Maximino C. Serotonergic modulation of zebrafish behavior: towards a paradox. Prog Neuropsychopharmacol Biol Psychiatry 2014; 55:50-66. [PMID: 24681196 DOI: 10.1016/j.pnpbp.2014.03.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/13/2014] [Indexed: 12/22/2022]
Abstract
Due to the fish-specific genome duplication event (~320-350 mya), some genes which code for serotonin proteins were duplicated in teleosts; this duplication event was preceded by a reorganization of the serotonergic system, with the appearance of the raphe nuclei (dependent on the isthmus organizer) and prosencephalic nuclei, including the paraventricular and pretectal complexes. With the appearance of amniotes, duplicated genes were lost, and the serotonergic system was reduced to a more complex raphe system. From a comparative point of view, then, the serotonergic system of zebrafish and that of mammals shows many important differences. However, many different behavioral functions of serotonin, as well as the effects of drugs which affect the serotonergic system, seem to be conserved among species. For example, in both zebrafish and rodents acute serotonin reuptake inhibitors (SSRIs) seem to increase anxiety-like behavior, while chronic SSRIs decrease it; drugs which act at the 5-HT1A receptor seem to decrease anxiety-like behavior in both zebrafish and rodents. In this article, we will expose this paradox, reviewing the chemical neuroanatomy of the zebrafish serotonergic system, followed by an analysis of the role of serotonin in zebrafish fear/anxiety, stress, aggression and the effects of psychedelic drugs.
Collapse
Affiliation(s)
- Anderson Manoel Herculano
- Neuroendocrinology Laboratory, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil; "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil
| | - Caio Maximino
- "Frederico Graeff" Neurosciences and Behavior Laboratory, Department of Morphology and Physiological Sciences, Biological and Health Sciences Center, State University of Pará, Marabá, PA, Brazil; International Zebrafish Neuroscience Research Consortium, United States.
| |
Collapse
|
118
|
Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5-B9) to the forebrain and brainstem. Brain Struct Funct 2014; 221:535-61. [PMID: 25403254 PMCID: PMC4750555 DOI: 10.1007/s00429-014-0924-4] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/16/2014] [Indexed: 01/10/2023]
Abstract
Serotoninergic innervation of the central nervous system is provided by hindbrain raphe nuclei (B1–B9). The extent to which each raphe subdivision has distinct topographic organization of their projections is still unclear. We provide a comprehensive description of the main targets of the rostral serotonin (5-HT) raphe subgroups (B5–B9) in the mouse brain. Adeno-associated viruses that conditionally express GFP under the control of the 5-HT transporter promoter were used to label small groups of 5-HT neurons in the dorsal (B7d), ventral (B7v), lateral (B7l), and caudal (B6) subcomponents of the dorsal raphe (DR) nucleus as well as in the rostral and caudal parts of the median raphe (MR) nucleus (B8 and B5, respectively), and in the supralemniscal (B9) cell group. We illustrate the distinctive and largely non-overlapping projection areas of these cell groups: for instance, DR (B7) projects to basal parts of the forebrain, such as the amygdala, whereas MR (B8) is the main 5-HT source to the hippocampus, septum, and mesopontine tegmental nuclei. Distinct subsets of B7 have preferential brain targets: B7v is the main source of 5-HT for the cortex and amygdala while B7d innervates the hypothalamus. We reveal for the first time the target areas of the B9 cell group, demonstrating projections to the caudate, prefrontal cortex, substantia nigra, locus coeruleus and to the raphe cell groups. The broad topographic organization of the different raphe subnuclei is likely to underlie the different functional roles in which 5-HT has been implicated in the brain. The present mapping study could serve as the basis for genetically driven specific targeting of the different subcomponents of the mouse raphe system.
Collapse
|
119
|
Loveland JL, Uy N, Maruska KP, Carpenter RE, Fernald RD. Social status differences regulate the serotonergic system of a cichlid fish, Astatotilapia burtoni. ACTA ACUST UNITED AC 2014; 217:2680-90. [PMID: 24855673 DOI: 10.1242/jeb.100685] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Serotonin (5-HT) inhibits aggression and modulates aspects of sexual behaviour in many species, but the mechanisms responsible are not well understood. Here, we exploited the social dominance hierarchy of Astatotilapia burtoni to understand the role of the serotonergic system in long-term maintenance of social status. We identified three populations of 5-HT cells in dorsal and ventral periventricular pretectal nuclei (PPd, PPv), the nucleus of the paraventricular organ (PVO) and raphe. Dominant males had more 5-HT cells than subordinates in the raphe, but the size of these cells did not differ between social groups. Subordinates had higher serotonergic turnover in the raphe and preoptic area (POA), a nucleus essential for hypothalamic-pituitary-gonadal (HPG) axis function. The relative abundance of mRNAs for 5-HT receptor (5-HTR) subtypes 1A and 2A (htr1a, htr2a) was higher in subordinates, a difference restricted to the telencephalon. Because social status is tightly linked to reproductive capacity, we asked whether serotonin turnover and the expression of its receptors correlated with testes size and circulating levels of 11-ketotestosterone (11-KT). We found negative correlations between both raphe and POA serotonin turnover and testes size, as well as between htr1a mRNA levels and circulating 11-KT. Thus, increased serotonin turnover in non-aggressive males is restricted to specific brain nuclei and is associated with increased expression of 5-HTR subtypes 1A and 2A exclusively in the telencephalon.
Collapse
Affiliation(s)
- Jasmine L Loveland
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Natalie Uy
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karen P Maruska
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Russ E Carpenter
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Russell D Fernald
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
120
|
Brooks LR, Enix CL, Rich SC, Magno JA, Lowry CA, Tsai PS. Fibroblast growth factor deficiencies impact anxiety-like behavior and the serotonergic system. Behav Brain Res 2014; 264:74-81. [PMID: 24512770 DOI: 10.1016/j.bbr.2014.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 02/07/2023]
Abstract
Serotonergic neurons in the dorsal raphe nucleus (DR) are organized in anatomically distinct subregions that form connections with specific brain structures to modulate diverse behaviors, including anxiety-like behavior. It is unclear if the functional heterogeneity of these neurons is coupled to their developmental heterogeneity, and if abnormal development of specific DR serotonergic subregions can permanently impact anxiety circuits and behavior. The goal of this study was to examine if deficiencies in different components of fibroblast growth factor (Fgf) signaling could preferentially impact the development of specific populations of DR serotonergic neurons to alter anxiety-like behavior in adulthood. Wild-type and heterozygous male mice globally hypomorphic for Fgf8, Fgfr1, or both (Fgfr1/Fgf8) were tested in an anxiety-related behavioral battery. Both Fgf8- and Fgfr1/Fgf8-deficient mice display increased anxiety-like behavior as measured in the elevated plus-maze and the open-field tests. Immunohistochemical staining of a serotonergic marker, tryptophan hydroxylase (Tph), revealed reductions in specific populations of serotonergic neurons in the ventral, interfascicular, and ventrolateral/ventrolateral periaqueductal gray subregions of the DR in all Fgf-deficient mice, suggesting a neuroanatomical basis for increased anxiety-like behavior. Overall, this study suggests Fgf signaling selectively modulates the development of different serotonergic neuron subpopulations. Further, it suggests anxiety-like behavior may stem from developmental disruption of these neurons, and individuals with inactivating mutations in Fgf signaling genes may be predisposed to anxiety disorders.
Collapse
Affiliation(s)
- Leah R Brooks
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| | - Courtney L Enix
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Samuel C Rich
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jinno A Magno
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
121
|
Gagnon D, Parent M. Distribution of VGLUT3 in highly collateralized axons from the rat dorsal raphe nucleus as revealed by single-neuron reconstructions. PLoS One 2014; 9:e87709. [PMID: 24504335 PMCID: PMC3913638 DOI: 10.1371/journal.pone.0087709] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022] Open
Abstract
This study aimed at providing the first detailed morphological description, at the single-cell level, of the rat dorsal raphe nucleus neurons, including the distribution of the VGLUT3 protein within their axons. Electrophysiological guidance procedures were used to label dorsal raphe nucleus neurons with biotinylated dextran amine. The somatodendritic and axonal arborization domains of labeled neurons were reconstructed entirely from serial sagittal sections using a computerized image analysis system. Under anaesthesia, dorsal raphe nucleus neurons display highly regular (1.72±0.50 Hz) spontaneous firing patterns. They have a medium size cell body (9.8±1.7 µm) with 2–4 primary dendrites mainly oriented anteroposteriorly. The ascending axons of dorsal raphe nucleus are all highly collateralized and widely distributed (total axonal length up to 18.7 cm), so that they can contact, in various combinations, forebrain structures as diverse as the striatum, the prefrontal cortex and the amygdala. Their morphological features and VGLUT3 content vary significantly according to their target sites. For example, high-resolution confocal analysis of the distribution of VGLUT3 within individually labeled-axons reveals that serotonin axon varicosities displaying VGLUT3 are larger (0.74±0.03 µm) than those devoid of this protein (0.55±0.03 µm). Furthermore, the percentage of axon varicosities that contain VGLUT3 is higher in the striatum (93%) than in the motor cortex (75%), suggesting that a complex trafficking mechanism of the VGLUT3 protein is at play within highly collateralized axons of the dorsal raphe nucleus neurons. Our results provide the first direct evidence that the dorsal raphe nucleus ascending projections are composed of widely distributed neuronal systems, whose capacity to co-release serotonin and glutamate varies from one forebrain locus to the other.
Collapse
Affiliation(s)
- Dave Gagnon
- Centre de recherche de l’Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - Martin Parent
- Centre de recherche de l’Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
- * E-mail:
| |
Collapse
|
122
|
López JM, González A. Organization of the Serotonergic System in the Central Nervous System of Two Basal Actinopterygian Fishes: the CladistiansPolypterus senegalusandErpetoichthys calabaricus. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:54-76. [DOI: 10.1159/000358266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022]
|
123
|
Iceman KE, Harris MB. A group of non-serotonergic cells is CO2-stimulated in the medullary raphé. Neuroscience 2013; 259:203-13. [PMID: 24333211 DOI: 10.1016/j.neuroscience.2013.11.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 11/13/2013] [Accepted: 11/30/2013] [Indexed: 01/22/2023]
Abstract
Serotonin/substance P synthesizing cells in the raphé nuclei of the brain are candidates for designation as central chemoreceptors that are stimulated by CO2/pH. We have previously demonstrated that these neurons are CO2-stimulated in situ. Evidence also suggests that CO2-inhibited raphé neurons recorded in vitro and in situ synthesize GABA. Unknown is whether there are other types of chemosensitive cells in the raphé. Here, we showed that a previously unrecognized pool of raphé neurons also exhibit chemosensitivity, and that they are not serotonergic. We used extracellular recording of individual raphé neurons in the unanesthetized juvenile rat in situ perfused decerebrate brainstem preparation to assess chemosensitivity of raphé neurons. Subsequent juxtacellular labeling of individually recorded cells, and immunohistochemistry for the serotonin synthesizing enzyme tryptophan hydroxylase and for neurokinin-1 receptor (NK1R; the receptor for substance P) indicated a group of CO2-stimulated cells that are not serotonergic, but express NK1R and are closely apposed to surrounding serotonergic cells. CO2-stimulated 5-HT and non-5-HT cells constitute distinct groups that have different firing characteristics and hypercapnic sensitivities. Non-5-HT cells fire faster and are more robustly stimulated by CO2 than are 5-HT cells. Thus, we have characterized a previously unrecognized type of CO2-stimulated medullary raphé neuron that is not serotonergic, but may receive input from neighboring serotonin/substance P synthesizing chemosensitive neurons. The potential network properties of the three types of chemosensitive raphé neurons (the present non-5-HT cells, serotonergic cells, and CO2-inhibited cells) remain to be elucidated.
Collapse
Affiliation(s)
- K E Iceman
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA; Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA.
| | - M B Harris
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775, USA; Department of Biology and Wildlife, University of Alaska, Fairbanks, AK 99775, USA
| |
Collapse
|
124
|
Fitoussi A, Dellu-Hagedorn F, De Deurwaerdère P. Monoamines tissue content analysis reveals restricted and site-specific correlations in brain regions involved in cognition. Neuroscience 2013; 255:233-45. [DOI: 10.1016/j.neuroscience.2013.09.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 11/29/2022]
|
125
|
López JM, González A. Comparative analysis of the serotonergic systems in the CNS of two lungfishes, Protopterus dolloi and Neoceratodus forsteri. Brain Struct Funct 2013; 220:385-405. [DOI: 10.1007/s00429-013-0661-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 10/15/2013] [Indexed: 02/02/2023]
|
126
|
Rao DB, Little PB, Sills R. Subsite awareness in neuropathology evaluation of National Toxicology Program (NTP) studies: a review of select neuroanatomical structures with their functional significance in rodents. Toxicol Pathol 2013; 42:487-509. [PMID: 24135464 PMCID: PMC3965620 DOI: 10.1177/0192623313501893] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review article is designed to serve as an introductory guide in neuroanatomy for toxicologic pathologists evaluating general toxicity studies. The article provides an overview of approximately 50 neuroanatomical subsites and their functional significance across 7 transverse sections of the brain. Also reviewed are 3 sections of the spinal cord, cranial and peripheral nerves (trigeminal and sciatic, respectively), and intestinal autonomic ganglia. The review is limited to the evaluation of hematoxylin and eosin-stained tissue sections, as light microscopic evaluation of these sections is an integral part of the first-tier toxicity screening of environmental chemicals, drugs, and other agents. Prominent neuroanatomical sites associated with major neurological disorders are noted. This guide, when used in conjunction with detailed neuroanatomic atlases, may aid in an understanding of the significance of functional neuroanatomy, thereby improving the characterization of neurotoxicity in general toxicity and safety evaluation studies.
Collapse
Affiliation(s)
- Deepa B. Rao
- Integrated Laboratory Systems, Inc., Research Triangle Park, North Carolina
| | - Peter B. Little
- Consultant, Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina
| | - Robert Sills
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
127
|
Pérez MR, Pellegrini E, Cano-Nicolau J, Gueguen MM, Menouer-Le Guillou D, Merot Y, Vaillant C, Somoza GM, Kah O. Relationships between radial glial progenitors and 5-HT neurons in the paraventricular organ of adult zebrafish - potential effects of serotonin on adult neurogenesis. Eur J Neurosci 2013; 38:3292-301. [PMID: 23981075 DOI: 10.1111/ejn.12348] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 12/22/2022]
Abstract
In non-mammalian vertebrates, serotonin (5-HT)-producing neurons exist in the paraventricular organ (PVO), a diencephalic structure containing cerebrospinal fluid (CSF)-contacting neurons exhibiting 5-HT or dopamine (DA) immunoreactivity. Because the brain of the adult teleost is known for its neurogenic activity supported, for a large part, by radial glial progenitors, this study addresses the origin of newborn 5-HT neurons in the hypothalamus of adult zebrafish. In this species, the PVO exhibits numerous radial glial cells (RGCs) whose somata are located at a certain distance from the ventricle. To study relationships between RGCs and 5-HT CSF-contacting neurons, we performed 5-HT immunohistochemistry in transgenic tg(cyp19a1b-GFP) zebrafish in which RGCs are labelled with GFP under the control of the cyp19a1b promoter. We show that the somata of the 5-HT neurons are located closer to the ventricle than those of RGCs. RGCs extend towards the ventricle cytoplasmic processes that form a continuous barrier along the ventricular surface. In turn, 5-HT neurons contact the CSF via processes that cross this barrier through small pores. Further experiments using proliferating cell nuclear antigen or 5-bromo-2'-deoxyuridine indicate that RGCs proliferate and give birth to 5-HT neurons migrating centripetally instead of centrifugally as in other brain regions. Furthermore, treatment of adult zebrafish with tryptophan hydroxylase inhibitor causes a significant decrease in the number of proliferating cells in the PVO, but not in the mediobasal hypothalamus. These data point to the PVO as an intriguing region in which 5-HT appears to promote genesis of 5-HT neurons that accumulate along the brain ventricles and contact the CSF.
Collapse
Affiliation(s)
- María Rita Pérez
- Neuroendocrine Effects of Endocrine Disruptors, IRSET, Case 1302, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes cedex, 35 042, France; Laboratorio de Ictiofisiología y Acuicultura, Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH. CONICET-UNSAM), Chascomús, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Maximino C, Puty B, Benzecry R, Araújo J, Lima MG, de Jesus Oliveira Batista E, Renata de Matos Oliveira K, Crespo-Lopez ME, Herculano AM. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 2013; 71:83-97. [DOI: 10.1016/j.neuropharm.2013.03.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|
129
|
Olivier JDA, Vinkers CH, Olivier B. The role of the serotonergic and GABA system in translational approaches in drug discovery for anxiety disorders. Front Pharmacol 2013; 4:74. [PMID: 23781201 PMCID: PMC3677985 DOI: 10.3389/fphar.2013.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence that genetic factors play an important role in anxiety disorders. In support, human genome-wide association studies have implicated several novel candidate genes. However, illumination of such genetic factors involved in anxiety disorders has not resulted in novel drugs over the past decades. A complicating factor is the heterogeneous classification of anxiety disorders in the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) and diverging operationalization of anxiety used in preclinical and clinical studies. Currently, there is an increasing focus on the gene × environment (G × E) interaction in anxiety as genes do not operate in isolation and environmental factors have been found to significantly contribute to the development of anxiety disorders in at-risk individuals. Nevertheless, extensive research on G × E mechanisms in anxiety has not resulted in major breakthroughs in drug discovery. Modification of individual genes in rodent models has enabled the specific study of anxiety in preclinical studies. In this context, two extensively studied neurotransmitters involved in anxiety are the gamma-aminobutyric acid (GABA) and 5-HT (5-hydroxytryptamine) system. In this review, we illustrate the complex interplay between genes and environment in anxiety processes by reviewing preclinical and clinical studies on the serotonin transporter (5-HTT), 5-HT1A receptor, 5-HT2 receptor, and GABAA receptor. Even though targets from the serotonin and GABA system have yielded drugs with known anxiolytic efficacy, the relation between the genetic background of these targets and anxiety symptoms and development of anxiety disorders is largely unknown. The aim of this review is to show the vast complexity of genetic and environmental factors in anxiety disorders. In light of the difficulty with which common genetic variants are identified in anxiety disorders, animal models with translational validity may aid in elucidating the neurobiological background of these genes and their possible role in anxiety. We argue that, in addition to human genetic studies, translational models are essential to map anxiety-related genes and to enhance our understanding of anxiety disorders in order to develop potentially novel treatment strategies.
Collapse
Affiliation(s)
- Jocelien D A Olivier
- Department of, Women's and Children's Health, Uppsala University Uppsala, Sweden ; Center for Gender Medicine, Karolinska Institutet Stockholm, Sweden
| | | | | |
Collapse
|
130
|
Yan R, Huang T, Xie Z, Xia G, Qian H, Zhao X, Cheng L. Lmx1b controls peptide phenotypes in serotonergic and dopaminergic neurons. Acta Biochim Biophys Sin (Shanghai) 2013; 45:345-52. [PMID: 23532063 DOI: 10.1093/abbs/gmt023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Serotonin (5-HT) neurons synthesize a variety of peptides. How these peptides are controlled during development remains unclear. It has been reported that the co-localization of peptides and 5-HT varies by species. In contrast to the situations in the rostral 5-HT neurons of human and rat brains, several peptides do not coexist with 5-HT in the rostral 5-HT neurons of mouse brain. In this study, we found that the peptide substance P and peptide genes, including those encoding peptides thyrotropin-releasing hormone, enkephalin, and calcitonin gene-related peptide, were expressed in the caudal 5-HT neurons of mouse brain; these findings are in line with observations in rat and monkey 5-HT neurons. We also revealed that these peptides/peptide genes partially overlapped with the transcription factor Lmx1b that specifies the 5-HT cell fate. Furthermore, we found that the peptide cholecystokinin was expressed in developing dopaminergic neurons and greatly overlapped with Lmx1b that specifies the dopaminergic cell fate. By examining the phenotype of Lmx1b deletion mice, we found that Lmx1b was required for the expression of above peptides expressed in 5-HT or dopaminergic neurons. Together, our results indicate that Lmx1b, a key transcription factor for the specification of 5-HT and dopaminergic transmitter phenotypes during embryogenesis, determines some peptide phenotypes in these neurons as well.
Collapse
Affiliation(s)
- Rui Yan
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | |
Collapse
|
131
|
Parker MO, Brock AJ, Walton RT, Brennan CH. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front Neural Circuits 2013; 7:63. [PMID: 23580329 PMCID: PMC3619107 DOI: 10.3389/fncir.2013.00063] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/19/2013] [Indexed: 01/06/2023] Open
Abstract
Zebrafish have great potential to contribute to our understanding of behavioral genetics and thus to contribute to our understanding of the etiology of psychiatric disease. However, progress is dependent upon the rate at which behavioral assays addressing complex behavioral phenotypes are designed, reported and validated. Here we critically review existing behavioral assays with particular focus on the use of adult zebrafish to explore executive processes and phenotypes associated with human psychiatric disease. We outline the case for using zebrafish as models to study impulse control and attention, discussing the validity of applying extant rodent assays to zebrafish and evidence for the conservation of relevant neural circuits.
Collapse
Affiliation(s)
- Matthew O Parker
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | | | | | | |
Collapse
|
132
|
Inflammatory pain and corticosterone response in infant rats: effect of 5-HT1A agonist buspirone prior to gestational stress. Mediators Inflamm 2013; 2013:915189. [PMID: 23606797 PMCID: PMC3628187 DOI: 10.1155/2013/915189] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 01/18/2023] Open
Abstract
Our researches have shown that gestational stress causes exacerbation of inflammatory pain in the offspring; the maternal 5-HT1A agonist buspirone before the stress prevents the adverse effect. The serotonergic system and hypothalamo-pituitary-adrenal (HPA) axis are closely interrelated. However, interrelations between inflammatory pain and the HPA axis during the hyporeactive period of the latter have not been studied. The present research demonstrates that formalin-induced pain causes a gradual and prolonged increase in plasma corticosterone level in 7-day-old male rats; twenty-four hours after injection of formalin, the basal corticosterone level still exceeds the initial basal corticosterone value. Chronic treatments of rat dams with buspirone before restraint stress during gestation normalize in the offspring pain-like behavior and induce during the acute phase in the formalin test the stronger corticosterone increase as compared to the stress hormonal elevation in animals with other prenatal treatments. Negative correlation between plasma corticosterone level and the number of flexes+shakes is revealed in buspirone+stress rats. The new data enhance the idea about relativity of the HPA axis hyporeactive period and suggest that maternal buspirone prior to stress during gestation may enhance an adaptive mechanism of the inflammatory nociceptive system in the infant male offspring through activation of the HPA axis peripheral link.
Collapse
|
133
|
Bosco A, Bureau C, Affaticati P, Gaspar P, Bally-Cuif L, Lillesaar C. Development of hypothalamic serotoninergic neurons requires Fgf signalling via the ETS-domain transcription factor Etv5b. Development 2013; 140:372-84. [PMID: 23250211 DOI: 10.1242/dev.089094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Serotonin is a monoamine neurotransmitter that is involved in numerous physiological functions and its dysregulation is implicated in various psychiatric diseases. In all non-placental vertebrates, serotoninergic (5-HT) neurons are present in several regions of the brain, including the hypothalamus. In placental mammals, however, 5-HT neurons are located in the raphe nuclei only. In all species, though, 5-HT neurons constitute a functionally and molecularly heterogeneous population. How the non-raphe 5-HT populations are developmentally encoded is unknown. Using the zebrafish model we show that, in contrast to the raphe populations, hypothalamic 5-HT neurons are generated independently of the ETS-domain transcription factor Pet1 (Fev). By applying a combination of pharmacological tools and gene knockdown and/or overexpression experiments, we demonstrate that Fgf signalling acts via another ETS-domain transcription factor, Etv5b (Erm), to induce hypothalamic 5-HT neurons. We provide evidence that Etv5b exerts its effects by regulating cell cycle parameters in 5-HT progenitors. Our results highlight a novel role for Etv5b in neuronal development and provide support for the existence of a developmental heterogeneity among 5-HT neurons in their requirement for ETS-domain transcription factors.
Collapse
Affiliation(s)
- Adriana Bosco
- Zebrafish Neurogenetics Group, Laboratory of Neurobiology and Development, CNRS UPR3294, Institute of Neurobiology Albert Fessard, 1 Avenue de Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
134
|
Kiyasova V, Bonnavion P, Scotto-Lomassese S, Fabre V, Sahly I, Tronche F, Deneris E, Gaspar P, Fernandez SP. A subpopulation of serotonergic neurons that do not express the 5-HT1A autoreceptor. ACS Chem Neurosci 2013; 4:89-95. [PMID: 23336048 DOI: 10.1021/cn300157s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/07/2012] [Indexed: 11/28/2022] Open
Abstract
5-HT neurons are topographically organized in the hindbrain, and have been implicated in the etiology and treatment of psychiatric diseases such as depression and anxiety. Early studies suggested that the raphe 5-HT neurons were a homogeneous population showing similar electrical properties, and feedback inhibition mediated by 5-HT1A autoreceptors. We utilized histochemistry techniques in ePet1-eGFP and 5-HT1A-iCre/R26R mice to show that a subpopulation of 5-HT neurons do not express the somatodendritic 5-HT1A autoreceptor mRNA. In addition, we performed patch-clamp recordings followed by single-cell PCR in ePet1-eGFP mice. From 134 recorded 5-HT neurons located in the dorsal, lateral, and median raphe, we found lack of 5-HT1A mRNA expression in 22 cells, evenly distributed across raphe subfields. We compared the cellular characteristics of these neuronal types and found no difference in passive membrane properties and general excitability. However, when injected with large depolarizing current, 5-HT1A-negative neurons fired more action potentials, suggesting a lack of autoinhibitory action of local 5-HT release. Our results support the hypothesis that the 5-HT system is composed of subpopulations of serotonergic neurons with different capacity for adaptation.
Collapse
Affiliation(s)
- Vera Kiyasova
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
| | - Patricia Bonnavion
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - Sophie Scotto-Lomassese
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
| | - Véronique Fabre
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - Iman Sahly
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - François Tronche
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
- Institut Cerveau et de la Moelle épinière, Unité
Mixte de Recherche 7225, CNRS S975, Paris, France
| | - Evan Deneris
- School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106,
United States
| | - Patricia Gaspar
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
| | - Sebastian P. Fernandez
- Inserm, UMR-S 839, France
- Université Pierre et Marie Curie, Paris 06, Paris, France
- Institut du Fer à Moulin, 17, rue du Fer à Moulin, 75005, Paris,
France
| |
Collapse
|
135
|
Narboux-Nême N, Angenard G, Mosienko V, Klempin F, Pitychoutis PM, Deneris E, Bader M, Giros B, Alenina N, Gaspar P. Postnatal growth defects in mice with constitutive depletion of central serotonin. ACS Chem Neurosci 2013; 4:171-81. [PMID: 23336056 DOI: 10.1021/cn300165x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022] Open
Abstract
Although the trophic actions of serotonin (5-HT) are well established, only few developmental defects have been reported in mouse strains with constitutive hyposerotonergia. We analyzed postnatal growth and cortical development in three different mutant mouse strains with constitutive reductions in central 5-HT levels. We compared two previously published mouse strains with severe (-95%) depletions of 5-HT, the tryptophan hydroxylase (Tph) 2(-/-) mouse line and VMAT2(sert-cre) mice, with a new strain, in which VMAT2 deletion is driven by Pet1 (VMAT2(pet1-cre)) in 5-HT raphe neurons leading to partial (-75%) reduction in brain 5-HT levels. We find that normal embryonic growth and postnatal growth retardation are common features of all these mouse strains. Postnatal growth retardation varied from mild to severe according to the extent of the brain 5-HT reduction and gender. Normal growth was reinstated in VMAT2(sert-cre) mice by reconstituting central 5-HT stores. Growth abnormalities could not be linked to altered food intake or temperature control. Morphological study of the cerebral cortex over postnatal development showed a delayed maturation of the upper cortical layers in the VMAT2(sert-cre) and Tph2(-/-) mice, but not in the VMAT2(pet1-cre) mice. No changes in layer-specific gene expression or morphological alterations of barrel cortex development were found. Overall, these observations sustain the notion that central 5-HT signaling is required for the preweaning growth spurt of mouse pups. Brain development appeared to be immune to severe central 5-HT depletion for its overall growth during prenatal life, whereas reduced brain growth and delayed cortical maturation development occurred during postnatal life. Reduced developmental 5-HT signaling during postnatal development might modulate the function and fine structure of neural circuits in ways that affect adult behavior.
Collapse
Affiliation(s)
- Nicolas Narboux-Nême
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | - Gaelle Angenard
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | | | | | - Pothitos M. Pitychoutis
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| | - Evan Deneris
- Case Western Reserve University, Cleveland, Ohio 44101, United States
| | - Michael Bader
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Bruno Giros
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
- CNRS UMR 7224, 9 Quai St Bernard, 75005 Paris, France
- Douglas Hospital, Department of Psychiatry, McGill University, Montreal, Canada
| | - Natalia Alenina
- Max-Delbrueck-Center for Molecular Medicine, 13125 Berlin-Buch, Germany
| | - Patricia Gaspar
- INSERM, UMR-S 839, Institut du Fer à
Moulin, 17, rue du Fer à Moulin, 75005 Paris, France
- Université Pierre et Marie Curie (UPMC), Paris 06, Paris, France
| |
Collapse
|
136
|
Andrade R, Haj-Dahmane S. Serotonin neuron diversity in the dorsal raphe. ACS Chem Neurosci 2013; 4:22-5. [PMID: 23336040 DOI: 10.1021/cn300224n] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 12/24/2022] Open
Abstract
The dorsal raphe nucleus contains one of the largest groups of serotonergic neurons in the mammalian brain and is the main site of origin of the serotonergic projection to the cerebral cortex. Early electrophysiological studies suggested that serotonergic neurons in this cell group formed a homogeneous cell class. More recent studies however have reported heterogeneity among the core anatomical and electrophysiological properties of these neurons, thus raising the possibility that serotonergic neurons of this cell group may form two or more distinct cell classes. In this Viewpoint, we review these findings and suggest ways to look at cellular heterogeneity among serotonergic neurons.
Collapse
Affiliation(s)
- Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Samir Haj-Dahmane
- Research Institute on Addictions, The State University of New York at Buffalo, Buffalo, New York, United States
| |
Collapse
|
137
|
Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B. Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 2013; 4:191-9. [PMID: 23336058 DOI: 10.1021/cn300184t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/10/2012] [Indexed: 01/20/2023] Open
Abstract
The modulatory role of 5-HT neurons and a number of different 5-HT receptor subtypes has been well documented in the regulation of sleep-wake cycles and hippocampal activity. A high level of 5-HT(6) receptor expression is present in the rat hippocampus. Further, hippocampal function has been shown to be modulated by both 5-HT(6) agonists and antagonists. In the current study, the potential involvement of 5-HT(6) receptors in the control of hippocampal theta rhythms and sleep-wake cycles has been investigated. Hippocampal activity was recorded by intracranial hippocampal electrodes both in anesthetized (n = 22) and in freely moving rats (n = 9). Theta rhythm was monitored in different sleep-wake states in freely moving rats and was elicited by stimulation of the brainstem reticular formation under anesthesia. Changes in theta frequency and power were analyzed before and after injection of the 5-HT(6) antagonist (SAM-531) and the 5-HT(6) agonist (EMD386088). In freely moving rats, EMD386088 suppressed sleep for several hours and significantly decreased theta peak frequency, while, in anesthetized rats, EMD386088 had no effect on theta power but significantly decreased theta frequency, which could be blocked by coadministration of SAM-531. SAM-531 alone did not change sleep-wake patterns and had no effect on theta parameters in both unanesthetized and anesthetized rats. Decreases in theta frequency induced by the 5-HT(6) receptor agonist correspond to previously described electrophysiological patterns shared by all anxiolytic drugs, and it is in line with its behavioral anxiolytic profile. The 5-HT(6) antagonist, however, failed to potentiate theta power, which is characteristic of many pro-cognitive substances, indicating that 5-HT(6) receptors might not tonically modulate hippocampal oscillations and sleep-wake patterns.
Collapse
Affiliation(s)
- Susanna Ly
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| | - Bano Pishdari
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| | - Ling Ling Lok
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| | - Mihaly Hajos
- Translational Neuropharmacology, Section of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut,
United States
| | - Bernat Kocsis
- Department of Psychiatry, Beth Israel Deaconess
Medical Center, Harvard Medical School,
Boston, Massachusetts, United States
| |
Collapse
|
138
|
Altieri SC, Garcia-Garcia AL, Leonardo ED, Andrews AM. Rethinking 5-HT1A receptors: emerging modes of inhibitory feedback of relevance to emotion-related behavior. ACS Chem Neurosci 2013; 4:72-83. [PMID: 23336046 DOI: 10.1021/cn3002174] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/20/2012] [Indexed: 11/27/2022] Open
Abstract
The complexities of the involvement of the serotonin transmitter system in numerous biological processes and psychiatric disorders is, to a substantial degree, attributable to the large number of serotonin receptor families and subtypes that have been identified and characterized for over four decades. Of these, the 5-HT(1A) receptor subtype, which was the first to be cloned and characterized, has received considerable attention based on its purported role in the etiology and treatment of mood and anxiety disorders. 5-HT(1A) receptors function both at presynaptic (autoreceptor) and postsynaptic (heteroreceptor) sites. Recent research has implicated distinct roles for these two populations of receptors in mediating emotion-related behavior. New concepts as to how 5-HT(1A) receptors function to control serotonergic tone throughout life were highlights of the proceedings of the 2012 Serotonin Club Meeting in Montpellier, France. Here, we review recent findings and current perspectives on functional aspects of 5-HT(1A) auto- and heteroreceptors with particular regard to their involvement in altered anxiety and mood states.
Collapse
Affiliation(s)
| | - Alvaro L. Garcia-Garcia
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and New York State Psychiatric Institute, New York, New York 10032, United States
| | - E. David Leonardo
- Department of Psychiatry, Division of Integrative Neuroscience, Columbia University and New York State Psychiatric Institute, New York, New York 10032, United States
| | | |
Collapse
|
139
|
Albert PR, Benkelfat C, Descarries L. The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2012; 367:2378-81. [PMID: 22826338 DOI: 10.1098/rstb.2012.0190] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The serotonin (5-HT) hypothesis of depression dates from the 1960s. It originally postulated that a deficit in brain serotonin, corrected by antidepressant drugs, was the origin of the illness. Nowadays, it is generally accepted that recurring mood disorders are brain diseases resulting from the combination, to various degrees, of genetic and other biological as well as environmental factors, evolving through the lifespan. All areas of neuroscience, from genes to behaviour, molecules to mind, and experimental to clinical, are actively engaged in attempts at elucidating the pathophysiology of depression and the mechanisms underlying the efficacy of antidepressant treatments. This first of two special issues of Philosophical Transactions B seeks to provide an overview of current developments in the field, with an emphasis on cellular and molecular mechanisms, and how their unravelling opens new perspectives for future research.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , Ottawa, Ontario, Canada , K1H 8M5
| | | | | |
Collapse
|