101
|
Schlesinger S, Meshorer E. Open Chromatin, Epigenetic Plasticity, and Nuclear Organization in Pluripotency. Dev Cell 2019; 48:135-150. [DOI: 10.1016/j.devcel.2019.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/30/2018] [Accepted: 12/31/2018] [Indexed: 12/27/2022]
|
102
|
Borghini L, Hibberd M, Davila S. Changes in H3K27ac following lipopolysaccharide stimulation of nasopharyngeal epithelial cells. BMC Genomics 2018; 19:969. [PMID: 30587130 PMCID: PMC6307289 DOI: 10.1186/s12864-018-5295-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The epithelium is the first line of defense against pathogens. Notably the epithelial cells lining the respiratory track are crucial in sensing airborne microbes and mounting an effective immune response via the expression of target genes such as cytokines and chemokines. Gene expression regulation following microbial recognition is partly regulated by chromatin re-organization and has been described in immune cells but data from epithelial cells is not as detailed. Here, we report genome-wide changes of the H3K27ac mark, characteristic of activated enhancers and promoters, after stimulation of nasopharyngeal epithelial cells with the bacterial endotoxin Lipopolysaccharide (LPS). RESULTS In this study, we have identified 626 regions where the H3K27ac mark showed reproducible increase following LPS induction in epithelial cells. This indicated that sensing of LPS led to opening of the chromatin in our system. Moreover, this phenomenon seemed to happen extensively at enhancers regions and we could observe instances of Super-enhancer formation. As expected, LPS-increased H3K27ac regions were found in the vicinity of genes relevant for LPS response and these changes correlated with up-regulation of their expression. In addition, we found the induction of H3K27ac mark to overlap with the binding of one of the NF-kB members and key regulator of the innate immune response, RELA, following LPS sensing. Indeed, inhibiting the NF-kB pathway abolished the deposition of H3K27ac at the TNF locus, a target of RELA, suggesting that these two phenomena are associated. CONCLUSIONS Enhancers' selection and activation following microbial or inflammatory stimuli has been described previously and shown to be mediated via the NF-kB pathway. Here, we demonstrate that this is also likely to occur in the case of LPS-sensing by nasopharyngeal epithelial cells as well. In addition to validating previous findings, we generated a valuable data set relevant to the host immune response to epithelial cell colonizing or infecting pathogens.
Collapse
Affiliation(s)
- Lisa Borghini
- Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Infectious Disease, Genome Institute of Singapore, Singapore, 138672, Singapore.
| | - Martin Hibberd
- Infectious Disease, Genome Institute of Singapore, Singapore, 138672, Singapore.,Present Address: Pathogen Molecular Biology, Infectious & Tropical Disease, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Sonia Davila
- Human Genetics, Genome Institute of Singapore, Singapore, 138672, Singapore.,Present Address: SingHealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore, 169609, Singapore
| |
Collapse
|
103
|
Garcia-Moreno SA, Futtner CR, Salamone IM, Gonen N, Lovell-Badge R, Maatouk DM. Gonadal supporting cells acquire sex-specific chromatin landscapes during mammalian sex determination. Dev Biol 2018; 446:168-179. [PMID: 30594505 DOI: 10.1016/j.ydbio.2018.12.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
Cis-regulatory elements are critical for the precise spatiotemporal regulation of genes during development. However, identifying functional regulatory sites that drive cell differentiation in vivo has been complicated by the high numbers of cells required for whole-genome epigenetic assays. Here, we identified putative regulatory elements during sex determination by performing ATAC-seq and ChIP-seq for H3K27ac in purified XX and XY gonadal supporting cells before and after sex determination in mice. We show that XX and XY supporting cells initiate sex determination with similar chromatin landscapes and acquire sex-specific regulatory elements as they commit to the male or female fate. To validate our approach, we identified a functional gonad-specific enhancer downstream of Bmp2, an ovary-promoting gene. This work increases our understanding of the complex regulatory network underlying mammalian sex determination and provides a powerful resource for identifying non-coding regulatory elements that could harbor mutations that lead to Disorders of Sexual Development.
Collapse
Affiliation(s)
| | - Christopher R Futtner
- Department of Endocrinology, Northwestern University, Chicago, IL 60611, United States.
| | - Isabella M Salamone
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Nitzan Gonen
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Danielle M Maatouk
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, United States
| |
Collapse
|
104
|
King HW, Fursova NA, Blackledge NP, Klose RJ. Polycomb repressive complex 1 shapes the nucleosome landscape but not accessibility at target genes. Genome Res 2018; 28:1494-1507. [PMID: 30154222 PMCID: PMC6169895 DOI: 10.1101/gr.237180.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022]
Abstract
Polycomb group (PcG) proteins are transcriptional repressors that play important roles in regulating gene expression during animal development. In vitro experiments have shown that PcG protein complexes can compact chromatin to limit the activity of chromatin remodeling enzymes and access of the transcriptional machinery to DNA. In fitting with these ideas, gene promoters associated with PcG proteins have been reported to be less accessible than other gene promoters. However, it remains largely untested in vivo whether PcG proteins define chromatin accessibility or other chromatin features. To address this important question, we examine the chromatin accessibility and nucleosome landscape at PcG protein-bound promoters in mouse embryonic stem cells using the assay for transposase accessible chromatin (ATAC)-seq. Combined with genetic ablation strategies, we unexpectedly discover that although PcG protein-occupied gene promoters exhibit reduced accessibility, this does not rely on PcG proteins. Instead, the Polycomb repressive complex 1 (PRC1) appears to play a unique role in driving elevated nucleosome occupancy and decreased nucleosomal spacing in Polycomb chromatin domains. Our new genome-scale observations argue, in contrast to the prevailing view, that PcG proteins do not significantly affect chromatin accessibility and highlight an underappreciated complexity in the relationship between chromatin accessibility, the nucleosome landscape, and PcG-mediated transcriptional repression.
Collapse
Affiliation(s)
- Hamish W King
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
105
|
van Bömmel A, Love MI, Chung HR, Vingron M. coTRaCTE predicts co-occurring transcription factors within cell-type specific enhancers. PLoS Comput Biol 2018; 14:e1006372. [PMID: 30142147 PMCID: PMC6126874 DOI: 10.1371/journal.pcbi.1006372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/06/2018] [Accepted: 07/17/2018] [Indexed: 02/06/2023] Open
Abstract
Cell-type specific gene expression is regulated by the combinatorial action of transcription factors (TFs). In this study, we predict transcription factor (TF) combinations that cooperatively bind in a cell-type specific manner. We first divide DNase hypersensitive sites into cell-type specifically open vs. ubiquitously open sites in 64 cell types to describe possible cell-type specific enhancers. Based on the pattern contrast between these two groups of sequences we develop "co-occurring TF predictor on Cell-Type specific Enhancers" (coTRaCTE) - a novel statistical method to determine regulatory TF co-occurrences. Contrasting the co-binding of TF pairs between cell-type specific and ubiquitously open chromatin guarantees the high cell-type specificity of the predictions. coTRaCTE predicts more than 2000 co-occurring TF pairs in 64 cell types. The large majority (70%) of these TF pairs is highly cell-type specific and overlaps in TF pair co-occurrence are highly consistent among related cell types. Furthermore, independently validated co-occurring and directly interacting TFs are significantly enriched in our predictions. Focusing on the regulatory network derived from the predicted co-occurring TF pairs in embryonic stem cells (ESCs) we find that it consists of three subnetworks with distinct functions: maintenance of pluripotency governed by OCT4, SOX2 and NANOG, regulation of early development governed by KLF4, STAT3, ZIC3 and ZNF148 and general functions governed by MYC, TCF3 and YY1. In summary, coTRaCTE predicts highly cell-type specific co-occurring TFs which reveal new insights into transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Alena van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michael I. Love
- Department of Biostatistics, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ho-Ryun Chung
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Philipps-Universität Marburg, Fachbereich Medizin, Institut für Medizinische Bioinformatik und Biostatistik, Marburg, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| |
Collapse
|
106
|
Lee D, Kapoor A, Safi A, Song L, Halushka MK, Crawford GE, Chakravarti A. Human cardiac cis-regulatory elements, their cognate transcription factors, and regulatory DNA sequence variants. Genome Res 2018; 28:1577-1588. [PMID: 30139769 PMCID: PMC6169896 DOI: 10.1101/gr.234633.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/16/2018] [Indexed: 11/25/2022]
Abstract
Cis-regulatory elements (CRE), short DNA sequences through which transcription factors (TFs) exert regulatory control on gene expression, are postulated to be the major sites of causal sequence variation underlying the genetics of complex traits and diseases. We present integrative analyses, combining high-throughput genomic and epigenomic data with sequence-based computations, to identify the causal transcriptional components in a given tissue. We use data on adult human hearts to demonstrate that (1) sequence-based predictions detect numerous, active, tissue-specific CREs missed by experimental observations, (2) learned sequence features identify the cognate TFs, (3) CRE variants are specifically associated with cardiac gene expression, and (4) a significant fraction of the heritability of exemplar cardiac traits (QT interval, blood pressure, pulse rate) is attributable to these variants. This general systems approach can thus identify candidate causal variants and the components of gene regulatory networks (GRN) to enable understanding of the mechanisms of complex disorders on a tissue- or cell-type basis.
Collapse
Affiliation(s)
- Dongwon Lee
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ashish Kapoor
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Alexias Safi
- Department of Pediatrics and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Lingyun Song
- Department of Pediatrics and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Gregory E Crawford
- Department of Pediatrics and Center for Genomic and Computational Biology, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Aravinda Chakravarti
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
107
|
Bryois J, Garrett ME, Song L, Safi A, Giusti-Rodriguez P, Johnson GD, Shieh AW, Buil A, Fullard JF, Roussos P, Sklar P, Akbarian S, Haroutunian V, Stockmeier CA, Wray GA, White KP, Liu C, Reddy TE, Ashley-Koch A, Sullivan PF, Crawford GE. Evaluation of chromatin accessibility in prefrontal cortex of individuals with schizophrenia. Nat Commun 2018; 9:3121. [PMID: 30087329 PMCID: PMC6081462 DOI: 10.1038/s41467-018-05379-y] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/28/2018] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia genome-wide association studies have identified >150 regions of the genome associated with disease risk, yet there is little evidence that coding mutations contribute to this disorder. To explore the mechanism of non-coding regulatory elements in schizophrenia, we performed ATAC-seq on adult prefrontal cortex brain samples from 135 individuals with schizophrenia and 137 controls, and identified 118,152 ATAC-seq peaks. These accessible chromatin regions in the brain are highly enriched for schizophrenia SNP heritability. Accessible chromatin regions that overlap evolutionarily conserved regions exhibit an even higher heritability enrichment, indicating that sequence conservation can further refine functional risk variants. We identify few differences in chromatin accessibility between cases and controls, in contrast to thousands of age-related differential accessible chromatin regions. Altogether, we characterize chromatin accessibility in the human prefrontal cortex, the effect of schizophrenia and age on chromatin accessibility, and provide evidence that our dataset will allow for fine mapping of risk variants.
Collapse
Affiliation(s)
- Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | | | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Alexias Safi
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | | | - Graham D Johnson
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
| | - Annie W Shieh
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alfonso Buil
- Research Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Roskilde, 4000, Denmark
| | - John F Fullard
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Panos Roussos
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Pamela Sklar
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Schahram Akbarian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- MIRECC, JJ Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Craig A Stockmeier
- Department of Psychiatry and Human Behavior, Center for Psychiatric Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Gregory A Wray
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Kevin P White
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Timothy E Reddy
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, 27708, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Durham, NC, 27701, USA
- Department of Medicine, Duke University, Durham, NC, 27708, USA
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE-17177, Stockholm, Sweden.
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599-7264, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599-7264, USA.
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
108
|
Chen A, Chen D, Chen Y. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals. Gene 2018; 667:83-94. [DOI: 10.1016/j.gene.2018.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
|
109
|
Kulminski AM, Huang J, Wang J, He L, Loika Y, Culminskaya I. Apolipoprotein E region molecular signatures of Alzheimer's disease. Aging Cell 2018; 17:e12779. [PMID: 29797398 PMCID: PMC6052488 DOI: 10.1111/acel.12779] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2018] [Indexed: 01/01/2023] Open
Abstract
Although the APOE region is the strongest genetic risk factor for Alzheimer's diseases (ADs), its pathogenic role remains poorly understood. Elucidating genetic predisposition to ADs, a subset of age-related diseases characteristic for postreproductive period, is hampered by the undefined role of evolution in establishing molecular mechanisms of such diseases. This uncertainty is inevitable source of natural-selection-free genetic heterogeneity in predisposition to ADs. We performed first large-scale analysis of linkage disequilibrium (LD) structures characterized by 30 polymorphisms from five genes in the APOE 19q13.3 region (BCAM, NECTIN2, TOMM40, APOE, and APOC1) in 2,673 AD-affected and 16,246 unaffected individuals from five cohorts. Consistent with the undefined role of evolution in age-related diseases, we found that these structures, being highly heterogeneous, are significantly different in subjects with and without ADs. The pattern of the difference represents molecular signature of AD comprised of single nucleotide polymorphisms (SNPs) from all five genes in the APOE region. Significant differences in LD in subjects with and without ADs indicate SNPs from different genes likely involved in AD pathogenesis. Significant and highly heterogeneous molecular signatures of ADs provide unprecedented insight into complex polygenetic predisposition to ADs in the APOE region. These findings are more consistent with a complex haplotype than with a single genetic variant origin of ADs in this region.
Collapse
Affiliation(s)
- Alexander M Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Jian Huang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Jiayi Wang
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina
| |
Collapse
|
110
|
Swinstead EE, Paakinaho V, Hager GL. Chromatin reprogramming in breast cancer. Endocr Relat Cancer 2018; 25:R385-R404. [PMID: 29692347 PMCID: PMC6029727 DOI: 10.1530/erc-18-0033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/24/2018] [Indexed: 02/06/2023]
Abstract
Reprogramming of the chromatin landscape is a critical component to the transcriptional response in breast cancer. Effects of sex hormones such as estrogens and progesterone have been well described to have a critical impact on breast cancer proliferation. However, the complex network of the chromatin landscape, enhancer regions and mode of function of steroid receptors (SRs) and other transcription factors (TFs), is an intricate web of signaling and functional processes that is still largely misunderstood at the mechanistic level. In this review, we describe what is currently known about the dynamic interplay between TFs with chromatin and the reprogramming of enhancer elements. Emphasis has been placed on characterizing the different modes of action of TFs in regulating enhancer activity, specifically, how different SRs target enhancer regions to reprogram chromatin in breast cancer cells. In addition, we discuss current techniques employed to study enhancer function at a genome-wide level. Further, we have noted recent advances in live cell imaging technology. These single-cell approaches enable the coupling of population-based assays with real-time studies to address many unsolved questions about SRs and chromatin dynamics in breast cancer.
Collapse
Affiliation(s)
- Erin E Swinstead
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ville Paakinaho
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
- Institute of BiomedicineUniversity of Eastern Finland, Kuopio, Finland
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene ExpressionNational Cancer Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
111
|
Niu M, Tabari E, Ni P, Su Z. Towards a map of cis-regulatory sequences in the human genome. Nucleic Acids Res 2018; 46:5395-5409. [PMID: 29733395 PMCID: PMC6009671 DOI: 10.1093/nar/gky338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023] Open
Abstract
Accumulating evidence indicates that transcription factor (TF) binding sites, or cis-regulatory elements (CREs), and their clusters termed cis-regulatory modules (CRMs) play a more important role than do gene-coding sequences in specifying complex traits in humans, including the susceptibility to common complex diseases. To fully characterize their roles in deriving the complex traits/diseases, it is necessary to annotate all CREs and CRMs encoded in the human genome. However, the current annotations of CREs and CRMs in the human genome are still very limited and mostly coarse-grained, as they often lack the detailed information of CREs in CRMs. Here, we integrated 620 TF ChIP-seq datasets produced by the ENCODE project for 168 TFs in 79 different cell/tissue types and predicted an unprecedentedly completely map of CREs in CRMs in the human genome at single nucleotide resolution. The map includes 305 912 CRMs containing a total of 1 178 913 CREs belonging to 736 unique TF binding motifs. The predicted CREs and CRMs tend to be subject to either purifying selection or positive selection, thus are likely to be functional. Based on the results, we also examined the status of available ChIP-seq datasets for predicting the entire regulatory genome of humans.
Collapse
Affiliation(s)
- Meng Niu
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ehsan Tabari
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Pengyu Ni
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, College of Computing and Informatics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| |
Collapse
|
112
|
Dong X, Chen J, Li T, Li E, Zhang X, Zhang M, Song W, Zhao H, Lai J. Parent-of-origin-dependent nucleosome organization correlates with genomic imprinting in maize. Genome Res 2018; 28:1020-1028. [PMID: 29903724 PMCID: PMC6028132 DOI: 10.1101/gr.230201.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Genomic imprinting refers to allele-specific expression of genes depending on their parental origin. Nucleosomes, the fundamental units of chromatin, play a critical role in gene transcriptional regulation. However, it remains unknown whether differential nucleosome organization is related to the allele-specific expression of imprinted genes. Here, we generated a genome-wide map of allele-specific nucleosome occupancy in maize endosperm and presented an integrated analysis of its relationship with parent-of-origin-dependent gene expression and DNA methylation. We found that ∼2.3% of nucleosomes showed significant parental bias in maize endosperm. The parent-of-origin-dependent nucleosomes mostly exist as single isolated nucleosomes. Parent-of-origin-dependent nucleosomes were significantly associated with the allele-specific expression of imprinted genes, with nucleosomes positioned preferentially in the promoter of nonexpressed alleles of imprinted genes. Furthermore, we found that most of the paternal specifically positioned nucleosomes (pat-nucleosomes) were associated with parent-of-origin-dependent differential methylated regions, suggesting a functional link between the maternal demethylation and the occurrence of pat-nucleosome. Maternal specifically positioned nucleosomes (mat-nucleosomes) were independent of allele-specific DNA methylation but seem to be associated with allele-specific histone modification. Our study provides the first genome-wide map of allele-specific nucleosome occupancy in plants and suggests a mechanistic connection between chromatin organization and genomic imprinting.
Collapse
Affiliation(s)
- Xiaomei Dong
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tong Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - En Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mei Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.,Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| |
Collapse
|
113
|
TFAP2C regulates transcription in human naive pluripotency by opening enhancers. Nat Cell Biol 2018; 20:553-564. [PMID: 29695788 PMCID: PMC5926822 DOI: 10.1038/s41556-018-0089-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 03/20/2018] [Indexed: 02/08/2023]
Abstract
Naïve and primed pluripotent hESCs bear transcriptional similarity to pre- and post-implantation epiblast and thus constitute a developmental model for understanding the earliest pluripotent stages in human embryo development. To identify new transcription factors that differentially regulate the unique pluripotent stages, we mapped open chromatin using ATAC-Seq and found enrichment of the AP2 transcription factor binding motif at naïve-specific open chromatin. We determined that the AP2 family member TFAP2C is upregulated during primed to naïve reversion and becomes widespread at naïve-specific enhancers. TFAP2C functions to maintain pluripotency and repress neuroectodermal differentiation during the transition from primed to naïve by facilitating the opening of enhancers proximal to pluripotency factors. Additionally, we identify a previously undiscovered naïve-specific POU5F1 (OCT4) enhancer enriched for TFAP2C binding. Taken together, TFAP2C establishes and maintains naïve human pluripotency and regulates OCT4 expression by mechanisms that are distinct from mouse.
Collapse
|
114
|
Li T, Jia L, Cao Y, Chen Q, Li C. OCEAN-C: mapping hubs of open chromatin interactions across the genome reveals gene regulatory networks. Genome Biol 2018; 19:54. [PMID: 29690904 PMCID: PMC5926533 DOI: 10.1186/s13059-018-1430-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/30/2018] [Indexed: 01/26/2023] Open
Abstract
We develop a method called open chromatin enrichment and network Hi-C (OCEAN-C) for antibody-independent mapping of global open chromatin interactions. By integrating FAIRE-seq and Hi-C, OCEAN-C detects open chromatin interactions enriched by active cis-regulatory elements. We identify more than 10,000 hubs of open chromatin interactions (HOCIs) in human cells, which are mainly active promoters and enhancers bound by many DNA-binding proteins and form interaction networks crucial for gene transcription. In addition to identifying large-scale topological structures, including topologically associated domains and A/B compartments, OCEAN-C can detect HOCI-mediated chromatin interactions that are strongly associated with gene expression, super-enhancers, and broad H3K4me3 domains.
Collapse
Affiliation(s)
- Tingting Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China.,State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Lumeng Jia
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yong Cao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies; School of Life Sciences, Peking University, Beijing, 100871, China. .,Center for Statistical Science; Center for Bioinformatics, Peking University, Beijing, 100871, China.
| |
Collapse
|
115
|
Lai YT, Deem KD, Borràs-Castells F, Sambrani N, Rudolf H, Suryamohan K, El-Sherif E, Halfon MS, McKay DJ, Tomoyasu Y. Enhancer identification and activity evaluation in the red flour beetle, Tribolium castaneum. Development 2018; 145:dev160663. [PMID: 29540499 PMCID: PMC11736658 DOI: 10.1242/dev.160663] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
Evolution of cis-regulatory elements (such as enhancers) plays an important role in the production of diverse morphology. However, a mechanistic understanding is often limited by the absence of methods for studying enhancers in species other than established model systems. Here, we sought to establish methods to identify and test enhancer activity in the red flour beetle, Tribolium castaneum To identify possible enhancer regions, we first obtained genome-wide chromatin profiles from various tissues and stages of Tribolium using FAIRE (formaldehyde-assisted isolation of regulatory elements)-sequencing. Comparison of these profiles revealed a distinct set of open chromatin regions in each tissue and at each stage. In addition, comparison of the FAIRE data with sets of computationally predicted (i.e. supervised cis-regulatory module-predicted) enhancers revealed a very high overlap between the two datasets. Second, using nubbin in the wing and hunchback in the embryo as case studies, we established the first universal reporter assay system that works in various contexts in Tribolium, and in a cross-species context. Together, these advances will facilitate investigation of cis-evolution and morphological diversity in Tribolium and other insects.
Collapse
Affiliation(s)
- Yi-Ting Lai
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Kevin D Deem
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | | | - Nagraj Sambrani
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Heike Rudolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Kushal Suryamohan
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Ezzat El-Sherif
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Marc S Halfon
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Daniel J McKay
- Department of Biology, Department of Genetics, Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
116
|
Shashikant T, Khor JM, Ettensohn CA. Global analysis of primary mesenchyme cell cis-regulatory modules by chromatin accessibility profiling. BMC Genomics 2018; 19:206. [PMID: 29558892 PMCID: PMC5859501 DOI: 10.1186/s12864-018-4542-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/13/2018] [Indexed: 12/11/2022] Open
Abstract
Background The developmental gene regulatory network (GRN) that underlies skeletogenesis in sea urchins and other echinoderms is a paradigm of GRN structure, function, and evolution. This transcriptional network is deployed selectively in skeleton-forming primary mesenchyme cells (PMCs) of the early embryo. To advance our understanding of this model developmental GRN, we used genome-wide chromatin accessibility profiling to identify and characterize PMC cis-regulatory modules (CRMs). Results ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) analysis of purified PMCs provided a global picture of chromatin accessibility in these cells. We used both ATAC-seq and DNase-seq (DNase I hypersensitive site sequencing) to identify > 3000 sites that exhibited increased accessibility in PMCs relative to other embryonic cell lineages, and provide both computational and experimental evidence that a large fraction of these sites represent bona fide skeletogenic CRMs. Putative PMC CRMs were preferentially located near genes differentially expressed by PMCs and consensus binding sites for two key transcription factors in the PMC GRN, Alx1 and Ets1, were enriched in these CRMs. Moreover, a high proportion of candidate CRMs drove reporter gene expression specifically in PMCs in transgenic embryos. Surprisingly, we found that PMC CRMs were partially open in other embryonic lineages and exhibited hyperaccessibility as early as the 128-cell stage. Conclusions Our work provides a comprehensive picture of chromatin accessibility in an early embryonic cell lineage. By identifying thousands of candidate PMC CRMs, we significantly enhance the utility of the sea urchin skeletogenic network as a general model of GRN architecture and evolution. Our work also shows that differential chromatin accessibility, which has been used for the high-throughput identification of enhancers in differentiated cell types, is a powerful approach for the identification of CRMs in early embryonic cells. Lastly, we conclude that in the sea urchin embryo, CRMs that control the cell type-specific expression of effector genes are hyperaccessible several hours in advance of gene activation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4542-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanvi Shashikant
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Jian Ming Khor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
117
|
Urbanucci A, Barfeld SJ, Kytölä V, Itkonen HM, Coleman IM, Vodák D, Sjöblom L, Sheng X, Tolonen T, Minner S, Burdelski C, Kivinummi KK, Kohvakka A, Kregel S, Takhar M, Alshalalfa M, Davicioni E, Erho N, Lloyd P, Karnes RJ, Ross AE, Schaeffer EM, Vander Griend DJ, Knapp S, Corey E, Feng FY, Nelson PS, Saatcioglu F, Knudsen KE, Tammela TLJ, Sauter G, Schlomm T, Nykter M, Visakorpi T, Mills IG. Androgen Receptor Deregulation Drives Bromodomain-Mediated Chromatin Alterations in Prostate Cancer. Cell Rep 2018; 19:2045-2059. [PMID: 28591577 DOI: 10.1016/j.celrep.2017.05.049] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 04/01/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022] Open
Abstract
Global changes in chromatin accessibility may drive cancer progression by reprogramming transcription factor (TF) binding. In addition, histone acetylation readers such as bromodomain-containing protein 4 (BRD4) have been shown to associate with these TFs and contribute to aggressive cancers including prostate cancer (PC). Here, we show that chromatin accessibility defines castration-resistant prostate cancer (CRPC). We show that the deregulation of androgen receptor (AR) expression is a driver of chromatin relaxation and that AR/androgen-regulated bromodomain-containing proteins (BRDs) mediate this effect. We also report that BRDs are overexpressed in CRPCs and that ATAD2 and BRD2 have prognostic value. Finally, we developed gene stratification signature (BROMO-10) for bromodomain response and PC prognostication, to inform current and future trials with drugs targeting these processes. Our findings provide a compelling rational for combination therapy targeting bromodomains in selected patients in which BRD-mediated TF binding is enhanced or modified as cancer progresses.
Collapse
Affiliation(s)
- Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway.
| | - Stefan J Barfeld
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway
| | - Ville Kytölä
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University of Technology, 33520 Tampere, Finland
| | - Harri M Itkonen
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway
| | - Ilsa M Coleman
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Daniel Vodák
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway
| | - Liisa Sjöblom
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Xia Sheng
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Teemu Tolonen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Sarah Minner
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kati K Kivinummi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University of Technology, 33520 Tampere, Finland
| | - Annika Kohvakka
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Steven Kregel
- Department of Surgery - Section of Urology, University of Chicago, Chicago, IL 60637, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109-0940, USA
| | - Mandeep Takhar
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Mohammed Alshalalfa
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Elai Davicioni
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Nicholas Erho
- Research and Development, GenomeDx Biosciences, Vancouver, BC V6B 1B8, Canada
| | - Paul Lloyd
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0410, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0981, USA
| | | | - Ashley E Ross
- Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD 21287, USA
| | - Edward M Schaeffer
- Department of Urology, Northwestern University, Feinberg School of Medicine, 303 East Chicago Avenue, Tarry 16-703, Chicago, IL 60611-3008, USA
| | - Donald J Vander Griend
- Department of Surgery - Section of Urology, University of Chicago, Chicago, IL 60637, USA
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Institute for Pharmaceutical Chemistry, Goethe-University Frankfurt, Campus Riedberg, Max-von Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Felix Y Feng
- Department of Medicine, University of California at San Francisco, San Francisco, CA 94143-0410, USA; Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143-0981, USA; Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Peter S Nelson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Urology, University of Washington, Seattle, WA 98195, USA; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0424 Oslo, Norway
| | - Karen E Knudsen
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Teuvo L J Tammela
- Prostate Cancer Research Center and Department of Urology, University of Tampere and Tampere University Hospital, 33014 Tampere, Finland
| | - Guido Sauter
- University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg 20095, Germany
| | - Matti Nykter
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Tampere University of Technology, 33520 Tampere, Finland
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Institute of Biosciences and Medical Technology (BioMediTech), University of Tampere and Fimlab Laboratories, Tampere University Hospital, 33520 Tampere, Finland
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 21 0349 Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; PCUK Movember Centre of Excellence, CCRCB, Queen's University, Belfast BT7 1NN, Northern Ireland, UK.
| |
Collapse
|
118
|
Abstract
Neurons are dynamic cells that respond and adapt to stimuli throughout their long postmitotic lives. The structural and functional plasticity of neurons requires the regulated transcription of new gene products, and dysregulation of transcription in either the developing or adult brain impairs cognition. We discuss how mechanisms of chromatin regulation help to orchestrate the transcriptional programs that underlie the maturation of developing neurons and the plasticity of adult neurons. We review how chromatin regulation acts locally to modulate the expression of specific genes and more broadly to coordinate gene expression programs during transitions between cellular states. These data highlight the importance of epigenetic transcriptional mechanisms in postmitotic neurons. We suggest areas where emerging methods may advance understanding in the future.
Collapse
Affiliation(s)
- David A Gallegos
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Urann Chan
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Liang-Fu Chen
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
119
|
Abstract
Pioneer transcription factors have the unique and important role of unmasking chromatin domains during development to allow the implementation of new cellular programs. Compared with those of other transcription factors, this activity implies that pioneer factors can recognize their target DNA sequences in so-called compacted or "closed" heterochromatin and can trigger remodeling of the adjoining chromatin landscape to provide accessibility to nonpioneer transcription factors. Recent studies identified several steps of pioneer action, namely rapid but weak initial binding to heterochromatin and stabilization of binding followed by chromatin opening and loss of cytosine-phosphate-guanine (CpG) methylation that provides epigenetic memory. Whereas CpG demethylation depends on replication, chromatin opening does not. In this Minireview, we highlight the unique properties of this transcription factor class and the challenges of understanding their mechanism of action.
Collapse
Affiliation(s)
- Alexandre Mayran
- From the Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada
| | - Jacques Drouin
- From the Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Quebec H2W 1R7, Canada
| |
Collapse
|
120
|
Xin B, Rohs R. Relationship between histone modifications and transcription factor binding is protein family specific. Genome Res 2018; 28:321-333. [PMID: 29326300 PMCID: PMC5848611 DOI: 10.1101/gr.220079.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
The very small fraction of putative binding sites (BSs) that are occupied by transcription factors (TFs) in vivo can be highly variable across different cell types. This observation has been partly attributed to changes in chromatin accessibility and histone modification (HM) patterns surrounding BSs. Previous studies focusing on BSs within DNA regulatory regions found correlations between HM patterns and TF binding specificities. However, a mechanistic understanding of TF-DNA binding specificity determinants is still not available. The ability to predict in vivo TF binding on a genome-wide scale requires the identification of features that determine TF binding based on evolutionary relationships of DNA binding proteins. To reveal protein family-dependent mechanisms of TF binding, we conducted comprehensive comparisons of HM patterns surrounding BSs and non-BSs with exactly matched core motifs for TFs in three cell lines: 33 TFs in GM12878, 37 TFs in K562, and 18 TFs in H1-hESC. These TFs displayed protein family-specific preferences for HM patterns surrounding BSs, with high agreement among cell lines. Moreover, compared to models based on DNA sequence and shape at flanking regions of BSs, HM-augmented quantitative machine-learning methods resulted in increased performance in a TF family-specific manner. Analysis of the relative importance of features in these models indicated that TFs, displaying larger HM pattern differences between BSs and non-BSs, bound DNA in an HM-specific manner on a protein family-specific basis. We propose that TF family-specific HM preferences reveal distinct mechanisms that assist in guiding TFs to their cognate BSs by altering chromatin structure and accessibility.
Collapse
Affiliation(s)
- Beibei Xin
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, California 90089, USA
| | - Remo Rohs
- Computational Biology and Bioinformatics Program, Departments of Biological Sciences, Chemistry, Physics & Astronomy, and Computer Science, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
121
|
Tansey KE, Cameron D, Hill MJ. Genetic risk for Alzheimer's disease is concentrated in specific macrophage and microglial transcriptional networks. Genome Med 2018; 10:14. [PMID: 29482603 PMCID: PMC5828245 DOI: 10.1186/s13073-018-0523-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Genome-wide association studies of Alzheimer’s disease (AD) have identified a number of significant risk loci, the majority of which lie in non-coding regions of the genome. The lack of causal alleles and considerable polygenicity remains a significant barrier to translation into mechanistic understanding. This includes identifying causal variants and the cell/tissue types in which they operate. A fuller understanding of the cell types and transcriptional networks involved in AD genetic risk mechanisms will provide important insights into pathogenesis. Methods We assessed the significance of the overlap between genome-wide significant AD risk variants and sites of open chromatin from data sets representing diverse tissue types. We then focussed on macrophages and microglia to investigate the role of open chromatin sites containing motifs for specific transcription factors. Partitioned heritability using LDscore regression was used to investigate the contribution of specific macrophage and microglia transcription factor motif-containing open chromatin sites to the heritability of AD. Results AD risk single nucleotide polymorphisms (SNPs) are preferentially located at sites of open chromatin in immune cells, particularly monocytes (z score = 4.43; corrected P = 5.88 × 10− 3). Similar enrichments are observed for macrophages (z score = 4.10; corrected P < 2.40 × 10− 3) and microglia (z score = 4.34, corrected P = 0.011). In both macrophages and microglia, AD risk variants are enriched at a subset of open chromatin sites that contain DNA binding motifs for specific transcription factors, e.g. SPI1 and MEF2. Genetic variation at many of these motif-containing sites also mediate a substantial proportion of AD heritability, with SPI1-containing sites capturing the majority of the common variant SNP-chip heritability (microglia enrichment = 16.28, corrected enrichment P = 0.0044). Conclusions AD risk alleles plausibly operate in immune cells, including microglia, and are concentrated in specific transcriptional networks. Combined with primary genetic association results, the SPI1 and MEF2 transcriptional networks appear central to AD risk mechanisms. Investigation of transcription factors targeting AD risk SNP associated regulatory elements could provide powerful insights into the molecular processes affected by AD polygenic risk. More broadly, our findings support a model of polygenic disease risk that arises from variants located in specific transcriptional networks. Electronic supplementary material The online version of this article (10.1186/s13073-018-0523-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine E Tansey
- Core Bioinformatics and Statistics Team, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Darren Cameron
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Matthew J Hill
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK. .,UK Dementia Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
122
|
Gillen AE, Yang R, Cotton CU, Perez A, Randell SH, Leir SH, Harris A. Molecular characterization of gene regulatory networks in primary human tracheal and bronchial epithelial cells. J Cyst Fibros 2018; 17:444-453. [PMID: 29459038 DOI: 10.1016/j.jcf.2018.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
BACKGROUND Robust methods to culture primary airway epithelial cells were developed several decades ago and these cells provide the model of choice to investigate many diseases of the human lung. However, the molecular signature of cells from different regions of the airway epithelium has not been well characterized. METHODS We utilize DNase-seq and RNA-seq to examine the molecular signatures of primary cells derived from human tracheal and bronchial tissues, as well as healthy and diseased (cystic fibrosis (CF)) donor lung tissue. RESULTS Our data reveal an airway cell signature that is divergent from other epithelial cell types and from common airway epithelial cell lines. The differences between tracheal and bronchial cells are clearly evident as are common regulatory features. Only minor variation is seen between bronchial cells from healthy or CF donors. CONCLUSIONS These data are a valuable resource for functional genomics analysis of airway epithelial tissues in human disease.
Collapse
Affiliation(s)
- Austin E Gillen
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, 60614, United States; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States
| | - Rui Yang
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, 60614, United States; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States
| | - Calvin U Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Aura Perez
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, United States
| | - Shih-Hsing Leir
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, 60614, United States; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ann Harris
- Human Molecular Genetics Program, Lurie Children's Research Center, Chicago, IL, 60614, United States; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
123
|
Chang P, Gohain M, Yen MR, Chen PY. Computational Methods for Assessing Chromatin Hierarchy. Comput Struct Biotechnol J 2018; 16:43-53. [PMID: 29686798 PMCID: PMC5910504 DOI: 10.1016/j.csbj.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 12/27/2022] Open
Abstract
The hierarchical organization of chromatin is known to associate with diverse cellular functions; however, the precise mechanisms and the 3D structure remain to be determined. With recent advances in high-throughput next generation sequencing (NGS) techniques, genome-wide profiling of chromatin structures is made possible. Here, we provide a comprehensive overview of NGS-based methods for profiling "higher-order" and "primary-order" chromatin structures from both experimental and computational aspects. Experimental requirements and considerations specific for each method were highlighted. For computational analysis, we summarized a common analysis strategy for both levels of chromatin assessment, focusing on the characteristic computing steps and the tools. The recently developed single-cell level techniques based on Hi-C and ATAC-seq present great potential to reveal cell-to-cell variability in chromosome architecture. A brief discussion on these methods in terms of experimental and data analysis features is included. We also touch upon the biological relevance of chromatin organization and how the combination with other techniques uncovers the underlying mechanisms. We conclude with a summary and our prospects on necessary improvements of currently available methods in order to advance understanding of chromatin hierarchy. Our review brings together the analyses of both higher- and primary-order chromatin structures, and serves as a roadmap when choosing appropriate experimental and computational methods for assessing chromatin hierarchy.
Collapse
Affiliation(s)
- Pearl Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Moloya Gohain
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
124
|
Shakeel M, Irfan M, Khan IA. Estimating the mutational load for cardiovascular diseases in Pakistani population. PLoS One 2018; 13:e0192446. [PMID: 29420653 PMCID: PMC5805289 DOI: 10.1371/journal.pone.0192446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 01/23/2018] [Indexed: 02/05/2023] Open
Abstract
The deleterious genetic variants contributing to certain diseases may differ in terms of number and allele frequency from population to population depending on their evolutionary background. Here, we prioritize the deleterious variants from Pakistani population in manually curated gene list already reported to be associated with common, Mendelian, and congenital cardiovascular diseases (CVDs) using the genome/exome sequencing data of Pakistani individuals publically available in 1000 Genomes Project (PJL), and Exome Aggregation Consortium (ExAC) South Asia. By applying a set of tools such as Combined Annotation Dependent Depletion (CADD), ANNOVAR, and Variant Effect Predictor (VEP), we highlighted 561 potentially detrimental variants from PJL data, and 7374 variants from ExAC South Asian data. Likewise, filtration from ClinVar for CVDs revealed 03 pathogenic and 02 likely pathogenic variants from PJL and 112 pathogenic and 42 likely pathogenic variants from ExAC South Asians. The comparison of derived allele frequencies (DAF) revealed many of these prioritized variants having two fold and higher DAF in Pakistani individuals than in other populations. The highest number of deleterious variants contributing to common CVDs in descending order includes hypertension, atherosclerosis, heart failure, aneurysm, and coronary heart disease, and for Mendelian and congenital CVDs cardiomyopathies, cardiac arrhythmias, and atrioventricular septal defects.
Collapse
Affiliation(s)
- Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Irfan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ishtiaq Ahmad Khan
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
125
|
Soldi M, Mari T, Nicosia L, Musiani D, Sigismondo G, Cuomo A, Pavesi G, Bonaldi T. Chromatin proteomics reveals novel combinatorial histone modification signatures that mark distinct subpopulations of macrophage enhancers. Nucleic Acids Res 2017; 45:12195-12213. [PMID: 28981749 PMCID: PMC5716071 DOI: 10.1093/nar/gkx821] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 09/06/2017] [Indexed: 01/09/2023] Open
Abstract
The integrated activity of cis-regulatory elements fine-tunes transcriptional programs of mammalian cells by recruiting cell type–specific as well as ubiquitous transcription factors (TFs). Despite their key role in modulating transcription, enhancers are still poorly characterized at the molecular level, and their limited DNA sequence conservation in evolution and variable distance from target genes make their unbiased identification challenging. The coexistence of high mono-methylation and low tri-methylation levels of lysine 4 of histone H3 is considered a signature of enhancers, but a comprehensive view of histone modifications associated to enhancers is still lacking. By combining chromatin immunoprecipitation (ChIP) with mass spectrometry, we investigated cis-regulatory regions in macrophages to comprehensively identify histone marks specifically associated with enhancers, and to profile their dynamics after transcriptional activation elicited by an inflammatory stimulation. The intersection of the proteomics data with ChIP-seq and RNA-seq analyses revealed the existence of novel subpopulations of enhancers, marked by specific histone modification signatures: specifically, H3K4me1/K36me2 marks transcribed enhancers, while H3K4me1/K36me3 and H3K4me1/K79me2 combinations mark distinct classes of intronic enhancers. Thus, our MS analysis of functionally distinct genomic regions revealed the combinatorial code of histone modifications, highlighting the potential of proteomics in addressing fundamental questions in epigenetics.
Collapse
Affiliation(s)
- Monica Soldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Tommaso Mari
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Daniele Musiani
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Gianluca Sigismondo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| | - Giulio Pavesi
- Department of Biosciences, Milan University, Milan 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology, Milan 20139, Italy
| |
Collapse
|
126
|
Cooper J, Ding Y, Song J, Zhao K. Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing. Nat Protoc 2017; 12:2342-2354. [PMID: 29022941 PMCID: PMC11005227 DOI: 10.1038/nprot.2017.099] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased chromatin accessibility is a feature of cell-type-specific cis-regulatory elements; therefore, mapping of DNase I hypersensitive sites (DHSs) enables the detection of active regulatory elements of transcription, including promoters, enhancers, insulators and locus-control regions. Single-cell DNase sequencing (scDNase-seq) is a method of detecting genome-wide DHSs when starting with either single cells or <1,000 cells from primary cell sources. This technique enables genome-wide mapping of hypersensitive sites in a wide range of cell populations that cannot be analyzed using conventional DNase I sequencing because of the requirement for millions of starting cells. Fresh cells, formaldehyde-cross-linked cells or cells recovered from formalin-fixed paraffin-embedded (FFPE) tissue slides are suitable for scDNase-seq assays. To generate scDNase-seq libraries, cells are lysed and then digested with DNase I. Circular carrier plasmid DNA is included during subsequent DNA purification and library preparation steps to prevent loss of the small quantity of DHS DNA. Libraries are generated for high-throughput sequencing on the Illumina platform using standard methods. Preparation of scDNase-seq libraries requires only 2 d. The materials and molecular biology techniques described in this protocol should be accessible to any general molecular biology laboratory. Processing of high-throughput sequencing data requires basic bioinformatics skills and uses publicly available bioinformatics software.
Collapse
Affiliation(s)
- James Cooper
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Hematology Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yi Ding
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Keji Zhao
- Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
127
|
Sehra B, Franks RG. Redundant CArG Box Cis-motif Activity Mediates SHATTERPROOF2 Transcriptional Regulation during Arabidopsis thaliana Gynoecium Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1712. [PMID: 29085379 PMCID: PMC5650620 DOI: 10.3389/fpls.2017.01712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/19/2017] [Indexed: 05/29/2023]
Abstract
In the Arabidopsis thaliana seed pod, pod shatter and seed dispersal properties are in part determined by the development of a longitudinally orientated dehiscence zone (DZ) that derives from cells of the gynoecial valve margin (VM). Transcriptional regulation of the MADS protein encoding transcription factors genes SHATTERPROOF1 (SHP1) and SHATTERPROOF2 (SHP2) are critical for proper VM identity specification and later on for DZ development. Current models of SHP1 and SHP2 regulation indicate that the transcription factors FRUITFULL (FUL) and REPLUMLESS (RPL) repress these SHP genes in the developing valve and replum domains, respectively. Thus the expression of the SHP genes is restricted to the VM. FUL encodes a MADS-box containing transcription factor that is predicted to act through CArG-box containing cis-regulatory motifs. Here we delimit functional modules within the SHP2 cis-regulatory region and examine the functional importance of CArG box motifs within these regulatory regions. We have characterized a 2.2kb region upstream of the SHP2 translation start site that drives early and late medial domain expression in the gynoecium, as well as expression within the VM and DZ. We identified two separable, independent cis-regulatory modules, a 1kb promoter region and a 700bp enhancer region, that are capable of giving VM and DZ expression. Our results argue for multiple independent cis-regulatory modules that support SHP2 expression during VM development and may contribute to the robustness of SHP2 expression in this tissue. Additionally, three closely positioned CArG box motifs located in the SHP2 upstream regulatory region were mutated in the context of the 2.2kb reporter construct. Mutating simultaneously all three CArG boxes caused a moderate de-repression of the SHP2 reporter that was detected within the valve domain, suggesting that these CArG boxes are involved in SHP2 repression in the valve.
Collapse
|
128
|
Identification of cis-regulatory sequences reveals potential participation of lola and Deaf1 transcription factors in Anopheles gambiae innate immune response. PLoS One 2017; 12:e0186435. [PMID: 29028826 PMCID: PMC5640250 DOI: 10.1371/journal.pone.0186435] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/29/2017] [Indexed: 01/26/2023] Open
Abstract
The innate immune response of Anopheles gambiae involves the transcriptional upregulation of effector genes. Therefore, the cis-regulatory sequences and their cognate binding factors play essential roles in the mosquito’s immune response. However, the genetic control of the mosquito’s innate immune response is not yet fully understood. To gain further insight on the elements, the factors and the potential mechanisms involved, an open chromatin profiling was carried out on A. gambiae-derived immune-responsive cells. Here, we report the identification of cis-regulatory sites, immunity-related transcription factor binding sites, and cis-regulatory modules. A de novo motif discovery carried out on this set of cis-regulatory sequences identified immunity-related motifs and cis-regulatory modules. These modules contain motifs that are similar to binding sites for REL-, STAT-, lola- and Deaf1-type transcription factors. Sequence motifs similar to the binding sites for GAGA were found within a cis-regulatory module, together with immunity-related transcription factor binding sites. The presence of Deaf1- and lola-type binding sites, along with REL- and STAT-type binding sites, suggests that the immunity function of these two factors could have been conserved both in Drosophila and Anopheles gambiae.
Collapse
|
129
|
Lewis L, Crawford GE, Furey TS, Rusyn I. Genetic and epigenetic determinants of inter-individual variability in responses to toxicants. CURRENT OPINION IN TOXICOLOGY 2017; 6:50-59. [PMID: 29276797 PMCID: PMC5739339 DOI: 10.1016/j.cotox.2017.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is well established that genetic variability has a major impact on susceptibility to common diseases, responses to drugs and toxicants, and influences disease-related outcomes. The appreciation that epigenetic marks also vary across the population is growing with more data becoming available from studies in humans and model organisms. In addition, the links between genetic variability, toxicity outcomes and epigenetics are being actively explored. Recent studies demonstrate that gene-by-environment interactions involve both chromatin states and transcriptional regulation, and that epigenetics provides important mechanistic clues to connect expression-related quantitative trait loci (QTL) and disease outcomes. However, studies of Gene×Environment×Epigenetics further extend the complexity of the experimental designs and create a challenge for selecting the most informative epigenetic readouts that can be feasibly performed to interrogate multiple individuals, exposures, tissue types and toxicity phenotypes. We propose that among the many possible epigenetic experimental methodologies, assessment of chromatin accessibility coupled with total RNA levels provides a cost-effective and comprehensive option to sufficiently characterize the complexity of epigenetic and regulatory activity in the context of understanding the inter-individual variability in responses to toxicants.
Collapse
Affiliation(s)
- Lauren Lewis
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| | - Gregory E. Crawford
- Center for Genomic and Computational Biology and Department of Pediatrics, Division of Medical Genetics, Duke University, Durham, NC, USA
| | - Terrence S. Furey
- Department of Genetics, Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas
| |
Collapse
|
130
|
Lander JM, Supp DM, He H, Martin LJ, Chen X, Weirauch MT, Boyce ST, Kopan R. Analysis of chromatin accessibility in human epidermis identifies putative barrier dysfunction-sensing enhancers. PLoS One 2017; 12:e0184500. [PMID: 28953906 PMCID: PMC5617145 DOI: 10.1371/journal.pone.0184500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 01/12/2023] Open
Abstract
To identify putative gene regulatory regions that respond to epidermal injury, we mapped chromatin dynamics in a stratified human epidermis during barrier maturation and disruption. Engineered skin substitutes (ESS) cultured at the air-liquid interface were used as a model of developing human epidermis with incomplete barrier formation. The epidermal barrier stabilized following engraftment onto immunocompromised mice, and was compromised again upon injury. Modified formaldehyde-assisted isolation of regulatory elements (FAIRE) was used to identify accessible genomic regions characteristic of monolayer keratinocytes, ESS in vitro, grafted ESS, and tape-stripped ESS graft. We mapped differentiation- and maturation-associated changes in transcription factor binding sites enriched at each stage and observed overrepresentation of AP-1 gene family motifs in barrier-deficient samples. Transcription of TSLP, an important effector of immunological memory in response to allergen exposure, was dramatically elevated in our barrier-deficient samples. We identified dynamic DNA elements that correlated with TSLP induction and may contain enhancers that regulate TSLP. Two dynamic regions were located near the TSLP promoter and overlapped with allergy-associated SNPs rs17551370 and rs2289877, strongly implicating these loci in the regulation of TSLP expression in allergic disease. Additional dynamic chromatin regions ~250kb upstream of the TSLP promoter were found to be in high linkage disequilibrium with allergic disease SNPs. Taken together, these results define dynamic chromatin accessibility changes during epidermal development and dysfunction.
Collapse
Affiliation(s)
- Julie M. Lander
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Dorothy M. Supp
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, United States of America
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Hua He
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Lisa J. Martin
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Steven T. Boyce
- Research Department, Shriners Hospitals for Children, Cincinnati, Ohio, United States of America
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
131
|
Van Bortle K, Phanstiel DH, Snyder MP. Topological organization and dynamic regulation of human tRNA genes during macrophage differentiation. Genome Biol 2017; 18:180. [PMID: 28931413 PMCID: PMC5607496 DOI: 10.1186/s13059-017-1310-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/25/2017] [Indexed: 12/11/2022] Open
Abstract
Background The human genome is hierarchically organized into local and long-range structures that help shape cell-type-specific transcription patterns. Transfer RNA (tRNA) genes (tDNAs), which are transcribed by RNA polymerase III (RNAPIII) and encode RNA molecules responsible for translation, are dispersed throughout the genome and, in many cases, linearly organized into genomic clusters with other tDNAs. Whether the location and three-dimensional organization of tDNAs contribute to the activity of these genes has remained difficult to address, due in part to unique challenges related to tRNA sequencing. We therefore devised integrated tDNA expression profiling, a method that combines RNAPIII mapping with biotin-capture of nascent tRNAs. We apply this method to the study of dynamic tRNA gene regulation during macrophage development and further integrate these data with high-resolution maps of 3D chromatin structure. Results Integrated tDNA expression profiling reveals domain-level and loop-based organization of tRNA gene transcription during cellular differentiation. tRNA genes connected by DNA loops, which are proximal to CTCF binding sites and expressed at elevated levels compared to non-loop tDNAs, change coordinately with tDNAs and protein-coding genes at distal ends of interactions mapped by in situ Hi-C. We find that downregulated tRNA genes are specifically marked by enhanced promoter-proximal binding of MAF1, a transcriptional repressor of RNAPIII activity, altogether revealing multiple levels of tDNA regulation during cellular differentiation. Conclusions We present evidence of both local and coordinated long-range regulation of human tDNA expression, suggesting the location and organization of tRNA genes contribute to dynamic tDNA activity during macrophage development. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1310-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Douglas H Phanstiel
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA.,Thurston Arthritis Research Center and Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
132
|
Zouaz A, Auradkar A, Delfini MC, Macchi M, Barthez M, Ela Akoa S, Bastianelli L, Xie G, Deng WM, Levine SS, Graba Y, Saurin AJ. The Hox proteins Ubx and AbdA collaborate with the transcription pausing factor M1BP to regulate gene transcription. EMBO J 2017; 36:2887-2906. [PMID: 28871058 DOI: 10.15252/embj.201695751] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
In metazoans, the pausing of RNA polymerase II at the promoter (paused Pol II) has emerged as a widespread and conserved mechanism in the regulation of gene transcription. While critical in recruiting Pol II to the promoter, the role transcription factors play in transitioning paused Pol II into productive Pol II is, however, little known. By studying how Drosophila Hox transcription factors control transcription, we uncovered a molecular mechanism that increases productive transcription. We found that the Hox proteins AbdA and Ubx target gene promoters previously bound by the transcription pausing factor M1BP, containing paused Pol II and enriched with promoter-proximal Polycomb Group (PcG) proteins, yet lacking the classical H3K27me3 PcG signature. We found that AbdA binding to M1BP-regulated genes results in reduction in PcG binding, the release of paused Pol II, increases in promoter H3K4me3 histone marks and increased gene transcription. Linking transcription factors, PcG proteins and paused Pol II states, these data identify a two-step mechanism of Hox-driven transcription, with M1BP binding leading to Pol II recruitment followed by AbdA targeting, which results in a change in the chromatin landscape and enhanced transcription.
Collapse
Affiliation(s)
- Amel Zouaz
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Ankush Auradkar
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | | | - Meiggie Macchi
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Marine Barthez
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Serge Ela Akoa
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Leila Bastianelli
- MGX-Montpellier GenomiX c/o Institut de Génomique Fonctionnelle, Montpellier, France
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Stuart S Levine
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille, France
| |
Collapse
|
133
|
Liu Y, Walavalkar NM, Dozmorov MG, Rich SS, Civelek M, Guertin MJ. Identification of breast cancer associated variants that modulate transcription factor binding. PLoS Genet 2017; 13:e1006761. [PMID: 28957321 PMCID: PMC5619690 DOI: 10.1371/journal.pgen.1006761] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/12/2017] [Indexed: 01/11/2023] Open
Abstract
Genome-wide association studies (GWAS) have discovered thousands loci associated with disease risk and quantitative traits, yet most of the variants responsible for risk remain uncharacterized. The majority of GWAS-identified loci are enriched for non-coding single-nucleotide polymorphisms (SNPs) and defining the molecular mechanism of risk is challenging. Many non-coding causal SNPs are hypothesized to alter transcription factor (TF) binding sites as the mechanism by which they affect organismal phenotypes. We employed an integrative genomics approach to identify candidate TF binding motifs that confer breast cancer-specific phenotypes identified by GWAS. We performed de novo motif analysis of regulatory elements, analyzed evolutionary conservation of identified motifs, and assayed TF footprinting data to identify sequence elements that recruit TFs and maintain chromatin landscape in breast cancer-relevant tissue and cell lines. We identified candidate causal SNPs that are predicted to alter TF binding within breast cancer-relevant regulatory regions that are in strong linkage disequilibrium with significantly associated GWAS SNPs. We confirm that the TFs bind with predicted allele-specific preferences using CTCF ChIP-seq data. We used The Cancer Genome Atlas breast cancer patient data to identify ANKLE1 and ZNF404 as the target genes of candidate TF binding site SNPs in the 19p13.11 and 19q13.31 GWAS-identified loci. These SNPs are associated with the expression of ZNF404 and ANKLE1 in breast tissue. This integrative analysis pipeline is a general framework to identify candidate causal variants within regulatory regions and TF binding sites that confer phenotypic variation and disease risk.
Collapse
Affiliation(s)
- Yunxian Liu
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ninad M. Walavalkar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mete Civelek
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United Statess of America
| | - Michael J. Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
134
|
TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet 2017; 49:1336-1345. [PMID: 28783165 DOI: 10.1038/ng.3930] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022]
Abstract
TMPRSS2-ERG (T2E) structural rearrangements typify ∼50% of prostate tumors and result in overexpression of the ERG transcription factor. Using chromatin, genomic and expression data, we show distinct cis-regulatory landscapes between T2E-positive and non-T2E primary prostate tumors, which include clusters of regulatory elements (COREs). This difference is mediated by ERG co-option of HOXB13 and FOXA1, implementing a T2E-specific transcriptional profile. We also report a T2E-specific CORE on the structurally rearranged ERG locus arising from spreading of the TMPRSS2 locus pre-existing CORE, assisting in its overexpression. Finally, we show that the T2E-specific cis-regulatory landscape underlies a vulnerability against the NOTCH pathway. Indeed, NOTCH pathway inhibition antagonizes the growth and invasion of T2E-positive prostate cancer cells. Taken together, our work shows that overexpressed ERG co-opts master transcription factors to deploy a unique cis-regulatory landscape, inducing a druggable dependency on NOTCH signaling in T2E-positive prostate tumors.
Collapse
|
135
|
Jung S, Angarica VE, Andrade-Navarro MA, Buckley NJ, Del Sol A. Prediction of Chromatin Accessibility in Gene-Regulatory Regions from Transcriptomics Data. Sci Rep 2017; 7:4660. [PMID: 28680085 PMCID: PMC5498635 DOI: 10.1038/s41598-017-04929-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023] Open
Abstract
The epigenetics landscape of cells plays a key role in the establishment of cell-type specific gene expression programs characteristic of different cellular phenotypes. Different experimental procedures have been developed to obtain insights into the accessible chromatin landscape including DNase-seq, FAIRE-seq and ATAC-seq. However, current downstream computational tools fail to reliably determine regulatory region accessibility from the analysis of these experimental data. In particular, currently available peak calling algorithms are very sensitive to their parameter settings and show highly heterogeneous results, which hampers a trustworthy identification of accessible chromatin regions. Here, we present a novel method that predicts accessible and, more importantly, inaccessible gene-regulatory chromatin regions solely relying on transcriptomics data, which complements and improves the results of currently available computational methods for chromatin accessibility assays. We trained a hierarchical classification tree model on publicly available transcriptomics and DNase-seq data and assessed the predictive power of the model in six gold standard datasets. Our method increases precision and recall compared to traditional peak calling algorithms, while its usage is not limited to the prediction of accessible and inaccessible gene-regulatory chromatin regions, but constitutes a helpful tool for optimizing the parameter settings of peak calling methods in a cell type specific manner.
Collapse
Affiliation(s)
- Sascha Jung
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | | | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany.,Institute of Molecular Biology, Mainz, Germany
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
136
|
Liu Y, Zhang W, Zhang K, You Q, Yan H, Jiao Y, Jiang J, Xu W, Su Z. Genome-wide mapping of DNase I hypersensitive sites reveals chromatin accessibility changes in Arabidopsis euchromatin and heterochromatin regions under extended darkness. Sci Rep 2017. [PMID: 28642500 PMCID: PMC5481438 DOI: 10.1038/s41598-017-04524-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Light, as the energy source in photosynthesis, is essential for plant growth and development. Extended darkness causes dramatic gene expression changes. In this study, we applied DNase-seq (DNase I hypersensitive site sequencing) to study changes of chromatin accessibility in euchromatic and heterochromatic regions under extended darkness in Arabidopsis. We generated 27 Gb DNase-seq and 67.6 Gb RNA-seq data to investigate chromatin accessibility changes and global gene expression under extended darkness and control condition in Arabidopsis. We found that ~40% DHSs (DNaseI hypersensitive sites) were diminished under darkness. In non-TE regions, the majority of DHS-changed genes were DHS-diminished under darkness. A total of 519 down-regulated genes were associated with diminished DHSs under darkness, mainly involved in photosynthesis process and retrograde signaling, and were regulated by chloroplast maintenance master regulators such as GLK1. In TE regions, approximately half of the DHS-changed TEs were DHS-increased under darkness and were primarily associated with the LTR/Gypsy retrotransposons in the heterochromatin flanking the centromeres. In contrast, DHS-diminished TEs under darkness were enriched in Copia, LINE, and MuDR dispersed across chromosomes. Together, our results indicated that extended darkness resulted in more increased chromatin compaction in euchromatin and decompaction in heterochromatin, thus further leading to gene expression changes in Arabidopsis.
Collapse
Affiliation(s)
- Yue Liu
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Wenli Zhang
- Nanjing Agricultural University, State Key Laboratory for Crop Genetics and Germplasm Enhancement, JCIC-MCP, Nanjing, China
| | - Kang Zhang
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Qi You
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Hengyu Yan
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Jiming Jiang
- University of Wisconsin-Madison, Department of Horticulture, Madison, WI, USA
| | - Wenying Xu
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China
| | - Zhen Su
- College of Biological Sciences, China Agricultural University, State key Laboratory of Plant Physiology and Biochemistry, Beijing, China.
| |
Collapse
|
137
|
Richard G, Legeai F, Prunier-Leterme N, Bretaudeau A, Tagu D, Jaquiéry J, Le Trionnaire G. Dosage compensation and sex-specific epigenetic landscape of the X chromosome in the pea aphid. Epigenetics Chromatin 2017. [PMID: 28638443 PMCID: PMC5471693 DOI: 10.1186/s13072-017-0137-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background Heterogametic species display a differential number of sex chromosomes resulting in imbalanced transcription levels for these chromosomes between males and females. To correct this disequilibrium, dosage compensation mechanisms involving gene expression and chromatin accessibility regulations have emerged throughout evolution. In insects, these mechanisms have been extensively characterized only in Drosophila but not in insects of agronomical importance. Aphids are indeed major pests of a wide range of crops. Their remarkable ability to switch from asexual to sexual reproduction during their life cycle largely explains the economic losses they can cause. As heterogametic insects, male aphids are X0, while females (asexual and sexual) are XX. Results Here, we analyzed transcriptomic and open chromatin data obtained from whole male and female individuals to evaluate the putative existence of a dosage compensation mechanism involving differential chromatin accessibility of the pea aphid’s X chromosome. Transcriptomic analyses first showed X/AA and XX/AA expression ratios for expressed genes close to 1 in males and females, respectively, suggesting dosage compensation in the pea aphid. Analyses of open chromatin data obtained by Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE-seq) revealed a X chromosome chromatin accessibility globally and significantly higher in males than in females, while autosomes’ chromatin accessibility is similar between sexes. Moreover, chromatin environment of X-linked genes displaying similar expression levels in males and females—and thus likely to be compensated—is significantly more accessible in males. Conclusions Our results suggest the existence of an underlying epigenetic mechanism enhancing the X chromosome chromatin accessibility in males to allow X-linked gene dose correction between sexes in the pea aphid, similar to Drosophila. Our study gives new evidence into the comprehension of dosage compensation in link with chromatin biology in insects and newly in a major crop pest, taking benefits from both transcriptomic and open chromatin data. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0137-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gautier Richard
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| | - Fabrice Legeai
- BIPAA, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Campus Beaulieu, Rennes, France.,Genscale, INRIA, IRISA, Campus Beaulieu, Rennes, France
| | - Nathalie Prunier-Leterme
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| | - Anthony Bretaudeau
- BIPAA, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Campus Beaulieu, Rennes, France.,Genouest, INRIA, IRISA, Campus Beaulieu, Rennes, France
| | - Denis Tagu
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| | - Julie Jaquiéry
- CNRS, UMR 6553, EcoBio, University of Rennes 1, 35042 Rennes, France
| | - Gaël Le Trionnaire
- EGI, UMR 1349, INRA, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), Domaine de la Motte, BP 35327, Le Rheu, France
| |
Collapse
|
138
|
Zhang H, Zhu L, Huang DS. WSMD: weakly-supervised motif discovery in transcription factor ChIP-seq data. Sci Rep 2017; 7:3217. [PMID: 28607381 PMCID: PMC5468353 DOI: 10.1038/s41598-017-03554-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/02/2017] [Indexed: 01/24/2023] Open
Abstract
Although discriminative motif discovery (DMD) methods are promising for eliciting motifs from high-throughput experimental data, due to consideration of computational expense, most of existing DMD methods have to choose approximate schemes that greatly restrict the search space, leading to significant loss of predictive accuracy. In this paper, we propose Weakly-Supervised Motif Discovery (WSMD) to discover motifs from ChIP-seq datasets. In contrast to the learning strategies adopted by previous DMD methods, WSMD allows a "global" optimization scheme of the motif parameters in continuous space, thereby reducing the information loss of model representation and improving the quality of resultant motifs. Meanwhile, by exploiting the connection between DMD framework and existing weakly supervised learning (WSL) technologies, we also present highly scalable learning strategies for the proposed method. The experimental results on both real ChIP-seq datasets and synthetic datasets show that WSMD substantially outperforms former DMD methods (including DREME, HOMER, XXmotif, motifRG and DECOD) in terms of predictive accuracy, while also achieving a competitive computational speed.
Collapse
Affiliation(s)
- Hongbo Zhang
- Institute of Machine Learning and Systems Biology, College of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - Lin Zhu
- Institute of Machine Learning and Systems Biology, College of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P.R. China
| | - De-Shuang Huang
- Institute of Machine Learning and Systems Biology, College of Electronics and Information Engineering, Tongji University, Shanghai, 201804, P.R. China.
| |
Collapse
|
139
|
Quach B, Furey TS. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter. Bioinformatics 2017; 33:956-963. [PMID: 27993786 DOI: 10.1093/bioinformatics/btw740] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/18/2016] [Indexed: 11/13/2022] Open
Abstract
Motivation Identifying the locations of transcription factor binding sites is critical for understanding how gene transcription is regulated across different cell types and conditions. Chromatin accessibility experiments such as DNaseI sequencing (DNase-seq) and Assay for Transposase Accessible Chromatin sequencing (ATAC-seq) produce genome-wide data that include distinct 'footprint' patterns at binding sites. Nearly all existing computational methods to detect footprints from these data assume that footprint signals are highly homogeneous across footprint sites. Additionally, a comprehensive and systematic comparison of footprinting methods for specifically identifying which motif sites for a specific factor are bound has not been performed. Results Using DNase-seq data from the ENCODE project, we show that a large degree of previously uncharacterized site-to-site variability exists in footprint signal across motif sites for a transcription factor. To model this heterogeneity in the data, we introduce a novel, supervised learning footprinter called Detecting Footprints Containing Motifs (DeFCoM). We compare DeFCoM to nine existing methods using evaluation sets from four human cell-lines and eighteen transcription factors and show that DeFCoM outperforms current methods in determining bound and unbound motif sites. We also analyze the impact of several biological and technical factors on the quality of footprint predictions to highlight important considerations when conducting footprint analyses and assessing the performance of footprint prediction methods. Finally, we show that DeFCoM can detect footprints using ATAC-seq data with similar accuracy as when using DNase-seq data. Availability and Implementation Python code available at https://bitbucket.org/bryancquach/defcom. Contact bquach@email.unc.edu or tsfurey@email.unc.edu. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bryan Quach
- Curriculum in Bioinformatics and Computational Biology.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Terrence S Furey
- Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
140
|
Gandolfi F, Tramontano A. A computational approach for the functional classification of the epigenome. Epigenetics Chromatin 2017; 10:26. [PMID: 28515787 PMCID: PMC5433140 DOI: 10.1186/s13072-017-0131-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In the last decade, advanced functional genomics approaches and deep sequencing have allowed large-scale mapping of histone modifications and other epigenetic marks, highlighting functional relationships between chromatin organization and genome function. Here, we propose a novel approach to explore functional interactions between different epigenetic modifications and extract combinatorial profiles that can be used to annotate the chromatin in a finite number of functional classes. Our method is based on non-negative matrix factorization (NMF), an unsupervised learning technique originally employed to decompose high-dimensional data in a reduced number of meaningful patterns. We applied the NMF algorithm to a set of different epigenetic marks, consisting of ChIP-seq assays for multiple histone modifications, Pol II binding and chromatin accessibility assays from human H1 cells. RESULTS We identified a number of chromatin profiles that contain functional information and are biologically interpretable. We also observe that epigenetic profiles are characterized by specific genomic contexts and show significant association with distinct genomic features. Moreover, analysis of RNA-seq data reveals that distinct chromatin signatures correlate with the level of gene expression. CONCLUSIONS Overall, our study highlights the utility of NMF in studying functional relationships between different epigenetic modifications and may provide new biological insights for the interpretation of the chromatin dynamics.
Collapse
Affiliation(s)
- Francesco Gandolfi
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Anna Tramontano
- Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro 2, 00185 Rome, Italy.,Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
141
|
Maclary E, Hinten M, Harris C, Sethuraman S, Gayen S, Kalantry S. PRC2 represses transcribed genes on the imprinted inactive X chromosome in mice. Genome Biol 2017; 18:82. [PMID: 28468635 PMCID: PMC5415793 DOI: 10.1186/s13059-017-1211-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022] Open
Abstract
Background Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27me3, which marks many transcriptionally silent genes throughout the mammalian genome. Although H3K27me3 is associated with silenced gene expression broadly, it remains unclear why some but not other PRC2 target genes require PRC2 and H3K27me3 for silencing. Results Here we define the transcriptional and chromatin features that predict which PRC2 target genes require PRC2/H3K27me3 for silencing by interrogating imprinted mouse X-chromosome inactivation. H3K27me3 is enriched at promoters of silenced genes across the inactive X chromosome. To abrogate PRC2 function, we delete the core PRC2 protein EED in F1 hybrid trophoblast stem cells (TSCs), which undergo imprinted inactivation of the paternally inherited X chromosome. Eed–/– TSCs lack H3K27me3 and Xist lncRNA enrichment on the inactive X chromosome. Despite the absence of H3K27me3 and Xist RNA, only a subset of the inactivated X-linked genes is derepressed in Eed–/– TSCs. Unexpectedly, in wild-type (WT) TSCs these genes are transcribed and are enriched for active chromatin hallmarks on the inactive-X, including RNA PolII, H3K27ac, and H3K36me3, but not the bivalent mark H3K4me2. By contrast, PRC2 targets that remain repressed in Eed–/– TSCs are depleted for active chromatin characteristics in WT TSCs. Conclusions A comparative analysis of transcriptional and chromatin features of inactive X-linked genes in WT and Eed–/– TSCs suggests that PRC2 acts as a brake to prevent induction of transcribed genes on the inactive X chromosome, a mode of PRC2 function that may apply broadly. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1211-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily Maclary
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Michael Hinten
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Clair Harris
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Shriya Sethuraman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Srimonta Gayen
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Sundeep Kalantry
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
| |
Collapse
|
142
|
Arase M, Tamura Y, Kawasaki N, Isogaya K, Nakaki R, Mizutani A, Tsutsumi S, Aburatani H, Miyazono K, Koinuma D. Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells. Sci Rep 2017; 7:1166. [PMID: 28446749 PMCID: PMC5430828 DOI: 10.1038/s41598-017-00973-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/20/2017] [Indexed: 12/15/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-β and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-β and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells. Etv4, an ETS family oncogenic transcription factor, was strongly expressed and bound to more than one-third of the accessible chromatin regions in EpRas cells treated with TGF-β. While knockdown of Etv4 and another ETS family member Etv5 showed limited effects on the decrease in the E-cadherin abundance and stress fiber formation by TGF-β, gene ontology analysis showed that genes encoding extracellular proteins were most strongly down-regulated by Etv4 and Etv5 siRNAs. Accordingly, TGF-β-induced expression of Mmp13 and cell invasiveness were suppressed by Etv4 and Etv5 siRNAs, which were accompanied by the reduced chromatin accessibility at an enhancer region of Mmp13 gene. These findings suggest a mechanism of transcriptional regulation during Ras- and TGF-β-induced EMT that involves alterations of accessible chromatin, which are partly regulated by Etv4 and Etv5.
Collapse
Affiliation(s)
- Mayu Arase
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Tamura
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Natsumi Kawasaki
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazunobu Isogaya
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ryo Nakaki
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Anna Mizutani
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Ariake, Koto-ku, Tokyo, 135-8550, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Daizo Koinuma
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
143
|
Zhu J, Wang J, Chen X, Tsompana M, Gaile D, Buck M, Ren X. A time-series analysis of altered histone H3 acetylation and gene expression during the course of MMAIII-induced malignant transformation of urinary bladder cells. Carcinogenesis 2017; 38:378-390. [PMID: 28182198 DOI: 10.1093/carcin/bgx011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/26/2017] [Indexed: 01/05/2023] Open
Abstract
Our previous studies have shown that chronic exposure to low doses of monomethylarsonous acid (MMAIII) causes global histone acetylation dysregulation in urothelial cells (UROtsa cells) during the course of malignant transformation. To reveal the relationship between altered histone acetylation patterns and aberrant gene expression, more specifically, the carcinogenic relevance of these alterations, we performed a time-course analysis of the binding patterns of histone 3 lysine 18 acetylation (H3K18ac) across the genome and generated global gene-expression profiles from this UROtsa cell malignant transformation model. We showed that H3K18ac, one of the most significantly upregulated histone acetylation sites following MMAIII exposure, was enriched at gene promoter-specific regions across the genome and that MMAIII-induced upregulation of H3K18ac led to an altered binding pattern in a large number of genes that was most significant during the critical window for MMAIII-induced UROtsa cells' malignant transformation. Some genes identified as having a differential binding pattern with H3K18ac, acted as upstream regulators of critical gene networks with known functions in tumor development and progression. The altered H3K18ac binding patterns not only led to changes in expression of these directly affected upstream regulators but also resulted in gene-expression changes in their regulated networks. Collectively, our data suggest that MMAIII-induced alteration of histone acetylation patterns in UROtsa cells led to a time- and malignant stage-dependent aberrant gene-expression pattern, and that some gene regulatory networks were altered in accordance with their roles in carcinogenesis, probably contributing to MMAIII-induced urothelial cell malignant transformation and carcinogenesis.
Collapse
Affiliation(s)
- Jinqiu Zhu
- Department of Epidemiology and Environmental Health
| | | | - Xushen Chen
- Department of Epidemiology and Environmental Health
| | | | | | | | - Xuefeng Ren
- Department of Epidemiology and Environmental Health.,Department of Pharmacology and Toxicology, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
144
|
Chasman D, Roy S. Inference of cell type specific regulatory networks on mammalian lineages. ACTA ACUST UNITED AC 2017; 2:130-139. [PMID: 29082337 DOI: 10.1016/j.coisb.2017.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transcriptional regulatory networks are at the core of establishing cell type specific gene expression programs. In mammalian systems, such regulatory networks are determined by multiple levels of regulation, including by transcription factors, chromatin environment, and three-dimensional organization of the genome. Recent efforts to measure diverse regulatory genomic datasets across multiple cell types and tissues offer unprecedented opportunities to examine the context-specificity and dynamics of regulatory networks at a greater resolution and scale than before. In parallel, numerous computational approaches to analyze these data have emerged that serve as important tools for understanding mammalian cell type specific regulation. In this article, we review recent computational approaches to predict the expression and sequence-based regulators of a gene's expression level and examine long-range gene regulation. We highlight promising approaches, insights gained, and open challenges that need to be overcome to build a comprehensive picture of cell type specific transcriptional regulatory networks.
Collapse
Affiliation(s)
- Deborah Chasman
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715
| | - Sushmita Roy
- Wisconsin Institute for Discovery University of Wisconsin-Madison, Madison, WI 53715.,Department of Biostatistics and Medical Informatics University of Wisconsin-Madison, Madison, WI 53792
| |
Collapse
|
145
|
CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat Biotechnol 2017; 35:561-568. [PMID: 28369033 PMCID: PMC5462860 DOI: 10.1038/nbt.3853] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/17/2017] [Indexed: 12/27/2022]
Abstract
Large genome-mapping consortia and thousands of genome-wide association studies have identified non-protein coding elements in the genome as a having a central role in various biological processes. However, decoding the function of the millions of putative regulatory elements discovered in these studies remains challenging. CRISPR–Cas9-based epigenome editing technologies have enabled precise perturbation of the activity of specific regulatory elements. Here we describe CRISPR–Cas9-based epigenomic regulatory element screening (CERES) for improved high-throughput screening of regulatory element activity within the native genomic context. Using dCas9KRAB repressor and dCas9p300 activator constructs and lentiviral sgRNA libraries targeting DNase I hypersensitive sites surrounding a gene of interest, we perform both loss- and gain-of-function screens to identify regulatory elements for the β-globin and the HER2 loci in human cells. CERES readily identified known and novel regulatory elements, some of which were dependent on cell type or direction of perturbation. This technology allows the high-throughput functional annotation of putative regulatory elements in their native chromosomal context.
Collapse
|
146
|
Inukai S, Kock KH, Bulyk ML. Transcription factor-DNA binding: beyond binding site motifs. Curr Opin Genet Dev 2017; 43:110-119. [PMID: 28359978 PMCID: PMC5447501 DOI: 10.1016/j.gde.2017.02.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/12/2022]
Abstract
Sequence-specific transcription factors (TFs) regulate gene expression by binding to cis-regulatory elements in promoter and enhancer DNA. While studies of TF-DNA binding have focused on TFs' intrinsic preferences for primary nucleotide sequence motifs, recent studies have elucidated additional layers of complexity that modulate TF-DNA binding. In this review, we discuss technological developments for identifying TF binding preferences and highlight recent discoveries that elaborate how TF interactions, local DNA structure, and genomic features influence TF-DNA binding. We highlight novel approaches for characterizing functional binding site motifs that promise to inform our understanding of how TF binding controls gene expression and ultimately contributes to phenotype.
Collapse
Affiliation(s)
- Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kian Hong Kock
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
147
|
Fishwick C, Higgins J, Percival-Alwyn L, Hustler A, Pearson J, Bastkowski S, Moxon S, Swarbreck D, Greenman CD, Southgate J. Heterarchy of transcription factors driving basal and luminal cell phenotypes in human urothelium. Cell Death Differ 2017; 24:809-818. [PMID: 28282036 PMCID: PMC5423105 DOI: 10.1038/cdd.2017.10] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023] Open
Abstract
Cell differentiation is affected by complex networks of transcription factors that co-ordinate re-organisation of the chromatin landscape. The hierarchies of these relationships can be difficult to dissect. During in vitro differentiation of normal human uro-epithelial cells, formaldehyde-assisted isolation of regulatory elements (FAIRE-seq) and RNA-seq was used to identify alterations in chromatin accessibility and gene expression changes following activation of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) as a differentiation-initiating event. Regions of chromatin identified by FAIRE-seq, as having altered accessibility during differentiation, were found to be enriched with sequence-specific binding motifs for transcription factors predicted to be involved in driving basal and differentiated urothelial cell phenotypes, including forkhead box A1 (FOXA1), P63, GRHL2, CTCF and GATA-binding protein 3 (GATA3). In addition, co-occurrence of GATA3 motifs was observed within subsets of differentiation-specific peaks containing P63 or FOXA1. Changes in abundance of GRHL2, GATA3 and P63 were observed in immunoblots of chromatin-enriched extracts. Transient siRNA knockdown of P63 revealed that P63 favoured a basal-like phenotype by inhibiting differentiation and promoting expression of basal marker genes. GATA3 siRNA prevented differentiation-associated downregulation of P63 protein and transcript, and demonstrated positive feedback of GATA3 on PPARG transcript, but showed no effect on FOXA1 transcript or protein expression. This approach indicates that as a transcriptionally regulated programme, urothelial differentiation operates as a heterarchy, wherein GATA3 is able to co-operate with FOXA1 to drive expression of luminal marker genes, but that P63 has potential to transrepress expression of the same genes.
Collapse
Affiliation(s)
- Carl Fishwick
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Janet Higgins
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Arianna Hustler
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | - Joanna Pearson
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| | | | - Simon Moxon
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Chris D Greenman
- School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jennifer Southgate
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
148
|
Cell Type-Specific Epigenomic Analysis Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod Photoreceptors. Sci Rep 2017; 7:43184. [PMID: 28256534 PMCID: PMC5335693 DOI: 10.1038/srep43184] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
Rod photoreceptors are specialized neurons that mediate vision in dim light and are the predominant photoreceptor type in nocturnal mammals. The rods of nocturnal mammals are unique among vertebrate cell types in having an ‘inverted’ nuclear architecture, with a dense mass of heterochromatin in the center of the nucleus rather than dispersed clumps at the periphery. To test if this unique nuclear architecture is correlated with a unique epigenomic landscape, we performed ATAC-seq on mouse rods and their most closely related cell type, cone photoreceptors. We find that thousands of loci are selectively closed in rods relative to cones as well as >60 additional cell types. Furthermore, we find that the open chromatin profile of photoreceptors lacking the rod master regulator Nrl is nearly indistinguishable from that of native cones, indicating that Nrl is required for selective chromatin closure in rods. Finally, we identified distinct enrichments of transcription factor binding sites in rods and cones, revealing key differences in the cis-regulatory grammar of these cell types. Taken together, these data provide insight into the development and maintenance of photoreceptor identity, and highlight rods as an attractive system for studying the relationship between nuclear organization and local changes in gene regulation.
Collapse
|
149
|
Love MI, Huska MR, Jurk M, Schöpflin R, Starick SR, Schwahn K, Cooper SB, Yamamoto KR, Thomas-Chollier M, Vingron M, Meijsing SH. Role of the chromatin landscape and sequence in determining cell type-specific genomic glucocorticoid receptor binding and gene regulation. Nucleic Acids Res 2017; 45:1805-1819. [PMID: 27903902 PMCID: PMC5389550 DOI: 10.1093/nar/gkw1163] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/03/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023] Open
Abstract
The genomic loci bound by the glucocorticoid receptor (GR), a hormone-activated transcription factor, show little overlap between cell types. To study the role of chromatin and sequence in specifying where GR binds, we used Bayesian modeling within the universe of accessible chromatin. Taken together, our results uncovered that although GR preferentially binds accessible chromatin, its binding is biased against accessible chromatin located at promoter regions. This bias can only be explained partially by the presence of fewer GR recognition sequences, arguing for the existence of additional mechanisms that interfere with GR binding at promoters. Therefore, we tested the role of H3K9ac, the chromatin feature with the strongest negative association with GR binding, but found that this correlation does not reflect a causative link. Finally, we find a higher percentage of promoter-proximal GR binding for genes regulated by GR across cell types than for cell type-specific target genes. Given that GR almost exclusively binds accessible chromatin, we propose that cell type-specific regulation by GR preferentially occurs via distal enhancers, whose chromatin accessibility is typically cell type-specific, whereas ubiquitous target gene regulation is more likely to result from binding to promoter regions, which are often accessible regardless of cell type examined.
Collapse
Affiliation(s)
- Michael I. Love
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew R. Huska
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
| | - Marcel Jurk
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
| | - Stephan R. Starick
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
| | - Kevin Schwahn
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
| | - Samantha B. Cooper
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Morgane Thomas-Chollier
- Computational Systems Biology, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), CNRS, Inserm, Ecole Normale Supérieure, PSL Research University, F-75005 Paris, France
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63–73 14195, Berlin, Germany
| | | |
Collapse
|
150
|
Ponnaluri VKC, Ehrlich KC, Zhang G, Lacey M, Johnston D, Pradhan S, Ehrlich M. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics 2017; 12:123-138. [PMID: 27911668 PMCID: PMC5330441 DOI: 10.1080/15592294.2016.1265713] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study-owing to their myogenic DMRs-overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage.
Collapse
Affiliation(s)
| | - Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | - Michelle Lacey
- Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA, USA
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | | | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
- Hayward Genetics Center and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|