101
|
Li C, Yan JM, Li YZ, Zhang ZC, Wang QL, Liang Y. Silencing the SpMPK1, SpMPK2, and SpMPK3 genes in tomato reduces abscisic acid-mediated drought tolerance. Int J Mol Sci 2013; 14:21983-96. [PMID: 24201128 PMCID: PMC3856046 DOI: 10.3390/ijms141121983] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/28/2013] [Accepted: 10/28/2013] [Indexed: 11/16/2022] Open
Abstract
Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs) play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS) method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA)-induced and hydrogen peroxide (H2O2)-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.
Collapse
Affiliation(s)
- Cui Li
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jian-Min Yan
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yun-Zhou Li
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen-Cai Zhang
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiao-Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan Liang
- State Key Laboratory of Crop Stress Biology in Arid Region, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (C.L.); (J.-M.Y.); (Y.-Z.L.); (Z.-C.Z.); (Q.-L.W.)
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-29-8708-2179
| |
Collapse
|
102
|
Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y, Boutrot FF, Tör M, Zipfel C, Gust AA, Brunner F. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. THE PLANT CELL 2013; 25:4227-41. [PMID: 24104566 PMCID: PMC3877809 DOI: 10.1105/tpc.113.117010] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 08/03/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called sclerotinia culture filtrate elicitor1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to receptor-like protein30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases brassinosteroid insensitive1-associated receptor kinase1 (BAK1) and Suppressor of BIR1-1/evershed (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.
Collapse
Affiliation(s)
- Weiguo Zhang
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Malou Fraiture
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Dagmar Kolb
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Birgit Löffelhardt
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Yoshitake Desaki
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | | | - Mahmut Tör
- National Pollen and Aerobiology Research Unit, Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Andrea A. Gust
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Frédéric Brunner
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
- Address correspondence to
| |
Collapse
|
103
|
Danquah A, de Zelicourt A, Colcombet J, Hirt H. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 2013; 32:40-52. [PMID: 24091291 DOI: 10.1016/j.biotechadv.2013.09.006] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/14/2013] [Accepted: 09/20/2013] [Indexed: 01/12/2023]
Abstract
As sessile organisms, plants have developed specific mechanisms that allow them to rapidly perceive and respond to stresses in the environment. Among the evolutionarily conserved pathways, the ABA (abscisic acid) signaling pathway has been identified as a central regulator of abiotic stress response in plants, triggering major changes in gene expression and adaptive physiological responses. ABA induces protein kinases of the SnRK family to mediate a number of its responses. Recently, MAPK (mitogen activated protein kinase) cascades have also been shown to be implicated in ABA signaling. Therefore, besides discussing the role of ABA in abiotic stress signaling, we will also summarize the evidence for a role of MAPKs in the context of abiotic stress and ABA signaling.
Collapse
Affiliation(s)
- Agyemang Danquah
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Axel de Zelicourt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Jean Colcombet
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| | - Heribert Hirt
- URGV Plant Genomics, INRA-CNRS-UEVE, Saclay Plant Sciences, 2 rue Gaston Cremieux, 91000 Evry, France
| |
Collapse
|
104
|
Neupane A, Nepal MP, Piya S, Subramanian S, Rohila JS, Reese RN, Benson BV. Identification, nomenclature, and evolutionary relationships of mitogen-activated protein kinase (MAPK) genes in soybean. Evol Bioinform Online 2013; 9:363-86. [PMID: 24137047 PMCID: PMC3785387 DOI: 10.4137/ebo.s12526] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution.
Collapse
Affiliation(s)
- Achal Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings SD, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Persak H, Pitzschke A. Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 2013; 8:e57547. [PMID: 23437396 PMCID: PMC3578790 DOI: 10.1371/journal.pone.0057547] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 01/25/2013] [Indexed: 01/10/2023] Open
Abstract
Abiotic stress poses a huge, ever-increasing problem to plants and agriculture. The dissection of signalling pathways mediating stress tolerance is a prerequisite to develop more resistant plant species. Mitogen-activated protein kinase (MAPK) cascades are universal signalling modules. In Arabidopsis, the MAPK MPK3 and its upstream regulator MAPK kinase MKK4 initiate the adaptation response to numerous abiotic and biotic stresses. Yet, molecular steps directly linked with MKK4-MPK3 activation are largely unknown. Starting with a yeast-two-hybrid screen for interacting partners of MKK4, we identified a transcription factor, MYB44. MYB44 is controlled at multiple levels by and strongly inter-connected with MAPK signalling. As we had shown earlier, stress-induced expression of the MYB44 gene is regulated by a MPK3-targeted bZIP transcription factor VIP1. At the protein level, MYB44 interacts with MPK3 in vivo. MYB44 is phosphorylated by MPK3 in vitro at a single residue, Ser145. Although replacement of Ser145 by a non-phosphorylatable (S145A) or phosphomimetic (S145D) residue did not alter MYB44 subcellular localisation, dimerization behaviour nor DNA-binding characteristics, abiotic stress tolerance tests in stable transgenic Arabidopsis plants clearly related S145 phosphorylation to MYB44 function: Compared to Arabidopsis wild type plants, MYB44 overexpressing lines exhibit an enhanced tolerance to osmotic stress and are slightly more sensitive to abscisic acid. Interestingly, overexpression of the S145A variant revealed that impaired phosphorylation does not render the MYB44 protein non-functional. Instead, S145A lines are highly sensitive to abiotic stress, and thereby remarkably similar to mpk3-deficient plants. Its in vivo interaction with the nuclear sub-pools of both MPK3 and MKK4 renders MYB44 the first plant transcription factor to have a second function as putative MAPK cascade scaffolding protein.
Collapse
Affiliation(s)
- Helene Persak
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| | - Andrea Pitzschke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- * E-mail: (AP); (HP)
| |
Collapse
|
106
|
Kumar MN, Jane WN, Verslues PE. Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. PLANT PHYSIOLOGY 2013; 161:942-953. [PMID: 23184230 PMCID: PMC3561031 DOI: 10.1104/pp.112.209791] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/24/2012] [Indexed: 05/18/2023]
Abstract
The molecular basis of plant osmosensing remains unknown. Arabidopsis (Arabidopsis thaliana) Histidine Kinase1 (AHK1) can complement the osmosensitivity of yeast (Saccharomyces cerevisiae) osmosensor mutants lacking Synthetic Lethal of N-end rule1 and SH3-containing Osmosensor and has been proposed to act as a plant osmosensor. We found that ahk1 mutants in either the Arabidopsis Nossen-0 or Columbia-0 background had increased stomatal density and stomatal index consistent with greater transpirational water loss. However, the growth of ahk1 mutants was not more sensitive to controlled moderate low water potential (ψ(w)) or to salt stress. Also, ahk1 mutants had increased, rather than reduced, solute accumulation across a range of low ψ(w) severities. ahk1 mutants had reduced low ψ(w) induction of Δ(1)-Pyrroline-5-Carboxylate Synthetase1 (P5CS1) and 9-cis-Epoxycarotenoid Dioxygenase3, which encode rate-limiting enzymes in proline and abscisic acid (ABA) synthesis, respectively. However, neither Pro nor ABA accumulation was reduced in ahk1 mutants at low ψ(w). P5CS1 protein level was not reduced in ahk1 mutants. This indicated that proline accumulation was regulated in part by posttranscriptional control of P5CS1 that was not affected by AHK1. Expression of AHK1 itself was reduced by low ψ(w), in contrast to previous reports. These results define a role of AHK1 in controlling stomatal density and the transcription of stress-responsive genes. These phenotypes may be mediated in part by reduced ABA sensitivity. More rapid transpiration and water depletion can also explain the previously reported sensitivity of ahk1 to uncontrolled soil drying. The unimpaired growth, ABA, proline, and solute accumulation of ahk1 mutants at low ψ(w) suggest that AHK1 may not be the main plant osmosensor required for low ψ(w) tolerance.
Collapse
|
107
|
Costa M, Nobre MS, Becker JD, Masiero S, Amorim MI, Pereira LG, Coimbra S. Expression-based and co-localization detection of arabinogalactan protein 6 and arabinogalactan protein 11 interactors in Arabidopsis pollen and pollen tubes. BMC PLANT BIOLOGY 2013; 13:7. [PMID: 23297674 PMCID: PMC3546934 DOI: 10.1186/1471-2229-13-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 12/28/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed. RESULTS The lack of two specific AGPs induced a meaningful shift in the gene expression profile. In fact, a high number of genes showed altered expression levels, strengthening the case that AGP6 and AGP11 are involved in complex phenomena. The expression levels of calcium- and signaling-related genes were found to be altered, supporting the known roles of the respective proteins in pollen tube growth. Although the precise nature of the proposed interactions needs further investigation, the putative involvement of AGPs in signaling cascades through calmodulin and protein degradation via ubiquitin was indicated. The expression of stress-, as well as signaling- related, genes was also changed; a correlation that may result from the recognized similarities between signaling pathways in both defense and pollen tube growth.The results of yeast two-hybrid experiments lent further support to these signaling pathways and revealed putative AGP6 and AGP11 interactors implicated in recycling of cell membrane components via endocytosis, through clathrin-mediated endosomes and multivesicular bodies. CONCLUSIONS The data presented suggest the involvement of AGP6 and AGP11 in multiple signaling pathways, in particular those involved in developmental processes such as endocytosis-mediated plasma membrane remodeling during Arabidopsis pollen development. This highlights the importance of endosomal trafficking pathways which are rapidly emerging as fundamental regulators of the wall physiology.
Collapse
Affiliation(s)
- Mário Costa
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Margarida Sofia Nobre
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Oeiras, 2780-901, Portugal
| | - Simona Masiero
- Dipartimento di Biologia, Università degli Studi di Milano, Milan, 20133, Italy
| | - Maria Isabel Amorim
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Luís Gustavo Pereira
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre, 4169-007, Porto, Portugal
- BioFIG, Center for Biodiversity, Functional and Integrative Genomics, Porto, Portugal
| |
Collapse
|
108
|
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules downstream of receptors/sensors that transduce extracellular stimuli into intracellular responses in eukaryotes. Plant MAPK cascades play pivotal roles in signaling plant defense against pathogen attack. In this review, we summarize recent advances in the identification of upstream receptors/sensors and downstream MAPK substrates. These findings revealed the molecular mechanisms underlying MAPK functions in plant disease resistance. MAPK cascades have also emerged as battlegrounds of plant-pathogen interactions. Activation of MAPKs is one of the earliest signaling events after plant sensing of pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) and pathogen effectors. MAPK cascades are involved in signaling multiple defense responses, including the biosynthesis/signaling of plant stress/defense hormones, reactive oxygen species (ROS) generation, stomatal closure, defense gene activation, phytoalexin biosynthesis, cell wall strengthening, and hypersensitive response (HR) cell death. Pathogens, however, employ effectors to suppress plant MAPK activation and downstream defense responses to promote pathogenesis.
Collapse
Affiliation(s)
- Xiangzong Meng
- Division of Biochemistry, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | |
Collapse
|
109
|
Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. J Proteomics 2013; 78:26-38. [DOI: 10.1016/j.jprot.2012.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 09/17/2012] [Accepted: 10/14/2012] [Indexed: 12/29/2022]
|
110
|
Berriri S, Garcia AV, dit Frey NF, Rozhon W, Pateyron S, Leonhardt N, Montillet JL, Leung J, Hirt H, Colcombet J. Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. THE PLANT CELL 2012; 24:4281-93. [PMID: 23115249 PMCID: PMC3517250 DOI: 10.1105/tpc.112.101253] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/03/2012] [Accepted: 10/15/2012] [Indexed: 05/19/2023]
Abstract
Plant mitogen-activated protein kinases (MAPKs) are involved in important processes, including stress signaling and development. In a functional yeast screen, we identified mutations that render Arabidopsis thaliana MAPKs constitutively active (CA). Importantly, CA-MAPKs maintain their specificity toward known activators and substrates. As a proof-of-concept, Arabidopsis MAPK4 (MPK4) function in plant immunity was investigated. In agreement with the phenotype of mpk4 mutants, CA-MPK4 plants were compromised in pathogen-induced salicylic acid accumulation and disease resistance. MPK4 activity was found to negatively regulate pathogen-associated molecular pattern-induced reactive oxygen species production but had no impact on callose deposition, indicating that CA-MPK4 allows discriminating between processes regulated by MPK4 activity from processes indirectly affected by mpk4 mutation. Finally, MPK4 activity was also found to compromise effector-triggered immunity conditioned by the Toll Interleukin-1 Receptor-nucleotide binding (NB)-Leu-rich repeat (LRR) receptors RPS4 and RPP4 but not by the coiled coil-NB-LRR receptors RPM1 and RPS2. Overall, these data reveal important insights on how MPK4 regulates plant defenses and establishes that CA-MAPKs offer a powerful tool to analyze the function of plant MAPK pathways.
Collapse
Affiliation(s)
- Souha Berriri
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne, 91000 Evry, France
| | - Ana Victoria Garcia
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne, 91000 Evry, France
| | - Nicolas Frei dit Frey
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne, 91000 Evry, France
| | - Wilfried Rozhon
- Gregor Mendel Institute of Molecular Plant Biology–Austrian Academy of Sciences, 1030 Vienna, Austria
| | - Stéphanie Pateyron
- Transcriptomic Platform, Génomique Fonctionnelle d'Arabidopsis Group, Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne, 91000 Evry, France
| | - Nathalie Leonhardt
- Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique/Commissariat à l’Energie Atomique/Université Aix-Marseille II, 13108 Saint Paul les Durance, France
| | - Jean-Luc Montillet
- Institut de Biologie Environnementale et Biotechnologie, Centre National de la Recherche Scientifique/Commissariat à l’Energie Atomique/Université Aix-Marseille II, 13108 Saint Paul les Durance, France
| | - Jeffrey Leung
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, 91190 Gif-sur-Yvette, France
| | - Heribert Hirt
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne, 91000 Evry, France
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Evry Val d'Essonne, 91000 Evry, France
- Address correspondence to
| |
Collapse
|
111
|
Wang WM, Ma XF, Zhang Y, Luo MC, Wang GL, Bellizzi M, Xiong XY, Xiao SY. PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. MOLECULAR PLANT 2012; 5:1125-37. [PMID: 22334594 DOI: 10.1093/mp/sss008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many fungal and oomycete pathogens differentiate a feeding structure named the haustorium to extract nutrition from the plant epidermal cell. The atypical resistance (R) protein RPW8.2 activates salicylic acid (SA)-dependent, haustorium-targeted defenses against Golovinomyces spp., the causal agents of powdery mildew diseases on multiple plant species. How RPW8.2 activates defense remains uncharacterized. Here, we report that RPW8.2 interacts with the phytochrome-associated protein phosphatase type 2C (PAPP2C) in yeast and in planta as evidenced by co-immunoprecipitation and bimolecular fluorescence complementation assays. Down-regulation of PAPP2C by RNA interference (RNAi) in Col-0 plants lacking RPW8.2 leads to leaf spontaneous cell death and enhanced disease resistance to powdery mildew via the SA-dependent signaling pathway. Moreover, down-regulation of PAPP2C by RNAi in the RPW8.2 background results in strong HR-like cell death, which correlates with elevated RPW8.2 expression. We further demonstrate that hemagglutinin (HA)-tagged PAPP2C prepared from tobacco leaf cells transiently transformed with HA-PAPP2C possesses phosphatase activity. In addition, silencing a rice gene (Os04g0452000) homologous to PAPP2C also results in spontaneous cell death in rice. Combined, our results suggest that RPW8.2 is functionally connected with PAPP2C and that PAPP2C negatively regulates SA-dependent basal defense against powdery mildew in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Ming Wang
- Institute for Bioscience and Biotechnology Research and Department of Plant Sciences and Landscape Architecture, University of Maryland, Rockville, MD 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Ben-Ari G. The ABA signal transduction mechanism in commercial crops: learning from Arabidopsis. PLANT CELL REPORTS 2012; 31:1357-69. [PMID: 22660953 DOI: 10.1007/s00299-012-1292-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 05/22/2012] [Accepted: 05/22/2012] [Indexed: 05/08/2023]
Abstract
The phytohormone abscisic acid (ABA) affects a wide range of stages of plant development as well as the plant's response to biotic and abiotic stresses. Manipulation of ABA signaling in commercial crops holds promising potential for improving crop yields. Several decades of research have been invested in attempts to identify the first components of the ABA signaling cascade. It was only in 2009, that two independent groups identified the PYR/PYL/RCAR protein family as the plant ABA receptor. This finding was followed by a surge of studies on ABA signal transduction, many of them using Arabidopsis as their model. The ABA signaling cascade was found to consist of a double-negative regulatory mechanism assembled from three protein families. These include the ABA receptors, the PP2C family of inhibitors, and the kinase family, SnRK2. It was found that ABA-bound PYR/RCARs inhibit PP2C activity, and that PP2Cs inactivate SnRK2s. Researchers today are examining how the elucidation of the ABA signaling cascade in Arabidopsis can be applied to improvements in commercial agriculture. In this article, we have attempted to review recent studies which address this issue. In it, we discuss various approaches useful in identifying the genetic and protein components involved. Finally, we suggest possible commercial applications of genetic manipulation of ABA signaling to improve crop yields.
Collapse
Affiliation(s)
- Giora Ben-Ari
- Institute of Plant Sciences, The Volcani Center, ARO, Bet Dagan, Israel.
| |
Collapse
|
113
|
|
114
|
Liu B, Fan J, Zhang Y, Mu P, Wang P, Su J, Lai H, Li S, Feng D, Wang J, Wang H. OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants. PLANT CELL REPORTS 2012; 31:1021-32. [PMID: 22218675 DOI: 10.1007/s00299-011-1220-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 05/31/2023]
Abstract
Dephosphorylation plays a pivotal role in regulating plant growth, development and abiotic/biotic stress responses. Here, we characterized a plant and fungi atypical dual-specificity phosphatase (PFA-DSP) subfamily member, OsPFA-DSP1, from rice. OsPFA-DSP1 was determined to be a functional protein tyrosine phosphatase (PTP) in vitro using phosphatase activity assays. Quantitative real-time PCR and GENEVESTIGATOR analysis showed that OsPFA-DSP1 mRNA was induced by drought stress. Transfection of rice protoplasts showed that OsPFA-DSP1 accumulated in both the cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP1 in tobacco increased sensitivity to drought stress and insensitivity to ABA-induced stomatal closure and inhibition of stomatal opening. Furthermore, overexpression of OsPFA-DSP1 in rice also increased sensitivity to drought stress. These results indicated that OsPFA-DSP1 is a functional PTP and may act as a negative regulator in drought stress responses.
Collapse
Affiliation(s)
- Bing Liu
- Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275 Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
He H, Su J, Shu S, Zhang Y, Ao Y, Liu B, Feng D, Wang J, Wang H. Two homologous putative protein tyrosine phosphatases, OsPFA-DSP2 and AtPFA-DSP4, negatively regulate the pathogen response in transgenic plants. PLoS One 2012; 7:e34995. [PMID: 22514699 PMCID: PMC3325911 DOI: 10.1371/journal.pone.0034995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/08/2012] [Indexed: 12/31/2022] Open
Abstract
Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen peroxide (H2O2) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly, transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H2O2 and decreased photosynthesic capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative regulators of the pathogen response in transgenic plants.
Collapse
Affiliation(s)
- Hanjie He
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianbin Su
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shengying Shu
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yang Zhang
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ying Ao
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bing Liu
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Dongru Feng
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jinfa Wang
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongbin Wang
- Key Laboratory of Gene Engineering of Ministry of Education, State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|
116
|
Hettenhausen C, Baldwin IT, Wu J. Silencing MPK4 in Nicotiana attenuata enhances photosynthesis and seed production but compromises abscisic acid-induced stomatal closure and guard cell-mediated resistance to Pseudomonas syringae pv tomato DC3000. PLANT PHYSIOLOGY 2012; 158:759-76. [PMID: 22147519 PMCID: PMC3271765 DOI: 10.1104/pp.111.190074] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/05/2011] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) play pivotal roles in development and environmental interactions in eukaryotes. Here, we studied the function of a MAPK, NaMPK4, in the wild tobacco species Nicotiana attenuata. The NaMPK4-silenced N. attenuata (irNaMPK4) attained somewhat smaller stature, delayed senescence, and greatly enhanced stomatal conductance and photosynthetic rate, especially during late developmental stages. All these changes were associated with highly increased seed production. Using leaf epidermal peels, we demonstrate that guard cell closure in irNaMPK4 was strongly impaired in response to abscisic acid and hydrogen peroxide, and consistently, irNaMPK4 plants transpired more water and wilted sooner than did wild-type plants when they were deprived of water. We show that NaMPK4 plays an important role in the guard cell-mediated defense against a surface-deposited bacterial pathogen, Pseudomonas syringae pv tomato (Pst) DC3000; in contrast, when bacteria directly entered leaves by pressure infiltration, NaMPK4 was found to be less important in the resistance to apoplast-located Pst DC3000. Moreover, we show that salicylic acid was not involved in the defense against PstDC3000 in wild-type and irNaMPK4 plants once it had entered leaf tissue. Finally, we provide evidence that NaMPK4 functions differently from AtMPK4 and AtMPK11 in Arabidopsis (Arabidopsis thaliana), despite their sequence similarities, suggesting a complex functional divergence of MAPKs in different plant lineages. This work highlights the multifaceted functions of NaMPK4 in guard cells and underscores its role in mediating various ecologically important traits.
Collapse
Affiliation(s)
| | | | - Jianqiang Wu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
117
|
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. PLANT CELL REPORTS 2012; 31:1-12. [PMID: 21870109 DOI: 10.1007/s00299-011-1130-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.
| |
Collapse
|
118
|
Kim H, Hwang H, Hong JW, Lee YN, Ahn IP, Yoon IS, Yoo SD, Lee S, Lee SC, Kim BG. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1013-24. [PMID: 22071266 DOI: 10.1093/jxb/err338] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that positively regulates seed dormancy and stress tolerance. PYL/RCARs were identified an intracellular ABA receptors regulating ABA-dependent gene expression in Arabidopsis thaliana. However, their function in monocot species has not been characterized yet. Herein, it is demonstrated that PYL/RCAR orthologues in Oryza sativa function as a positive regulator of the ABA signal transduction pathway. Transgenic rice plants expressing OsPYL/RCAR5, a PYL/RCAR orthologue of rice, were found to be hypersensitive to ABA during seed germination and early seedling growth. A rice ABA signalling unit composed of OsPYL/RCAR5, OsPP2C30, SAPK2, and OREB1 for ABA-dependent gene regulation was further identified, via interaction assays and a transient gene expression assay. Thus, a core signalling unit for ABA-responsive gene expression modulating seed germination and early seedling growth in rice has been unravelled. This study provides substantial contributions toward understanding the ABA signal transduction pathway in rice.
Collapse
Affiliation(s)
- Hyunmi Kim
- Department of Bio-crop development, National Academy of Agricultural Science, Rural Development Administration, Suwon, 441-707, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The main route for CO(2) and water vapor exchange between a plant and the environment is through small pores called stomata. The accessibility of stomata and predictable division series that characterize their development provides an excellent system to address fundamental questions in biology. Stomatal cell-state transition and specification are regulated by a suite of transcription factors controlled by positional signaling via peptide ligands and transmembrane receptors. Downstream effectors include several members of the core cell-cycle genes. Environmentally induced signals are integrated into this essential developmental program to modulate stomatal development or function in response to changes in the abiotic environment. In addition, the recent identification of premitotic polarly localized proteins from both Arabidopsis and maize has laid a foundation for the future understanding of intrinsic cell polarity in plants. This review highlights the mechanisms of stomatal development through characterization of genes controlling cell-fate specification, cell polarity, cell division, and cell-cell communication during stomatal development and discusses the genetic framework linking these molecular processes with the correct spacing, density, and differentiation of stomata.
Collapse
Affiliation(s)
- Lynn Jo Pillitteri
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA.
| | | |
Collapse
|
120
|
Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D. Seed germination and vigor. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:507-33. [PMID: 22136565 DOI: 10.1146/annurev-arplant-042811-105550] [Citation(s) in RCA: 503] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.
Collapse
Affiliation(s)
- Loïc Rajjou
- CNRS-Bayer CropScience Joint Laboratory, UMR 5240, Bayer CropScience, Lyon Cedex 9, France.
| | | | | | | | | | | | | |
Collapse
|
121
|
Barba-Espín G, Diaz-Vivancos P, Job D, Belghazi M, Job C, Hernández JA. Understanding the role of H(2)O(2) during pea seed germination: a combined proteomic and hormone profiling approach. PLANT, CELL & ENVIRONMENT 2011; 34:1907-19. [PMID: 21711356 DOI: 10.1111/j.1365-3040.2011.02386.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In a previous publication, we showed that the treatment of pea seeds in the presence of hydrogen peroxide (H(2)O(2)) increased germination performance as well as seedling growth. To gain insight into the mechanisms responsible for this behaviour, we have analysed the effect of treating mature pea seeds in the presence of 20 mm H(2)O(2) on several oxidative features such as protein carbonylation, endogenous H(2)O(2) and lipid peroxidation levels. We report that H(2)O(2) treatment of the pea seeds increased their endogenous H(2)O(2) content and caused carbonylation of storage proteins and of several metabolic enzymes. Under the same conditions, we also monitored the expression of two MAPK genes known to be activated by H(2)O(2) in adult pea plants. The expression of one of them, PsMAPK2, largely increased upon pea seed imbibition in H(2)O(2) , whereas no change could be observed in expression of the other, PsMAPK3. The levels of several phytohormones such as 1-aminocyclopropane carboxylic acid, indole-3-acetic acid and zeatin appeared to correlate with the measured oxidative indicators and with the expression of PsMAPK2. Globally, our results suggest a key role of H(2)O(2) in the coordination of pea seed germination, acting as a priming factor that involves specific changes at the proteome, transcriptome and hormonal levels.
Collapse
|
122
|
Sun HL, Wang XJ, Ding WH, Zhu SY, Zhao R, Zhang YX, Xin Q, Wang XF, Zhang DP. Identification of an important site for function of the type 2C protein phosphatase ABI2 in abscisic acid signalling in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5713-25. [PMID: 21885535 PMCID: PMC3223061 DOI: 10.1093/jxb/err274] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/02/2011] [Accepted: 08/05/2011] [Indexed: 05/20/2023]
Abstract
It is known that the clade A protein phosphatase 2Cs (PP2Cs), including ABI1 and ABI2 and other PP2C members, are key players that function directly downstream of the PYR/PYL/RCAR abscisic acid (ABA) receptors. Here, identification of a crucial site for function of ABI2 protein phosphatase in ABA signalling is reported. It was observed that a calcium-dependent protein kinase (CDPK) phosphorylation site-like motif (CPL) in the ABI2 molecule is required for the interactions of ABI2 with the two members of the ABA receptors PYL5 and PYL9 and with a downstream protein kinase SnRK2.6, and for the catalytic activity of ABI2 in vitro, as well as for the response of ABI2 to the ABA receptors PYL5/PYL9 in relation to the ABA receptor-induced inhibition of the ABI2 phosphatase activity. Further, genetic evidence was provided to demonstrate that this CPL is required for the function of ABI2 to mediate ABA signalling. These data reveal that this CPL is an important site necessary for both the phosphatase activity of ABI2 and the functional interaction between ABI2 and PYL5/9 ABA receptors, providing new information to understand primary events of ABA signal transduction.
Collapse
Affiliation(s)
- Hai-Li Sun
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Jing Wang
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wei-Hua Ding
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sai-Yong Zhu
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Zhao
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi-Xie Zhang
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qi Xin
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiao-Fang Wang
- College of Biological Sciences, China Agricultural University, Beijing 100094, China
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Da-Peng Zhang
- Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
123
|
González Besteiro MA, Bartels S, Albert A, Ulm R. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:727-37. [PMID: 21790814 DOI: 10.1111/j.1365-313x.2011.04725.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants perceive UV-B radiation as an informational signal by a pathway involving UVR8 as UV-B photoreceptor, activating photomorphogenic and acclimation responses. In contrast, the response to UV-B as an environmental stress involves mitogen-activated protein kinase (MAPK) signalling cascades. Whereas the perception pathway is plant specific, the UV-B stress pathway is more broadly conserved. Knowledge of the UV-B stress-activated MAPK signalling pathway in plants is limited, and its potential interplay with the UVR8-mediated pathway has not been defined. Here, we show that loss of MAP kinase phosphatase 1 in the mutant mkp1 results in hypersensitivity to acute UV-B stress, but without impairing UV-B acclimation. The MKP1-interacting proteins MPK3 and MPK6 are activated by UV-B stress and are hyperactivated in mkp1. Moreover, mutants mpk3 and mpk6 exhibit elevated UV-B tolerance and partially suppress the UV-B hypersensitivity of mkp1. We show further that the MKP1-regulated stress-response MAPK pathway is independent of the UVR8 photoreceptor, but that MKP1 also contributes to survival under simulated sunlight. We conclude that, whereas UVR8-mediated acclimation in plants promotes UV-B-induced defence measures, MKP1-regulated stress signalling results when UV-B protection and repair are insufficient and damage occurs. The combined activity of these two mechanisms is crucial to UV-B tolerance in plants.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
124
|
Galletti R, Ferrari S, De Lorenzo G. Arabidopsis MPK3 and MPK6 play different roles in basal and oligogalacturonide- or flagellin-induced resistance against Botrytis cinerea. PLANT PHYSIOLOGY 2011; 157:804-14. [PMID: 21803860 PMCID: PMC3192574 DOI: 10.1104/pp.111.174003] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 07/29/2011] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) are fundamental components of the plant innate immune system. MPK3 and MPK6 are Arabidopsis (Arabidopsis thaliana) MAPKs activated by pathogens and elicitors such as oligogalacturonides (OGs), which function as damage-associated molecular patterns, and flg22, a well-known microbe-associated molecular pattern. However, the specific contribution of MPK3 and MPK6 to the regulation of elicitor-induced defense responses is not completely defined. In this work we have investigated the roles played by these MAPKs in elicitor-induced resistance against the fungal pathogen Botrytis cinerea. Analysis of single mapk mutants revealed that lack of MPK3 increases basal susceptibility to the fungus, as previously reported, but does not significantly affect elicitor-induced resistance. Instead, lack of MPK6 has no effect on basal resistance but suppresses OG- and flg22-induced resistance to B. cinerea. Overexpression of the AP2C1 phosphatase leads to impaired OG- and flg22-induced phosphorylation of both MPK3 and MPK6, and to phenotypes that recapitulate those of the single mapk mutants. These data indicate that OG- and flg22-induced defense responses effective against B. cinerea are mainly dependent on MAPKs, with a greater contribution of MPK6.
Collapse
|
125
|
Anderson JC, Bartels S, González Besteiro MA, Shahollari B, Ulm R, Peck SC. Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:258-68. [PMID: 21447069 DOI: 10.1111/j.1365-313x.2011.04588.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A primary component of plant defense is the detection of pathogen-associated molecular patterns (PAMPs) by plasma membrane-localized pathogen recognition receptors. PAMP perception results in rapid and transient activation of phosphorylation-dependent signaling pathways that lead to a wide array of defense-related responses, including extensive changes in gene expression. In Arabidopsis, several kinases, including the mitogen-activated protein kinases (MAPKs) MPK6 and MPK3, are rapidly activated after PAMP treatment, and are thought to positively regulate a wide array of defense-related responses. In contrast, negative regulation of PAMP responses by downstream phosphatases remains poorly understood. Here we report the identification of Arabidopsis MAP Kinase Phosphatase 1 (MKP1) as a negative regulator of diverse PAMP responses, including activation of MPK6 and MPK3, transient production of extracellular reactive oxygen species, accumulation of a subset of PAMP-regulated transcripts, and inhibition of seedling growth. In agreement with the enhanced PAMP response phenotypes observed in the mkp1 mutant, we found that mkp1 seedlings and adult plants are more resistant to the virulent bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000. Further genetic analysis revealed that MPK6, but not MPK3, is required for the mkp1-dependent increase in resistance to Pto and enhanced PAMP-induced growth inhibition observed in mkp1 seedlings. Together, our data support a role for MKP1 as a negative regulator of MPK6-mediated PAMP responses.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
126
|
Lenz HD, Haller E, Melzer E, Kober K, Wurster K, Stahl M, Bassham DC, Vierstra RD, Parker JE, Bautor J, Molina A, Escudero V, Shindo T, van der Hoorn RAL, Gust AA, Nürnberger T. Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:818-30. [PMID: 21332848 DOI: 10.1111/j.1365-313x.2011.04546.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In plants, autophagy has been assigned 'pro-death' and 'pro-survival' roles in controlling programmed cell death associated with microbial effector-triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy-deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a 'pro-survival' mechanism that controls the containment of host tissue-destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen-activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non-infected and bacteria-infected atg plants were slightly higher than those in Col-0 plants, and were accompanied by elevated SA-dependent gene expression and camalexin production. This suggests that previously undetected moderate infection-induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA-dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.
Collapse
Affiliation(s)
- Heike D Lenz
- Center for Plant Molecular Biology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Weitbrecht K, Müller K, Leubner-Metzger G. First off the mark: early seed germination. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3289-309. [PMID: 21430292 DOI: 10.1093/jxb/err030] [Citation(s) in RCA: 412] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most plant seeds are dispersed in a dry, mature state. If these seeds are non-dormant and the environmental conditions are favourable, they will pass through the complex process of germination. In this review, recent progress made with state-of-the-art techniques including genome-wide gene expression analyses that provided deeper insight into the early phase of seed germination, which includes imbibition and the subsequent plateau phase of water uptake in which metabolism is reactivated, is summarized. The physiological state of a seed is determined, at least in part, by the stored mRNAs that are translated upon imbibition. Very early upon imbibition massive transcriptome changes occur, which are regulated by ambient temperature, light conditions, and plant hormones. The hormones abscisic acid and gibberellins play a major role in regulating early seed germination. The early germination phase of Arabidopsis thaliana culminates in testa rupture, which is followed by the late germination phase and endosperm rupture. An integrated view on the early phase of seed germination is provided and it is shown that it is characterized by dynamic biomechanical changes together with very early alterations in transcript, protein, and hormone levels that set the stage for the later events. Early seed germination thereby contributes to seed and seedling performance important for plant establishment in the natural and agricultural ecosystem.
Collapse
Affiliation(s)
- Karin Weitbrecht
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
128
|
Balbuena TS, Jo L, Pieruzzi FP, Dias LLC, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EIS. Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. PHYTOCHEMISTRY 2011; 72:302-11. [PMID: 21276992 DOI: 10.1016/j.phytochem.2010.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Revised: 07/30/2010] [Accepted: 12/06/2010] [Indexed: 05/09/2023]
Abstract
Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes, oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed.
Collapse
Affiliation(s)
- Tiago S Balbuena
- Department of Botany, Institute of Biosciences, University of Sao Paulo, 05422-970 Sao Paulo, SP, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Arc E, Galland M, Cueff G, Godin B, Lounifi I, Job D, Rajjou L. Reboot the system thanks to protein post-translational modifications and proteome diversity: How quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics 2011; 11:1606-18. [DOI: 10.1002/pmic.201000641] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/05/2010] [Accepted: 01/07/2011] [Indexed: 11/12/2022]
|
130
|
Umbrasaite J, Schweighofer A, Kazanaviciute V, Magyar Z, Ayatollahi Z, Unterwurzacher V, Choopayak C, Boniecka J, Murray JAH, Bogre L, Meskiene I. MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PLoS One 2010; 5:e15357. [PMID: 21203456 PMCID: PMC3009721 DOI: 10.1371/journal.pone.0015357] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 11/15/2010] [Indexed: 12/21/2022] Open
Abstract
In plant post-embryonic epidermis mitogen-activated protein kinase (MAPK) signaling promotes differentiation of pavement cells and inhibits initiation of stomata. Stomata are cells specialized to modulate gas exchange and water loss. Arabidopsis MAPKs MPK3 and MPK6 are at the core of the signaling cascade; however, it is not well understood how the activity of these pleiotropic MAPKs is constrained spatially so that pavement cell differentiation is promoted only outside the stomata lineage. Here we identified a PP2C-type phosphatase termed AP2C3 (Arabidopsis protein phosphatase 2C) that is expressed distinctively during stomata development as well as interacts and inactivates MPK3, MPK4 and MPK6. AP2C3 co-localizes with MAPKs within the nucleus and this localization depends on its N-terminal extension. We show that other closely related phosphatases AP2C2 and AP2C4 are also MAPK phosphatases acting on MPK6, but have a distinct expression pattern from AP2C3. In accordance with this, only AP2C3 ectopic expression is able to stimulate cell proliferation leading to excess stomata development. This function of AP2C3 relies on the domains required for MAPK docking and intracellular localization. Concomitantly, the constitutive and inducible AP2C3 expression deregulates E2F-RB pathway, promotes the abundance and activity of CDKA, as well as changes of CDKB1;1 forms. We suggest that AP2C3 downregulates the MAPK signaling activity to help maintain the balance between differentiation of stomata and pavement cells.
Collapse
Affiliation(s)
- Julija Umbrasaite
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Alois Schweighofer
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Vaiva Kazanaviciute
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biotechnology, University of Vilnius, Vilnius, Lithuania
| | - Zoltan Magyar
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- Biological Research Centre, Institute of Plant Biology, Szeged, Hungary
| | - Zahra Ayatollahi
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | | | - Chonnanit Choopayak
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Justyna Boniecka
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - James A. H. Murray
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Laszlo Bogre
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| | - Irute Meskiene
- Max F. Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Institute of Biotechnology, University of Vilnius, Vilnius, Lithuania
| |
Collapse
|
131
|
Liu YK, Liu YB, Zhang MY, Li DQ. Stomatal development and movement: the roles of MAPK signaling. PLANT SIGNALING & BEHAVIOR 2010; 5:1176-80. [PMID: 20855958 PMCID: PMC3115344 DOI: 10.4161/psb.5.10.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stomata are epidermal pores on plant surface used for gas exchange with the atmosphere. Stomatal development and movement are regulated by environmental and internal signals. Mitogen-activated protein kinase (MAPK) cascades are universal transducers of extracellular signals among all eukaryotes. In plant, MAPK cascades regulate diverse cellular processes occurring during the whole ontogenetic plant life and ranging from normal cell proliferation to stress-inducing plant-to-environment interactions. Recent reports reveal that MAPK signaling is involved in both stomatal development and movement. This mini-review summarizes the roles of MAPK signaling in stomatal development and movement. How MAPK specificity is maintained in stomatal development and movement is also discussed.
Collapse
Affiliation(s)
- Yu-Kun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | |
Collapse
|