101
|
Qin H, He L, Huang R. The Coordination of Ethylene and Other Hormones in Primary Root Development. FRONTIERS IN PLANT SCIENCE 2019; 10:874. [PMID: 31354757 PMCID: PMC6635467 DOI: 10.3389/fpls.2019.00874] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/19/2019] [Indexed: 05/11/2023]
Abstract
The primary root is the basic component of root systems, initiates during embryogenesis and develops shortly after germination, and plays a key role in early seedling growth and survival. The phytohormone ethylene shows significant inhibition of the growth of primary roots. Recent findings have revealed that the inhibition of ethylene in primary root elongation is mediated via interactions with phytohormones, such as auxin, abscisic acid, gibberellin, cytokinins, jasmonic acid, and brassinosteroids. Considering that Arabidopsis and rice are the model plants of dicots and monocots, as well as the fact that hormonal crosstalk in primary root growth has been extensively investigated in Arabidopsis and rice, a better understanding of the mechanisms in Arabidopsis and rice will increase potential applications in other species. Therefore, we focus our interest on the emerging studies in the research of ethylene and hormone crosstalk in primary root development in Arabidopsis and rice.
Collapse
Affiliation(s)
- Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Lina He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Rongfeng Huang,
| |
Collapse
|
102
|
Wang J, Huang R. Modulation of Ethylene and Ascorbic Acid on Reactive Oxygen Species Scavenging in Plant Salt Response. FRONTIERS IN PLANT SCIENCE 2019; 10:319. [PMID: 30936887 PMCID: PMC6431634 DOI: 10.3389/fpls.2019.00319] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/27/2019] [Indexed: 05/06/2023]
Abstract
Salt stress causes retarded plant growth and reduced crop yield. A complicated regulation network to response to salt stress has been evolved in plants under high salinity conditions. Ethylene is one of the most important phytohormones, playing a major role in salt stress response. An increasing number of studies have demonstrated that ethylene modulates salt tolerance through reactive oxygen species (ROS) homeostasis. Ascorbic acid (AsA) is a non-enzymatic antioxidant, contributing to ROS-scavenging and salt tolerance. Here, we mainly focus on the advances in understanding the modulation of ethylene and AsA on ROS-scavenging under salinity stress. We also review the regulators involved in the ethylene signaling pathway and AsA biosynthesis that respond to salt stress. Moreover, the AsA pool is affected by many environmental conditions, and the potential role of ethylene in AsA production is also extensively discussed. Novel insights into the roles and mechanisms of ethylene in AsA-mediated ROS homeostasis will provide critical information for improving crop salt tolerance.
Collapse
Affiliation(s)
- Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, China
- *Correspondence: Rongfeng Huang,
| |
Collapse
|
103
|
Xu L, Xiang G, Sun Q, Ni Y, Jin Z, Gao S, Yao Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. HORTICULTURE RESEARCH 2019; 6:114. [PMID: 31645968 PMCID: PMC6804660 DOI: 10.1038/s41438-019-0197-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/03/2019] [Accepted: 08/14/2019] [Indexed: 05/19/2023]
Abstract
The signal molecules melatonin and ethylene play key roles in abiotic stress tolerance. The interplay between melatonin and ethylene in regulating salt tolerance and the underlying molecular mechanism of this interplay remain unclear. Here, we found that both melatonin and 1-aminocyclopropane-1-carboxylic acid (ACC, a precursor of ethylene) enhanced the tolerance of grapevine to NaCl; additionally, ethylene participated in melatonin-induced salt tolerance. Further experiments indicated that exogenous treatment and endogenous induction of melatonin increased the ACC content and ethylene production in grapevine and tobacco plants, respectively. The expression of MYB108A and ACS1, which function as a transcription factor and a key gene involved in ethylene production, respectively, was strongly induced by melatonin treatment. Additionally, MYB108A directly bound to the promoter of ACS1 and activated its transcription. MYB108A expression promoted ACC synthesis and ethylene production by activating ACS1 expression in response to melatonin treatment. The suppression of MYB108A expression partially limited the effect of melatonin on the induction of ethylene production and reduced melatonin-induced salt tolerance. Collectively, melatonin promotes ethylene biosynthesis and salt tolerance through the regulation of ACS1 by MYB108A.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Guangqing Xiang
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Yong Ni
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Zhongxin Jin
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Shiwei Gao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018 China
| |
Collapse
|
104
|
Liu J, Li CQ, Dong Y, Yang X, Wang YZ. Dosage imbalance of B- and C-class genes causes petaloid-stamen relating to F 1 hybrid variation. BMC PLANT BIOLOGY 2018; 18:341. [PMID: 30526487 PMCID: PMC6286610 DOI: 10.1186/s12870-018-1562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Great advances have been achieved in our understanding of flower development and evolution since the establishment of the ABC model. However, it remains a challenge to define the exact context of organ identity in the component interactions of the ABC model. RESULTS Through hybridization, we detected a homeotic mutant in Petrocosmea (Gesneriaceae) uniquely displayed by the 'petaloid-stamen' in the third whorl with petal identity. Comparative Real-time PCR analyses demonstrate that both two B-class genes DEF2 and GLO are excessively expressed while the transcripts of the C-class gene PLE are reduced in the third floral whorl in the mutant compared to that in the wild-type F1 hybrids. Further allele-specific expression (ASE) analyses indicate that an allele-specific change in PgPLE might be responsible for up-regulation of both B-class genes and down-regulation of the C-class gene in the petaloid-stamen mutants. CONCLUSIONS Our findings suggest that the petaloid-stamen is consequent upon an evident dosage imbalance between B- and C-class products that is probably triggered by a cis-regulatory change. In addition, the genetic pathway for the floral organ identity might be in parallel with that for the floral symmetry. The extreme variation in hybrids further suggests that interspecific hybridization may represent a major factor for evolutionary innovation and diversification in plants.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chao-Qun Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
| | - Xia Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
| | - Yin-Zheng Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
105
|
Tao Y, Wang J, Miao J, Chen J, Wu S, Zhu J, Zhang D, Gu H, Cui H, Shi S, Xu M, Yao Y, Gong Z, Yang Z, Gu M, Zhou Y, Liang G. The Spermine Synthase OsSPMS1 Regulates Seed Germination, Grain Size, and Yield. PLANT PHYSIOLOGY 2018; 178:1522-1536. [PMID: 30190417 PMCID: PMC6288755 DOI: 10.1104/pp.18.00877] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/16/2018] [Indexed: 05/21/2023]
Abstract
Polyamines, including putrescine, spermidine, and spermine, play essential roles in a wide variety of prokaryotic and eukaryotic organisms. Rice (Oryza sativa) contains four putative spermidine/spermine synthase (SPMS)-encoding genes (OsSPMS1, OsSPMS2, OsSPMS3, and OsACAULIS5), but none have been functionally characterized. In this study, we used a reverse genetic strategy to investigate the biological function of OsSPMS1 We generated several homozygous RNA interference (RNAi) and overexpression (OE) lines of OsSPMS1 Phenotypic analysis indicated that OsSPMS1 negatively regulates seed germination, grain size, and grain yield per plant. The ratio of spermine to spermidine was significantly lower in the RNAi lines and considerably higher in the OE lines than in the wild type, suggesting that OsSPMS1 may function as a SPMS. S-Adenosyl-l-methionine is a common precursor of polyamines and ethylene biosynthesis. The 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene contents in seeds increased significantly in RNAi lines and decreased in OE lines, respectively, compared with the wild type. Additionally, the reduced germination rates and growth defects of OE lines could be rescued with ACC treatment. These data suggest that OsSPMS1 affects ethylene synthesis and may regulate seed germination and plant growth by affecting the ACC and ethylene pathways. Most importantly, an OsSPMS1 knockout mutant showed an increase in grain yield per plant in a high-yield variety, Suken118, suggesting that OsSPMS1 is an important target for yield enhancement in rice.
Collapse
Affiliation(s)
- Yajun Tao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Miao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Jie Chen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Shujun Wu
- Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Jinyan Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Houwen Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Huan Cui
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Shuangyue Shi
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Mingyue Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Youli Yao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Zhiyun Gong
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Yong Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| | - Guohua Liang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
106
|
Auxin Controlled by Ethylene Steers Root Development. Int J Mol Sci 2018; 19:ijms19113656. [PMID: 30463285 PMCID: PMC6274790 DOI: 10.3390/ijms19113656] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022] Open
Abstract
Roots are important plant ground organs, which absorb water and nutrients to control plant growth and development. Phytohormones have been known to play a crucial role in the regulation of root growth, such as auxin and ethylene, which are central regulators of this process. Recent findings have revealed that root development and elongation regulated by ethylene are auxin dependent through alterations of auxin biosynthesis, transport and signaling. In this review, we focus on the recent advances in the study of auxin and auxin⁻ethylene crosstalk in plant root development, demonstrating that auxin and ethylene act synergistically to control primary root and root hair growth, but function antagonistically in lateral root formation. Moreover, ethylene modulates auxin biosynthesis, transport and signaling to fine-tune root growth and development. Thus, this review steps up the understanding of the regulation of auxin and ethylene in root growth.
Collapse
|
107
|
Miao ZQ, Zhao PX, Mao JL, Yu LH, Yuan Y, Tang H, Liu ZB, Xiang CB. HOMEOBOX PROTEIN52 Mediates the Crosstalk between Ethylene and Auxin Signaling during Primary Root Elongation by Modulating Auxin Transport-Related Gene Expression. THE PLANT CELL 2018; 30:2761-2778. [PMID: 30333147 PMCID: PMC6305987 DOI: 10.1105/tpc.18.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/26/2018] [Accepted: 10/14/2018] [Indexed: 05/06/2023]
Abstract
The gaseous hormone ethylene participates in many physiological processes in plants. Ethylene-inhibited root elongation involves PIN-FORMED2 (PIN2)-mediated basipetal auxin transport, but the molecular mechanisms underlying the regulation of PIN2 function by ethylene (and therefore auxin distribution) are poorly understood. Here, we report that the plant-specific and ethylene-responsive HD-Zip gene HB52 is involved in ethylene-mediated inhibition of primary root elongation in Arabidopsis thaliana Biochemical and genetic analyses demonstrated that HB52 is ethylene responsive and acts downstream of ETHYLENE-INSENSITIVE3 (EIN3). HB52 knockdown mutants displayed an ethylene-insensitive phenotype during primary root elongation, while its overexpression resulted in short roots, as observed in ethylene-treated plants. In addition, root auxin distribution and gravitropism were impaired in HB52 knockdown and overexpression lines. Consistent with these findings, in vitro and in vivo binding experiments showed that HB52 regulates the expression of auxin transport-related genes, including PIN2, WAVY ROOT GROWTH1 (WAG1), and WAG2 by physically binding to their promoter regions. These findings suggest that HB52 functions in the ethylene-mediated inhibition of root elongation by modulating the expression of auxin transport components downstream of EIN3, revealing a mechanism in which HB52 acts as an important node in the crosstalk between ethylene and auxin signaling during plant growth and development.
Collapse
Affiliation(s)
- Zi-Qing Miao
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Ping-Xia Zhao
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Jie-Li Mao
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Lin-Hui Yu
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Yang Yuan
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Hui Tang
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Zhen-Bang Liu
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences and Division of Molecular and Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province 230027, China
| |
Collapse
|
108
|
Hsin KT, Wang CN. Expression shifts of floral symmetry genes correlate to flower actinomorphy in East Asia endemic Conandron ramondioides (Gesneriaceae). BOTANICAL STUDIES 2018; 59:24. [PMID: 30374786 PMCID: PMC6206312 DOI: 10.1186/s40529-018-0242-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Bilateral symmetry flower (zygomorphy) is the ancestral state for Gesneriaceae species. Yet independent reversions to actinomorphy have been parallelly evolved in several lineages. Conandron ramondioides is a natural radially symmetrical species survived in dense shade mountainous habitats where specialist pollinators are scarce. Whether the mutations in floral symmetry genes such as CYC, RAD and DIV genes, or their expression pattern shifts contribute to the reversion to actinomorphy in C. ramondioides thus facilitating shifts to generalist pollinators remain to be investigated. To address this, we isolated putative orthologues of these genes and relate their expressions to developmental stages of flower actinomorphy. RESULTS Tissue specific RT-PCR found no dorsal identity genes CrCYCs and CrRADs expression in petal and stamen whorls, while the ventral identity gene CrDIV was expressed in all petals. Thus, ventralized actinomorphy is evolved in C. ramondioides. However, CrCYCs still persists their expression in sepal whorl. This is congruent with previous findings that CYC expression in sepals is an ancestral state common to both actinomorphic and zygomorphic core Eudicot species. CONCLUSIONS The loss of dorsal identity genes CrCYCs and CrRADs expression in petal and stamen whorl without mutating these genes specifies that a novel regulation change, possibly on cis-elements of these genes, has evolved to switch zygomorphy to actinomorphy.
Collapse
Affiliation(s)
- Kuan-Ting Hsin
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
109
|
Holland CK, Jez JM. Arabidopsis: the original plant chassis organism. PLANT CELL REPORTS 2018; 37:1359-1366. [PMID: 29663032 DOI: 10.1007/s00299-018-2286-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/11/2018] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana (thale cress) has a past, current, and future role in the era of synthetic biology. Arabidopsis is one of the most well-studied plants with a wealth of genomics, genetics, and biochemical resources available for the metabolic engineer and synthetic biologist. Here we discuss the tools and resources that enable the identification of target genes and pathways in Arabidopsis and heterologous expression in this model plant. While there are numerous examples of engineering Arabidopsis for decreased lignin, increased seed oil, increased vitamins, and environmental remediation, this plant has provided biochemical tools for introducing Arabidopsis genes, pathways, and/or regulatory elements into other plants and microorganisms. Arabidopsis is not a vegetative or oilseed crop, but it is as an excellent model chassis for proof-of-concept metabolic engineering and synthetic biology experiments in plants.
Collapse
Affiliation(s)
- Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
110
|
Yuan DP, Zhang C, Wang ZY, Zhu XF, Xuan YH. RAVL1 Activates Brassinosteroids and Ethylene Signaling to Modulate Response to Sheath Blight Disease in Rice. PHYTOPATHOLOGY 2018; 108:1104-1113. [PMID: 29767552 DOI: 10.1094/phyto-03-18-0085-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rhizoctonia solani causes sheath blight disease in rice; however, the defense mechanism of rice plants against R. solani remains elusive. To analyze the roles of brassinosteroid (BR) and ethylene signaling on rice defense to R. solani, wild-type (WT) rice and several mutants and overexpressing (OX) lines were inoculated with R. solani. Mutants d61-1 and d2 were less susceptible to sheath blight disease, bri1-D was more susceptible, and ravl1 and d61-1/EIL1 Ri5 were similarly susceptible compared with WT. The double mutant ravl1/d61-1 was phenotypically similar to the ravl1 mutant. Transcriptome analysis, chromatin immunoprecipitation assay, electrophoretic mobility shift assay, and transient assays indicted that RAVL1 might directly activate Ethylene insensitive 3-like 1 (EIL1), a master regulator of ethylene signaling. Mutants ers1 and d61-1/RAVL1 OX were resistant to sheath blight disease, whereas EIL1 RNAi mutants and RAVL1 OX were more susceptible than WT. BRI1 and D2 expression in EIL1 Ri5/RAVL1 OX and EIL1 expression in d61-1/RAVL1 OX indicated that RAVL1 activates BRI1/D2 and EIL1, respectively, independent of BR and ethylene signaling. Our analyses provide information on how BR and ethylene signaling regulate sheath blight disease and on the regulatory function of RAVL1 in rice sheath blight disease.
Collapse
Affiliation(s)
- De Peng Yuan
- All authors: College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866 China
| | - Chong Zhang
- All authors: College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866 China
| | - Zi Yuan Wang
- All authors: College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866 China
| | - Xiao Feng Zhu
- All authors: College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866 China
| | - Yuan Hu Xuan
- All authors: College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, 110866 China
| |
Collapse
|
111
|
Zhang D, Wang Y, Shen J, Yin J, Li D, Gao Y, Xu W, Liang J. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. RICE (NEW YORK, N.Y.) 2018; 11:45. [PMID: 30073557 PMCID: PMC6081827 DOI: 10.1186/s12284-018-0232-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) is a WD40 type protein that is involved in multiple signaling pathways and is conserved from prokaryotes to eukaryotes. Here we report that rice RACK1A (OsRACK1A) is regulated by circadian clocks and plays an important role in the salt stress response. OsRACK1A was found to follow a rhythmic expression profile under circadian conditions at both the transcription and the translation levels, although the expression was arrhythmic under salt stress. Analysis of plant survival rates, fresh weight, proline content, malondialdehyde, and chlorophyll showed that suppression of OsRACK1A enhanced tolerance to salt stress. The ion concentration in both roots and leaves revealed that OsRACK1A-suppressed transgenic rice could maintain low Na+ and high K+ concentrations. Furthermore, OsRACK1A-suppressed transgenic rice accumulated significantly more abscisic acid (ABA) and more transcripts of ABA- and stress-inducible genes compared with the wild-type plants. Real-time quantitative polymerase chain reaction analysis revealed that many stress-related genes, including APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors, were upregulated in the OsRACK1A-suppressed transgenic rice line. We identified putative interactors of OsRACK1A, and found that OsRACK1A interacted with many salt stress-responsive proteins directly. These results suggest that OsRACK1A is regulated by circadian rhythm, and involved in the regulation of salt stress responses.
Collapse
Affiliation(s)
- Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jinyu Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianfeng Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dahong Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Yan Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weifeng Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
112
|
Zhu XF, Yuan DP, Zhang C, Li TY, Xuan YH. RAVL1, an upstream component of brassinosteroid signalling and biosynthesis, regulates ethylene signalling via activation of EIL1 in rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1399-1401. [PMID: 29604166 PMCID: PMC6041445 DOI: 10.1111/pbi.12925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 05/04/2023]
Affiliation(s)
- Xiao Feng Zhu
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoningChina
| | - De Peng Yuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoningChina
| | - Chong Zhang
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoningChina
| | - Tian Ya Li
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoningChina
| | - Yuan Hu Xuan
- College of Plant ProtectionShenyang Agricultural UniversityShenyangLiaoningChina
| |
Collapse
|
113
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018; 6:e4752. [PMID: 29761061 PMCID: PMC5947103 DOI: 10.7717/peerj.4752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/22/2018] [Indexed: 11/20/2022] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
114
|
E3 ubiquitin ligase SOR1 regulates ethylene response in rice root by modulating stability of Aux/IAA protein. Proc Natl Acad Sci U S A 2018; 115:4513-4518. [PMID: 29632179 PMCID: PMC5924906 DOI: 10.1073/pnas.1719387115] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Auxin signaling components participate in ethylene-mediated inhibition of root elongation. However, the interplay between TIR1/AFB2-auxin-Aux/indole acetic acid (IAA) signaling and ethylene response remains to be elucidated in detail. In this study, we report an E3 ubiquitin ligase soil-surface rooting 1 (SOR1), which targets a noncanonical Aux/IAA protein OsIAA26 for 26S proteasome-mediated degradation. The E3 ligase activity of SOR1 can be repressed by the canonical Aux/IAA protein OsIAA9, which is the target of OsTIR1/AFB2. Our study identifies a potential regulator that modulates auxin-mediated ethylene response at the auxin signaling level. Plant hormones ethylene and auxin synergistically regulate plant root growth and development. Ubiquitin-mediated proteolysis of Aux/IAA transcriptional repressors by the E3 ubiquitin ligase SCFTIR1/AFB triggers a transcription-based auxin signaling. Here we show that rice (Oryza sativa L.) soil-surface rooting 1 (SOR1), which is a RING finger E3 ubiquitin ligase identified from analysis of a rice ethylene-insensitive mutant mhz2/sor1-2, controls root-specific ethylene responses by modulating Aux/IAA protein stability. SOR1 physically interacts with OsIAA26 and OsIAA9, which are atypical and canonical Aux/IAA proteins, respectively. SOR1 targets OsIAA26 for ubiquitin/26S proteasome-mediated degradation, whereas OsIAA9 protects the OsIAA26 protein from degradation by inhibiting the E3 activity of SOR1. Auxin promotes SOR1-dependent degradation of OsIAA26 by facilitating SCFOsTIR1/AFB2-mediated and SOR1-assisted destabilization of OsIAA9 protein. Our study provides a candidate mechanism by which the SOR1-OsIAA26 module acts downstream of the OsTIR1/AFB2-auxin-OsIAA9 signaling to modulate ethylene inhibition of root growth in rice seedlings.
Collapse
|
115
|
Zhan LP, Peng DL, Wang XL, Kong LA, Peng H, Liu SM, Liu Y, Huang WK. Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice. BMC PLANT BIOLOGY 2018; 18:50. [PMID: 29580214 PMCID: PMC5870084 DOI: 10.1186/s12870-018-1266-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/12/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Silicon (Si) can confer plant resistance to both abiotic and biotic stress. In the present study, the priming effect of Si on rice (Oryza sativa cv Nipponbare) against the root-knot nematode Meloidogyne graminicola and its histochemical and molecular impact on plant defense mechanisms were evaluated. RESULTS Si amendment significantly reduced nematodes in rice roots and delayed their development, while no obvious negative effect on giant cells was observed. Increased resistance in rice was correlated with higher transcript levels of defense-related genes (OsERF1, OsEIN2 and OsACS1) in the ethylene (ET) pathway. Si amendment significantly reduced nematode numbers in rice plants with enhanced ET signaling but had no effect in plants deficient in ET signaling, indicating that the priming effects of Si were dependent on the ET pathway. A higher deposition of callose and accumulation of phenolic compounds were observed in rice roots after nematode attack in Si-amended plants than in the controls. CONCLUSION These findings indicate that the priming effect may partially depend on the production of phenolic compounds and hydrogen peroxide. Further research is required to model the ethylene signal transduction pathway that occurs in the Si-plant-nematode interaction system and gain a better understanding of Si-induced defense in rice.
Collapse
Affiliation(s)
- Li-Ping Zhan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - De-Liang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - Xu-Li Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - Ling-An Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - Shi-Ming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - Ying Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 100193 Beijing, People’s Republic of China
| |
Collapse
|
116
|
Ravanbakhsh M, Sasidharan R, Voesenek LACJ, Kowalchuk GA, Jousset A. Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. MICROBIOME 2018; 6:52. [PMID: 29562933 PMCID: PMC5863443 DOI: 10.1186/s40168-018-0436-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/05/2018] [Indexed: 05/20/2023]
Abstract
The plant hormone ethylene is one of the central regulators of plant development and stress resistance. Optimal ethylene signaling is essential for plant fitness and is under strong selection pressure. Plants upregulate ethylene production in response to stress, and this hormone triggers defense mechanisms. Due to the pleiotropic effects of ethylene, adjusting stress responses to maximize resistance, while minimizing costs, is a central determinant of plant fitness. Ethylene signaling is influenced by the plant-associated microbiome. We therefore argue that the regulation, physiology, and evolution of the ethylene signaling can best be viewed as the interactive result of plant genotype and associated microbiota. In this article, we summarize the current knowledge on ethylene signaling and recapitulate the multiple ways microorganisms interfere with it. We present ethylene signaling as a model system for holobiont-level evolution of plant phenotype: this cascade is tractable, extremely well studied from both a plant and a microbial perspective, and regulates fundamental components of plant life history. We finally discuss the potential impacts of ethylene modulation microorganisms on plant ecology and evolution. We assert that ethylene signaling cannot be fully appreciated without considering microbiota as integral regulatory actors, and we more generally suggest that plant ecophysiology and evolution can only be fully understood in the light of plant-microbiome interactions.
Collapse
Affiliation(s)
- Mohammadhossein Ravanbakhsh
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Rashmi Sasidharan
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George A Kowalchuk
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
117
|
Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proc Natl Acad Sci U S A 2018; 115:2520-2525. [PMID: 29463697 PMCID: PMC5877927 DOI: 10.1073/pnas.1718377115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ethylene signaling pathway has been extensively investigated in Arabidopsis, and EIN2 is the central component. Rice is a monocotyledonous model plant that exhibits different features in many aspects compared with the dicotyledonous Arabidopsis. Thus, rice provides an alternative system for identification of novel components of ethylene signaling. In this study, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-insensitive mutant mhz3. We found that MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like transmembrane domain and impeding protein ubiquitination, blocking proteasome-mediated protein degradation. This study reveals that MHZ3 is required for ethylene signaling and identifies how MHZ3 binds to OsEIN2 via the OsEIN2 N-terminal Nramp-like domain. The phytohormone ethylene regulates many aspects of plant growth and development. EIN2 is the central regulator of ethylene signaling, and its turnover is crucial for triggering ethylene responses. Here, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-response mutant mhz3. Loss-of-function mutations lead to ethylene insensitivity in etiolated rice seedlings. MHZ3 encodes a previously uncharacterized membrane protein localized to the endoplasmic reticulum. Ethylene induces MHZ3 gene and protein expression. Genetically, MHZ3 acts at the OsEIN2 level in the signaling pathway. MHZ3 physically interacts with OsEIN2, and both the N- and C-termini of MHZ3 specifically associate with the OsEIN2 Nramp-like domain. Loss of mhz3 function reduces OsEIN2 abundance and attenuates ethylene-induced OsEIN2 accumulation, whereas MHZ3 overexpression elevates the abundance of both wild-type and mutated OsEIN2 proteins, suggesting that MHZ3 is required for proper accumulation of OsEIN2 protein. The association of MHZ3 with the Nramp-like domain is crucial for OsEIN2 accumulation, demonstrating the significance of the OsEIN2 transmembrane domains in ethylene signaling. Moreover, MHZ3 negatively modulates OsEIN2 ubiquitination, protecting OsEIN2 from proteasome-mediated degradation. Together, these results suggest that ethylene-induced MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like domain and impeding protein ubiquitination to facilitate ethylene signal transduction. Our findings provide insight into the mechanisms of ethylene signaling.
Collapse
|
118
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 739] [Impact Index Per Article: 105.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
119
|
Shi W, Cheng J, Wen X, Wang J, Shi G, Yao J, Hou L, Sun Q, Xiang P, Yuan X, Dong S, Guo P, Guo J. Transcriptomic studies reveal a key metabolic pathway contributing to a well-maintained photosynthetic system under drought stress in foxtail millet ( Setaria italica L.). PeerJ 2018. [PMID: 29761061 DOI: 10.7287/peerj.preprints.26860v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Drought stress is one of the most important abiotic factors limiting crop productivity. A better understanding of the effects of drought on millet (Setaria italica L.) production, a model crop for studying drought tolerance, and the underlying molecular mechanisms responsible for drought stress responses is vital to improvement of agricultural production. In this study, we exposed the drought resistant F1 hybrid, M79, and its parental lines E1 and H1 to drought stress. Subsequent physiological analysis demonstrated that M79 showed higher photosynthetic energy conversion efficiency and drought tolerance than its parents. A transcriptomic study using leaves collected six days after drought treatment, when the soil water content was about ∼20%, identified 3066, 1895, and 2148 differentially expressed genes (DEGs) in M79, E1 and H1 compared to the respective untreated controls, respectively. Further analysis revealed 17 Gene Ontology (GO) enrichments and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in M79, including photosystem II (PSII) oxygen-evolving complex, peroxidase (POD) activity, plant hormone signal transduction, and chlorophyll biosynthesis. Co-regulation analysis suggested that these DEGs in M79 contributed to the formation of a regulatory network involving multiple biological processes and pathways including photosynthesis, signal transduction, transcriptional regulation, redox regulation, hormonal signaling, and osmotic regulation. RNA-seq analysis also showed that some photosynthesis-related DEGs were highly expressed in M79 compared to its parental lines under drought stress. These results indicate that various molecular pathways, including photosynthesis, respond to drought stress in M79, and provide abundant molecular information for further analysis of the underlying mechanism responding to this stress.
Collapse
Affiliation(s)
- Weiping Shi
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jingye Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Yangzhou University, Yangzhou, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jixiang Wang
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Guanyan Shi
- Industrial Crop Institute, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Jiayan Yao
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Liyuan Hou
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Qian Sun
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Peng Xiang
- Department of Next Generation Sequencing, Vazyme Biotech Company Ltd., Nanjing, China
| | - Xiangyang Yuan
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Shuqi Dong
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Pingyi Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| | - Jie Guo
- College of Agronomy, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
120
|
Yin CC, Ma B, Zhao H, Chen SY, Zhang JS. Screening and Genetic Analysis of Ethylene-Response Mutants in Etiolated Rice Seedlings. Bio Protoc 2018. [DOI: 10.21769/bioprotoc.3001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
121
|
Xiang J, Wu H, Zhang Y, Zhang Y, Wang Y, Li Z, Lin H, Chen H, Zhang J, Zhu D. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence. Int J Mol Sci 2017; 18:E2225. [PMID: 29064391 PMCID: PMC5666904 DOI: 10.3390/ijms18102225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA) has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB) does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs) among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.
Collapse
Affiliation(s)
- Jing Xiang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Hui Wu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yuping Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yikai Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Yifeng Wang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Zhiyong Li
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Haiyan Lin
- Yuan LongPing High-TechAgriculture Co., Ltd., Changsha 410001, China.
| | - Huizhe Chen
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| | - Defeng Zhu
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China.
| |
Collapse
|
122
|
Yin CC, Zhao H, Ma B, Chen SY, Zhang JS. Diverse Roles of Ethylene in Regulating Agronomic Traits in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1676. [PMID: 29018471 PMCID: PMC5622985 DOI: 10.3389/fpls.2017.01676] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/12/2017] [Indexed: 05/18/2023]
Abstract
Gaseous hormone ethylene has diverse effects in various plant processes. These processes include seed germination, plant growth, senescence, fruit ripening, biotic and abiotic stresses responses, and many other aspects. The biosynthesis and signaling of ethylene have been extensively studied in model Arabidopsis in the past two decades. However, knowledge about the ethylene signaling mechanism in crops and roles of ethylene in regulation of crop agronomic traits are still limited. Our recent findings demonstrate that rice possesses both conserved and diverged mechanism for ethylene signaling compared with Arabidopsis. Here, we mainly focused on the recent advances in ethylene regulation of important agronomic traits. Of special emphasis is its impact on rice growth, flowering, grain filling, and grain size control. Similarly, the influence of ethylene on other relevant crops will be compared. Additionally, interactions of ethylene with other hormones will also be discussed in terms of crop growth and development. Increasing insights into the roles and mechanisms of ethylene in regulating agronomic traits will contribute to improvement of crop production through precise manipulation of ethylene actions in crops.
Collapse
Affiliation(s)
- Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
123
|
The activation of OsEIL1 on YUC8 transcription and auxin biosynthesis is required for ethylene-inhibited root elongation in rice early seedling development. PLoS Genet 2017; 13:e1006955. [PMID: 28829777 PMCID: PMC5581195 DOI: 10.1371/journal.pgen.1006955] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 09/01/2017] [Accepted: 08/04/2017] [Indexed: 11/21/2022] Open
Abstract
Rice is an important monocotyledonous crop worldwide; it differs from the dicotyledonous plant Arabidopsis in many aspects. In Arabidopsis, ethylene and auxin act synergistically to regulate root growth and development. However, their interaction in rice is still unclear. Here, we report that the transcriptional activation of OsEIL1 on the expression of YUC8/REIN7 and indole-3-pyruvic acid (IPA)-dependent auxin biosynthesis is required for ethylene-inhibited root elongation. Using an inhibitor of YUC activity, which regulates auxin biosynthesis via the conversion of IPA to indole-3-acetic acid (IAA), we showed that ethylene-inhibited primary root elongation is dependent on YUC-based auxin biosynthesis. By screening phenotypes of seedling primary root from mutagenesis libraries following ethylene treatment, we identified a rice ethylene-insensitive mutant, rein7-1, in which YUC8/REIN7 is truncated at its C-terminus. Mutation in YUC8/REIN7 reduced auxin biosynthesis in rice, while YUC8/REIN7 overexpression enhanced ethylene sensitivity in the roots. Moreover, YUC8/REIN7 catalyzed the conversion of IPA to IAA, truncated version at C-terminal end of the YUC8/REIN7 resulted in significant reduction of enzymatic activity, indicating that YUC8/REIN7 is required for IPA-dependent auxin biosynthesis and ethylene-inhibited root elongation in rice early seedlings. Further investigations indicated that ethylene induced YUC8/REIN7 expression and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, strongly demonstrating that ethylene-inhibited root elongation depends on IPA-dependent auxin biosynthesis. Genetic studies revealed that YUC8/REIN7-mediated auxin biosynthesis functioned downstream of OsEIL1, which directly activated the expression of YUC8/REIN7. Thus, our findings reveal a model of interaction between ethylene and auxin in rice seedling primary root elongation, enhancing our understanding of ethylene signaling in rice. Rice is an important crop worldwide and is grown in water-saturated environments during its life cycle. This unique feature confers that rice might have different aspects from Arabidopsis in ethylene signaling. Although the crosstalk between ethylene and auxin is well understood in Arabidopsis, however, the interaction in rice is largely unclear. Here, we show that YUC8/REIN7, a member of the YUC gene family, catalyzing the conversion of IPA to IAA in auxin biosynthesis, is transcriptionally modulated by ethylene signaling component OsEIL1, and mainly participates in auxin biosynthesis and ethylene-inhibited root growth. We first identified that ethylene-inhibited root elongation is suppressed by the inhibitor of YUC activity, and YUC8/REIN7 is required for IPA-dependent auxin biosynthesis, indicating that YUC8/REIN7 is involved in ethylene-inhibited root elongation in rice early seedlings. Moreover, ethylene induced YUC8/REIN7 transcription and promoted auxin accumulation in roots. Addition of low concentrations of IAA rescued the ethylene response in the rein7-1, demonstrating that ethylene stimulates auxin biosynthesis dependent on YUC8/REIN7 function. Further evidence revealed that OsEIL1 transcriptionally activates the expression of YUC8/REIN7, and YUC8/REIN7-mediated auxin biosynthesis genetically acts downstream of OsEIL1. Our data in the present report identified an interaction between ethylene and auxin in rice seedling primary root elongation, increasing our understanding of ethylene signaling in rice root growth.
Collapse
|
124
|
Yu M, Yau CP, Yip WK. Differentially localized rice ethylene receptors OsERS1 and OsETR2 and their potential role during submergence. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356532. [PMID: 28758833 PMCID: PMC5616157 DOI: 10.1080/15592324.2017.1356532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ethylene is gaseous plant hormone that controls a variety of physiologic activities. OsERS1 and OsETR2 are major ethylene receptors in rice that have been reported to have different regulatory functions. The GFP fused N-terminus of OsERS1 and OsETR2 showed differentially localization patterns when transiently expressed in onion epidermal cells. Base on these results, we suggested that OsERS1 could be localized to plasma membranes, whereas OsETR2 could be localized to the endoplasmic reticulum. Furthermore, instead of the constitutive expression profile of OsERS1, OsETR2 is differentially expressed in seedlings of light/dark-grown conditions, submergence or exogenous ethylene treatments. Our results and others support the notion that OsERS1 and OsETR2 could have different roles during rice plant submergence.
Collapse
Affiliation(s)
- Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Chi Ping Yau
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wing Kin Yip
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- CONTACT Wing Kin Yip 7S09 Kadoorie Biological Sciences Building, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
125
|
Xiong Q, Ma B, Lu X, Huang YH, He SJ, Yang C, Yin CC, Zhao H, Zhou Y, Zhang WK, Wang WS, Li ZK, Chen SY, Zhang JS. Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. THE PLANT CELL 2017; 29:1053-1072. [PMID: 28465411 PMCID: PMC5466032 DOI: 10.1105/tpc.16.00981] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 05/02/2017] [Indexed: 05/04/2023]
Abstract
Elongation of the mesocotyl and coleoptile facilitates the emergence of rice (Oryza sativa) seedlings from soil and is affected by various genetic and environment factors. The regulatory mechanism underlying this process remains largely unclear. Here, we examined the regulation of mesocotyl and coleoptile growth by characterizing a gaoyao1 (gy1) mutant that exhibits a longer mesocotyl and longer coleoptile than its original variety of rice. GY1 was identified through map-based cloning and encodes a PLA1-type phospholipase that localizes in chloroplasts. GY1 functions at the initial step of jasmonic acid (JA) biosynthesis to repress mesocotyl and coleoptile elongation in etiolated rice seedlings. Ethylene inhibits the expression of GY1 and other genes in the JA biosynthesis pathway to reduce JA levels and enhance mesocotyl and coleoptile growth by promoting cell elongation. Genetically, GY1 acts downstream of the OsEIN2-mediated ethylene signaling pathway to regulate mesocotyl/coleoptile growth. Through analysis of the resequencing data from 3000 rice accessions, we identified a single natural variation of the GY1 gene, GY1376T , which contributes to mesocotyl elongation in rice varieties. Our study reveals novel insights into the regulatory mechanism of mesocotyl/coleoptile elongation and should have practical applications in rice breeding programs.
Collapse
Affiliation(s)
- Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Sheng Wang
- Institute of Crop Sciences/National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
126
|
Transcriptome and functional analysis reveals hybrid vigor for oil biosynthesis in oil palm. Sci Rep 2017; 7:439. [PMID: 28348403 PMCID: PMC5428490 DOI: 10.1038/s41598-017-00438-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/22/2017] [Indexed: 01/09/2023] Open
Abstract
Oil palm is the most productive oil crop in the world and composes 36% of the world production. However, the molecular mechanisms of hybrids vigor (or heterosis) between Dura, Pisifera and their hybrid progeny Tenera has not yet been well understood. Here we compared the temporal and spatial compositions of lipids and transcriptomes for two oil yielding organs mesocarp and endosperm from Dura, Pisifera and Tenera. Multiple lipid biosynthesis pathways are highly enriched in all non-additive expression pattern in endosperm, while cytokinine biosynthesis and cell cycle pathways are highly enriched both in endosperm and mesocarp. Compared with parental palms, the high oil content in Tenera was associated with much higher transcript levels of EgWRI1, homolog of Arabidopsis thaliana WRINKLED1. Among 338 identified genes in lipid synthesis, 207 (61%) has been identified to contain the WRI1 specific binding AW motif. We further functionally identified EgWRI1-1, one of three EgWRI1 orthologs, by genetic complementation of the Arabidopsis wri1 mutant. Ectopic expression of EgWRI1-1 in plant produced dramatically increased seed mass and oil content, with oil profile changed. Our findings provide an explanation for EgWRI1 as an important gene contributing hybrid vigor in lipid biosynthesis in oil palm.
Collapse
|
127
|
Ma B, Zhang JS. Analysis of Growth and Molecular Responses to Ethylene in Etiolated Rice Seedlings. Methods Mol Biol 2017; 1573:237-243. [PMID: 28293850 DOI: 10.1007/978-1-4939-6854-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ethylene plays a key role in various submergence responses of rice plants, but the mechanism of ethylene action remains largely unclear in rice. Regarding the differences between rice and Arabidopsis in ethylene-regulated processes, rice plants may possess divergent mechanisms in ethylene signaling in addition to the conserved aspects. Forward genetic analysis is essential to fully understand the ethylene signaling mechanism in rice. Here, we describe a method for screening ethylene-response mutants and evaluating ethylene responsiveness in etiolated rice seedlings.
Collapse
Affiliation(s)
- Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
128
|
Chen H, Zhang Q, Cai H, Xu F. Ethylene Mediates Alkaline-Induced Rice Growth Inhibition by Negatively Regulating Plasma Membrane H +-ATPase Activity in Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:1839. [PMID: 29114258 PMCID: PMC5660857 DOI: 10.3389/fpls.2017.01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/10/2017] [Indexed: 05/21/2023]
Abstract
pH is an important factor regulating plant growth. Here, we found that rice was better adapted to low pH than alkaline conditions, as its growth was severely inhibited at high pH, with shorter root length and an extreme biomass reduction. Under alkaline stress, the expression of genes for ethylene biosynthesis enzymes in rice roots was strongly induced by high pH and exogenous ethylene precursor ACC and ethylene overproduction in etol1-1 mutant aggravated the alkaline stress-mediated inhibition of rice growth, especially for the root elongation with decreased cell length in root apical regions. Conversely, the ethylene perception antagonist silver (Ag+) and ein2-1 mutants could partly alleviate the alkaline-induced root elongation inhibition. The H+-ATPase activity was extremely inhibited by alkaline stress and exogenous ACC. However, the H+-ATPase-mediated rhizosphere acidification was enhanced by exogenous Ag+, while H+ efflux on the root surface was extremely inhibited by exogenous ACC, suggesting that ethylene negatively regulated H+-ATPase activity under high-pH stress. Our results demonstrate that H+-ATPase is involved in ethylene-mediated inhibition of rice growth under alkaline stress.
Collapse
Affiliation(s)
- Haifei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Quan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Hongmei Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, China
- *Correspondence: Fangsen Xu,
| |
Collapse
|
129
|
Yang C, Li W, Cao J, Meng F, Yu Y, Huang J, Jiang L, Liu M, Zhang Z, Chen X, Miyamoto K, Yamane H, Zhang J, Chen S, Liu J. Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:338-353. [PMID: 27701783 DOI: 10.1111/tpj.13388] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 05/20/2023]
Abstract
Ethylene plays diverse roles in plant growth, development and stress responses. However, the roles of ethylene signaling in immune responses remain largely unknown. In this study, we showed that the blast fungus Magnaporthe oryzae infection activated ethylene biosynthesis in rice. Resistant rice cultivars accumulated higher levels of ethylene than susceptible ones. Ethylene signaling components OsEIN2 and the downstream transcription factor OsEIL1 positively regulated disease resistance. Mutation of OsEIN2 led to enhanced disease susceptibility. Whole-genome transcription analysis revealed that responsive genes of ethylene, jasmonates (JAs) and reactive oxygen species (ROS) signaling as well as phytoalexin biosynthesis genes were remarkably induced. Transcription of OsrbohA/B, which encode NADPH oxidases, and OsOPRs, the JA biosynthesis genes, were induced by M. oryzae infection. Furthermore, we demonstrated that OsEIL1 binds to the promoters of OsrbohA/OsrbohB and OsOPR4 to activate their expression. These data suggest that OsEIN2-mediated OsrbohA/OsrbohB and OsOPR transcription may play essential roles in ROS generation, JA biosynthesis and the subsequent phytoalexin accumulation. Therefore, the involvement of ethylene signaling in disease resistance is probably by activation of ROS and phytoalexin production in rice during M. oryzae infection.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jidong Cao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fanwei Meng
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongqi Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Junkai Huang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lan Jiang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muxing Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengguang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuewei Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Koji Miyamoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551, Japan
| | - Jinsong Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shouyi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
130
|
Dou M, Fan S, Yang S, Huang R, Yu H, Feng X. Overexpression of AmRosea1 Gene Confers Drought and Salt Tolerance in Rice. Int J Mol Sci 2016; 18:ijms18010002. [PMID: 28025485 PMCID: PMC5297637 DOI: 10.3390/ijms18010002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Ectopic expression of the MYB transcription factor of AmROSEA1 from Antirrhinum majus has been reported to change anthocyanin and other metabolites in several species. In this study, we found that overexpression of AmRosea1 significantly improved the tolerance of transgenic rice to drought and salinity stresses. Transcriptome analysis revealed that a considerable number of stress-related genes were affected by exogenous AmRosea1 during both drought and salinity stress treatments. These affected genes are involved in stress signal transduction, the hormone signal pathway, ion homeostasis and the enzymes that remove peroxides. This work suggests that the AmRosea1 gene is a potential candidate for genetic engineering of crops.
Collapse
Affiliation(s)
- Mingzhu Dou
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Sanhong Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Rongfeng Huang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China.
| | - Huiyun Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Xianzhong Feng
- Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
131
|
Martínez-Andújar C, Albacete A, Martínez-Pérez A, Pérez-Pérez JM, Asins MJ, Pérez-Alfocea F. Root-to-Shoot Hormonal Communication in Contrasting Rootstocks Suggests an Important Role for the Ethylene Precursor Aminocyclopropane-1-carboxylic Acid in Mediating Plant Growth under Low-Potassium Nutrition in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:1782. [PMID: 27965690 PMCID: PMC5126091 DOI: 10.3389/fpls.2016.01782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/11/2016] [Indexed: 05/07/2023]
Abstract
Selection and breeding of rootstocks that can tolerate low K supply may increase crop productivity in low fertility soils and reduce fertilizer application. However, the underlying physiological traits are still largely unknown. In this study, 16 contrasting recombinant inbred lines (RILs) derived from a cross between domestic and wild tomato species (Solanum lycopersicum × Solanum pimpinellifolium) have been used to analyse traits related to the rootstock-mediated induction of low (L, low shoot fresh weight) or high (H, high shoot fresh weight) vigor to a commercial F1 hybrid grown under control (6 mM, c) and low-K (1 mM, k). Based on hormonal and ionomic composition in the root xylem sap and the leaf nutritional status after long-term (7 weeks) exposure low-K supply, a model can be proposed to explain the rootstocks effects on shoot performance with the ethylene precursor aminocyclopropane-1-carboxylic acid (ACC) playing a pivotal negative role. The concentration of this hormone was higher in the low-vigor Lc and Lk rootstocks under both conditions, increased in the sensitive HcLk plants under low-K while it was reduced in the high-vigor Hk ones. Low ACC levels would promote the transport of K vs. Na in the vigorous Hk grafted plants. Along with K, Ca, and S, micronutrient uptake and transport were also activated in the tolerant Hk combinations under low-K. Additionally, an interconversion of trans-zeatin into trans-zeatin riboside would contribute to decrease ACC in the tolerant LcHk plants. The high vigor induced by the Hk plants can also be explained by an interaction of ACC with other hormones (cytokinins and salicylic, abscisic and jasmonic acids). Therefore, Hk rootstocks convert an elite tomato F1 cultivar into a (micro) nutrient-efficient phenotype, improving growth under reduced K fertilization.
Collapse
Affiliation(s)
| | - Alfonso Albacete
- Centro de Edafologia y Biologia Aplicada del Segura (CSIC)Murcia, Spain
| | | | | | - María José Asins
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Valencia, Spain
| | | |
Collapse
|
132
|
Manan S, Chen B, She G, Wan X, Zhao J. Transport and transcriptional regulation of oil production in plants. Crit Rev Biotechnol 2016; 37:641-655. [DOI: 10.1080/07388551.2016.1212185] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sehrish Manan
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Beibei Chen
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Jian Zhao
- National Key Laboratory for Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
133
|
Zhang M, Smith JAC, Harberd NP, Jiang C. The regulatory roles of ethylene and reactive oxygen species (ROS) in plant salt stress responses. PLANT MOLECULAR BIOLOGY 2016; 91:651-9. [PMID: 27233644 DOI: 10.1007/s11103-016-0488-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/02/2016] [Indexed: 05/20/2023]
Abstract
Soil salinity is one of the most commonly encountered environmental stresses affecting plant growth and crop productivity. Accordingly, plants have evolved a variety of morphological, physiological and biochemical strategies that enable them to adapt to saline growth conditions. For example, it has long been known that salinity-stress increases both the production of the gaseous stress hormone ethylene and the in planta accumulation of reactive oxygen species (ROS). Recently, there has been significant progress in understanding how the fine-tuning of ethylene biosynthesis and signaling transduction can promote salinity tolerance, and how salinity-induced ROS accumulation also acts as a signal in the mediation of salinity tolerance. Furthermore, recent advances have indicated that ethylene signaling modulates salinity responses largely via regulation of ROS-generating and ROS-scavenging mechanisms. This review focuses on these recent advances in understanding the linked roles of ethylene and ROS in salt tolerance.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - J Andrew C Smith
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Nicholas P Harberd
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Caifu Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China.
| |
Collapse
|
134
|
Yin CC, Ma B, Wang W, Xiong Q, Zhao H, Chen SY, Zhang JS. RNA Extraction and Preparation in Rice (Oryza sativa). ACTA ACUST UNITED AC 2016; 1:411-418. [DOI: 10.1002/cppb.20023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cui-Cui Yin
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| | - Biao Ma
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| | - Wei Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| | - Qing Xiong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| | - He Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| | - Shou-Yi Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| | - Jin-Song Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences; Beijing China
| |
Collapse
|
135
|
Xu C, Shanklin J. Triacylglycerol Metabolism, Function, and Accumulation in Plant Vegetative Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:179-206. [PMID: 26845499 DOI: 10.1146/annurev-arplant-043015-111641] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Oils in the form of triacylglycerols are the most abundant energy-dense storage compounds in eukaryotes, and their metabolism plays a key role in cellular energy balance, lipid homeostasis, growth, and maintenance. Plants accumulate oils primarily in seeds and fruits. Plant oils are used for food and feed and, increasingly, as feedstocks for biodiesel and industrial chemicals. Although plant vegetative tissues do not accumulate significant levels of triacylglycerols, they possess a high capacity for their synthesis, storage, and metabolism. The development of plants that accumulate oil in vegetative tissues presents an opportunity for expanded production of triacylglycerols as a renewable and sustainable bioenergy source. Here, we review recent progress in the understanding of triacylglycerol synthesis, turnover, storage, and function in leaves and discuss emerging genetic engineering strategies targeted at enhancing triacylglycerol accumulation in biomass crops. Such plants could potentially be modified to produce oleochemical feedstocks or nutraceuticals.
Collapse
Affiliation(s)
- Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973; ,
| |
Collapse
|
136
|
Xiao G, Qin H, Zhou J, Quan R, Lu X, Huang R, Zhang H. OsERF2 controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism. PLANT MOLECULAR BIOLOGY 2016; 90:293-302. [PMID: 26659593 PMCID: PMC4717165 DOI: 10.1007/s11103-015-0416-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/30/2015] [Indexed: 05/05/2023]
Abstract
Root determines plant distribution, development progresses, stress response, as well as crop qualities and yields, which is under the tight control of genetic programs and environmental stimuli. Ethylene responsive factor proteins (ERFs) play important roles in plant growth and development. Here, the regulatory function of OsERF2 involved in root growth was investigated using the gain-function mutant of OsERF2 (nsf2857) and the artificial microRNA-mediated silenced lines of OsERF2 (Ami-OsERF2). nsf2857 showed short primary roots compared with the wild type (WT), while the primary roots of Ami-OsERF2 lines were longer than those of WT. Consistent with this phenotype, several auxin/cytokinin responsive genes involved in root growth were downregulated in nsf2857, but upregulated in Ami-OsERF2. Then, we found that nsf2857 seedlings exhibited decreased ABA accumulation and sensitivity to ABA and reduced ethylene-mediated root inhibition, while those were the opposite in Ami-ERF2 plants. Moreover, several key genes involved in ABA synthesis were downregulated in nsf2857, but unregulated in Ami-ERF2 lines. In addition, OsERF2 affected the accumulation of sucrose and UDPG by mediating expression of key genes involved in sucrose metabolism. These results indicate that OsERF2 is required for the control of root architecture and ABA- and ethylene-response by tuning expression of series genes involved in sugar metabolism and hormone signaling pathways.
Collapse
Affiliation(s)
- Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hua Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jiahao Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
137
|
Maravi DK, Kumar S, Sharma PK, Kobayashi Y, Goud VV, Sakurai N, Koyama H, Sahoo L. Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:226. [PMID: 27790288 PMCID: PMC5073959 DOI: 10.1186/s13068-016-0642-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/11/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Jatropha curcas is an important biofuel crop due to the presence of high amount of oil in its seeds suitable for biodiesel production. Triacylglycerols (TAGs) are the most abundant form of storage oil in plants. Diacylglycerol O-acyltransferase (DGAT1) enzyme is responsible for the last and only committed step in seed TAG biosynthesis. Direct upregulation of TAG biosynthesis in seeds and vegetative tissues through overexpression of the DGAT1 could enhance the energy density of the biomass, making significant impact on biofuel production. RESULTS The enzyme diacylglycerol O-acyltransferase is the rate-limiting enzyme responsible for the TAG biosynthesis in seeds. We generated transgenic Jatropha ectopically expressing an Arabidopsis DGAT1 gene through Agrobacterium-mediated transformation. The resulting AtDGAT1 transgenic plants showed a dramatic increase in lipid content by 1.5- to 2 fold in leaves and 20-30 % in seeds, and an overall increase in TAG and DAG, and lower free fatty acid (FFA) levels compared to the wild-type plants. The increase in oil content in transgenic plants is accompanied with increase in average plant height, seeds per tree, average 100-seed weight, and seed length and breadth. The enhanced TAG accumulation in transgenic plants had no penalty on the growth rates, growth patterns, leaf number, and leaf size of plants. CONCLUSIONS In this study, we produced transgenic Jatropha ectopically expressing AtDGAT1. We successfully increased the oil content by 20-30 % in seeds and 1.5- to 2.0-fold in leaves of Jatropha through genetic engineering. Transgenic plants had reduced FFA content compared with control plants. Our strategy of increasing energy density by enhancing oil accumulation in both seeds and leaves in Jatropha would make it economically more sustainable for biofuel production.
Collapse
Affiliation(s)
| | - Sanjeev Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Prabin Kumar Sharma
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Yasufumi Kobayashi
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Vaibhav V. Goud
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| | - Nozomu Sakurai
- Department of Technology Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Hiroyuki Koyama
- Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu, 501-1193 Japan
| | - Lingaraj Sahoo
- Center for Energy, Indian Institute of Technology Guwahati, Guwahati, 781039 India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039 India
| |
Collapse
|
138
|
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences Dartmouth College Hanover, NH 03755
| | - Laurentius A C J Voesenek
- Plant Ecophysiology Institute of Environmental Biology Utrecht University Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
139
|
Tao JJ, Chen HW, Ma B, Zhang WK, Chen SY, Zhang JS. The Role of Ethylene in Plants Under Salinity Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1059. [PMID: 26640476 PMCID: PMC4661241 DOI: 10.3389/fpls.2015.01059] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 11/13/2015] [Indexed: 05/18/2023]
Abstract
Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene.
Collapse
|