101
|
Duman EA, Canli T. Influence of life stress, 5-HTTLPR genotype, and SLC6A4 methylation on gene expression and stress response in healthy Caucasian males. BIOLOGY OF MOOD & ANXIETY DISORDERS 2015; 5:2. [PMID: 25995833 PMCID: PMC4438516 DOI: 10.1186/s13587-015-0017-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 04/27/2015] [Indexed: 12/14/2022]
Abstract
Background Previous research reported that individual differences in the stress response were moderated by an interaction between individuals’ life stress experience and the serotonin transporter-linked polymorphic region (5-HTTLPR), a common polymorphism located in the promoter region of the serotonin transporter gene (SLC6A4). Furthermore, this work suggested that individual differences in SLC6A4 DNA methylation could be one underlying mechanism by which stressful life events might regulate gene expression. The aim of this study was to understand the relation between early and recent life stress experiences, 5-HTTLPR genotype, and SLC6A4 methylation. In addition, we aimed to address how these factors influence gene expression and cortisol response to an acute psychosocial stressor, operationalized as the Trier Social Stress Test (TSST). In a sample of 105 Caucasian males, we collected early and recent life stress measures and blood samples to determine 5-HTTLPR genotype and SLC6A4 methylation. Furthermore, 71 of these participants provided blood and saliva samples before and after the TSST to measure changes in SLC6A4 and NR3C1 gene expression and cortisol response. Results Compared to S-group individuals, LL individuals responded with increased SLC6A4 mRNA levels to the TSST (t(66) = 3.71, P < .001) and also showed increased global methylation as a function of ELS (r (32) = .45, P = .008) and chronic stress (r (32) = .44, P = .010). Compared to LL individuals, S-group individuals showed reduced SLC6A4 mRNA levels (r (41) = −.31, P = .042) and increased F3 methylation (r (67) = .30, P = .015) as a function of ELS; as well as increased F1 methylation as a function of chronic stress and recent depressive symptoms (r = .41, P < .01), which correlated positively with NR3C1 expression (r (42) = .31, P = .040). Conclusions Both early and recent life stress alter DNA methylation as a function of 5-HTTLPR genotype. Some of these changes are also reflected in gene expression and cortisol response, differentially affecting individuals’ stress response in a manner that may confer susceptibility or resilience for psychopathology upon experiencing stressful life events. Electronic supplementary material The online version of this article (doi:10.1186/s13587-015-0017-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elif A Duman
- Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500 USA ; Department of Psychology, Bogazici University, Bebek, 34342 Istanbul, Turkey ; Center for Life Sciences and Technologies, Bogazici University, Bebek, 34342 Istanbul, Turkey
| | - Turhan Canli
- Integrative Neuroscience, Department of Psychology, Stony Brook University, Stony Brook, NY 11794-2500 USA ; Department of Radiology, Stony Brook University, Stony Brook, NY 11794 USA ; Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794 USA ; Program in Genetics, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
102
|
Weaver ICG, Hellstrom IC, Brown SE, Andrews SD, Dymov S, Diorio J, Zhang TY, Szyf M, Meaney MJ. The methylated-DNA binding protein MBD2 enhances NGFI-A (egr-1)-mediated transcriptional activation of the glucocorticoid receptor. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0513. [PMID: 25135974 DOI: 10.1098/rstb.2013.0513] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variations in maternal care in the rat influence the epigenetic state and transcriptional activity of glucocorticoid receptor (GR) gene in the hippocampus. The mechanisms underlying this maternal effect remained to be defined, including the nature of the relevant maternally regulated intracellular signalling pathways. We show here that increased maternal licking/grooming (LG), which stably enhances hippocampal GR expression, paradoxically increases hippocampal expression of the methyl-CpG binding domain protein-2 (MBD2) and MBD2 binding to the exon 17 GR promoter. Knockdown experiments of MBD2 in hippocampal primary cell culture show that MBD2 is required for activation of exon 17 GR promoter. Ectopic co-expression of nerve growth factor-inducible protein A (NGFI-A) with MBD2 in HEK 293 cells with site-directed mutagenesis of the NGFI-A response element within the methylated exon 17 GR promoter supports the hypothesis that MBD2 collaborates with NGFI-A in binding and activation of this promoter. These data suggest a possible mechanism linking signalling pathways, which are activated by behavioural stimuli and activation of target genes.
Collapse
Affiliation(s)
- Ian C G Weaver
- Department of Psychology and Neuroscience, Dalhousie University, Life Science Research Institute, 1348 Summer Street, Halifax, Nova Scotia, Canada B3H 0A8
| | - Ian C Hellstrom
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Shelley E Brown
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Stephen D Andrews
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Sergiy Dymov
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Josie Diorio
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Tie-Yuan Zhang
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| | - Moshe Szyf
- Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4 Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Oslar Promenade, Montréal, Québec, Canada H3G 1Y6
| | - Michael J Meaney
- Lumder Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, 6875 LaSalle Boulevard, Montréal, Québec, Canada H4H 1R3 Sackler Program for Epigenetics and Psychobiology at McGill University, Montréal, Québec, Canada H3A 0G4
| |
Collapse
|
103
|
Provencal N, Binder EB. The neurobiological effects of stress as contributors to psychiatric disorders: focus on epigenetics. Curr Opin Neurobiol 2015; 30:31-7. [DOI: 10.1016/j.conb.2014.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/22/2014] [Indexed: 01/18/2023]
|
104
|
Lu J, Wen Y, Zhang L, Zhang C, Zhong W, Zhang L, Yu Y, Chen L, Xu D, Wang H. Prenatal ethanol exposure induces an intrauterine programming of enhanced sensitivity of the hypothalamic–pituitary–adrenal axis in female offspring rats fed with post-weaning high-fat diet. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00012b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
“Intrauterine programming” involved in the intrauterine origin of prenatal ethanol exposure induced enhanced sensitivity of the HPA axis in female offspring rats fed with high-fat diet.
Collapse
Affiliation(s)
- Juan Lu
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
- Department of Pharmacology
| | - Yinxian Wen
- Department of Orthopedic Surgery
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Li Zhang
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
| | - Chong Zhang
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
| | - Weihua Zhong
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
| | - Lu Zhang
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
| | - Ying Yu
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
| | - Liaobin Chen
- Department of Orthopedic Surgery
- Zhongnan Hospital of Wuhan University
- Wuhan 430071
- China
| | - Dan Xu
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease
| | - Hui Wang
- Department of Pharmacology
- Basic Medical School of Wuhan University
- Wuhan 430071
- China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease
| |
Collapse
|
105
|
Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E. Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 2015; 22:6-19. [PMID: 25227402 DOI: 10.1159/000362736] [Citation(s) in RCA: 262] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
All living organisms have developed a highly conserved and regulatory system, the stress system, to cope with a broad spectrum of stressful stimuli that threaten, or are perceived as threatening, their dynamic equilibrium or homeostasis. This neuroendocrine system consists of the hypothalamic-pituitary-adrenal (HPA) axis and the locus caeruleus/norepinephrine-autonomic nervous system. In parallel with the evolution of the homeostasis and stress concepts from ancient Greek to modern medicine, significant advances in the field of neuroendocrinology have identified the physiologic biochemical effector molecules of the stress response. Glucocorticoids, the end-products of the HPA axis, play a fundamental role in the maintenance of both resting and stress-related homeostasis and, undoubtedly, influence the physiologic adaptive reaction of the organism against stressors. If the stress response is dysregulated in terms of magnitude and/or duration, homeostasis is turned into cacostasis with adverse effects on many vital physiologic functions, such as growth, development, metabolism, circulation, reproduction, immune response, cognition and behavior. A strong and/or long-lasting stressor may precipitate and/or cause many acute and chronic diseases. Moreover, stressors during pre-natal, post-natal or pubertal life may have a critical impact on our expressed genome. This review describes the central and peripheral components of the stress system, provides a comprehensive overview of the stress response, and discusses the role of glucocorticoids in a broad spectrum of stress-related diseases. © 2014 S. Karger AG, Basel.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece
| | | | | | | | | |
Collapse
|
106
|
Dayer A. Serotonin-related pathways and developmental plasticity: relevance for psychiatric disorders. DIALOGUES IN CLINICAL NEUROSCIENCE 2014. [PMID: 24733969 PMCID: PMC3984889 DOI: 10.31887/dcns.2014.16.1/adayer] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Risk for adult psychiatric disorders is partially determined by early-life alterations occurring during neural circuit formation and maturation. In this perspective, recent data show that the serotonin system regulates key cellular processes involved in the construction of cortical circuits. Translational data for rodents indicate that early-life serotonin dysregulation leads to a wide range of behavioral alterations, ranging from stress-related phenotypes to social deficits. Studies in humans have revealed that serotonin-related genetic variants interact with early-life stress to regulate stress-induced cortisol responsiveness and activate the neural circuits involved in mood and anxiety disorders. Emerging data demonstrate that early-life adversity induces epigenetic modifications in serotonin-related genes. Finally, recent findings reveal that selective serotonin reuptake inhibitors can reinstate juvenile-like forms of neural plasticity, thus allowing the erasure of long-lasting fear memories. These approaches are providing new insights on the biological mechanisms and clinical application of antidepressants.
Collapse
Affiliation(s)
- Alexandre Dayer
- Departments of Mental Health and Psychiatry and Basic Neurosciences, University of Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
107
|
Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 2014; 48:70-91. [PMID: 25464029 DOI: 10.1016/j.neubiorev.2014.11.013] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.
Collapse
Affiliation(s)
- Olena Babenko
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4; Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
108
|
Henriques TP, Szawka RE, Diehl LA, de Souza MA, Corrêa CN, Aranda BCC, Sebben V, Franci CR, Anselmo-Franci JA, Silveira PP, de Almeida RMM. Stress in Neonatal Rats with Different Maternal Care Backgrounds: Monoaminergic and Hormonal Responses. Neurochem Res 2014. [PMID: 25261216 DOI: 10.1007/s11064-014-1438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 11/30/2022]
Abstract
The first 2 weeks of life in rats are known as the stress hyporesponsive period because stress responses in pups are diminished as compared to adult animals. However, it is considered a critical period in development in which infant rats are susceptible to environmental events, such as stressful stimuli and quality of maternal care received. These early life events have long-lasting effects, shaping a variety of outcomes, such as stress responsivity. This study investigated the effects of maternal care and sex differences on the response to an aversive stimulus in rat pups from high (HL) and low licking (LL) mothers. Plasma corticosterone, oxytocin, and central monoaminergic activity in 13-day-old rats submitted to cold stress were analyzed. Stress increased plasma corticosterone and marginally decreased hypothalamic dihydroxyphenylacetic acid/dopamine (DOPAC/DA) ratio. HL pups showed higher levels of plasma oxytocin than LL pups. The maternal effect was also detected in the hippocampus, in which 5-hydroxyindole-3-acetic acid/serotonin (5-HIAA/5-HT) ratio was increased in HL pups, independently of the sex and stress. Investigating the early life events is useful not only into understand the neurobiological and hormonal mechanisms underlying maternal and stressful influences on infant development into a healthy or psychopathological adult phenotype, but also to unveil the immediate outcomes on infancy.
Collapse
Affiliation(s)
- T P Henriques
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul, 90050-170, Brazil,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Henriques TP, Szawka RE, Diehl LA, de Souza MA, Corrêa CN, Aranda BCC, Sebben V, Franci CR, Anselmo-Franci JA, Silveira PP, de Almeida RMM. Stress in Neonatal Rats with Different Maternal Care Backgrounds: Monoaminergic and Hormonal Responses. Neurochem Res 2014; 39:2351-9. [DOI: 10.1007/s11064-014-1434-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 11/28/2022]
|
110
|
Corbo V, Salat DH, Amick MM, Leritz EC, Milberg WP, McGlinchey RE. Reduced cortical thickness in veterans exposed to early life trauma. Psychiatry Res 2014; 223:53-60. [PMID: 24862391 PMCID: PMC4423392 DOI: 10.1016/j.pscychresns.2014.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 02/27/2014] [Accepted: 04/27/2014] [Indexed: 11/30/2022]
Abstract
Studies have shown that early life trauma may influence neural development and increase the risk of developing psychological disorders in adulthood. We used magnetic resonance imaging to examine the impact of early life trauma on the relationship between current posttraumatic stress disorder (PTSD) symptoms and cortical thickness/subcortical volumes in a sample of deployed personnel from Operation Enduring Freedom/Operation Iraqi Freedom. A group of 108 service members enrolled in the Translational Research Center for Traumatic Brain Injury and Stress Disorders (TRACTS) were divided into those with interpersonal early life trauma (EL-Trauma+) and Control (without interpersonal early life trauma) groups based on the Traumatic Life Events Questionnaire. PTSD symptoms were assessed using the Clinician-Administered PTSD Scale. Cortical thickness and subcortical volumes were analyzed using the FreeSurfer image analysis package. Thickness of the paracentral and posterior cingulate regions was positively associated with PTSD severity in the EL-Trauma+ group and negatively in the Control group. In the EL-Trauma+ group, both the right amygdala and the left hippocampus were positively associated with PTSD severity. This study illustrates a possible influence of early life trauma on the vulnerability of specific brain regions to stress. Changes in neural morphometry may provide information about the emergence and maintenance of symptoms in individuals with PTSD.
Collapse
Affiliation(s)
- Vincent Corbo
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Centers (GRECC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Boston University School of Medicine, Boston, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare, Jamaica Plain, MA, USA.
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Centers (GRECC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare, Jamaica Plain, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Melissa M Amick
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Centers (GRECC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Boston University School of Medicine, Boston, MA, USA
| | - Elizabeth C Leritz
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Centers (GRECC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Division of Aging, Brigham & Women׳s Hospital, Boston, MA, USA
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Centers (GRECC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS)/Geriatric Research Education and Clinical Centers (GRECC), VA Boston Healthcare System, Jamaica Plain, MA, USA; Department of Psychiatry, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
111
|
Sominsky L, Spencer SJ. Eating behavior and stress: a pathway to obesity. Front Psychol 2014; 5:434. [PMID: 24860541 PMCID: PMC4026680 DOI: 10.3389/fpsyg.2014.00434] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/24/2014] [Indexed: 11/13/2022] Open
Abstract
Stress causes or contributes to a huge variety of diseases and disorders. Recent evidence suggests obesity and other eating-related disorders may be among these. Immediately after a stressful event is experienced, there is a corticotropin-releasing-hormone (CRH)-mediated suppression of food intake. This diverts the body’s resources away from the less pressing need to find and consume food, prioritizing fight, flight, or withdrawal behaviors so the stressful event can be dealt with. In the hours following this, however, there is a glucocorticoid-mediated stimulation of hunger and eating behavior. In the case of an acute stress that requires a physical response, such as a predator-prey interaction, this hypothalamic-pituitary-adrenal (HPA) axis modulation of food intake allows the stressful event to be dealt with and the energy used to be replaced afterward. In the case of ongoing psychological stress, however, chronically elevated glucocorticoids can lead to chronically stimulated eating behavior and excessive weight gain. In particular, stress can enhance the propensity to eat high calorie “palatable” food via its interaction with central reward pathways. Activation of this circuitry can also interact with the HPA axis to suppress its further activation, meaning not only can stress encourage eating behavior, but eating can suppress the HPA axis and the feeling of stress. In this review we will explore the theme of eating behavior and stress and how these can modulate one another. We will address the interactions between the HPA axis and eating, introducing a potential integrative role for the orexigenic hormone, ghrelin. We will also examine early life and epigenetic modulation of the HPA axis and how this can influence eating behavior. Finally, we will investigate the clinical implications of changes to HPA axis function and how this may be contributing to obesity in our society.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
112
|
The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology 2014; 80:115-32. [DOI: 10.1016/j.neuropharm.2014.01.013] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/19/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
|
113
|
|
114
|
Maldonado Bouchard S, Hook MA. Psychological stress as a modulator of functional recovery following spinal cord injury. Front Neurol 2014; 5:44. [PMID: 24782818 PMCID: PMC3988397 DOI: 10.3389/fneur.2014.00044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/23/2014] [Indexed: 12/28/2022] Open
Abstract
There is strong evidence indicating that the social environment triggers changes to the psychological stress response and glucocorticoid receptor function. Considerable literature links the subsequent changes in stress resiliency to physical health. Here, converging evidence for the modulatory role of chronic psychological stress in the recovery process following spinal cord injury (SCI) is presented. Despite the considerable advances in SCI research, we are still unable to identify the causes of variability in patients' recovery following injury. We propose that individuals' past and present life experiences (in the form of stress exposure) may significantly modulate patients' outcome post-SCI. We propose a theoretical model to explain the negative impact of chronic psychological stress on physical and psychological recovery. The stress experienced in life prior to SCI and also as a result of the traumatic injury, could compromise glucocorticoid receptor sensitivity and function, and contribute to high levels of inflammation and apoptosis post-SCI, decreasing the tissue remaining at the injury site and undermining recovery of function. Both stress-induced glucocorticoid resistance and stress-induced epigenetic changes to the glucocorticoid receptor can modulate the nuclear factor-kappa B regulated inflammatory pathways and the Bcl-2 regulated apoptosis pathways. This model not only contributes to the theoretical understanding of the recovery process following injury, but also provides concrete testable hypotheses for future studies.
Collapse
Affiliation(s)
- Sioui Maldonado Bouchard
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| | - Michelle A Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Texas A&M Institute for Neuroscience, College of Medicine , College Station, TX , USA
| |
Collapse
|
115
|
Zucchi FCR, Yao Y, Ilnytskyy Y, Robbins JC, Soltanpour N, Kovalchuk I, Kovalchuk O, Metz GAS. Lifetime stress cumulatively programs brain transcriptome and impedes stroke recovery: benefit of sensory stimulation. PLoS One 2014; 9:e92130. [PMID: 24651125 PMCID: PMC3961295 DOI: 10.1371/journal.pone.0092130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/24/2022] Open
Abstract
Prenatal stress (PS) represents a critical variable affecting lifetime health trajectories, metabolic and vascular functions. Beneficial experiences may attenuate the effects of PS and its programming of health outcomes in later life. Here we investigated in a rat model (1) if PS modulates recovery following cortical ischemia in adulthood; (2) if a second hit by adult stress (AS) exaggerates stress responses and ischemic damage; and (3) if tactile stimulation (TS) attenuates the cumulative effects of PS and AS. Prenatally stressed and non-stressed adult male rats underwent focal ischemic motor cortex lesion and were tested in skilled reaching and skilled walking tasks. Two groups of rats experienced recurrent restraint stress in adulthood and one of these groups also underwent daily TS therapy. Animals that experienced both PS and AS displayed the most severe motor disabilities after lesion. By contrast, TS promoted recovery from ischemic lesion and reduced hypothalamic-pituitary-adrenal axis activity. The data also showed that cumulative effects of adverse and beneficial lifespan experiences interact with disease outcomes and brain plasticity through the modulation of gene expression. Microarray analysis of the lesion motor cortex revealed that cumulative PS and AS interact with genes related to growth factors and transcription factors, which were not affected by PS or lesion alone. TS in PS+AS animals reverted these changes, suggesting a critical role for these factors in activity-dependent motor cortical reorganization after ischemic lesion. These findings suggest that beneficial experience later in life can moderate adverse consequences of early programming to improve cerebrovascular health.
Collapse
Affiliation(s)
- Fabíola C. R. Zucchi
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Departments of Medicine and Biological Sciences, University of Mato Grosso State, Cáceres, MT, Brazil
| | - Youli Yao
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Yaroslav Ilnytskyy
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Jerrah C. Robbins
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Nasrin Soltanpour
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
- * E-mail:
| |
Collapse
|
116
|
Starr-Phillips EJ, Beery AK. Natural variation in maternal care shapes adult social behavior in rats. Dev Psychobiol 2013; 56:1017-26. [PMID: 24271510 DOI: 10.1002/dev.21182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/27/2013] [Indexed: 12/25/2022]
Abstract
Features of the early postnatal environment profoundly shape later physical and behavioral phenotypes. The amount of licking/grooming that rat dams direct towards their offspring has durable consequences, including behavioral and physiological dimensions of stress reactivity, cognition, and reproductive behavior. We examined how natural variation in maternal care alters social behavior in adult offspring and how this relates to anxiety behavior and oxytocin receptor density. Male and female offspring of mothers who received high levels of licking spent significantly more time in social contact with unfamiliar individuals than did offspring whose dams provided less grooming. Reduced anxiety behavior was associated with greater social interaction. No differences in oxytocin receptor binding assessed by (125) I-OVTA autoradiography were detected between groups. The present investigation characterizes a novel impact of maternal care on adult social interaction behavior, replicates anxiety behavior differences, and illustrates connections between social behavior and anxiety in adulthood across maternal treatment groups.
Collapse
Affiliation(s)
- Emily J Starr-Phillips
- Department of Psychology, Program in Neuroscience, Smith College, Northampton, MA, 01063
| | | |
Collapse
|
117
|
Schechter M, Weller A, Pittel Z, Gross M, Zimmer A, Pinhasov A. Endocannabinoid receptor deficiency affects maternal care and alters the dam's hippocampal oxytocin receptor and brain-derived neurotrophic factor expression. J Neuroendocrinol 2013; 25:898-909. [PMID: 23895426 DOI: 10.1111/jne.12082] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/10/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023]
Abstract
Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour.
Collapse
Affiliation(s)
- M Schechter
- Department of Molecular Biology, Ariel University, Ariel, Israel; Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel; Gonda Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | |
Collapse
|
118
|
Rosenfeld CS, Johnson SA, Ellersieck MR, Roberts RM. Interactions between parents and parents and pups in the monogamous California mouse (Peromyscus californicus). PLoS One 2013; 8:e75725. [PMID: 24069441 PMCID: PMC3777941 DOI: 10.1371/journal.pone.0075725] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/21/2013] [Indexed: 01/28/2023] Open
Abstract
The California mouse (Peromyscuscalifornicus) may be a valuable animal model to study parenting as it is one of the few monogamous and biparental rodent species. By using automated infra-red imaging and video documentation of established pairs spanning two days prior to birth of the litter until d 5 of post natal development (PND), it was possible to follow interactions between parents and between parents and pups. The paired males were attentive to their partners in the form of grooming and sniffing throughout the time period studied. Both these and other activities of the partners, such as eating and drinking, peaked during late light/ mid-dark period. Beginning the day before birth, and most significantly on PND 0, the female made aggressive attempts to exclude the male from nest-attending, acts that were not reciprocated by the male, although he made repeated attempts to mate his partner during that period. By PND 1, males were permitted to return to the nest, where they initiated grooming, licking, and huddling over the litter, although time spent by the male on parental care was still less than that of the female. Male and female pups were of similar size and grew at the same rate. Pups, which are believed to be exothermic for at least the first two weeks post-natally, maintained a body temperature higher than that of their parents until PND 16. Data are consistent with the inference that the male California mouse parent is important in helping retain pup body heat and permit dams increased time to procure food to accommodate her increased energy needs for lactation. These assessments provide indices that may be used to assess the effects of extrinsic factors, such as endocrine disrupting chemicals, on biparental behaviors and offspring development.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Sarah A. Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark R. Ellersieck
- Agriculture Experimental Station-Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
119
|
Clarke M, Cai G, Saleh S, Buller KM, Spencer SJ. Being suckled in a large litter mitigates the effects of early-life stress on hypothalamic-pituitary-adrenal axis function in the male rat. J Neuroendocrinol 2013; 25:792-802. [PMID: 23763285 DOI: 10.1111/jne.12056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/08/2013] [Accepted: 06/09/2013] [Indexed: 12/14/2022]
Abstract
The perinatal environment influences stress responses in the long-term, as does body composition. Male rats suckled in large litters, where they have reduced access to milk and attention from the dam, are less anxious and have attenuated hypothalamic-pituitary-adrenal (HPA) axis responses to stress compared to rats from control litters. In the present study, we investigated whether this early-life environment can also ameliorate anxiety and HPA axis function in rats prone to be stress-sensitive. We conducted these experiments in male rats from control litters (n = 12) or large litters (n = 20). Half were given 24 h of maternal separation on postnatal day 10 to induce HPA axis hyperactivity; the remainder staying undisturbed with their dam. When the rats reached adulthood, we examined behavioural indices of anxiety (elevated plus maze) and depression (Porsolt's forced swim test) under basal conditions and after 15 min of restraint stress. We also examined neuronal activation in the paraventricular nucleus of the hypothalamus (PVN) as an index of HPA axis function. Being suckled in a large litter led to a significantly attenuated PVN response to stress in adulthood. Maternal separation strongly exacerbated the stress-induced increase in PVN neuronal activation in control rats but did not affect the PVN response in large-litter rats. Immobility in the forced swim after restraint was also exacerbated in neonatally maternally separated control rats but not in those from large litters. Our findings show that being suckled in large litters mitigates the effects of early-life stress on HPA axis function and indices of depression in the rat.
Collapse
Affiliation(s)
- M Clarke
- Department of Physiology, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
120
|
Spencer SJ. Perinatal programming of neuroendocrine mechanisms connecting feeding behavior and stress. Front Neurosci 2013; 7:109. [PMID: 23785312 PMCID: PMC3683620 DOI: 10.3389/fnins.2013.00109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/31/2013] [Indexed: 01/24/2023] Open
Abstract
Feeding behavior is closely regulated by neuroendocrine mechanisms that can be influenced by stressful life events. However, the feeding response to stress varies among individuals with some increasing and others decreasing food intake after stress. In addition to the impact of acute lifestyle and genetic backgrounds, the early life environment can have a life-long influence on neuroendocrine mechanisms connecting stress to feeding behavior and may partially explain these opposing feeding responses to stress. In this review I will discuss the perinatal programming of adult hypothalamic stress and feeding circuitry. Specifically I will address how early life (prenatal and postnatal) nutrition, early life stress, and the early life hormonal profile can program the hypothalamic-pituitary-adrenal (HPA) axis, the endocrine arm of the body's response to stress long-term and how these changes can, in turn, influence the hypothalamic circuitry responsible for regulating feeding behavior. Thus, over- or under-feeding and/or stressful events during critical windows of early development can alter glucocorticoid (GC) regulation of the HPA axis, leading to changes in the GC influence on energy storage and changes in GC negative feedback on HPA axis-derived satiety signals such as corticotropin-releasing-hormone. Furthermore, peripheral hormones controlling satiety, such as leptin and insulin are altered by early life events, and can be influenced, in early life and adulthood, by stress. Importantly, these neuroendocrine signals act as trophic factors during development to stimulate connectivity throughout the hypothalamus. The interplay between these neuroendocrine signals, the perinatal environment, and activation of the stress circuitry in adulthood thus strongly influences feeding behavior and may explain why individuals have unique feeding responses to similar stressors.
Collapse
Affiliation(s)
- Sarah J Spencer
- School of Health Sciences and Health Innovations Research Institute, RMIT University Melbourne, VIC, Australia
| |
Collapse
|
121
|
Yehuda R, Daskalakis NP, Desarnaud F, Makotkine I, Lehrner AL, Koch E, Flory JD, Buxbaum JD, Meaney MJ, Bierer LM. Epigenetic Biomarkers as Predictors and Correlates of Symptom Improvement Following Psychotherapy in Combat Veterans with PTSD. Front Psychiatry 2013; 4:118. [PMID: 24098286 PMCID: PMC3784793 DOI: 10.3389/fpsyt.2013.00118] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 09/11/2013] [Indexed: 01/03/2023] Open
Abstract
Epigenetic alterations offer promise as diagnostic or prognostic markers, but it is not known whether these measures associate with, or predict, clinical state. These questions were addressed in a pilot study with combat veterans with PTSD to determine whether cytosine methylation in promoter regions of the glucocorticoid related NR3C1 and FKBP51 genes would predict or associate with treatment outcome. Veterans with PTSD received prolonged exposure (PE) psychotherapy, yielding responders (n = 8), defined by no longer meeting diagnostic criteria for PTSD, and non-responders (n = 8). Blood samples were obtained at pre-treatment, after 12 weeks of psychotherapy (post-treatment), and after a 3-month follow-up. Methylation was examined in DNA extracted from lymphocytes. Measures reflecting glucocorticoid receptor (GR) activity were also obtained (i.e., plasma and 24 h-urinary cortisol, plasma ACTH, lymphocyte lysozyme IC50-DEX, and plasma neuropeptide-Y). Methylation of the GR gene (NR3C1) exon 1F promoter assessed at pre-treatment predicted treatment outcome, but was not significantly altered in responders or non-responders at post-treatment or follow-up. In contrast, methylation of the FKBP5 gene (FKBP51) exon 1 promoter region did not predict treatment response, but decreased in association with recovery. In a subset, a corresponding group difference in FKBP5 gene expression was observed, with responders showing higher gene expression at post-treatment than non-responders. Endocrine markers were also associated with the epigenetic markers. These preliminary observations require replication and validation. However, the results support research indicating that some glucocorticoid related genes are subject to environmental regulation throughout life. Moreover, psychotherapy constitutes a form of "environmental regulation" that may alter epigenetic state. Finally, the results further suggest that different genes may be associated with prognosis and symptom state, respectively.
Collapse
Affiliation(s)
- Rachel Yehuda
- Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Mental Health Care Center, PTSD Clinical Research Program and Laboratory of Clinical Neuroendocrinology and Neurochemistry, James J. Peters Veterans Affairs Medical Center , Bronx, NY , USA ; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Albert PR, Benkelfat C, Descarries L. The neurobiology of depression--revisiting the serotonin hypothesis. I. Cellular and molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2012; 367:2378-81. [PMID: 22826338 DOI: 10.1098/rstb.2012.0190] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The serotonin (5-HT) hypothesis of depression dates from the 1960s. It originally postulated that a deficit in brain serotonin, corrected by antidepressant drugs, was the origin of the illness. Nowadays, it is generally accepted that recurring mood disorders are brain diseases resulting from the combination, to various degrees, of genetic and other biological as well as environmental factors, evolving through the lifespan. All areas of neuroscience, from genes to behaviour, molecules to mind, and experimental to clinical, are actively engaged in attempts at elucidating the pathophysiology of depression and the mechanisms underlying the efficacy of antidepressant treatments. This first of two special issues of Philosophical Transactions B seeks to provide an overview of current developments in the field, with an emphasis on cellular and molecular mechanisms, and how their unravelling opens new perspectives for future research.
Collapse
Affiliation(s)
- Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience), University of Ottawa, , Ottawa, Ontario, Canada , K1H 8M5
| | | | | |
Collapse
|