101
|
Hamada T. Microtubule-associated proteins in higher plants. JOURNAL OF PLANT RESEARCH 2007; 120:79-98. [PMID: 17285404 DOI: 10.1007/s10265-006-0057-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 11/09/2006] [Indexed: 05/09/2023]
Abstract
A variety of microtubule-associated proteins (MAPs) have been reported in higher plants. Microtubule (MT) polymerization starts from the gamma-tubulin complex (gammaTuC), a component of the MT nucleation site. MAP200/MOR1 and katanin regulate the length of the MT by promoting the dynamic instability of MTs and cutting MTs, respectively. In construction of different MT structures, MTs are bundled or are associated with other components--actin filaments, the plasma membrane, and organelles. The MAP65 family and some of kinesin family are important in bundling MTs. MT plus-end-tracking proteins (+TIPs) including end-binding protein 1 (EB1), Arabidopsis thaliana kinesin 5 (ATK5), and SPIRAL 1 (SPR1) localize to the plus end of MTs. It has been suggested that +TIPs are involved in binding of MT to other structures. Phospholipase D (PLD) is a possible candidate responsible for binding of MTs to the plasma membrane. Many candidates have been reported as actin-binding MAPs, for example calponin-homology domain (KCH) family kinesin, kinesin-like calmodulin-binding protein (KCBP), and MAP190. RNA distribution and translation depends on MT structures, and several RNA-related MAPs have been reported. This article gives an overview of predicted roles of these MAPs in higher plants.
Collapse
Affiliation(s)
- Takahiro Hamada
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1297, Japan.
| |
Collapse
|
102
|
Paradez A, Wright A, Ehrhardt DW. Microtubule cortical array organization and plant cell morphogenesis. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:571-8. [PMID: 17010658 DOI: 10.1016/j.pbi.2006.09.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 09/15/2006] [Indexed: 05/04/2023]
Abstract
Plant cell cortical microtubule arrays attain a high degree of order without the benefit of an organizing center such as a centrosome. New assays for molecular behaviors in living cells and gene discovery are yielding insight into the mechanisms by which acentrosomal microtubule arrays are created and organized, and how microtubule organization functions to modify cell form by regulating cellulose deposition. Surprising and potentially important behaviors of cortical microtubules include nucleation from the walls of established microtubules, and treadmilling-driven motility leading to polymer interaction, reorientation, and microtubule bundling. These behaviors suggest activities that can act to increase or decrease the local level of order in the array. The SPIRAL1 (SPR1) and SPR2 microtubule-localized proteins and the radial swollen 6 (rsw-6) locus are examples of new molecules and genes that affect both microtubule array organization and cell growth pattern. Functional tagging of cellulose synthase has now allowed the dynamic relationship between cortical microtubules and the cell-wall-synthesizing machinery to be visualized, providing direct evidence that cortical microtubules can organize cellulose synthase complexes and guide their movement through the plasma membrane as they create the cell wall.
Collapse
Affiliation(s)
- Alex Paradez
- Department of Plant Biology, Carnegie Institution, 260 Panama Street, Stanford, California 94305, USA
| | | | | |
Collapse
|
103
|
Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluska F, Samaj J. Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 47:174-95. [PMID: 16771841 DOI: 10.1111/j.1365-313x.2006.02783.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To investigate roles of the actin cytoskeleton in growth of the pollen tube of Picea meyeri, we used the actin polymerization inhibitor latrunculin B (LATB) under quantitatively controlled conditions. At low concentrations, LATB inhibited polymerization of the actin cytoskeleton in the growing pollen tube, which rapidly inhibited tip growth. The proteomic approach was used to analyse protein expression-profile changes during pollen germination and subsequent pollen-tube development with disturbed organization of the actin cytoskeleton. Two-dimensional electrophoresis and staining with Coomassie Brilliant Blue revealed nearly 600 protein spots. A total of 84 of these were differentially displayed at different hours with varying doses of LATB, and 53 upregulated or downregulated proteins were identified by mass spectrometry. These proteins were grouped into distinct functional categories including signalling, actin cytoskeleton organization, cell expansion and carbohydrate metabolism. Moreover, actin disruption affected the morphology of Golgi stacks, mitochondria and amyloplasts, along with a differential expression of proteins involved in their functions. These findings provide new insights into the multifaceted mechanism of actin cytoskeleton functions and its interaction with signalling, cell-expansion machinery and energy-providing pathways.
Collapse
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Photosynthesis and Molecular Environment Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Vanstraelen M, Inzé D, Geelen D. Mitosis-specific kinesins in Arabidopsis. TRENDS IN PLANT SCIENCE 2006; 11:167-75. [PMID: 16530461 DOI: 10.1016/j.tplants.2006.02.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 01/09/2006] [Accepted: 02/24/2006] [Indexed: 05/07/2023]
Abstract
Kinesins are a class of microtubule-associated proteins that possess a motor domain for binding to microtubules and, in general, allows movement along microtubules. In animal mitosis, they function in spindle formation, chromosome movement and in cytokinesis. In addition to the spindle, plants develop a preprophase band and a phragmoplast that might require multiple kinesins for construction and functioning. Indeed, several kinesins play a role in phragmoplast and cell plate dynamics. Surprisingly few kinesins have been associated with the spindle and the preprophase band. Analysis of expression datasets from synchronized cell cultures indicate that at least 23 kinesins are in some way implicated in mitosis-related processes. In this review, the function of kinesins in animal and plant mitoses are compared, and the divergence that originates from plant-specific aspects is highlighted.
Collapse
Affiliation(s)
- Marleen Vanstraelen
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
105
|
Adio S, Reth J, Bathe F, Woehlke G. Review: regulation mechanisms of Kinesin-1. J Muscle Res Cell Motil 2006; 27:153-60. [PMID: 16450053 DOI: 10.1007/s10974-005-9054-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 12/08/2005] [Indexed: 01/16/2023]
Abstract
Kinesin-1 microtubule motors are common kinesin motors from protozoa, fungi and animals. They transport vesicular or particle cargo in a strictly regulated manner. The relatively well-studied tail inhibition mechanism is based on a conformational change that leads to an interaction of Kinesin-1's tail with the junction of neck and hinge regions. This folding causes a decrease in microtubule binding and motor activity. In fungal Kinesin-1 motors several lines of evidence suggest that a conserved tyrosine in the neck coiled-coil mediates this inhibition. In the active state, a region surrounding a conserved tryptophan in the hinge stabilises the neck coiled-coil, and prevents the tyrosine from inhibiting. Although animal and fungal Kinesin-1 motors are clearly homologous and function according to the same chemo-mechanical mechanism, they differ in their regulation. Unlike fungal Kinesin-1s, animal kinesins associate with light chains that are important for regulation and cargo interaction. Several proteins interacting with animal Kinesin-1 heavy or light chains are known, among them typical scaffolding proteins that seem to link Kinesin-1 to signalling pathways.
Collapse
Affiliation(s)
- Sarah Adio
- Institute for Cell Biology, University of Munich, Schillerstr. 42, D-80336, Munich, Germany
| | | | | | | |
Collapse
|
106
|
Hashimoto T, Kato T. Cortical control of plant microtubules. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:5-11. [PMID: 16324879 DOI: 10.1016/j.pbi.2005.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 11/20/2005] [Indexed: 05/05/2023]
Abstract
The cortical microtubule array of plant cells appears in early G(1) and remodels during the progression of the cell cycle and differentiation, and in response to various stimuli. Recent studies suggest that cortical microtubules are mostly formed on pre-existing microtubules and, after detachment from the initial nucleation sites, actively interact with each other to attain distinct distribution patterns. The plus end of growing microtubules is thought to accumulate protein complexes that regulate both microtubule dynamics and interactions with cortical targets. The ROP family of small GTPases and the mitogen-activated protein kinase pathways have emerged as key players that mediate the cortical control of plant microtubules.
Collapse
Affiliation(s)
- Takashi Hashimoto
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | |
Collapse
|
107
|
Richardson DN, Simmons MP, Reddy ASN. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes. BMC Genomics 2006; 7:18. [PMID: 16448571 PMCID: PMC1434745 DOI: 10.1186/1471-2164-7-18] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 01/31/2006] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved approximately 350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis) has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. RESULTS We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. CONCLUSION The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage-specific groups contributed to the functional diversification of kinesins. Results from our gene-tree analyses indicate that there was tremendous lineage-specific duplication and diversification of kinesins in eukaryotes. Since the functions of only a few plant kinesins are reported in the literature, this comprehensive comparative analysis will be useful in designing functional studies with photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Dale N Richardson
- Department of Biology, Colorado State University, Fort Collins, CO, USA, 80523
| | - Mark P Simmons
- Department of Biology, Colorado State University, Fort Collins, CO, USA, 80523
| | - Anireddy SN Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, USA, 80523
| |
Collapse
|
108
|
Otegui MS, Verbrugghe KJ, Skop AR. Midbodies and phragmoplasts: analogous structures involved in cytokinesis. Trends Cell Biol 2005; 15:404-13. [PMID: 16009554 PMCID: PMC3677513 DOI: 10.1016/j.tcb.2005.06.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/09/2005] [Accepted: 06/24/2005] [Indexed: 12/21/2022]
Abstract
Cytokinesis is an event common to all organisms that involves the precise coordination of independent pathways involved in cell-cycle regulation and microtubule, membrane, actin and organelle dynamics. In animal cells, the spindle midzone/midbody with associated endo-membrane system are required for late cytokinesis events, including furrow ingression and scission. In plants, cytokinesis is mediated by the phragmoplast, an array of microtubules, actin filaments and associated molecules that act as a framework for the future cell wall. In this article (which is part of the Cytokinesis series), we discuss recent studies that highlight the increasing number of similarities in the components and function of the spindle midzone/midbody in animals and the phragmoplast in plants, suggesting that they might be analogous structures.
Collapse
Affiliation(s)
- Marisa S Otegui
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
109
|
Rose A, Schraegle SJ, Stahlberg EA, Meier I. Coiled-coil protein composition of 22 proteomes--differences and common themes in subcellular infrastructure and traffic control. BMC Evol Biol 2005; 5:66. [PMID: 16288662 PMCID: PMC1322226 DOI: 10.1186/1471-2148-5-66] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 11/16/2005] [Indexed: 11/16/2022] Open
Abstract
Background Long alpha-helical coiled-coil proteins are involved in diverse organizational and regulatory processes in eukaryotic cells. They provide cables and networks in the cyto- and nucleoskeleton, molecular scaffolds that organize membrane systems and tissues, motors, levers, rotating arms, and possibly springs. Mutations in long coiled-coil proteins have been implemented in a growing number of human diseases. Using the coiled-coil prediction program MultiCoil, we have previously identified all long coiled-coil proteins from the model plant Arabidopsis thaliana and have established a searchable Arabidopsis coiled-coil protein database. Results Here, we have identified all proteins with long coiled-coil domains from 21 additional fully sequenced genomes. Because regions predicted to form coiled-coils interfere with sequence homology determination, we have developed a sequence comparison and clustering strategy based on masking predicted coiled-coil domains. Comparing and grouping all long coiled-coil proteins from 22 genomes, the kingdom-specificity of coiled-coil protein families was determined. At the same time, a number of proteins with unknown function could be grouped with already characterized proteins from other organisms. Conclusion MultiCoil predicts proteins with extended coiled-coil domains (more than 250 amino acids) to be largely absent from bacterial genomes, but present in archaea and eukaryotes. The structural maintenance of chromosomes proteins and their relatives are the only long coiled-coil protein family clearly conserved throughout all kingdoms, indicating their ancient nature. Motor proteins, membrane tethering and vesicle transport proteins are the dominant eukaryote-specific long coiled-coil proteins, suggesting that coiled-coil proteins have gained functions in the increasingly complex processes of subcellular infrastructure maintenance and trafficking control of the eukaryotic cell.
Collapse
Affiliation(s)
- Annkatrin Rose
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | - Eric A Stahlberg
- Ohio Super Computer Center, 1224 Kinnear Road, Columbus, OH 43212, USA
| | - Iris Meier
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 1060 Carmack Road, Columbus, OH 43210, USA
| |
Collapse
|
110
|
Havecker ER, Gao X, Voytas DF. The Sireviruses, a plant-specific lineage of the Ty1/copia retrotransposons, interact with a family of proteins related to dynein light chain 8. PLANT PHYSIOLOGY 2005; 139:857-68. [PMID: 16183843 PMCID: PMC1256001 DOI: 10.1104/pp.105.065680] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2005] [Revised: 07/17/2005] [Accepted: 07/19/2005] [Indexed: 05/04/2023]
Abstract
Plant genomes are rich in long terminal repeat retrotransposons, and here we describe a plant-specific lineage of Ty1/copia elements called the Sireviruses. The Sireviruses vary greatly in their genomic organization, and many have acquired additional coding information in the form of an envelope-like open reading frame and an extended gag gene. Two-hybrid screens were conducted with the novel domain of Gag (the Gag extension) encoded by a representative Sirevirus from maize (Zea mays) called Hopie. The Hopie Gag extension interacts with a protein related to dynein light chain 8 (LC8). LC8 also interacts with the Gag extension from a Hopie homolog from rice (Oryza sativa). Amino acid motifs were identified in both Hopie Gag and LC8 that are responsible for the interaction. Two amino acids critical for Gag recognition map within the predicted LC8-binding cleft. Two-hybrid screens were also conducted with the Gag extension encoded by the soybean (Glycine max) SIRE1 element, and an interaction was found with light chain 6 (LC6), a member of the LC8 protein family. LC8 and LC6 proteins are components of the dynein microtubule motor, with LC8 being a versatile adapter that can bind many unrelated cellular proteins and viruses. Plant LC8 and LC6 genes are abundant and divergent, yet flowering plants do not encode other components of the dynein motor. Although, to our knowledge, no cellular roles for plant LC8 family members have been proposed, we hypothesize that binding of LC8 proteins to Gag aids in the movement of retrotransposon virus-like particles within the plant cell or possibly induces important conformational changes in the Gag protein.
Collapse
Affiliation(s)
- Ericka R Havecker
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, 50011, USA
| | | | | |
Collapse
|
111
|
Russell SD, Strout GW. Microgametogenesis in Plumbago zeylanica (Plumbaginaceae). 2. Quantitative cell and organelle dynamics of the male reproductive cell lineage. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0005-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
112
|
Abdel-Ghany SE, Day IS, Simmons MP, Kugrens P, Reddy ASN. Origin and evolution of Kinesin-like calmodulin-binding protein. PLANT PHYSIOLOGY 2005; 138:1711-22. [PMID: 15951483 PMCID: PMC1176440 DOI: 10.1104/pp.105.060913] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 03/25/2005] [Accepted: 03/26/2005] [Indexed: 05/02/2023]
Abstract
Kinesin-like calmodulin-binding protein (KCBP), a member of the Kinesin-14 family, is a C-terminal microtubule motor with three unique domains including a myosin tail homology region 4 (MyTH4), a talin-like domain, and a calmodulin-binding domain (CBD). The MyTH4 and talin-like domains (found in some myosins) are not found in other reported kinesins. A calmodulin-binding kinesin called kinesin-C (SpKinC) isolated from sea urchin (Strongylocentrotus purpuratus) is the only reported kinesin with a CBD. Analysis of the completed genomes of Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, and a red alga (Cyanidioschyzon merolae 10D) did not reveal the presence of a KCBP. This prompted us to look at the origin of KCBP and its relationship to SpKinC. To address this, we isolated KCBP from a gymnosperm, Picea abies, and a green alga, Stichococcus bacillaris. In addition, database searches resulted in identification of KCBP in another green alga, Chlamydomonas reinhardtii, and several flowering plants. Gene tree analysis revealed that the motor domain of KCBPs belongs to a clade within the Kinesin-14 (C-terminal motors) family. Only land plants and green algae have a kinesin with the MyTH4 and talin-like domains of KCBP. Further, our analysis indicates that KCBP is highly conserved in green algae and land plants. SpKinC from sea urchin, which has the motor domain similar to KCBP and contains a CBD, lacks the MyTH4 and talin-like regions. Our analysis indicates that the KCBPs, SpKinC, and a subset of the kinesin-like proteins are all more closely related to one another than they are to any other kinesins, but that either KCBP gained the MyTH4 and talin-like domains or SpKinC lost them.
Collapse
Affiliation(s)
- Salah E Abdel-Ghany
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
113
|
|
114
|
Wasteneys GO, Yang Z. New views on the plant cytoskeleton. PLANT PHYSIOLOGY 2004; 136:3884-91. [PMID: 15591446 PMCID: PMC535822 DOI: 10.1104/pp.104.900133] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 11/18/2004] [Accepted: 11/19/2004] [Indexed: 05/18/2023]
Affiliation(s)
- Geoffrey O Wasteneys
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4.
| | | |
Collapse
|