101
|
Huang G, Wan R, Zou L, Ke J, Zhou L, Tan S, Li T, Chen L. The Brachypodium distachyon DREB transcription factor BdDREB-39 confers oxidative stress tolerance in transgenic tobacco. PLANT CELL REPORTS 2024; 43:143. [PMID: 38750149 DOI: 10.1007/s00299-024-03223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 06/18/2024]
Abstract
Key message BdDREB-39 is a DREB/CBF transcription factor, localized in the nucleus with transactivation activity, and BdDREB-39-overexpressing transgenic yeasts and tobacco enhanced the tolerance to oxidative stress.Abstract The DREB/CBF transcription factors are generally recognized to play an important factor in plant growth, development and response to various abiotic stresses. However, the mechanism of DREB/CBFs in oxidative stress response is largely unknown. This study isolated a DREB/CBF gene BdDREB-39 from Brachypodium distachyon (B. distachyon). Multiple sequence alignment and phylogenetic analysis showed that BdDREB-39 was closely related to the DREB proteins of oats, barley, wheat and rye and therefore its study can provide a reference for the excavation and genetic improvement of BdDREB-39 or its homologs in its closely related species. The transcript levels of BdDREB-39 were significantly up-regulated under H2O2 stress. BdDREB-39 was localised in the nucleus and functioned as a transcriptional activator. Overexpression of BdDREB-39 enhanced H2O2 tolerance in yeast. Transgenic tobaccos with BdDREB-39 had higher germination rates, longer root, better growth status, lesser reactive oxygen species (ROS) and malondialdehyde (MDA), and higher superoxide dismutase (SOD) and peroxidase (POD) activities than wild type (WT). The expression levels of ROS-related and stress-related genes were improved by BdDREB-39. In summary, these results revealed that BdDREB-39 can improve the viability of tobacco by regulating the expression of ROS and stress-related genes, allowing transgenic tobacco to accumulate lower levels of ROS and reducing the damage caused by ROS to cells. The BdDREB-39 gene has the potential for developing plant varieties tolerant to stress.
Collapse
Affiliation(s)
- Gang Huang
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Renjing Wan
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Liping Zou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Jie Ke
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Lihong Zhou
- College of Life Science, Jianghan University, Wuhan, 430056, China
| | - Shenglong Tan
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China.
| | - Tiantian Li
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| | - Lihong Chen
- College of Life Science, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
102
|
Domínguez-Figueroa J, Gómez-Rojas A, Escobar C. Functional studies of plant transcription factors and their relevance in the plant root-knot nematode interaction. FRONTIERS IN PLANT SCIENCE 2024; 15:1370532. [PMID: 38784063 PMCID: PMC11113014 DOI: 10.3389/fpls.2024.1370532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Root-knot nematodes are polyphagous parasitic nematodes that cause severe losses in the agriculture worldwide. They enter the root in the elongation zone and subtly migrate to the root meristem where they reach the vascular cylinder and establish a feeding site called gall. Inside the galls they induce a group of transfer cells that serve to nurture them along their parasitic stage, the giant cells. Galls and giant cells develop through a process of post-embryogenic organogenesis that involves manipulating different genetic regulatory networks within the cells, some of them through hijacking some molecular transducers of established plant developmental processes, such as lateral root formation or root regeneration. Galls/giant cells formation involves different mechanisms orchestrated by the nematode´s effectors that generate diverse plant responses in different plant tissues, some of them include sophisticated mechanisms to overcome plant defenses. Yet, the plant-nematode interaction is normally accompanied to dramatic transcriptomic changes within the galls and giant cells. It is therefore expected a key regulatory role of plant-transcription factors, coordinating both, the new organogenesis process induced by the RKNs and the plant response against the nematode. Knowing the role of plant-transcription factors participating in this process becomes essential for a clear understanding of the plant-RKNs interaction and provides an opportunity for the future development and design of directed control strategies. In this review, we present the existing knowledge of the TFs with a functional role in the plant-RKN interaction through a comprehensive analysis of current scientific literature and available transcriptomic data.
Collapse
Affiliation(s)
- Jose Domínguez-Figueroa
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
- Centro de Biotecnologia y Genomica de Plantas (CBGP), Universidad Politecnica de Madrid and Instituto de Investigacion y Tecnologia Agraria y Alimentaria-Consejo Superior de investigaciones Cientificas (UPM-INIA/CSIC), Madrid, Spain
| | - Almudena Gómez-Rojas
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| |
Collapse
|
103
|
Maeo K, Nakaya Y, Mitsuda N, Ishiguro S. ACRE, a class of AP2/ERF transcription factors, activates the expression of sweet potato ß-amylase and sporamin genes through the sugar-responsible element CMSRE-1. PLANT MOLECULAR BIOLOGY 2024; 114:54. [PMID: 38714535 PMCID: PMC11076338 DOI: 10.1007/s11103-024-01450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/04/2024] [Indexed: 05/10/2024]
Abstract
Sugars, synthesized by photosynthesis in source organs, are loaded and utilized as an energy source and carbon skeleton in sink organs, and also known to be important signal molecules regulating gene expression in higher plants. The expression of genes coding for sporamin and β-amylase, the two most abundant proteins in storage roots of sweet potato, is coordinately induced by sugars. We previously reported on the identification of the carbohydrate metabolic signal-responsible element-1 (CMSRE-1) essential for the sugar-responsible expression of two genes. However, transcription factors that bind to this sequence have not been identified. In this study, we performed yeast one-hybrid screening using the sugar-responsible minimal promoter region of the ß-amylase gene as bait and a library composed only transcription factor cDNAs of Arabidopsis. Two clones, named Activator protein binding to CMSRE-1 (ACRE), encoding AP2/ERF transcription factors were isolated. ACRE showed transactivation activity of the sugar-responsible minimal promoter in a CMSRE-1-dependent manner in Arabidopsis protoplasts. Electric mobility shift assay (EMSA) using recombinant proteins and transient co-expression assay in Arabidopsis protoplasts revealed that ACRE could actually act to the CMSRE-1. Among the DEHYDRATION -RESPONSIVE ELEMENT BINDING FACTOR (DREB) subfamily, almost all homologs including ACRE, could act on the DRE, while only three ACREs could act to the CMSRE-1. Moreover, ACRE-homologs of Japanese morning glory also have the same property of DNA-binding preference and transactivation activity through the CMSRE-1. These findings suggested that ACRE plays an important role in the mechanism regulating the sugar-responsible gene expression through the CMSRE-1 conserved across plant species.
Collapse
Affiliation(s)
- Kenichiro Maeo
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuki Nakaya
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Sumie Ishiguro
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
104
|
Deng D, Guo Y, Guo L, Li C, Nie Y, Wang S, Wu W. Functional Divergence in Orthologous Transcription Factors: Insights from AtCBF2/3/1 and OsDREB1C. Mol Biol Evol 2024; 41:msae089. [PMID: 38723179 PMCID: PMC11119335 DOI: 10.1093/molbev/msae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multiomic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7% to 25.6%) and expression reprogramming (∼62.3% to 66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.
Collapse
Affiliation(s)
- Deyin Deng
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yixin Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyang Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
105
|
Zhang F, Pan Z, Han C, Dong H, Lin L, Qiao Q, Zhao K, Wu J, Tao S, Zhang S, Huang X. Pyrus betulaefolia ERF3 interacts with HsfC1a to coordinately regulate aquaporin PIP1;4 and NCED4 for drought tolerance. HORTICULTURE RESEARCH 2024; 11:uhae090. [PMID: 38799129 PMCID: PMC11116902 DOI: 10.1093/hr/uhae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Environmental disasters like drought reduce agricultural output and plant growth. Redox management significantly affects plant stress responses. An earlier study found that PbPIP1;4 transports H2O2 and promotes H2O2 downstream cascade signaling to restore redox equilibrium. However, this regulatory mechanism requires additional investigation. In this search, the AP2 domain-containing transcription factor was isolated by screening Y1H from the wild pear (Pyrus betulaefolia) cDNA library, named PbERF3. The overexpression of PbERF3 in pear callus and Arabidopsis enhanced plant resistance to drought and re-established redox balance. The transcripts of the NCEDs gene were upregulated under drought stress. The drought stress-related abscisic acid (ABA) signaling pathway modulates PbERF3. PbERF3 silencing lowered drought tolerance. Furthermore, yeast 2-hybrid, luciferase, bimolecular fluorescence complementation, and co-immunoprecipitation assays verified that PbERF3 physically interacted with PbHsfC1a. The PbERF3-PbHsfC1a heterodimer coordinately bound to PbPIP1;4 and PbNCED4 promoter, therefore activating both the H2O2 and the ABA signaling pathway. This work revealed a novel PbERF3-PbHsfC1a-PbNCED4-PbPIP1;4 regulatory module, in which PbERF3 interacts with PbHsfC1a to trigger the expression of target genes. This module establishes an interaction between the H2O2 signaling component PbPIP1;4 and the ABA pathways component PbNCED4, enabling a response to drought.
Collapse
Affiliation(s)
- Feng Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Zhijian Pan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Chenyang Han
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Huizhen Dong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Likun Lin
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Qinghai Qiao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Keke Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Juyou Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, No.1 Weigang, Tongwei Road, Nanjing 210095, China
| |
Collapse
|
106
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
107
|
Yang W, Xin Z, Zhang Q, Zhang Y, Niu L. The tree peony DREB transcription factor PrDREB2D regulates seed α-linolenic acid accumulation. PLANT PHYSIOLOGY 2024; 195:745-761. [PMID: 38365221 DOI: 10.1093/plphys/kiae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/18/2024]
Abstract
α-Linolenic acid (ALA), an essential fatty acid (FA) for human health, serves as the precursor of 2 nutritional benefits, docosahexaenoic acid and eicosapentaenoic acid, and can only be obtained from plant foods. We previously found that phospholipid:diacylglycerol acyltransferase 2 (PrPDAT2) derived from ALA-rich tree peony (Paeonia rockii) can promote seed ALA accumulation. However, the regulatory mechanism underlying its promoting effect on ALA accumulation remains unknown. Here, we revealed a tree peony dehydration-responsive element binding transcription factor, PrDREB2D, as an upstream regulator of PrPDAT2, which is involved in regulating seed ALA accumulation. Our findings demonstrated that PrDREB2D serves as a nucleus-localized transcriptional activator that directly activates PrPDAT2 expression. PrDREB2D altered the FA composition in transient overexpression Nicotiana benthamiana leaves and stable transgenic Arabidopsis (Arabidopsis thaliana) seeds. Repressing PrDREB2D expression in P. rockii resulted in decreased PrPDAT2 expression and ALA accumulation. In addition, PrDREB2D strengthened its regulation of ALA accumulation by recruiting the cofactor ABA-response element binding factor PrABF2b. Collectively, the study findings provide insights into the mechanism of seed ALA accumulation and avenues for enhancing ALA yield via biotechnological manipulation.
Collapse
Affiliation(s)
- Weizong Yang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Ziwei Xin
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Qingyu Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China
- Oil Peony Engineering Technology Research Center of National Forestry Administration, Yangling 712100, China
| |
Collapse
|
108
|
Fan J, Chen N, Rao W, Ding W, Wang Y, Duan Y, Wu J, Xing S. Genome-wide analysis of bZIP transcription factors and their expression patterns in response to methyl jasmonate and low-temperature stresses in Platycodon grandiflorus. PeerJ 2024; 12:e17371. [PMID: 38708338 PMCID: PMC11067905 DOI: 10.7717/peerj.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Background Platycodon grandiflorus belongs to the genus Platycodon and has many pharmacological effects, such as expectorant, antitussive, and anti-tumor properties. Among transcription factor families peculiar to eukaryotes, the basic leucine zipper (bZIP) family is one of the most important, which exists widely in plants and participates in many biological processes, such as plant growth, development, and stress responses. However, genomic analysis of the bZIP gene family and related stress response genes has not yet been reported in P. grandiflorus. Methods P. grandiflorus bZIP (PgbZIP) genes were first identified here, and the phylogenetic relationships and conserved motifs in the PgbZIPs were also performed. Meanwhile, gene structures, conserved domains, and the possible protein subcellular localizations of these PgbZIPs were characterized. Most importantly, the cis-regulatory elements and expression patterns of selected genes exposed to two different stresses were analyzed to provide further information on PgbZIPs potential biological roles in P. grandiflorus upon exposure to environmental stresses. Conclusions Forty-six PgbZIPs were identified in P. grandiflorus and divided into nine groups, as displayed in the phylogenetic tree. The results of the chromosomal location and the collinearity analysis showed that forty-six PgbZIP genes were distributed on eight chromosomes, with one tandem duplication event and eleven segmental duplication events identified. Most PgbZIPs in the same phylogenetic group have similar conserved motifs, domains, and gene structures. There are cis-regulatory elements related to the methyl jasmonate (MeJA) response, low-temperature response, abscisic acid response, auxin response, and gibberellin response. Ten PgbZIP genes were selected to study their expression patterns upon exposure to low-temperature and MeJA treatments, and all ten genes responded to these stresses. The real-time quantitative polymerase chain reaction (RT-qPCR) results suggest that the expression levels of most PgbZIPs decreased significantly within 6 h and then gradually increased to normal or above normal levels over the 90 h following MeJA treatment. The expression levels of all PgbZIPs were significantly reduced after 3 h of the low-temperature treatment. These results reveal the characteristics of the PgbZIP family genes and provide valuable information for improving P. grandiflorus's ability to cope with environmental stresses during growth and development.
Collapse
Affiliation(s)
- Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Na Chen
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- College of Pharmacy, Bozhou Vocational and Technical College, Bozhou, Anhui, China
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Joint Research Center for Chinese Herbal Medicine of Anhui, Bozhou, Anhui, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
109
|
Teoh EY, Teo CH, Baharum NA, Tan BC. Expressing banana transcription factor MaERFVII3 in Arabidopsis confers enhanced waterlogging tolerance and root growth. PeerJ 2024; 12:e17285. [PMID: 38708359 PMCID: PMC11067909 DOI: 10.7717/peerj.17285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024] Open
Abstract
Background Waterlogging poses a significant threat to plant growth and yield worldwide. Identifying the genes responsible for mitigating waterlogging stress is crucial. Ethylene-responsive factors (ERFs) are transcriptional regulators that respond to various biotic and abiotic stresses in plants. However, their roles and involvement in responding to waterlogging stress remain largely unexplored. Hence, this study aimed to elucidate the role of ERFs in enhancing banana plant resilience to waterlogging. Methods We hypothesized that introducing a group VII ERF transcription factor in Arabidopsis could enhance waterlogging stress tolerance. To test this hypothesis, we isolated MaERFVII3 from banana roots, where it exhibited a significant induction in response to waterlogging stress. The isolated MaERFVII3 was introduced into Arabidopsis plants for functional gene studies. Results Compared with wild-type plants, the MaERFVII3-expressing Arabidopsis showed increased survival and biomass under waterlogging stress. Furthermore, the abundance of transcripts related to waterlogging and hypoxia response showed an elevation in transgenic plants but a decrease in wild-type and empty vector plants when exposed to waterlogging stress. Our results demonstrate the significant contribution of MaERFVII3 to waterlogging tolerance in Arabidopsis, providing baseline data for further exploration and potentially contributing to crop improvement programs.
Collapse
Affiliation(s)
- Ee Yang Teoh
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chee How Teo
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nadiya Akmal Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
110
|
Zhou Y, Shen Q, Cai L, Zhao H, Zhang K, Ma Y, Bo Y, Lyu X, Yang J, Hu Z, Zhang M. Promoter variations of ClERF1 gene determines flesh firmness in watermelon. BMC PLANT BIOLOGY 2024; 24:290. [PMID: 38627629 PMCID: PMC11020897 DOI: 10.1186/s12870-024-05000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.
Collapse
Affiliation(s)
- Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinghui Shen
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Lingmin Cai
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Haoshun Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Kejia Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuyuan Ma
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center for Precision Crop Design Breeding, Hanghzou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Research Center for Precision Crop Design Breeding, Hanghzou, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
- Zhejiang Engineering Research Center for Precision Crop Design Breeding, Hanghzou, China.
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, China.
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China.
| |
Collapse
|
111
|
Ma X, Wang J, Su Z, Ma H. Developmentally dependent reprogramming of the Arabidopsis floral transcriptome under sufficient and limited water availability. BMC PLANT BIOLOGY 2024; 24:273. [PMID: 38605371 PMCID: PMC11007919 DOI: 10.1186/s12870-024-04916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Environmental stresses negatively impact reproductive development and yield. Drought stress, in particular, has been examined during Arabidopsis reproductive development at morphological and transcriptomic levels. However, drought-responsive transcriptomic changes at different points in reproductive development remain unclear. Additionally, an investigation of the entire transcriptome at various stages during flower development is of great interest. RESULTS Here, we treat Arabidopsis plants with well-watered and moderately and severely limiting water amounts when the first flowers reach maturity and generate RNA-seq datasets for early, middle, and late phases during flower development at 5, 6, and 7 days following treatment. Under different drought conditions, flowers in different developmental phases display differential sets of drought-responsive genes (DTGs), including those that are enriched in different GO functional categories, such as transcriptional regulation and response to stresses (early phase), lipid storage (middle phase), and pollen and seed development and metabolic processes (late phase). Some gene families have different members induced at different floral phases, suggesting that similar biochemical functions are carried out by distinct members. Developmentally-regulated genes (DVGs) with differential expression among the three floral phases belong to GO terms that are similar between water conditions, such as development and reproduction, metabolism and transport, and signaling and stress response. However, for different water conditions, such similar GO terms correspond to either distinct gene families or different members of a gene family, suggesting that drought affects the expression of distinct families or family members during reproductive development. A further comparison among transcriptomes of tissues collected on different days after treatment identifies differential gene expression, suggesting age-related genes (ARGs) might reflect the changes in the overall plant physiology in addition to drought response and development. CONCLUSION Together, our study provides new insights into global transcriptome reprogramming and candidate genes for drought response, flower development, aging and coordination among these complex biological processes.
Collapse
Affiliation(s)
- Xinwei Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jun Wang
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhao Su
- Laboratory of Plant Stress and Development, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hong Ma
- Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
112
|
Zhu XG, Hutang GR, Gao LZ. Ancient Duplication and Lineage-Specific Transposition Determine Evolutionary Trajectory of ERF Subfamily across Angiosperms. Int J Mol Sci 2024; 25:3941. [PMID: 38612750 PMCID: PMC11011629 DOI: 10.3390/ijms25073941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
AP2/ERF transcription factor family plays an important role in plant development and stress responses. Previous studies have shed light on the evolutionary trajectory of the AP2 and DREB subfamilies. However, knowledge about the evolutionary history of the ERF subfamily in angiosperms still remains limited. In this study, we performed a comprehensive analysis of the ERF subfamily from 107 representative angiosperm species by combining phylogenomic and synteny network approaches. We observed that the expansion of the ERF subfamily was driven not only by whole-genome duplication (WGD) but also by tandem duplication (TD) and transposition duplication events. We also found multiple transposition events in Poaceae, Brassicaceae, Poales, Brassicales, and Commelinids. These events may have had notable impacts on copy number variation and subsequent functional divergence of the ERF subfamily. Moreover, we observed a number of ancient tandem duplications occurred in the ERF subfamily across angiosperms, e.g., in Subgroup IX, IXb originated from ancient tandem duplication events within IXa. These findings together provide novel insights into the evolution of this important transcription factor family.
Collapse
Affiliation(s)
- Xun-Ge Zhu
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ge-Ran Hutang
- Institute of Forest Industry, Yunnan Academy of Forestry and Grassland Science, Kunming 650201, China;
| | - Li-Zhi Gao
- Germplasm Bank of Wild Species in Southwestern China, Kunming Institute of Botany, The Chinese Academy of Sciences, Kunming 650201, China;
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education, Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
113
|
Deng H, Pei Y, Xu X, Du X, Xue Q, Gao Z, Shu P, Wu Y, Liu Z, Jian Y, Wu M, Wang Y, Li Z, Pirrello J, Bouzayen M, Deng W, Hong Y, Liu M. Ethylene-MPK8-ERF.C1-PR module confers resistance against Botrytis cinerea in tomato fruit without compromising ripening. THE NEW PHYTOLOGIST 2024; 242:592-609. [PMID: 38402567 DOI: 10.1111/nph.19632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The plant hormone ethylene plays a critical role in fruit defense against Botrytis cinerea attack, but the underlying mechanisms remain poorly understood. Here, we showed that ethylene response factor SlERF.C1 acts as a key regulator to trigger the ethylene-mediated defense against B. cinerea in tomato fruits without compromising ripening. Knockout of SlERF.C1 increased fruit susceptibility to B. cinerea with no effect on ripening process, while overexpression enhanced resistance. RNA-Seq, transactivation assays, EMSA and ChIP-qPCR results indicated that SlERF.C1 activated the transcription of PR genes by binding to their promoters. Moreover, SlERF.C1 interacted with the mitogen-activated protein kinase SlMPK8 which allowed SlMPK8 to phosphorylate SlERF.C1 at the Ser174 residue and increases its transcriptional activity. Knocking out of SlMPK8 increased fruit susceptibility to B. cinerea, whereas overexpression enhanced resistance without affecting ripening. Furthermore, genetic crosses between SlMPK8-KO and SlERF.C1-OE lines reduced the resistance to B. cinerea attack in SlERF.C1-OE fruits. In addition, B. cinerea infection induced ethylene production which in turn triggered SlMPK8 transcription and enhanced the phosphorylation of SlERF.C1. Overall, our findings reveal the regulatory mechanism of the 'Ethylene-MPK8-ERF.C1-PR' module in resistance against B. cinerea and provide new insight into the manipulation of gray mold disease in fruits.
Collapse
Affiliation(s)
- Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yangang Pei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Xin Xu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Qihan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhuo Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Zhaoqiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yongfei Jian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Science, Nanning, 530007, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
114
|
Garg R, Mahato H, Choudhury U, Thakur RS, Debnath P, Ansari NG, Sane VA, Sane AP. The tomato EAR-motif repressor, SlERF36, accelerates growth transitions and reduces plant life cycle by regulating GA levels and responses. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:848-862. [PMID: 38127946 PMCID: PMC10955490 DOI: 10.1111/pbi.14228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Faster vegetative growth and early maturity/harvest reduce plant life cycle time and are important agricultural traits facilitating early crop rotation. GA is a key hormone governing developmental transitions that determine growth speed in plants. An EAR-motif repressor, SlERF36 that regulates various growth transitions, partly through regulation of the GA pathway and GA levels, was identified in tomato. Suppression of SlERF36 delayed germination, slowed down organ growth and delayed the onset of flowering time, fruit harvest and whole-plant senescence by 10-15 days. Its over-expression promoted faster growth by accelerating all these transitions besides increasing organ expansion and plant height substantially. The plant life cycle and fruit harvest were completed 20-30 days earlier than control without affecting yield, in glasshouse as well as net-house conditions, across seasons and generations. These changes in life cycle were associated with reciprocal changes in expression of GA pathway genes and basal GA levels between suppression and over-expression lines. SlERF36 interacted with the promoters of two GA2 oxidase genes, SlGA2ox3 and SlGA2ox4, and the DELLA gene, SlDELLA, reducing their transcription and causing a 3-5-fold increase in basal GA3/GA4 levels. Its suppression increased SlGA2ox3/4 transcript levels and reduced GA3/GA4 levels by 30%-50%. SlERF36 is conserved across families making it an important candidate in agricultural and horticultural crops for manipulation of plant growth and developmental transitions to reduce life cycles for faster harvest.
Collapse
Affiliation(s)
- Rashmi Garg
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Hrishikesh Mahato
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Upasana Choudhury
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Ravindra S. Thakur
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Pratima Debnath
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Nasreen G. Ansari
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
- Analytical Chemistry Laboratory, Regulatory Toxicology GroupCSIR‐Indian Institute of Toxicology Research (CSIR‐IITR)LucknowIndia
| | - Vidhu A. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Aniruddha P. Sane
- Plant Gene Expression LabCSIR‐National Botanical Research Institute (Council of Scientific and Industrial Research)LucknowIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| |
Collapse
|
115
|
Lu JX, Sun JY, Wang Z, Ren WC, Xing NN, Liu MQ, Zhang ZP, Kong LY, Su XY, Liu XB, Ma W. In Silico Genome-Wide Analysis of B3 Transcription Factors in Cannabis sativa L. Cannabis Cannabinoid Res 2024; 9:495-512. [PMID: 36516081 DOI: 10.1089/can.2022.0168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction: The B3 transcription factor has been identified in Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum, among other species. This family of transcription factors regulates seed growth, development, and stress. Cannabis is a valuable crop with numerous applications; however, no B3 transcription factors have been identified in this plant. Materials and Methods: The cannabis B3 gene family was identified and analyzed using bioinformatics analysis tools, such as the NCBI database, plantTFDB website, TBtools, and MEGA software. Quantitative real-time polymerase chain reaction (qRT-PCR) experiments were used to confirm its function. Results: The cannabis B3 family contains 65 members spread across 10 chromosomes. The isoelectric point ranged from 10.03 to 4.65, and the molecular weight ranged from 99,542.88 to 14,310.9 Da. Most of the members were found in the nucleus. The upstream promoter region of the gene contains a variety of cis-acting elements related to the stress response. RNA-seq data and qRT-PCR results showed that CsB3 genes were expressed differently in five organs of female Diku plants and in glandular hairs of nine distinct types of female cannabis inflorescences. Collinearity analysis revealed that there were more homologous genes between cannabis and dicotyledons than monocotyledonous plants, which was consistent with the evolutionary relationship. Conclusions: Hormones and external environmental factors might influence CsB3 expression. Furthermore, some genes such as CsB3-02, CsB3-07, CsB3-50, CsB3-62, and CsB3-65 may participate in cannabis growth and development and play a role in secondary metabolite synthesis. This study provides a solid foundation for further research into the gene function of the cannabis B3 family.
Collapse
Affiliation(s)
- Jia-Xin Lu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia-Ying Sun
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhen Wang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei-Chao Ren
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Nan-Nan Xing
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei-Qi Liu
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhan-Ping Zhang
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling-Yang Kong
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Yue Su
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiu-Bo Liu
- Department of Chinese Medicine, Jiamusi Campus, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Wei Ma
- Pharmacy of College, Heilongjiang University of Chinese Medicine, Harbin, China
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
116
|
Wang H, Zhao Y, Tu J, Liang D, Li M, Wu F. Comparative analysis of differential gene expression reveals novel insights into the heteroblastic foliage functional traits of Pinus massoniana seedlings. Int J Biol Macromol 2024; 264:130762. [PMID: 38471608 DOI: 10.1016/j.ijbiomac.2024.130762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/17/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
Pinus massoniana needles, rich in medicinal polysaccharides and flavonoids, undergo heteroblastic foliage, transitioning from primary needles (PN) to secondary needles (SN) during growth, resulting in altered functional traits. Despite its significance, the molecular regulatory mechanisms governing these traits remain unclear. This study employs Iso-Seq and RNA-Seq analyses to explore differentially expressed genes (DEGs) associated with functional traits throughout the main growth season of heteroblastic foliage. Co-expression network analysis identified 34 hub genes and 17 key transcription factors (TFs) influencing light-harvesting antenna, photosystem I and II, crucial in photosynthesis regulation. Additionally, 14 genes involved in polysaccharide metabolism pathways, synthesizing sucrose, glucose, UDP sugars, and xylan, along with four genes in flavonoid biosynthesis pathways, regulating p-coumaroyl-CoA, quercetin, galangin, and myricetin production, exhibited differential expression between PN and SN. Further analysis unveils a highly interconnected network among these genes, forming a pivotal cascade of TFs and DEGs. Therefore, heteroblastic changes significantly impact needle functional traits, potentially affecting the pharmacological properties of PN and SN. Thus, these genomic insights into understanding the molecular-level differences of heteroblastic foliage, thereby establishing a foundation for advancements in the pharmaceutical industry related to needle-derived products.
Collapse
Affiliation(s)
- Haoyun Wang
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China; College of Forestry, Guizhou University, Guiyang 550025, China
| | - Yuanxiang Zhao
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Jingjing Tu
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Daqu Liang
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Min Li
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Feng Wu
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang 550025, China; Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China; College of Forestry, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
117
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
118
|
Fick A, Swart V, Bombarely A, van den Berg N. Comparative transcriptional analysis of Persea americana MYB, WRKY and AP2/ERF transcription factors following Phytophthora cinnamomi infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e13453. [PMID: 38590150 PMCID: PMC11002358 DOI: 10.1111/mpp.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas‐Universitat Politècnica de València (IBMCP‐CSIC‐UPV)ValenciaSpain
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
119
|
Zhang X, Peng W, Chen H, Xing H. BnAP2-12 overexpression delays ramie flowering: evidence from AP2/ERF gene expression. FRONTIERS IN PLANT SCIENCE 2024; 15:1367837. [PMID: 38590749 PMCID: PMC10999622 DOI: 10.3389/fpls.2024.1367837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Introduction The APETALA2/ethylene response factor (AP2/ERF) superfamily plays a significant role in regulating plant gene expression in response to growth and development. To date, there have been no studies into whether the ramie AP2/ERF genes are involved in the regulation of flower development. Methods Here, 84 BnAP2/ERF members were identified from the ramie genome database, and various bioinformatics data on the AP2/ERF gene family, structure, replication, promoters and regulatory networks were analysed. BnAP2-12 was transferred into Arabidopsis through the flower-dipping method. Results Phylogenetic analysis classified the 84 BnAP2/ERF members into four subfamilies: AP2 (18), RAV (3), ERF (42), and DREB (21). The functional domain analysis of genes revealed 10 conserved motifs. Genetic mapping localised the 84 members on 14 chromosomes, among which chromosomes 1, 3, 5, and 8 had more members. Collinearity analysis revealed that 43.37% possibly resulted from replication events during the evolution of the ramie genome. Promoter sequence analysis identified classified cis-acting elements associated with plant growth and development, and responses to stress, hormones, and light. Transcriptomic comparison identified 3,635 differentially expressed genes (DEGs) between male and female flowers (1,803 and 1,832 upregulated and downregulated genes, respectively). Kyoto Encyclopaedia of Genes and Genomes pathway analysis categorised DEGs involved in metabolic pathways and biosynthesis of secondary metabolites. Gene Ontology enrichment analysis further identified enriched genes associated with pollen and female gamete formations. Of the 84 BnAP2/ERFs genes, 22 and 8 upregulated and downregulated genes, respectively, were present in female flowers. Co-expression network analysis identified AP2/ERF members associated with flower development, including BnAP2-12. Subcellular localisation analysis showed that the BnAP2-12 protein is localised in the nucleus and cell membrane. Overexpression BnAP2-12 delayed the flowering time of Arabidopsis thaliana. Conclusion These findings provide insights into the mechanism of ramie flower development.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
| | - Wenxian Peng
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Changsha Tobacco Company, Ningxiang, China
| | - Hao Chen
- Agricultural College of Hunan Agricultural University, Changsha, China
| | - Hucheng Xing
- Agricultural College of Hunan Agricultural University, Changsha, China
- Ramie Research Institute of Hunan Agricultural University, Changsha, China
- Hunan Key Laboratory of Germplasm Resources Innovation and Resource Utilization Crop Breeding Center, Changsha, China
- Hunan Provincial Engineering Technology Research Center of Grass Crop Germplasm Innovation and Utilization, Changsha, China
| |
Collapse
|
120
|
Hong MJ, Ko CS, Kim JB, Kim DY. Identification and transcriptomic profiling of salinity stress response genes in colored wheat mutant. PeerJ 2024; 12:e17043. [PMID: 38464747 PMCID: PMC10924784 DOI: 10.7717/peerj.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Background Salinity is a major abiotic stress that prevents normal plant growth and development, ultimately reducing crop productivity. This study investigated the effects of salinity stress on two wheat lines: PL1 (wild type) and PL6 (mutant line generated through gamma irradiation of PL1). Results The salinity treatment was carried out with a solution consisting of a total volume of 200 mL containing 150 mM NaCl. Salinity stress negatively impacted germination and plant growth in both lines, but PL6 exhibited higher tolerance. PL6 showed lower Na+ accumulation and higher K+ levels, indicating better ion homeostasis. Genome-wide transcriptomic analysis revealed distinct gene expression patterns between PL1 and PL6 under salt stress, resulting in notable phenotypic differences. Gene ontology analysis revealed positive correlations between salt stress and defense response, glutathione metabolism, peroxidase activity, and reactive oxygen species metabolic processes, highlighting the importance of antioxidant activities in salt tolerance. Additionally, hormone-related genes, transcription factors, and protein kinases showed differential expression, suggesting their roles in the differential salt stress response. Enrichment of pathways related to flavonoid biosynthesis and secondary metabolite biosynthesis in PL6 may contribute to its enhanced antioxidant activities. Furthermore, differentially expressed genes associated with the circadian clock system, cytoskeleton organization, and cell wall organization shed light on the plant's response to salt stress. Conclusions Understanding these mechanisms is crucial for developing stress-tolerant crop varieties, improving agricultural practices, and breeding salt-resistant crops to enhance global food production and address food security challenges.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeollabuk-do, Korea
| | - Dae Yeon Kim
- Plant Resources, Kongju National University, Yesan-eup, Chungnam, South Korea
| |
Collapse
|
121
|
Renziehausen T, Frings S, Schmidt-Schippers R. 'Against all floods': plant adaptation to flooding stress and combined abiotic stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1836-1855. [PMID: 38217848 DOI: 10.1111/tpj.16614] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/15/2024]
Abstract
Current climate change brings with it a higher frequency of environmental stresses, which occur in combination rather than individually leading to massive crop losses worldwide. In addition to, for example, drought stress (low water availability), also flooding (excessive water) can threaten the plant, causing, among others, an energy crisis due to hypoxia, which is responded to by extensive transcriptional, metabolic and growth-related adaptations. While signalling during flooding is relatively well understood, at least in model plants, the molecular mechanisms of combinatorial flooding stress responses, for example, flooding simultaneously with salinity, temperature stress and heavy metal stress or sequentially with drought stress, remain elusive. This represents a significant gap in knowledge due to the fact that dually stressed plants often show unique responses at multiple levels not observed under single stress. In this review, we (i) consider possible effects of stress combinations from a theoretical point of view, (ii) summarize the current state of knowledge on signal transduction under single flooding stress, (iii) describe plant adaptation responses to flooding stress combined with four other abiotic stresses and (iv) propose molecular components of combinatorial flooding (hypoxia) stress adaptation based on their reported dual roles in multiple stresses. This way, more future emphasis may be placed on deciphering molecular mechanisms of combinatorial flooding stress adaptation, thereby potentially stimulating development of molecular tools to improve plant resilience towards multi-stress scenarios.
Collapse
Affiliation(s)
- Tilo Renziehausen
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Stephanie Frings
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| | - Romy Schmidt-Schippers
- Plant Biotechnology, Faculty of Biology, University of Bielefeld, 33615, Bielefeld, Germany
- Center for Biotechnology, University of Bielefeld, 33615, Bielefeld, Germany
| |
Collapse
|
122
|
Zhu M, Zheng L, Cao S, Liu Q, Wei S, Zhou Y, Gao F. AnDREB5.1, a A5 group DREB gene from desert shrub Ammopiptanthus nanus, confers osmotic and cold stress tolerances in transgenic tobacco. PHYSIOLOGIA PLANTARUM 2024; 176:e14272. [PMID: 38566275 DOI: 10.1111/ppl.14272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
The Dehydration-Responsive Element Binding (DREB) subfamily of transcription factors plays crucial roles in plant abiotic stress response. Ammopiptanthus nanus (A. nanus) is an eremophyte exhibiting remarkable tolerance to environmental stress and DREB proteins may contribute to its tolerance to water deficit and low-temperature stress. In the present study, an A. nanus DREB A5 group transcription factor gene, AnDREB5.1, was isolated and characterized in terms of structure and function in abiotic stress tolerance. AnDREB5.1 protein is distributed in the nucleus, possesses transactivation capacity, and is capable of binding to DRE core cis-acting element. The transcription of AnDREB5.1 was induced under osmotic and cold stress. Tobacco seedlings overexpressing AnDREB5.1 displayed higher tolerance to cold stress, osmotic stress, and oxidative stress compared to wild-type tobacco (WT). Under osmotic and cold stress, overexpression of AnDREB5.1 increased antioxidant enzyme activity in tobacco leaves, inhibiting excessive elevation of ROS levels. Transcriptome sequencing analysis showed that overexpression of AnDREB5.1 raised the tolerance of transgenic tobacco seedlings to abiotic stress by regulating multiple genes, including antioxidant enzymes, transcription factors, and stress-tolerant related functional genes like NtCOR413 and NtLEA14. This study provides new evidence for understanding the potential roles of the DREB A5 subgroup members in plants.
Collapse
Affiliation(s)
- Ming Zhu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
- Yunnan Open University, Kunming, Yunnan, China
| | - Lamei Zheng
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shilin Cao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qi Liu
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Shanjun Wei
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yijun Zhou
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Fei Gao
- Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
123
|
Han Y, Zhang J, Zhang S, Xiang L, Lei Z, Huang Q, Wang H, Chen T, Cai M. DcERF109 regulates shoot branching by participating in strigolactone signal transduction in Dendrobium catenatum. PHYSIOLOGIA PLANTARUM 2024; 176:e14286. [PMID: 38618752 DOI: 10.1111/ppl.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.
Collapse
Affiliation(s)
- Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Lijun Xiang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, China
| | - Huizhong Wang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
124
|
Zhang Y, Xiao W, Wang M, Khan M, Liu JH. A C2H2-type zinc finger protein ZAT12 of Poncirus trifoliata acts downstream of CBF1 to regulate cold tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1317-1329. [PMID: 38017362 DOI: 10.1111/tpj.16562] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The Cys2/His2 (C2H2)-type zinc finger family has been reported to regulate multiple aspects of plant development and abiotic stress response. However, the role of C2H2-type zinc finger proteins in cold tolerance remains largely unclear. Through RNA-sequence analysis, a cold-responsive zinc finger protein, named as PtrZAT12, was identified and isolated from trifoliate orange (Poncirus trifoliata L. Raf.), a cold-hardy plant closely related to citrus. Furthermore, we found that PtrZAT12 was markedly induced by various abiotic stresses, especially cold stress. PtrZAT12 is a nuclear protein, and physiological analysis suggests that overexpression of PtrZAT12 conferred enhanced cold tolerance in transgenic tobacco (Nicotiana tabacum) plants, while knockdown of PtrZAT12 by virus-induced gene silencing (VIGS) increased the cold sensitivity of trifoliate orange and repressed expression of genes involved in stress tolerance. The promoter of PtrZAT12 harbors a DRE/CRT cis-acting element, which was verified to be specifically bound by PtrCBF1 (Poncirus trifoliata C-repeat BINDING FACTOR1). VIGS-mediated silencing of PtrCBF1 reduced the relative expression levels of PtrZAT12 and decreased the cold resistance of trifoliate orange. Based on these results, we propose that PtrZAT12 is a direct target of CBF1 and plays a positive role in modulation of cold stress tolerance. The knowledge gains new insight into a regulatory module composed of CBF1-ZAT12 in response to cold stress and advances our understanding of cold stress response in plants.
Collapse
Affiliation(s)
- Yang Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Wei Xiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Min Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Madiha Khan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
125
|
Xiao S, Yang D, Li F, Tian X, Li Z. The EIN3/EIL-ERF9-HAK5 transcriptional cascade positively regulates high-affinity K + uptake in Gossypium hirsutum. THE NEW PHYTOLOGIST 2024; 241:2090-2107. [PMID: 38168024 DOI: 10.1111/nph.19500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
High-affinity K+ (HAK) transporters play essential roles in facilitating root K+ uptake in higher plants. Our previous studies revealed that GhHAK5a, a member of the HAK family, is crucial for K+ uptake in upland cotton. Nevertheless, the precise regulatory mechanism governing the expression of GhHAK5a remains unclear. The yeast one-hybrid screening was performed to identify the transcription factors responsible for regulating GhHAK5a, and ethylene response factor 9 (GhERF9) was identified as a potential candidate. Subsequent dual-luciferase and electrophoretic mobility shift assays confirmed that GhERF9 binds directly to the GhHAK5a promoter, thereby activating its expression. Silencing of GhERF9 decreased the expression of GhHAK5a and exacerbated K+ deficiency symptoms in leaves, also decreased K+ uptake rate and K+ content in roots. Additionally, it was observed that the application of ethephon (an ethylene-releasing reagent) resulted in a significant upregulation of GhERF9 and GhHAK5a, accompanied by an increased rate of K+ uptake. Expectedly, GhEIN3b and GhEIL3c, the two key components involved in ethylene signaling, bind directly to the GhERF9 promoter. These findings provide valuable insights into the molecular mechanisms underlying the expression of GhHAK5a and ethylene-mediated K+ uptake and suggest a potential strategy to genetically enhance cotton K+ uptake by exploiting the EIN3/EILs-ERF9-HAK5 module.
Collapse
Affiliation(s)
- Shuang Xiao
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Doudou Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Fangjun Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No.2 Yuanmingyuan Xilu, Haidian District, Beijing, 100193, China
| |
Collapse
|
126
|
Liu X, Zhang W, Tang N, Chen Z, Rao S, Cheng H, Luo C, Ye J, Cheng S, Xu F. Genomic-wide identification and expression analysis of AP2/ERF transcription factors in Zanthoxylum armatum reveals the candidate genes for the biosynthesis of terpenoids. THE PLANT GENOME 2024; 17:e20422. [PMID: 38129947 DOI: 10.1002/tpg2.20422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Terpenoids are the main active components in the Zanthoxylum armatum leaves, which have extensive medicinal value. The Z. armatum leaf is the main by-product in the Z. armatum industry. However, the transcription factors involved in the biosynthesis of terpenoids are rarely reported. This study was performed to identify and classify the APETALA2/ethylene-responsive factor (AP2/ERF) gene family of Z. armatum. The chromosome distribution, gene structure, conserved motifs, and cis-acting elements of the promoter of the species were also comprehensively analyzed. A total of 214 ZaAP2/ERFs were identified. From the obtained transcriptome and terpenoid content data, four candidate ZaAP2/ERFs involved in the biosynthesis of terpenoids were selected via correlation and weighted gene co-expression network analysis. A phylogenetic tree was constructed using 13 AP2/ERFs related to the biosynthesis of terpenoids in other plants. ZaERF063 and ZaERF166 showed close evolutionary relationships with the ERFs in other plant species and shared a high AP2-domain sequence similarity with the two closest AP2/ERF proteins, namelySmERF8 from Salvia miltiorrhiza and AaERF4 from Artemisia annua. Further investigation into the effects of methyl jasmonate (MeJA) treatment on the content of terpenoids in Z. armatum leaves revealed that MeJA significantly induced the upregulation of ZaERF166 and led to a significant increase in the terpenoids content in Z. armatum leaves, indicating that ZaERF166 might be involved in the accumulation of terpenoids of Z. armatum. Results will be beneficial for the functional characterization of AP2/ERFs in Z. armatum and establishment of the theoretical foundation to increase the production of terpenoids via the manipulation of the regulatory elements and strengthen the development and utilization of Z. armatum leaves.
Collapse
Affiliation(s)
- Xiaomeng Liu
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ning Tang
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, China
| | - Zexiong Chen
- College of Landscape Architecture and Life Science, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing, China
| | - Shen Rao
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hua Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | | | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- School of Modern Industry for Selenium Science and Engineering, National R&D Center for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
127
|
Li C, Wang L, Su J, Li W, Tang Y, Zhao N, Lou L, Ou X, Jia D, Jiang J, Chen S, Chen F. A group VIIIa ethylene-responsive factor, CmERF4, negatively regulates waterlogging tolerance in chrysanthemum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1479-1492. [PMID: 37952115 DOI: 10.1093/jxb/erad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Ethylene-responsive factors (ERF) play an important role in plant responses to waterlogging stress. However, the function and mechanism of action of ERFVIII in response to waterlogging stress remain poorly understood. In this study, we found that expression of the ERF VIIIa gene CmERF4 in chrysanthemum was induced by waterlogging stress. CmERF4 localized to the nucleus when expressed in tobacco leaves. Yeast two-hybrid and luciferase assays showed that CmERF4 is a transcriptional inhibitor. CmERF4 overexpression in chrysanthemum reduced plant waterlogging tolerance, whereas overexpression of the chimeric activator CmERF4-VP64 reversed its transcriptional activity, promoting higher waterlogging tolerance than that observed in wild-type plants, indicating that CmERF4 negatively regulates waterlogging tolerance. Transcriptome profiling showed that energy metabolism and reactive oxygen species (ROS) pathway-associated genes were differentially expressed between CmERF4-VP64 and wild-type plants. RT-qPCR analysis of selected energy metabolism and reactive oxygen species-related genes showed that the gene expression patterns were consistent with the expression levels obtained from RNA-seq analysis. Overall, we identified new functions of CmERF4 in negatively regulating chrysanthemum waterlogging tolerance by modulating energy metabolism and ROS pathway genes.
Collapse
Affiliation(s)
- Chuanwei Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Wenjie Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yun Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Nan Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - La Lou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xiaoli Ou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Diwen Jia
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding Laboratory, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration. College of Horticulture, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
128
|
Xu L, Lan Y, Lin M, Zhou H, Ying S, Chen M. Genome-Wide Identification and Transcriptional Analysis of AP2/ERF Gene Family in Pearl Millet ( Pennisetum glaucum). Int J Mol Sci 2024; 25:2470. [PMID: 38473718 DOI: 10.3390/ijms25052470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
The apetala2/ethylene response factor (AP2/ERF) gene family plays a crucial role in regulating plant growth and development and responding to different abiotic stresses (e.g., drought, heat, cold, and salinity). However, the knowledge of the ERF family in pearl millet remains limited. Here, a total of 167 high-confidence PgERF genes are identified and divided into five subgroups based on gene-conserved structure and phylogenetic analysis. Forty-one pairs of segmental duplication are found using collinear analysis. Nucleotide substitution analysis reveals these duplicated pairs are under positive purification, indicating they are actively responding to natural selection. Comprehensive transcriptomic analysis reveals that PgERF genesare preferentially expressed in the imbibed seeds and stem (tilling stage) and respond to heat, drought, and salt stress. Prediction of the cis-regulatory element by the PlantCARE program indicates that PgERF genes are involved in responses to environmental stimuli. Using reverse transcription quantitative real-time PCR (RT-qPCR), expression profiles of eleven selected PgERF genes are monitored in various tissues and during different abiotic stresses. Transcript levels of each PgERF gene exhibit significant changes during stress treatments. Notably, the PgERF7 gene is the only candidate that can be induced by all adverse conditions. Furthermore, four PgERF genes (i.e., PgERF22, PgERF37, PgERF88, and PgERF155) are shown to be involved in the ABA-dependent signaling pathway. These results provide useful bioinformatic and transcriptional information for understanding the roles of the pearl millet ERF gene family in adaptation to climate change.
Collapse
Affiliation(s)
- Liang Xu
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Ying Lan
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Miaohong Lin
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Hongkai Zhou
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
| | - Sheng Ying
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Miao Chen
- College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524091, China
- Shenzhen Institute, Guangdong Ocean University, Shenzhen 518120, China
| |
Collapse
|
129
|
Fu X, Xin Y, Shen G, Luo K, Xu C, Wu N. A cytokinin response factor PtCRF1 is involved in the regulation of wood formation in poplar. TREE PHYSIOLOGY 2024; 44:tpad156. [PMID: 38123505 DOI: 10.1093/treephys/tpad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Wood formation is a complex developmental process under the control of multiple levels of regulatory transcriptional network and hormone signals in trees. It is well known that cytokinin (CK) signaling plays an important role in maintaining the activity of the vascular cambium. The CK response factors (CRFs) encoding a subgroup of AP2 transcription factors have been identified to mediate the CK-dependent regulation in different plant developmental processes. However, the functions of CRFs in wood development remain unclear. Here, we characterized the function of PtCRF1, a CRF transcription factor isolated from poplar, in the process of wood formation. The PtCRF1 is preferentially expressed in secondary vasculature, especially in vascular cambium and secondary phloem, and encodes a transcriptional activator. Overexpression of PtCRF1 in transgenic poplar plants led to a significant reduction in the cell layer number of vascular cambium. The development of wood tissue was largely promoted in the PtCRF1-overexpressing lines, while it was significantly compromised in the CRISPR/Cas9-generated double mutant plants of PtCRF1 and its closest homolog PtCRF2. The RNA sequencing (RNA-seq) and quantitative reverse transcription PCR (RT-qPCR) analyses showed that PtCRF1 repressed the expression of the typical CK-responsive genes. Furthermore, bimolecular fluorescence complementation assays revealed that PtCRF1 competitively inhibits the direct interactions between histidine phosphotransfer proteins and type-B response regulator by binding to PtHP protein. Collectively, these results indicate that PtCRF1 negatively regulates CK signaling and is required for woody cell differentiation in poplar.
Collapse
Affiliation(s)
- Xiaokang Fu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Yufeng Xin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Gui Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| | - Nengbiao Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, School of Life Sciences, Ministry of Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
130
|
Ren Z, Fu J, Abou-Elwafa SF, Ku L, Xie X, Liu Z, Shao J, Wen P, Al Aboud NM, Su H, Wang T, Wei L. Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108292. [PMID: 38215602 DOI: 10.1016/j.plaphy.2023.108292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Drought stress is one of the most limiting factors of maize productivity and can lead to a sharp reduction in the total biomass when it occurs at the seedling stage. Improving drought tolerance at the seedling stage is of great importance for maize breeding. The AP2/ERF transcription factor family plays a critical role in plant response to abiotic stresses. Here, we used a preliminary previously-generated ranscriptomic dataset to identify a highly drought-stress-responsive AP2 gene, i.e., ZmEREB24. Compared to the wild type, the overexpression of ZmEREB24 in maize significantly promotes drought tolerance of transgenic plants at the seedling stage. CRISPR/Cas9-based ZmEREB24-knockout mutants showed a drought-sensitive phenotype. RNA-seq analysis and EMSA assay revealed AATGG.CT and GTG.T.GCC motifs as the main binding sites of ZmEREB24 to the promoters of downstream target genes. DAP-seq identified four novel target genes involved in proline and sugar metabolism and hormone signal transduction of ZmEREB24. Our data indicate that ZmEREB24 plays important biological functions in regulating drought tolerance by binding to the promoters of drought stress genes and modulating their expression. The results further suggest a role of ZmEREB24 in regulating drought adaptation in maize, indicating its potential importance for employing molecular breeding in the development of high-yield drought-tolerant maize cultivars.
Collapse
Affiliation(s)
- Zhenzhen Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxu Fu
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Lixia Ku
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaowen Xie
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhixue Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jing Shao
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengfei Wen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Nora M Al Aboud
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Huihui Su
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Tongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Wei
- Henna Technology Innovation Centre of Wheat, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
131
|
Li Y, Yang Y, Li L, Tang K, Hao X, Kai G. Advanced metabolic engineering strategies for increasing artemisinin yield in Artemisia annua L. HORTICULTURE RESEARCH 2024; 11:uhad292. [PMID: 38414837 PMCID: PMC10898619 DOI: 10.1093/hr/uhad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024]
Abstract
Artemisinin, also known as 'Qinghaosu', is a chemically sesquiterpene lactone containing an endoperoxide bridge. Due to the high activity to kill Plasmodium parasites, artemisinin and its derivatives have continuously served as the foundation for antimalarial therapies. Natural artemisinin is unique to the traditional Chinese medicinal plant Artemisia annua L., and its content in this plant is low. This has motivated the synthesis of this bioactive compound using yeast, tobacco, and Physcomitrium patens systems. However, the artemisinin production in these heterologous hosts is low and cannot fulfil its increasing clinical demand. Therefore, A. annua plants remain the major source of this bioactive component. Recently, the transcriptional regulatory networks related to artemisinin biosynthesis and glandular trichome formation have been extensively studied in A. annua. Various strategies including (i) enhancing the metabolic flux in artemisinin biosynthetic pathway; (ii) blocking competition branch pathways; (iii) using transcription factors (TFs); (iv) increasing peltate glandular secretory trichome (GST) density; (v) applying exogenous factors; and (vi) phytohormones have been used to improve artemisinin yields. Here we summarize recent scientific advances and achievements in artemisinin metabolic engineering, and discuss prospects in the development of high-artemisinin yielding A. annua varieties. This review provides new insights into revealing the transcriptional regulatory networks of other high-value plant-derived natural compounds (e.g., taxol, vinblastine, and camptothecin), as well as glandular trichome formation. It is also helpful for the researchers who intend to promote natural compounds production in other plants species.
Collapse
Affiliation(s)
- Yongpeng Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yinkai Yang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ling Li
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Frontiers Science Center for Transformative Molecules, Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolong Hao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Jinhua Academy, School of Pharmaceutical Sciences, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
132
|
Liu H, Lan Y, Wang L, Jiang N, Zhang X, Wu M, Xiang Y. CiAP2/ERF65 and CiAP2/ERF106, a pair of homologous genes in pecan (Carya illinoensis), regulate plant responses during submergence in transgenic Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154166. [PMID: 38163387 DOI: 10.1016/j.jplph.2023.154166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
When plants are entirely submerged, photosynthesis and respiration are severely restricted, affecting plant growth and potentially even causing plant death. The AP2/ERF superfamily has been widely reported to play a vital role in plant growth, development and resistance to biotic and abiotic stresses. However, no relevant studies exist on flooding stress in pecan. In this investigation, we observed that CiAP2/ERF65 positively modulated the hypoxia response during submergence, whereas CiAP2/ERF106 was sensitive to submergence. The levels of physiological and biochemical indicators, such as POD, CAT and among others, in CiAP2/ERF65-OE lines were significantly higher than those in wild-type Arabidopsis thaliana, indicating that the antioxidant capacity of CiAP2/ERF65-OE lines was enhanced under submergence. The RNA-seq results revealed that the maintenance of the expression levels of the antenna protein gene, different signaling pathways for regulation, as well as the storage and consumption of ATP, might account for the opposite phenotypes of CiAP2/ERF65 and CiAP2/ERF106. Furthermore, the expression of some stress-related genes was altered during submergence and reoxygenation. Overall, these findings enhance our understanding of submergence stress in pecan, providing important candidate genes for the molecular design and breeding of hypoxia resistant in plants.
Collapse
Affiliation(s)
- Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yangang Lan
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyue Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
133
|
Dwivedi S, Singh D, Singh N, Trivedi PK. Advances in regulatory mechanism(s) and biotechnological approaches to modulate nicotine content in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108397. [PMID: 38316099 DOI: 10.1016/j.plaphy.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/12/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
More than 8 million deaths are caused by tobacco-related diseases every year. A staggering 1.2 million of those fatalities occur due to second-hand smoke exposure among non-smokers, but more than 7 million are due to direct tobacco use among smokers. Nicotine acts as the key ingredient triggering the addiction. The United States Food and Drug Administration (FDA) has classified more than 90 chemical components of tobacco and related smoke as hazardous or potentially hazardous leading to cancer, cardiovascular, respiratory, and reproductive disorders. Hence, reducing nicotine content has been the foremost objective to reduce health and death risks. Therefore, various biotechnological approaches for developing tobacco varieties with low nicotine concentrations are urgently required for the welfare of humankind. In recent years, numerous advancements have been made in nicotine-based tobacco research, suggesting regulatory components involved in nicotine biosynthesis and developing nicotine-less tobacco varieties through biotechnological approaches. This review highlights the various regulatory components and major approaches used to modulate nicotine content in tobacco cultivars.
Collapse
Affiliation(s)
- Shambhavi Dwivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Deeksha Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nivedita Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
134
|
Yu H, Li J, Chang X, Dong N, Chen B, Wang J, Zha L, Gui S. Genome-wide identification and expression profiling of the WRKY gene family reveals abiotic stress response mechanisms in Platycodon grandiflorus. Int J Biol Macromol 2024; 257:128617. [PMID: 38070802 DOI: 10.1016/j.ijbiomac.2023.128617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/26/2024]
Abstract
The WRKY family of transcription factors (TFs) is an important gene family involved in abiotic stress responses. Although the roles of WRKY TFs in plant abiotic stress responses are well studied, little is known about the stress-induced changes in WRKY family in Platycodon grandiflorus. 42 PgWRKY genes in seven subgroups were identified in the P. grandiflorus genome. The content of eight platycodins in P. grandiflorus was investigated under cold, heat, and drought stresses. Platycodin D levels significantly increased under three abiotic stresses, while the content changes of other platycodins varied. Transcriptome analysis showed that different WRKY family members exhibited varied expression patterns under different abiotic stresses. PgWRKY20, PgWRKY26, and PgWRKY39 were identified as three key candidates for temperature and drought stress responses, and were cloned and analysed for sequence characteristics, gene structure, subcellular localisation, and expression patterns. The RT-qPCR results showed that PgWRKY26 expression significantly increased after heat stress for 48 h, cold stress for 6 h, and drought stress for 2 d (DS_2 d). The PgWRKY39 expression level significantly increased at DS_2 d. This study provides a theoretical basis for clarifying the molecular mechanism of the abiotic stress responses of the WRKY gene family in P. grandiflorus.
Collapse
Affiliation(s)
- Hanwen Yu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jing Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Nan Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Bowen Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jutao Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Liangping Zha
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Anhui Academy of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China; Anhui Province Key Laboratory of Pharmaceutical Technology and Application, Anhui University of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.
| |
Collapse
|
135
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
136
|
Daude MM, Ságio SA, Rodrigues JN, Lima NMP, Lima AA, Sarmento MI, Sarmento RA, Barreto HG. Reference genes for Eucalyptus spp. under Beauveria bassiana inoculation and subsequently infestation by the galling wasp Leptocybe invasa. Sci Rep 2024; 14:2556. [PMID: 38297150 PMCID: PMC10830493 DOI: 10.1038/s41598-024-52948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Relative gene expression analysis through RT-qPCR is an important molecular technique that helps understanding different molecular mechanisms, such as the plant defense response to insect pests. However, the use of RT-qPCR for gene expression analysis can be affected by factors that directly affect the reliability of the results. Among these factors, the appropriate choice of reference genes is crucial and can strongly impact RT-qPCR relative gene expression analyses, highlighting the importance in correctly choosing the most suitable genes for the success of the analysis. Thus, this study aimed to select and validate reference genes for relative gene expression studies through RT-qPCR in hybrids of Eucalyptus tereticornis × Eucalyptus camaldulensis (drought tolerant and susceptible to Leptocybe invasa) under conditions of inoculation by the Beauveria bassiana fungus and subsequent infestation by L. invasa. The expression level and stability of eleven candidate genes were evaluated. Stability was analyzed using the RefFinder tool, which integrates the geNorm, NormFinder, BestKeeper, and Delta-Ct algorithms. The selected reference genes were validated through the expression analysis of the transcriptional factor EcDREB2 (dehydration-responsive element-binding protein 2). For all treatments evaluated, EcPTB, EcPP2A-1, and EcEUC12 were the best reference genes. The triplets EcPTB/EcEUC12/EcUBP6, EcPP2A-1/EcEUC12/EcPTB, EcIDH/EcSAND/Ecα-TUB, EcPP2A-1/Ecα-TUB/EcPTB, and EcPP2A-1/EcUPL7/EcSAND were the best reference genes for the control plants, mother plants, plants inoculated with B. bassiana, plants infested with L. invasa, and plants inoculated with B. bassiana and subsequently infested with L. invasa, respectively. The best determined reference genes were used to normalize the RT-qPCR expression data for each experimental condition evaluated. The results emphasize the importance of this type of study to ensure the reliability of relative gene expression analyses. Furthermore, the findings of this study can be used as a basis for future research, comprising gene expression analysis of different eucalyptus metabolic pathways.
Collapse
Affiliation(s)
- Matheus Martins Daude
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
| | - Solange Aparecida Ságio
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil
| | - Jovielly Neves Rodrigues
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | | | - André Almeida Lima
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil
| | - Maíra Ignacio Sarmento
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Renato Almeida Sarmento
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil
- Postgraduate Program in Forest and Environmental Sciences, Federal University of Tocantins, Palmas, TO, Brazil
| | - Horllys Gomes Barreto
- Laboratory of Molecular Analysis (LAM), Life Sciences Department, Faculty of Medicine, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Biodiversity and Biotechnology, Rede Bionorte, Federal University of Tocantins, Palmas, TO, Brazil.
- Postgraduate Program in Digital Agroenergy, Federal University of Tocantins, Palmas, TO, Brazil.
| |
Collapse
|
137
|
Mao K, Yang J, Sun Y, Guo X, Qiu L, Mei Q, Li N, Ma F. MdbHLH160 is stabilized via reduced MdBT2-mediated degradation to promote MdSOD1 and MdDREB2A-like expression for apple drought tolerance. PLANT PHYSIOLOGY 2024; 194:1181-1203. [PMID: 37930306 DOI: 10.1093/plphys/kiad579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Drought stress is a key environmental factor limiting the productivity, quality, and geographic distribution of crops worldwide. Abscisic acid (ABA) plays an important role in plant drought stress responses, but the molecular mechanisms remain unclear. Here, we report an ABA-responsive bHLH transcription factor, MdbHLH160, which promotes drought tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica). Under drought conditions, MdbHLH160 is directly bound to the MdSOD1 (superoxide dismutase 1) promoter and activated its transcription, thereby triggering reactive oxygen species (ROS) scavenging and enhancing apple drought tolerance. MdbHLH160 also promoted MdSOD1 enzyme activity and accumulation in the nucleus through direct protein interactions, thus inhibiting excessive nuclear ROS levels. Moreover, MdbHLH160 directly upregulated the expression of MdDREB2A-like, a DREB (dehydration-responsive element binding factor) family gene that promotes apple drought tolerance. Protein degradation and ubiquitination assays showed that drought and ABA treatment stabilized MdbHLH160. The BTB protein MdBT2 was identified as an MdbHLH160-interacting protein that promoted MdbHLH160 ubiquitination and degradation, and ABA treatment substantially inhibited this process. Overall, our findings provide insights into the molecular mechanisms of ABA-modulated drought tolerance at both the transcriptional and post-translational levels via the ABA-MdBT2-MdbHLH160-MdSOD1/MdDREB2A-like cascade.
Collapse
Affiliation(s)
- Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xin Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
138
|
Choudhury S. Computational analysis of the AP2/ERF family in crops genome. BMC Genomics 2024; 25:102. [PMID: 38262942 PMCID: PMC10807240 DOI: 10.1186/s12864-024-09970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND The Apetala 2/ethylene-responsive factor family has diverse functions that enhance development and torment resistance in the plant genome. In variation, the ethylene-responsive factor (ERF) family of TF's genes is extensive in the crop genome. Generally, the plant-specific ethylene-responsive factor family may divided by the dehydration-responsive element-binding (DREB) subfamily. So, the AP2/ERF super-family demonstrated the repeated AP2 domain during growth. The sole AP2 domain function represents abiotic stress resistance. Also, the AP2 with B3 domain enhances during the replication of brassinosteroid. OBJECTIVE The study objective is to investigate the Apetala 2/ethylene-responsive factor family in a model organism of the Arabidopsis thaliana for comparative analysis towards Solanum lycopersicum (Tomato), Brassica juncea (Indian and Chinese mustard), Zea mays L. (Maize) and Oryza sativa (Indian and Japanese Rice). So, examinations of the large AP2/ERF super-family are mandatory to explore the Apetala 2 (AP2) family, ERF family, DREB subfamily, and RAV family involved during growth and abiotic stress stimuli in crops. METHODS Therefore, perform bioinformatics and computational methods to the current knowledge of the Apetala 2/ethylene-responsive factor family and their subfamilies in the crop genome. This method may be valuable for functional analysis of particular genes and their families in the plant genome. RESULTS Observation data provided evidence of the Apetala 2/ethylene-responsive factor (AP2/ERF) super-family and their sub-family present in Arabidopsis thaliana (Dicots) and compared with Solanum lycopersicum (Dicots), Brassica juncea (Dicots), Zea mays L. (Monocots) and Oryza sativa (Monocots). Also, remarks genes in Oryza sativa. This report upgraded the Apetala 2/ethylene-responsive factor (AP2/ERF) family in the crop genome. So, the analysis documented the conserved domain, motifs, and phylogenetic tree towards Dicots and Monocots species. Those outcomes will be valuable for future studies of the defensive Apetala 2/ethylene-responsive factor family in crops. CONCLUSION Therefore, the study concluded that the several species-specific TF genes in the Apetala 2/ethylene-responsive factor (AP2/ERF) family in Arabidopsis thaliana and compared with crop-species of Solanum lycopersicum, Brassica juncea, Zea mays L. and Oryza sativa. Those plant-specific genes regulate during growth and abiotic stress control in plants.
Collapse
Affiliation(s)
- Shouhartha Choudhury
- Har Gobind Khorana School of Life Sciences, Assam University, Silchar-788011, Assam, India.
- Department of Biotechnology, Assam University, Silchar-788011, Assam, India.
- Department of Life Science and Bioinformatics, Assam University, Silchar-788011, Assam, India.
| |
Collapse
|
139
|
Ma Z, Hu L, Jiang W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int J Mol Sci 2024; 25:893. [PMID: 38255967 PMCID: PMC10815832 DOI: 10.3390/ijms25020893] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| |
Collapse
|
140
|
Daniel K, Hartman S. How plant roots respond to waterlogging. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:511-525. [PMID: 37610936 DOI: 10.1093/jxb/erad332] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Plant submergence is a major abiotic stress that impairs plant performance. Under water, reduced gas diffusion exposes submerged plant cells to an environment that is enriched in gaseous ethylene and is limited in oxygen (O2) availability (hypoxia). The capacity for plant roots to avoid and/or sustain critical hypoxia damage is essential for plants to survive waterlogging. Plants use spatiotemporal ethylene and O2 dynamics as instrumental flooding signals to modulate potential adaptive root growth and hypoxia stress acclimation responses. However, how non-adapted plant species modulate root growth behaviour during actual waterlogged conditions to overcome flooding stress has hardly been investigated. Here we discuss how changes in the root growth rate, lateral root formation, density, and growth angle of non-flood adapted plant species (mainly Arabidopsis) could contribute to avoiding and enduring critical hypoxic conditions. In addition, we discuss current molecular understanding of how ethylene and hypoxia signalling control these adaptive root growth responses. We propose that future research would benefit from less artificial experimental designs to better understand how plant roots respond to and survive waterlogging. This acquired knowledge would be instrumental to guide targeted breeding of flood-tolerant crops with more resilient root systems.
Collapse
Affiliation(s)
- Kevin Daniel
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Sjon Hartman
- Plant Environmental Signalling and Development, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
- CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
141
|
Ma N, Sun P, Li ZY, Zhang FJ, Wang XF, You CX, Zhang CL, Zhang Z. Plant disease resistance outputs regulated by AP2/ERF transcription factor family. STRESS BIOLOGY 2024; 4:2. [PMID: 38163824 PMCID: PMC10758382 DOI: 10.1007/s44154-023-00140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Plants have evolved a complex and elaborate signaling network to respond appropriately to the pathogen invasion by regulating expression of defensive genes through certain transcription factors. The APETALA2/ethylene response factor (AP2/ERF) family members have been determined as key regulators in growth, development, and stress responses in plants. Moreover, a growing body of evidence has demonstrated the critical roles of AP2/ERFs in plant disease resistance. In this review, we describe recent advances for the function of AP2/ERFs in defense responses against microbial pathogens. We summarize that AP2/ERFs are involved in plant disease resistance by acting downstream of mitogen activated protein kinase (MAPK) cascades, and regulating expression of genes associated with hormonal signaling pathways, biosynthesis of secondary metabolites, and formation of physical barriers in an MAPK-dependent or -independent manner. The present review provides a multidimensional perspective on the functions of AP2/ERFs in plant disease resistance, which will facilitate the understanding and future investigation on the roles of AP2/ERFs in plant immunity.
Collapse
Affiliation(s)
- Ning Ma
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Ping Sun
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Zhao-Yang Li
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Fu-Jun Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China
| | - Chun-Ling Zhang
- College of Agricultural Science and Technology, Shandong Agriculture and Engineering University, Jinan, 250100, Shandong, China.
| | - Zhenlu Zhang
- College of Horticulture Science and Engineering, Apple Technology Innovation Center of Shandong Province, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, 271000, Shandong, China.
| |
Collapse
|
142
|
Shrestha AMS, Gonzales MEM, Ong PCL, Larmande P, Lee HS, Jeung JU, Kohli A, Chebotarov D, Mauleon RP, Lee JS, McNally KL. RicePilaf: a post-GWAS/QTL dashboard to integrate pangenomic, coexpression, regulatory, epigenomic, ontology, pathway, and text-mining information to provide functional insights into rice QTLs and GWAS loci. Gigascience 2024; 13:giae013. [PMID: 38832465 PMCID: PMC11148593 DOI: 10.1093/gigascience/giae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND As the number of genome-wide association study (GWAS) and quantitative trait locus (QTL) mappings in rice continues to grow, so does the already long list of genomic loci associated with important agronomic traits. Typically, loci implicated by GWAS/QTL analysis contain tens to hundreds to thousands of single-nucleotide polmorphisms (SNPs)/genes, not all of which are causal and many of which are in noncoding regions. Unraveling the biological mechanisms that tie the GWAS regions and QTLs to the trait of interest is challenging, especially since it requires collating functional genomics information about the loci from multiple, disparate data sources. RESULTS We present RicePilaf, a web app for post-GWAS/QTL analysis, that performs a slew of novel bioinformatics analyses to cross-reference GWAS results and QTL mappings with a host of publicly available rice databases. In particular, it integrates (i) pangenomic information from high-quality genome builds of multiple rice varieties, (ii) coexpression information from genome-scale coexpression networks, (iii) ontology and pathway information, (iv) regulatory information from rice transcription factor databases, (v) epigenomic information from multiple high-throughput epigenetic experiments, and (vi) text-mining information extracted from scientific abstracts linking genes and traits. We demonstrate the utility of RicePilaf by applying it to analyze GWAS peaks of preharvest sprouting and genes underlying yield-under-drought QTLs. CONCLUSIONS RicePilaf enables rice scientists and breeders to shed functional light on their GWAS regions and QTLs, and it provides them with a means to prioritize SNPs/genes for further experiments. The source code, a Docker image, and a demo version of RicePilaf are publicly available at https://github.com/bioinfodlsu/rice-pilaf.
Collapse
Affiliation(s)
- Anish M S Shrestha
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Mark Edward M Gonzales
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Phoebe Clare L Ong
- Bioinformatics Lab, Advanced Research Institute for Informatics, Computing and Networking, College of Computer Studies, De La Salle University, Manila 1004, Philippines
| | - Pierre Larmande
- DIADE, Univ Montpellier, Cirad, IRD, 34394 Montpellier, France
| | - Hyun-Sook Lee
- National Institute of Crop Science, Wanju-gun 55365, Republic of Korea
| | - Ji-Ung Jeung
- National Institute of Crop Science, Wanju-gun 55365, Republic of Korea
| | - Ajay Kohli
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Dmytro Chebotarov
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Ramil P Mauleon
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Jae-Sung Lee
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| | - Kenneth L McNally
- International Rice Research Institute (IRRI), Metro Manila 1301, Philippines
| |
Collapse
|
143
|
Cui T, Zang S, Sun X, Zhang J, Su Y, Wang D, Wu G, Chen R, Que Y, Lin Q, You C. Molecular identification and functional characterization of a transcription factor GeRAV1 from Gelsemium elegans. BMC Genomics 2024; 25:22. [PMID: 38166591 PMCID: PMC10759518 DOI: 10.1186/s12864-023-09919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Gelsemium elegans is a traditional Chinese medicinal plant and temperature is one of the key factors affecting its growth. RAV (related to ABI3/VP1) transcription factor plays multiple roles in higher plants, including the regulation of plant growth, development, and stress response. However, RAV transcription factor in G. elegans has not been reported. RESULTS In this study, three novel GeRAV genes (GeRAV1-GeRAV3) were identified from the transcriptome of G. elegans under low temperature stress. Phylogenetic analysis showed that GeRAV1-GeRAV3 proteins were clustered into groups II, IV, and V, respectively. RNA-sequencing (RNA-seq) and real-time quantitative PCR (qRT-PCR) analyses indicated that the expression of GeRAV1 and GeRAV2 was increased in response to cold stress. Furthermore, the GeRAV1 gene was successfully cloned from G. elegans leaf. It encoded a hydrophilic, unstable, and non-secretory protein that contained both AP2 and B3 domains. The amino acid sequence of GeRAV1 protein shared a high similarity of 81.97% with Camptotheca acuminata CaRAV. Subcellular localization and transcriptional self-activation experiments demonstrated that GeRAV1 was a nucleoprotein without self-activating activity. The GeRAV1 gene was constitutively expressed in the leaves, stems, and roots of the G. elegans, with the highest expression levels in roots. In addition, the expression of the GeRAV1 gene was rapidly up-regulated under abscisic acid (ABA), salicylic acid (SA), and methyl jasmonate (MeJA) stresses, suggesting that it may be involved in hormonal signaling pathways. Moreover, GeRAV1 conferred improved cold and sodium chloride tolerance in Escherichia coli Rosetta cells. CONCLUSIONS These findings provided a foundation for further understanding on the function and regulatory mechanism of the GeRAV1 gene in response to low-temperature stress in G. elegans.
Collapse
Affiliation(s)
- Tianzhen Cui
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shoujian Zang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinlu Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongjiao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Guran Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruiqi Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| | - Chuihuai You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- The Second People's Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350003, China.
| |
Collapse
|
144
|
Li D, Liu Y, Chen G, Yan Y, Bai Z. The SmERF1b-like regulates tanshinone biosynthesis in Salvia miltiorrhiza hairy root. AOB PLANTS 2024; 16:plad086. [PMID: 38249522 PMCID: PMC10799320 DOI: 10.1093/aobpla/plad086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 01/23/2024]
Abstract
The ethylene response factor family genes are involved in the regulation of secondary metabolism in Salvia miltiorrhiza, but the mechanism underlying this regulation remains elusive. In the present study, based on the cDNA library of S. miltiorrhiza, an AP2/ERF gene was cloned and named SmERF1b-like. This gene exhibited a significant response to exogenous ethylene supply, such that ethylene remarkably upregulated SmERF1b-like expression levels in the leaves of S. miltiorrhiza. Subcellular localization showed that SmERF1b-like is located in the nucleus. Furthermore, SmERF1b-like showed a binding affinity with a GCC-box motif in the promoter region of genes associated with tanshinone biosynthesis in S. miltiorrhiza. Overexpression of SmERF1b-like in hairy roots of S. miltiorrhiza substantially upregulated SmCPS1 and SmKSL1 expression levels, resulting in increased biosynthesis of tanshinone I and cryptotanshinone contents. This finding provides valuable theoretical support for the utilization of a plant genetic engineering strategy to enhance S. miltiorrhiza resources.
Collapse
Affiliation(s)
- Dan Li
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Yu Liu
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Yan Yan
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| | - Zhenqing Bai
- College of Life Sciences, Yan’an University, Yan’an, Shaanxi 716000, China
| |
Collapse
|
145
|
Khalil MI, Hassan MM, Samanta SC, Chowdhury AK, Hassan MZ, Ahmed NU, Somaddar U, Ghosal S, Robin AHK, Nath UK, Mostofa MG, Burritt DJ, Ha CV, Gupta A, Tran LSP, Saha G. Unraveling the genetic enigma of rice submergence tolerance: Shedding light on the role of ethylene response factor-encoding gene SUB1A-1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108224. [PMID: 38091930 DOI: 10.1016/j.plaphy.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 02/15/2024]
Abstract
The world's low-lying rice (Oryza sativa) cultivation areas are under threat of submergence or flash flooding due to global warming. Rice plants manifest a variety of physiological and morphological changes to cope with submergence and hypoxia, including lowering carbohydrate consumption, inhibiting shoot elongation, and forming a thicker leaf gas film during submergence. Functional studies have revealed that submergence tolerance in rice is mainly determined by an ethylene response factor (ERF) transcription factor-encoding gene, namely SUBMERGENCE 1A-1 (SUB1A-1) located in the SUB1 quantitative trait locus. The SUB1A-1-dependent submergence tolerance is manifested through hormonal signaling involving ethylene, gibberellic acid, brassinosteroid, auxin and jasmonic acid. Considerable progress has been made toward the introduction of SUB1A-1 into rice varieties through a conventional marker-assisted backcrossing approach. Here, we review the recent advances in the physiological, biochemical and molecular dynamics of rice submergence tolerance mediated by the 'quiescence strategy'. Thus, the present review aims to provide researchers with insights into the genetics of rice submergence tolerance and future perspectives for designing submergence-resilient plants for sustainable agriculture under the uncertainties of climate change.
Collapse
Affiliation(s)
- Md Ibrahim Khalil
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh; Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Mahmudul Hassan
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Swadesh Chandra Samanta
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Md Zahid Hassan
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Nasar Uddin Ahmed
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Uzzal Somaddar
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| | - Sharmistha Ghosal
- Plant Breeding Division, Bangladesh Rice Research Institute, Gazipur, 1701, Bangladesh.
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Ujjal Kumar Nath
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Mohammad Golam Mostofa
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, 9054, New Zealand.
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA.
| | - Gopal Saha
- Department of Agronomy, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh.
| |
Collapse
|
146
|
Zhu X, Wang B, Liu W, Wei X, Wang X, Du X, Liu H. Genome-wide analysis of AP2/ERF gene and functional analysis of CqERF24 gene in drought stress in quinoa. Int J Biol Macromol 2023; 253:127582. [PMID: 37866580 DOI: 10.1016/j.ijbiomac.2023.127582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Quinoa is a crop with high nutritional value and strong stress resistance. AP2/ERF transcription factors play a key role in plant growth and development. In this study, 148 AP2/ERF genes were identified in quinoa, which were divided into 5 subfamilies, including ERF, AP2, DREB, RAV and Soloist. The results showed that the number of introns ranged from 0 to 11, and the Motif 1-Motif 4 was highly conserved in most CqAP2/ERF proteins. The 148 CqAP2/ERF genes were distributed on 19 chromosomes. There were 93 pairs of duplicating genes in this family, and gene duplication played a critical role in the expansion of this family. Protein-protein interaction indicated that the proteins in CqAP2/ERF subfamily exhibited complex interactions, and GO enrichment analysis indicated that 148 CqAP2/ERF proteins were involved in transcription factor activity. In addition, CqAP2/ERF gene contains a large number of elements related to hormones in promoter region (IAA, GA, SA, ABA and MeJA) and stresses (salt, drought, low temperature and anaerobic induction). Transcriptome analysis under drought stress indicated that most of the CqAP2/ERF genes were responsive to drought stress, and subcellular localization indicated that CqERF24 was location in the nucleus, qRT-PCR results also showed that most of the genes such as CqERF15, CqERF24, CqDREB03, CqDREB14, CqDREB37 and CqDREB43 also responded to drought stress in roots and leaves. Overexpression of CqERF24 in Arabidopsis thaliana enhanced drought resistance by increasing antioxidant enzyme activity and activation-related stress genes, and the gene is sensitive to ABA, while silencing CqERF24 in quinoa decreased drought tolerance. In addition, overexpression of CqERF24 in quinoa calli enhanced resistance to mannitol. These results lay a solid foundation for further study on the role of AP2/ERF family genes in quinoa under drought stress.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Baoqiang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenyu Liu
- Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Xiaohong Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xian Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuefeng Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Haixun Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
147
|
Wu D, Zhang K, Li CY, Xie GW, Lu MT, Qian Y, Shu YP, Shen Q. Genome-wide comprehensive characterization and transcriptomic analysis of AP2/ERF gene family revealed its role in seed oil and ALA formation in perilla (Perilla frutescens). Gene 2023; 889:147808. [PMID: 37722611 DOI: 10.1016/j.gene.2023.147808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Perilla (Perilla frutescens) is a potential specific oilseed crop with an extremely high α-linolenic acid (ALA) content in its seeds. AP2/ERF transcription factors (TFs) play important roles in multiple biological processes. However, limited information is known about the regulatory mechanism of the AP2/ERF family in perilla's oil accumulation. In this research, we identified 212 AP2/ERF family members in the genome of perilla, and their domain characteristics, collinearity, and sub-genome differentiation were comprehensively analyzed. Transcriptome sequencing revealed that genes encoding key enzymes involved in oil biosynthesis (e.g., ACCs, KASII, GPAT, PDAT and LPAAT) were up-regulated in the high-oil variety. Moreover, the endoplasmic reticulum-localized FAD2 and FAD3 were significantly up-regulated in the high-ALA variety. To investigate the roles of AP2/ERFs in lipid biosynthesis, we conducted a correlation analysis between non-redundant AP2/ERFs and key lipid metabolism genes using WGCNA. A significant correlation was found between 36 AP2/ERFs and 90 lipid metabolism genes. Among them, 12 AP2/ERFs were identified as hub genes and showed significant correlation with lipid synthase genes (e.g., FADs, GPAT and ACSL) and key regulatory TFs (e.g., LEC2, IAA, MYB, UPL3). Furthermore, gene expression analysis identified three AP2/ERFs (WRI, ABI4, and RAVI) potentially playing an important role in the regulation of oil accumulation in perilla. Our study suggests that PfAP2/ERFs are important regulatory TFs in the lipid biosynthesis pathway, providing a foundation for the molecular understanding of oil accumulation in perilla and other oilseed crops.
Collapse
Affiliation(s)
- Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Chun-Yu Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Guan-Wen Xie
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ming-Ting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Yong Qian
- Shanghai Standard Technology Co., Ltd, Building 25, 15 Gudan Road, Pudong, Shanghai 201314, China.
| | - Ya-Ping Shu
- Shanghai Standard Technology Co., Ltd, Building 25, 15 Gudan Road, Pudong, Shanghai 201314, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
148
|
Yang X, Xu F, Pan W, Zhang W, Liao H, Zhu B, Xu B, Chen X, Yang H. Comparative Transcriptome Analysis of High- and Low-Growth Genotypes of Eucalyptus urophylla in Response to Long-Term Nitrogen Deficiency. Genes (Basel) 2023; 15:60. [PMID: 38254950 PMCID: PMC10815775 DOI: 10.3390/genes15010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Nutrients play important roles in the growth and development of most plant species. However, in perennial trees, the function of nutrients in different genotypes is poorly understood. Three different nutrient levels (low, sufficient, and high nutrient levels) were applied to two contrasting Eucalyptus urophylla cultivars (a high-growth cultivar ZQUA44 and a low-growth cultivar ZQUB15), and growth and expression levels were analyzed. Although the growth traits of both genotypes under nutrient starvation treatment were much lower than under abundant nutrients, tree height, crown width, and biomass of different ZQUA44 tissues were much higher than those of ZQUB15 at all three nutrient levels. Differentially expressed genes (DEGs) clustered into six subclusters based on their expression patterns, and functional annotation showed that the DEGs involved in glutathione metabolism and flavonoid biosynthesis may be responsible for nutrient starvation across different genotypes, while the DEGs involved in carotenoid biosynthesis and starch and sucrose metabolism may have a range of functions in different genotypes. The DEGs encoding the MYB-related family may be responsible for nutrient deficiency in all genotypes, while B3 may have different functions in different genotypes. Our results demonstrate that different genotypes may form different pathways to coordinate plant survival when they face abiotic stresses.
Collapse
Affiliation(s)
- Xiaohui Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Fang Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Wen Pan
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Weihua Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Huanqin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Baozhu Zhu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Bin Xu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Xinyu Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| | - Huixiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, No. 233, Guangshan First Road, Guangzhou 510520, China; (X.Y.); (F.X.); (W.P.); (W.Z.); (H.L.); (B.X.); (X.C.)
- Guangdong Academy of Forestry, No. 233, Guangshan First Road, Guangzhou 510520, China
| |
Collapse
|
149
|
Fan E, Liu C, Wang Z, Wang S, Ma W, Lu N, Liu Y, Fu P, Wang R, Lv S, Qu G, Wang J. Genome-Wide Identification and Expression Analysis of the SQUAMOSA Promoter-Binding Protein-like ( SPL) Transcription Factor Family in Catalpabungei. Int J Mol Sci 2023; 25:97. [PMID: 38203267 PMCID: PMC10779025 DOI: 10.3390/ijms25010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
As a plant-specific transcription factor, the SPL gene family plays a critical role in plant growth and development. Although the SPL gene family has been identified in diverse plant species, there have been no genome-wide identification or systematic study reports on the SPL gene family in Catalpa bungei. In this study, we identified 19 putative SPL gene family members in the C. bungei genome. According to the phylogenetic relationship, they can be divided into eight groups, and the genes in the same group have a similar gene structure and conserved motifs. Synteny analysis showed that fragment duplication played an important role in the expansion of the CbuSPL gene family. At the same time, CbuSPL genes have cis-acting elements and functions related to light response, hormone response, growth and development, and stress response. Tissue-specific expression and developmental period-specific expression analysis showed that CbuSPL may be involved in flowering initiation and development, flowering transition, and leaf development. In addition, the ectopic expression of CbuSPL4 in Arabidopsis confirmed that it can promote early flowering and induce the expression of related flowering genes. These systematic research results will lay a foundation for further study on the functional analysis of SPL genes in C. bungei.
Collapse
Affiliation(s)
- Erqin Fan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhi Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Shanshan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Yuhang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Pengyue Fu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Rui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Siyu Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (E.F.); (C.L.); (S.W.); (Y.L.); (P.F.); (R.W.); (S.L.); (G.Q.)
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, National Innovation Alliance of Catalpa bungei, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (Z.W.); (W.M.); (N.L.)
| |
Collapse
|
150
|
Park S, Shi A, Meinhardt LW, Mou B. Genome-wide characterization and evolutionary analysis of the AP2/ERF gene family in lettuce (Lactuca sativa). Sci Rep 2023; 13:21990. [PMID: 38081919 PMCID: PMC10713603 DOI: 10.1038/s41598-023-49245-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members. The duplication patterns provided evidence that both tandem and segmental duplications contributed to the expansion of this family. Ka/Ks ratio analysis demonstrated that, following duplication events, the genes have been subjected to purifying selection pressure, leading to selective constraints on their protein sequence. This selective pressure provides a dosage benefit against stresses in plants. Additionally, a transcriptome analysis indicated that some duplicated genes gained novel functions, emphasizing the contribution of both dosage effect and functional divergence to the family functionalities. Furthermore, an orthologous relationship study showed that 60% of genes descended from a common ancestor of Rosid and Asterid lineages, 28% from the Asterid ancestor, and 12% evolved in the lettuce lineage, suggesting lineage-specific roles in adaptive evolution. These results provide valuable insights into the evolutionary mechanisms of the AP2/ERF gene family in lettuce, with implications for enhancing abiotic stress tolerance, ultimately contributing to the genetic improvement of lettuce crop production.
Collapse
Affiliation(s)
- Sunchung Park
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA.
| | - Ainong Shi
- Horticulture Department, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Lyndel W Meinhardt
- US Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Beiquan Mou
- US Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905, USA
| |
Collapse
|