101
|
Penning BW, McCann MC, Carpita NC. Evolution of the Cell Wall Gene Families of Grasses. FRONTIERS IN PLANT SCIENCE 2019; 10:1205. [PMID: 31681352 PMCID: PMC6805987 DOI: 10.3389/fpls.2019.01205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/02/2019] [Indexed: 05/06/2023]
Abstract
Grasses and related commelinid monocot species synthesize cell walls distinct in composition from other angiosperm species. With few exceptions, the genomes of all angiosperms contain the genes that encode the enzymes for synthesis of all cell-wall polysaccharide, phenylpropanoid, and protein constituents known in vascular plants. RNA-seq analysis of transcripts expressed during development of the upper and lower internodes of maize (Zea mays) stem captured the expression of cell-wall-related genes associated with primary or secondary wall formation. High levels of transcript abundances were not confined to genes associated with the distinct walls of grasses but also of those associated with xyloglucan and pectin synthesis. Combined with proteomics data to confirm that expressed genes are translated, we propose that the distinctive cell-wall composition of grasses results from sorting downstream from their sites of synthesis in the Golgi apparatus and hydrolysis of the uncharacteristic polysaccharides and not from differential expression of synthases of grass-specific polysaccharides.
Collapse
Affiliation(s)
- Bryan W. Penning
- Corn, Soybean and Wheat Quality Research, USDA-ARS, Wooster, OH, United States
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, West Lafayette, IN, United States
| | - Nicholas C. Carpita
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Center for Plant Biology, West Lafayette, IN, United States
- Department of Botany & Plant Pathology, Purdue University, West Lafayette, IN, United States
- *Correspondence: Nicholas C. Carpita,
| |
Collapse
|
102
|
Bulone V, Schwerdt JG, Fincher GB. Co-evolution of Enzymes Involved in Plant Cell Wall Metabolism in the Grasses. FRONTIERS IN PLANT SCIENCE 2019; 10:1009. [PMID: 31447874 PMCID: PMC6696892 DOI: 10.3389/fpls.2019.01009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/18/2019] [Indexed: 05/20/2023]
Abstract
There has been a dramatic evolutionary shift in the polysaccharide composition of cell walls in the grasses, with increases in arabinoxylans and (1,3;1,4)-β-glucans and decreases in pectic polysaccharides, mannans, and xyloglucans, compared with other angiosperms. Several enzymes are involved in the biosynthesis of arabinoxylans, but the overall process is not yet defined and whether their increased abundance in grasses results from active or reactive evolutionary forces is not clear. Phylogenetic analyses reveal that multiple independent evolution of genes encoding (1,3;1,4)-β-glucan synthases has probably occurred within the large cellulose synthase/cellulose synthase-like (CesA/Csl) gene family of angiosperms. The (1,3;1,4)-β-glucan synthases appear to be capable of inserting both (1,3)- and (1,4)-β-linkages in the elongating polysaccharide chain, although the precise mechanism through which this is achieved remains unclear. Nevertheless, these enzymes probably evolved from synthases that originally synthesized only (1,4)-β-linkages. Initially, (1,3;1,4)-β-glucans could be turned over through preexisting cellulases, but as the need for specific hydrolysis was required, the grasses evolved specific (1,3;1,4)-β-glucan endohydrolases. The corresponding genes evolved from genes for the more widely distributed (1,3)-β-glucan endohydrolases. Why the subgroups of CesA/Csl genes that mediate the synthesis of (1,3;1,4)-β-glucans have been retained by the highly successful grasses but by few other angiosperms or lower plants represents an intriguing biological question. In this review, we address this important aspect of cell wall polysaccharide evolution in the grasses, with a particular focus on the enzymes involved in noncellulosic polysaccharide biosynthesis, hydrolysis, and modification.
Collapse
Affiliation(s)
- Vincent Bulone
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaid, Glen Osmond, SA, Australia
- Adelaide Glycomics, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia
| | - Julian G. Schwerdt
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaid, Glen Osmond, SA, Australia
| | - Geoffrey B. Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaid, Glen Osmond, SA, Australia
- *Correspondence: Geoffrey B. Fincher,
| |
Collapse
|
103
|
Amos RA, Mohnen D. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. FRONTIERS IN PLANT SCIENCE 2019; 10:915. [PMID: 31379900 PMCID: PMC6646851 DOI: 10.3389/fpls.2019.00915] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 05/02/2023]
Abstract
The life cycle and development of plants requires the biosynthesis, deposition, and degradation of cell wall matrix polysaccharides. The structures of the diverse cell wall matrix polysaccharides influence commercially important properties of plant cells, including growth, biomass recalcitrance, organ abscission, and the shelf life of fruits. This review is a comprehensive summary of the matrix polysaccharide glycosyltransferase (GT) activities that have been verified using in vitro assays following heterologous GT protein expression. Plant cell wall (PCW) biosynthetic GTs are primarily integral transmembrane proteins localized to the endoplasmic reticulum and Golgi of the plant secretory system. The low abundance of these enzymes in plant tissues makes them particularly difficult to purify from native plant membranes in quantities sufficient for enzymatic characterization, which is essential to study the functions of the different GTs. Numerous activities in the synthesis of the major cell wall matrix glycans, including pectins, xylans, xyloglucan, mannans, mixed-linkage glucans (MLGs), and arabinogalactan components of AGP proteoglycans have been mapped to specific genes and multi-gene families. Cell wall GTs include those that synthesize the polymer backbones, those that elongate side branches with extended glycosyl chains, and those that add single monosaccharide linkages onto polysaccharide backbones and/or side branches. Three main strategies have been used to identify genes encoding GTs that synthesize cell wall linkages: analysis of membrane fractions enriched for cell wall biosynthetic activities, mutational genetics approaches investigating cell wall compositional phenotypes, and omics-directed identification of putative GTs from sequenced plant genomes. Here we compare the heterologous expression systems used to produce, purify, and study the enzyme activities of PCW GTs, with an emphasis on the eukaryotic systems Nicotiana benthamiana, Pichia pastoris, and human embryonic kidney (HEK293) cells. We discuss the enzymatic properties of GTs including kinetic rates, the chain lengths of polysaccharide products, acceptor oligosaccharide preferences, elongation mechanisms for the synthesis of long-chain polymers, and the formation of GT complexes. Future directions in the study of matrix polysaccharide biosynthesis are proposed.
Collapse
Affiliation(s)
- Robert A. Amos
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Debra Mohnen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- *Correspondence: Debra Mohnen
| |
Collapse
|
104
|
Olins JR, Lin L, Lee SJ, Trabucco GM, MacKinnon KJM, Hazen SP. Secondary Wall Regulating NACs Differentially Bind at the Promoter at a CELLULOSE SYNTHASE A4 Cis-eQTL. FRONTIERS IN PLANT SCIENCE 2018; 9:1895. [PMID: 30627134 PMCID: PMC6309453 DOI: 10.3389/fpls.2018.01895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/06/2018] [Indexed: 05/24/2023]
Abstract
Arabidopsis thaliana CELLULOSE SYNTHASE A4/7/8 (CESA4/7/8) are three non-redundant subunits of the secondary cell wall cellulose synthase complex. Transcript abundance of these genes can vary among genotypes and expression quantitative trait loci (eQTL) were identified in a recombinant population of the accessions Bay-0 and Shahdara. Genetic mapping and analysis of the transcript levels of CESAs between two distinct near isogenic lines (NILs) confirmed a change in CESA4 expression that segregates within that interval. We sequenced the promoters and identified 16 polymorphisms differentiating CESA4Sha and CESA4Bay . In order to determine which of these SNPs could be responsible for this eQTL, we screened for transcription factor protein affinity with promoter fragments of CESA4Bay, CESA4Sha , and the reference genome CESA4Col . The wall thickening activator proteins NAC SECONDARY WALL THICKENING PROMOTING FACTOR2 (NST2) and NST3 exhibited a decrease in binding with the CESA4Sha promoter with a tracheary element-regulating cis-element (TERE) polymorphism. While NILs harboring the TERE polymorphisms exhibited significantly different CESA4 expression, cellulose crystallinity and cell wall thickness were indistinguishable. These results suggest that the TERE polymorphism resulted in differential transcription factor binding and CESA4 expression; yet A. thaliana is able to tolerate this transcriptional variability without compromising the structural elements of the plant, providing insight into the elasticity of gene regulation as it pertains to cell wall biosynthesis and regulation. We also explored available DNA affinity purification sequencing data to resolve a core binding site, C(G/T)TNNNNNNNA(A/C)G, for secondary wall NACs referred to as the VNS element.
Collapse
Affiliation(s)
- Jennifer R. Olins
- Biology Department, University of Massachusetts, Amherst, MA, United States
| | - Li Lin
- Biology Department, University of Massachusetts, Amherst, MA, United States
| | - Scott J. Lee
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Plant Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Gina M. Trabucco
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Kirk J.-M. MacKinnon
- Biology Department, University of Massachusetts, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA, United States
| | - Samuel P. Hazen
- Biology Department, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
105
|
Siriwat W, Kalapanulak S, Suksangpanomrung M, Saithong T. Unlocking conserved and diverged metabolic characteristics in cassava carbon assimilation via comparative genomics approach. Sci Rep 2018; 8:16593. [PMID: 30413726 PMCID: PMC6226483 DOI: 10.1038/s41598-018-34730-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/24/2018] [Indexed: 11/09/2022] Open
Abstract
Globally, cassava is an important source of starch, which is synthesized through carbon assimilation in cellular metabolism whereby harvested atmospheric carbon is assimilated into macromolecules. Although the carbon assimilation pathway is highly conserved across species, metabolic phenotypes could differ in composition, type, and quantity. To unravel the metabolic complexity and advantage of cassava over other starch crops, in terms of starch production, we investigated the carbon assimilation mechanisms in cassava through genome-based pathway reconstruction and comparative network analysis. First, MeRecon - the carbon assimilation pathway of cassava was reconstructed based upon six plant templates: Arabidopsis, rice, maize, castor bean, potato, and turnip. MeRecon, available at http://bml.sbi.kmutt.ac.th/MeRecon, comprises 259 reactions (199 EC numbers), 1,052 proteins (870 genes) and 259 metabolites in eight sub-metabolisms. Analysis of MeRecon and the carbon assimilation pathways of the plant templates revealed the overall topology is highly conserved, but variations at sub metabolism level were found in relation to complexity underlying each biochemical reaction, such as numbers of responsible enzymatic proteins and their evolved functions, which likely explain the distinct metabolic phenotype. Thus, this study provides insights into the network characteristics and mechanisms that regulate the synthesis of metabolic phenotypes of cassava.
Collapse
Affiliation(s)
- Wanatsanan Siriwat
- Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Saowalak Kalapanulak
- Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand
| | | | - Treenut Saithong
- Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand.
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
106
|
Fan M, Herburger K, Jensen JK, Zemelis-Durfee S, Brandizzi F, Fry SC, Wilkerson CG. A Trihelix Family Transcription Factor Is Associated with Key Genes in Mixed-Linkage Glucan Accumulation. PLANT PHYSIOLOGY 2018; 178:1207-1221. [PMID: 30224432 PMCID: PMC6236600 DOI: 10.1104/pp.18.00978] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 05/17/2023]
Abstract
Mixed-linkage glucan (MLG) is a polysaccharide that is highly abundant in grass endosperm cell walls and present at lower amounts in other tissues. Cellulose synthase-like F (CSLF) and cellulose synthase-like H genes synthesize MLG, but it is unknown if other genes participate in the production and restructuring of MLG. Using Brachypodium distachyon transcriptional profiling data, we identified a B distachyon trihelix family transcription factor (BdTHX1) that is highly coexpressed with the B distachyon CSLF6 gene (BdCSLF6), which suggests that BdTHX1 is involved in the regulation of MLG biosynthesis. To determine the genes regulated by this transcription factor, we conducted chromatin immunoprecipitation sequencing (ChIP-seq) experiments using immature B distachyon seeds and an anti-BdTHX1 polyclonal antibody. The ChIP-seq experiment identified the second intron of BdCSLF6 as one of the most enriched sequences. The binding of BdTHX1 to the BdCSLF6 intron sequence was confirmed using electrophoretic mobility shift assays (EMSA). ChIP-seq also showed that a gene encoding a grass-specific glycoside hydrolase family 16 endotransglucosylase/hydrolase (BdXTH8) is bound by BdTHX1, and the binding was confirmed by EMSA. Radiochemical transglucanase assays showed that BdXTH8 exhibits predominantly MLG:xyloglucan endotransglucosylase activity, a hetero-transglycosylation reaction, and can thus produce MLG-xyloglucan covalent bonds; it also has a lower xyloglucan:xyloglucan endotransglucosylase activity. B distachyon shoots regenerated from transformed calli overexpressing BdTHX1 showed an abnormal arrangement of vascular tissue and seedling-lethal phenotypes. These results indicate that the transcription factor BdTHX1 likely plays an important role in MLG biosynthesis and restructuring by regulating the expression of BdCSLF6 and BdXTH8.
Collapse
Affiliation(s)
- Mingzhu Fan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Klaus Herburger
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Jacob K Jensen
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Øster Søgade 36, 1357 Copenhagen, Denmark
| | - Starla Zemelis-Durfee
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Curtis G Wilkerson
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
107
|
Brew-Appiah RAT, Sanguinet KA. Considerations of AOX Functionality Revealed by Critical Motifs and Unique Domains. Int J Mol Sci 2018; 19:ijms19102972. [PMID: 30274246 PMCID: PMC6213860 DOI: 10.3390/ijms19102972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 12/28/2022] Open
Abstract
An understanding of the genes and mechanisms regulating environmental stress in crops is critical for boosting agricultural yield and safeguarding food security. Under adverse conditions, response pathways are activated for tolerance or resistance. In multiple species, the alternative oxidase (AOX) genes encode proteins which help in this process. Recently, this gene family has been extensively investigated in the vital crop plants, wheat, barley and rice. Cumulatively, these three species and/or their wild ancestors contain the genes for AOX1a, AOX1c, AOX1e, and AOX1d, and common patterns in the protein isoforms have been documented. Here, we add more information on these trends by emphasizing motifs that could affect expression, and by utilizing the most recent discoveries from the AOX isoform in Trypanosoma brucei to highlight clade-dependent biases. The new perspectives may have implications on how the AOX gene family has evolved and functions in monocots. The common or divergent amino acid substitutions between these grasses and the parasite are noted, and the potential effects of these changes are discussed. There is the hope that the insights gained will inform the way future AOX research is performed in monocots, in order to optimize crop production for food, feed, and fuel.
Collapse
Affiliation(s)
- Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| |
Collapse
|
108
|
Nawaz MA, Lin X, Chan TF, Imtiaz M, Rehman HM, Ali MA, Baloch FS, Atif RM, Yang SH, Chung G. Characterization of Cellulose Synthase A (CESA) Gene Family in Eudicots. Biochem Genet 2018; 57:248-272. [PMID: 30267258 DOI: 10.1007/s10528-018-9888-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022]
Abstract
Cellulose synthase A (CESA) is a key enzyme involved in the complex process of plant cell wall biosynthesis, and it remains a productive subject for research. We employed systems biology approaches to explore structural diversity of eudicot CESAs by exon-intron organization, mode of duplication, synteny, and splice site analyses. Using a combined phylogenetics and comparative genomics approach coupled with co-expression networks we reconciled the evolution of cellulose synthase gene family in eudicots and found that the basic forms of CESA proteins are retained in angiosperms. Duplications have played an important role in expansion of CESA gene family members in eudicots. Co-expression networks showed that primary and secondary cell wall modules are duplicated in eudicots. We also identified 230 simple sequence repeat markers in 103 eudicot CESAs. The 13 identified conserved motifs in eudicots will provide a basis for gene identification and functional characterization in other plants. Furthermore, we characterized (in silico) eudicot CESAs against senescence and found that expression levels of CESAs decreased during leaf senescence.
Collapse
Affiliation(s)
- Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Xiao Lin
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ting-Fung Chan
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Muhammad Imtiaz
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510275, China
| | - Hafiz Mamoon Rehman
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Faheem Shehzad Baloch
- Department of Field Crops, Faculty of Agricultural and Natural Science, Abant Izzet Baysal University, 14280, Bolu, Turkey
| | - Rana Muhammad Atif
- US-Pakistan Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Chonnam, 59626, Republic of Korea.
| |
Collapse
|
109
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
110
|
Tucker MR, Lou H, Aubert MK, Wilkinson LG, Little A, Houston K, Pinto SC, Shirley NJ. Exploring the Role of Cell Wall-Related Genes and Polysaccharides during Plant Development. PLANTS (BASEL, SWITZERLAND) 2018; 7:E42. [PMID: 29857498 PMCID: PMC6028917 DOI: 10.3390/plants7020042] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.
Collapse
Affiliation(s)
- Matthew R Tucker
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Haoyu Lou
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Matthew K Aubert
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Laura G Wilkinson
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Alan Little
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| | - Kelly Houston
- Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK.
| | - Sara C Pinto
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal.
| | - Neil J Shirley
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Glen Osmond, SA 5062, Australia.
- Australian Research Council Centre of Excellence in Plant Cell Walls, The University of Adelaide, Glen Osmond, SA 5062, Australia.
| |
Collapse
|