101
|
Liang D, White RG, Waterhouse PM. Gene silencing in Arabidopsis spreads from the root to the shoot, through a gating barrier, by template-dependent, nonvascular, cell-to-cell movement. PLANT PHYSIOLOGY 2012; 159:984-1000. [PMID: 22582134 PMCID: PMC3387722 DOI: 10.1104/pp.112.197129] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/10/2012] [Indexed: 05/18/2023]
Abstract
Upward long-distance mobile silencing has been shown to be phloem mediated in several different solanaceous species. We show that the Arabidopsis (Arabidopsis thaliana) seedling grafting system and a counterpart inducible system generate upwardly spreading long-distance silencing that travels not in the phloem but by template-dependent reiterated short-distance cell-to-cell spread through the cells of the central stele. Examining the movement of the silencing front revealed a largely unrecognized zone of tissue, below the apical meristem, that is resistant to the silencing signal and that may provide a gating or protective barrier against small RNA signals. Using a range of auxin and actin transport inhibitors revealed that, in this zone, alteration of vesicular transport together with cytoskeleton dynamics prevented or retarded the spread of the silencing signal. This suggests that small RNAs are transported from cell to cell via plasmodesmata rather than diffusing from their source in the phloem.
Collapse
Affiliation(s)
- Dacheng Liang
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | |
Collapse
|
102
|
Qin C, Shi N, Gu M, Zhang H, Li B, Shen J, Mohammed A, Ryabov E, Li C, Wang H, Liu Y, Osman T, Vatish M, Hong Y. Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana. Sci Rep 2012; 2:467. [PMID: 22737403 PMCID: PMC3381291 DOI: 10.1038/srep00467] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/11/2012] [Indexed: 01/02/2023] Open
Abstract
In plants, non-cell autonomous RNA silencing spreads between cells and over long distances. Recent work has revealed insight on the genetic and molecular components essential for cell-to-cell movement of RNA silencing in Arabidopsis. Using a local RNA silencing assay, we report on a distinct mechanism that may govern the short-range (6-10 cell) trafficking of virus-induced RNA silencing from epidermal to neighbouring palisade and spongy parenchyma cells in Nicotiana benthamiana. This process involves a previously unrecognised function of the RNA-dependent RNA polymerase 6 (RDR6) gene. Our data suggest that plants may have evolved distinct genetic controls in intercellular RNA silencing among different types of cells.
Collapse
Affiliation(s)
- Cheng Qin
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- These authors contributed equally to this work
| | - Nongnong Shi
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- These authors contributed equally to this work
| | - Mei Gu
- Clinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK
- These authors contributed equally to this work
| | - Hang Zhang
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Chengdu Rongsheng Pharmaceuticals, Chengdu 610041, China
| | - Bin Li
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiajia Shen
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Atef Mohammed
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Department of Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Eugene Ryabov
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
| | - Chunyang Li
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Chengdu Rongsheng Pharmaceuticals, Chengdu 610041, China
| | - Huizhong Wang
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Toba Osman
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
- Department of Botany, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Manu Vatish
- Clinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK
| | - Yiguo Hong
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick HRI, University of Warwick, Warwick CV35 9EF, UK
| |
Collapse
|
103
|
Yoon JY, Han KS, Park HY, Choi SK. Comparative analysis of RNA silencing suppression activities between viral suppressors and an endogenous plant RNA-dependent RNA polymerase. Virus Genes 2012; 44:495-504. [PMID: 22354861 DOI: 10.1007/s11262-012-0725-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/07/2012] [Indexed: 10/28/2022]
Abstract
RNA silencing is an evolutionarily conserved system that functions as an antiviral mechanism in eukaryotes, including higher plants. To counteract this, several plant viruses express silencing suppressors that inhibit RNA silencing in host plants. Here, we show that both 2b protein from peanut stunt virus (PSV) and a hairpin construct (designated hp-RDR6) that silences endogenous RNA-dependent RNA polymerase 6 (RDR6) strongly suppress RNA silencing. The Agrobacterium infiltration system was used to demonstrate that both PSV 2b and hp-RDR6 suppressed local RNA silencing as strongly as helper component (HC-Pro) from potato virus Y (PVY) and P19 from tomato bush stunt virus (TBSV). The 2b protein from PSV eliminated the small-interfering RNAs (siRNAs) associated with RNA silencing and prevented systemic silencing, similar to 2b protein from cucumber mosaic virus (CMV). On the other hand, hp-RDR6 suppressed RNA silencing by inhibiting the generation of secondary siRNAs. The small coat protein (SCP) of squash mosaic virus (SqMV) also displayed weak suppression activity of RNA silencing. Agrobacterium-mediated gene transfer was used to investigate whether viral silencing suppressors or hp-RDR6 enhanced accumulations of green fluorescence protein (GFP) and β-glucuronidase (GUS) as markers of expression in leaf tissues of Nicotina benthamiana. Expression of both GFP and GUS was significantly enhanced in the presence of PSV 2b or CMV 2b, compared to no suppression or the weak SqMV SCP suppressor. Co-expression with hp-RDR6 also significantly increased the expression of GFP and GUS to levels similar to those induced by PVY HC-Pro and TBSV P19.
Collapse
Affiliation(s)
- Ju-Yeon Yoon
- Department of Horticulture and Landscape, Seoul Women's University, Seoul, 139-774, Republic of Korea
| | | | | | | |
Collapse
|
104
|
Tricker PJ, Gibbings JG, Rodríguez López CM, Hadley P, Wilkinson MJ. Low relative humidity triggers RNA-directed de novo DNA methylation and suppression of genes controlling stomatal development. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3799-813. [PMID: 22442411 PMCID: PMC3733579 DOI: 10.1093/jxb/ers076] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 05/18/2023]
Abstract
Environmental cues influence the development of stomata on the leaf epidermis, and allow plants to exert plasticity in leaf stomatal abundance in response to the prevailing growing conditions. It is reported that Arabidopsis thaliana 'Landsberg erecta' plants grown under low relative humidity have a reduced stomatal index and that two genes in the stomatal development pathway, SPEECHLESS and FAMA, become de novo cytosine methylated and transcriptionally repressed. These environmentally-induced epigenetic responses were abolished in mutants lacking the capacity for de novo DNA methylation, for the maintenance of CG methylation, and in mutants for the production of short-interfering non-coding RNAs (siRNAs) in the RNA-directed DNA methylation pathway. Induction of methylation was quantitatively related to the induction of local siRNAs under low relative humidity. Our results indicate the involvement of both transcriptional and post-transcriptional gene suppression at these loci in response to environmental stress. Thus, in a physiologically important pathway, a targeted epigenetic response to a specific environmental stress is reported and several of its molecular, mechanistic components are described, providing a tractable platform for future epigenetics experiments. Our findings suggest epigenetic regulation of stomatal development that allows for anatomical and phenotypic plasticity, and may help to explain at least some of the plant's resilience to fluctuating relative humidity.
Collapse
Affiliation(s)
- Penny J. Tricker
- School of Biological Sciences, Philip Lyle Building, University of Reading, Whiteknights, Reading RG6 6BX, UK
| | - J. George Gibbings
- School of Biological Sciences, Philip Lyle Building, University of Reading, Whiteknights, Reading RG6 6BX, UK
| | - Carlos M. Rodríguez López
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, University of Aberystwyth, Aberystwyth, Ceredigion SY23 3DA, UK
| | - Paul Hadley
- School of Biological Sciences, Philip Lyle Building, University of Reading, Whiteknights, Reading RG6 6BX, UK
| | - Mike J. Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Edward Llywd Building, University of Aberystwyth, Aberystwyth, Ceredigion SY23 3DA, UK
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
105
|
Wang LY, Lin SS, Hung TH, Li TK, Lin NC, Shen TL. Multiple domains of the tobacco mosaic virus p126 protein can independently suppress local and systemic RNA silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:648-57. [PMID: 22324815 DOI: 10.1094/mpmi-06-11-0155] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Small RNA-mediated RNA silencing is a widespread antiviral mechanism in plants and other organisms. Many viruses encode suppressors of RNA silencing for counter-defense. The p126 protein encoded by Tobacco mosaic virus (TMV) has been reported to be a suppressor of RNA silencing but the mechanism of its function remains unclear. This protein is unique among the known plant viral silencing suppressors because of its large size and multiple domains. Here, we report that the methyltransferase, helicase, and nonconserved region II (NONII) of p126 each has silencing-suppressor function. The silencing-suppression activities of methyltransferase and helicase can be uncoupled from their enzyme activities. Specific amino acids in NONII previously shown to be crucial for viral accumulation and symptom development are also crucial for silencing suppression. These results suggest that some viral proteins have evolved to possess modular structural domains that can independently interfere with host silencing, and that this may be an effective mechanism of increasing the robustness of a virus.
Collapse
Affiliation(s)
- Li-Ya Wang
- Department of Plant Pathology and Microbiology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
106
|
Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 2012; 13:328-35. [PMID: 22510790 DOI: 10.1038/nrm3335] [Citation(s) in RCA: 531] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An emerging concept is that cellular communication in mammals can be mediated by the exchange of genetic information, mainly in the form of microRNAs. This can occur when extracellular vesicles, such as exosomes, secreted by a donor cell are taken up by an acceptor cell. Transfer of genetic material can also occur through intimate membrane contacts between donor and acceptor cells. Specialized cell-cell contacts, such as synapses, have the potential to combine these modes of genetic transfer.
Collapse
|
107
|
Fernandez EQ, Moyer DL, Maiyuran S, Labaro A, Brody H. Vector-initiated transitive RNA interference in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol 2012; 49:294-301. [PMID: 22366516 DOI: 10.1016/j.fgb.2012.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 01/20/2012] [Accepted: 01/30/2012] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi), modulates gene expression via cleavage of double-stranded RNA (dsRNA) by Dicer, producing 21-25 nucleotide silence-inducing RNAs (siRNAs). In association with Argonaute containing complexes, these siRNAs target sequence-specific degradation of the homologous single-stranded messenger RNA. In the majority of eukaryotes, degradation occurs within the boundaries of the dsRNA target. In Arabidopsis thaliana and Caenorhabditis elegans, gene silencing can also take place transitively, impacting transcripts from coding sequences that are adjacent to the intended target gene. Here we demonstrate effective transitive RNAi in the ascomycete Aspergillus oryzae. Fragments of 174 bp and 499 bp derived from the A. oryzae wA gene involved in spore color development, were inserted immediately upstream of an inverted repeat derived from the Escherichia coli gene encoding for Hygromycin Phosphotransferase B (hph), which provided a double-stranded hph RNAi trigger. Introduction of this construct into A. oryzae host cells produced transformants with spores that were lighter in color than those of wild type. Real-time RT-qPCR analysis demonstrated a direct correspondence of steady-state wA mRNA level to spore color. An A. oryzae strain deficient in RNA-dependent RNA Polymerase (RdRP) produced exclusively wild type colored spores when transformed with a wA transitive RNAi construct. Conversely, increased expression of RdRP enhanced the incidence of wA gene silencing via transitive RNAi.
Collapse
|
108
|
Alvarado VY, Scholthof HB. AGO2: A New Argonaute Compromising Plant Virus Accumulation. FRONTIERS IN PLANT SCIENCE 2012; 2:112. [PMID: 22639628 PMCID: PMC3355599 DOI: 10.3389/fpls.2011.00112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/19/2011] [Indexed: 05/08/2023]
Abstract
Plant viruses use several strategies to transport their nucleic acid genomes throughout the plants. Regardless of the movement mechanism, a universal major block to uninterrupted viral trafficking is the induction of antiviral silencing that degrades viral RNA. To counteract this defense, viruses encode suppressors that block certain steps in the RNA silencing pathway, and consequently these proteins allow viral spread to proceed. There is a constant battle between plants and viruses and sometimes viruses will succeed and invade the plants and in other cases the RNA silencing mechanism will override the virus. A key role in the silencing versus suppression conflict between plants and viruses is played by one or more members of the Argonaute protein (AGO) family encoded by plants. Here we review the mechanisms and effects of antiviral silencing with an emphasis on the contribution of AGOs, especially the recently discovered role of AGO2.
Collapse
Affiliation(s)
- Veria Y. Alvarado
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Herman B. Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
109
|
|
110
|
Parent JS, Martínez de Alba AE, Vaucheret H. The origin and effect of small RNA signaling in plants. FRONTIERS IN PLANT SCIENCE 2012; 3:179. [PMID: 22908024 PMCID: PMC3414853 DOI: 10.3389/fpls.2012.00179] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 07/23/2012] [Indexed: 05/18/2023]
Abstract
Given their sessile condition, land plants need to integrate environmental cues rapidly and send signal throughout the organism to modify their metabolism accordingly. Small RNA (sRNA) molecules are among the messengers that plant cells use to carry such signals. These molecules originate from fold-back stem-loops transcribed from endogenous loci or from perfect double-stranded RNA produced through the action of RNA-dependent RNA polymerases. Once produced, sRNAs associate with Argonaute (AGO) and other proteins to form the RNA-induced silencing complex (RISC) that executes silencing of complementary RNA molecules. Depending on the nature of the RNA target and the AGO protein involved, RISC triggers either DNA methylation or chromatin modification (leading to transcriptional gene silencing, TGS) or RNA cleavage or translational inhibition (leading to post-transcriptional gene silencing, PTGS). In some cases, sRNAs move to neighboring cells and/or to the vascular tissues for long-distance trafficking. Many genes are involved in the biogenesis of sRNAs and recent studies have shown that both their origin and their protein partners have great influence on their activity and range. Here we summarize the work done to uncover the mode of action of the different classes of sRNA with special emphasis on their movement and how plants can take advantage of their mobility. We also review the various genetic requirements needed for production, movement and perception of the silencing signal.
Collapse
Affiliation(s)
| | | | - Hervé Vaucheret
- *Correspondence: Hervé Vaucheret, Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026 Versailles Cedex, France. e-mail:
| |
Collapse
|
111
|
Calo S, Nicolás FE, Vila A, Torres-Martínez S, Ruiz-Vázquez RM. Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol 2011; 83:379-94. [DOI: 10.1111/j.1365-2958.2011.07939.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
112
|
Christie M, Carroll BJ. SERRATE is required for intron suppression of RNA silencing in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2011; 6:2035-7. [PMID: 22112452 PMCID: PMC3337200 DOI: 10.4161/psb.6.12.18238] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Transposons and viruses are generally devoid of introns and are prime targets for small interfering RNAs (siRNAs) and RNA silencing. Conversely, endogenous genes often contain introns and are not usually subjected to post-transcriptional gene silencing by siRNAs. In a recent study, we reported that efficient intron splicing directly suppresses siRNA biogenesis and RNA silencing of a Green Fluorescence Protein (GFP) transgene. Splicing-mediated suppression of GFP silencing was dependent on ABH1, the Arabidopsis ortholog of human mRNA cap-binding protein 80. Furthermore, genome-wide analyses of Arabidopsis small RNA libraries showed that exons from intron-containing genes accumulate less small RNAs than exons from intronless genes. Our in silico analysis therefore suggested that intron splicing has a fundamental role in protecting endogenous genes from becoming templates for siRNA biogenesis and RNA silencing. Here, we show that SERRATE (SE) is also required for splicing-mediated suppression of RNA silencing in Arabidopsis. SE encodes a zinc finger protein that, like ABH1, functions in micro-RNA (miRNA) biogenesis and intron splicing. The implications of our findings are also discussed in a broader context.
Collapse
|
113
|
|
114
|
Dong L, Liu M, Fang YY, Zhao JH, He XF, Ying XB, Zhang YY, Xie Q, Chua NH, Guo HS. DRD1-Pol V-dependent self-silencing of an exogenous silencer restricts the non-cell autonomous silencing of an endogenous target gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:633-45. [PMID: 21771120 PMCID: PMC3204326 DOI: 10.1111/j.1365-313x.2011.04714.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plants, the exogenous transgene transcribing inverted-repeat (exo-IR) sequences produces double-stranded RNAs that are processed by DCL4. The 21-nt small interfering RNAs generated function as mobile signals to trigger non-cell autonomous silencing of target endogenes in the neighboring 10-15 cells. The potential involvement of nuclear silencing pathway components in signal spreading or sensing in target cells is not clear. Here, we demonstrate that the exo-IR silencer (exo-Pdsi) is negatively autoregulated through methylation spreading, which acts in cis to reinforce the self-silencing of the silencer. Mutations affecting nuclear proteins DRD1 and Pol V (NRPE1 or NRPD2) relieved exo-Pdsi self-silencing, resulting in higher levels of Pdsi transcripts, which increased the non-cell autonomous silencing of endo-PDS. Our results suggest that in an experimental silencing pathway, methylation spreading on a silencer transgene may not have a direct endogenous plant counterpart when the protein-encoding gene is the target. DRD1-Pol V-dependent de novo methylation, by acting in cis to reinforce self-silencing of exo-IR, may play a role in restraining the inappropriate silencing of active protein-coding genes in plants.
Collapse
Affiliation(s)
- Li Dong
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Liu
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiang-Feng He
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiao-Bao Ying
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Yue Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, New York, New York 10021
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant gene research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Corresponding author: Hui-Shan Guo, , Tel: 010-64847989, Fax: 010-64847989
| |
Collapse
|
115
|
Dalakouras A, Moser M, Boonrod K, Krczal G, Wassenegger M. Diverse spontaneous silencing of a transgene among two Nicotiana species. PLANTA 2011; 234:699-707. [PMID: 21617990 DOI: 10.1007/s00425-011-1433-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
In plants, transgenes frequently become spontaneously silenced for unknown reasons. Typically, transgene silencing involves the generation of small interfering RNAs (siRNAs) that directly or indirectly target cognate DNA and mRNA sequences for methylation and degradation, respectively. In this report, we compared spontaneous silencing of a transgene in Nicotiana benthamiana and Nicotiana tabacum. In both species, abundant siRNAs were produced. In N. benthamiana, the self-silencing process involved mRNA degradation and dense DNA methylation of the homologous coding region. In N. tabacum, self-silencing occurred without complete mRNA degradation and with low methylation of the cognate coding region. Our data indicated that in plants, siRNA-mediated spontaneous silencing is, in addition to mRNA degradation, based on translational inhibition. Differences in the initiation and establishment of self-silencing together with marked differences in the degree of de novo DNA methylation showed that the mechanistic details of RNA silencing, although largely conserved, may vary also in genetically close plant species.
Collapse
MESH Headings
- Cotyledon/genetics
- Cotyledon/metabolism
- DNA Methylation/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Plant/genetics
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- Nicotiana/genetics
- Nicotiana/metabolism
- Transcription, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- Athanasios Dalakouras
- RLP AgroScience GmbH, AlPlanta-Institute for Plant Research, Breitenweg 71, 67435, Neustadt, Germany
| | | | | | | | | |
Collapse
|
116
|
Christie M, Croft LJ, Carroll BJ. Intron splicing suppresses RNA silencing in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:159-67. [PMID: 21689169 DOI: 10.1111/j.1365-313x.2011.04676.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Silencing of introduced transgenes constitutes a major bottleneck in the production of transgenic crops. Commonly, these transgenes contain no introns, a feature shared with transposons, which are also prime targets for gene silencing. Given that introns are very common in endogenous genes but are often lacking in transgenes and transposons, we hypothesised that introns may suppress gene silencing. To investigate this, we conducted a genome-wide analysis of small RNA densities in exons from intronless versus intron-containing genes in Arabidopsis thaliana. We found that small RNA libraries are strongly enriched for exon sequences derived from intronless genes. Small RNA densities in exons of intronless genes were comparable to exons of transposable elements. To test these findings in vivo we used a transgenic reporter system to determine whether introns are able to suppress gene silencing in Arabidopsis. Introducing an intron into a transgene reduced silencing by more than fourfold. Compared with intronless transcripts, the spliced transcripts were less effective substrates for RNA-dependent RNA polymerase 6-mediated gene silencing. This intron suppression of transgene silencing requires efficient intron splicing and is dependent on ABH1, the Arabidopsis orthologue of human cap-binding protein 80.
Collapse
Affiliation(s)
- Michael Christie
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
117
|
Cerutti H, Ma X, Msanne J, Repas T. RNA-mediated silencing in Algae: biological roles and tools for analysis of gene function. EUKARYOTIC CELL 2011; 10:1164-72. [PMID: 21803865 PMCID: PMC3187060 DOI: 10.1128/ec.05106-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level "omics" approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes.
Collapse
Affiliation(s)
- Heriberto Cerutti
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, E211 Beadle Center, P.O. Box 880666, Lincoln, NE 68588-0666, USA.
| | | | | | | |
Collapse
|
118
|
Hou WN, Duan CG, Fang RX, Zhou XY, Guo HS. Satellite RNA reduces expression of the 2b suppressor protein resulting in the attenuation of symptoms caused by Cucumber mosaic virus infection. MOLECULAR PLANT PATHOLOGY 2011; 12:595-605. [PMID: 21722297 PMCID: PMC6640352 DOI: 10.1111/j.1364-3703.2010.00696.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Satellite RNAs (satRNAs) depend on cognate helper viruses for replication, encapsidation, movement and transmission. Many satRNAs with different symptom modulation effects have been reported. The pathogenicity of satRNAs is thought to be the result of a direct interaction among the satRNA, helper viruses and host factors by unknown mechanisms. To understand the effect of satRNA of Cucumber mosaic virus (a severe field ShanDong strain, SD-CMV) on pathogenicity, and the possible involvement of host RNA silencing pathways in pathogenicity, we constructed biologically active CMV cDNA clones and a CMV-Δ2b mutant lacking the open reading frame of 2b, a silencing suppressor protein, in order to infect Nicotiana benthamiana and Arabidopsis with or without SD-satRNA. We found that SD-satRNA reduced the accumulation of the 2b protein and its coding RNA4A and attenuated the yellowing caused by SD-CMV infection. Small RNA analysis indicated that the 2b protein interfered with RNA silencing, specifically in the synthesis of CMV RNA3-derived small interfering RNAs (R3-siRNAs). The accumulation of R3-siRNAs in CMV-Δ2b infection was reduced in the presence of satRNA, for which greater accumulation of satRNA-derived siRNAs (satsiRNAs) was detected. Our results suggest that abundant SD-satRNA serving as target for RNA silencing may play a role in protecting helper CMV RNA, especially, subgenomic RNA4, from being targeted by RNA silencing. This compensates for the increase in RNA silencing resulting from the reduction in expression of the 2b suppressor in the presence of satRNA. Our data provide evidence that a plant silencing mechanism is involved in the pathogenicity of satRNA.
Collapse
Affiliation(s)
- Wei-Na Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, China
| | | | | | | | | |
Collapse
|
119
|
Azimzadeh Jamalkandi S, Masoudi-Nejad A. RNAi pathway integration in Caenorhabditis elegans development. Funct Integr Genomics 2011; 11:389-405. [DOI: 10.1007/s10142-011-0236-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/12/2011] [Accepted: 06/28/2011] [Indexed: 01/07/2023]
|
120
|
Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba JI, Sueda K, Burgyán J, Masuta C. A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 2011; 7:e1002021. [PMID: 21573143 PMCID: PMC3088725 DOI: 10.1371/journal.ppat.1002021] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/23/2011] [Indexed: 12/25/2022] Open
Abstract
Symptoms on virus-infected plants are often very specific to the given virus. The molecular mechanisms involved in viral symptom induction have been extensively studied, but are still poorly understood. Cucumber mosaic virus (CMV) Y satellite RNA (Y-sat) is a non-coding subviral RNA and modifies the typical symptom induced by CMV in specific hosts; Y-sat causes a bright yellow mosaic on its natural host Nicotiana tabacum. The Y-sat-induced yellow mosaic failed to develop in the infected Arabidopsis and tomato plants suggesting a very specific interaction between Y-sat and its host. In this study, we revealed that Y-sat produces specific short interfering RNAs (siRNAs), which interfere with a host gene, thus inducing the specific symptom. We found that the mRNA of tobacco magnesium protoporphyrin chelatase subunit I (ChlI, the key gene involved in chlorophyll synthesis) had a 22-nt sequence that was complementary to the Y-sat sequence, including four G-U pairs, and that the Y-sat-derived siRNAs in the virus-infected plant downregulate the mRNA of ChlI by targeting the complementary sequence. ChlI mRNA was also downregulated in the transgenic lines that express Y-sat inverted repeats. Strikingly, modifying the Y-sat sequence in order to restore the 22-nt complementarity to Arabidopsis and tomato ChlI mRNA resulted in yellowing symptoms in Y-sat-infected Arabidopsis and tomato, respectively. In 5'-RACE experiments, the ChlI transcript was cleaved at the expected middle position of the 22-nt complementary sequence. In GFP sensor experiments using agroinfiltration, we further demonstrated that Y-sat specifically targeted the sensor mRNA containing the 22-nt complementary sequence of ChlI. Our findings provide direct evidence that the identified siRNAs derived from viral satellite RNA directly modulate the viral disease symptom by RNA silencing-based regulation of a host gene.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/virology
- Base Sequence
- Capsicum/genetics
- Capsicum/virology
- Chlorophyll/biosynthesis
- Chlorophyll/genetics
- Cucumber Mosaic Virus Satellite/genetics
- Cucumber Mosaic Virus Satellite/metabolism
- Cucumovirus/metabolism
- Cucumovirus/pathogenicity
- Down-Regulation
- Gene Expression Regulation, Plant
- Genes, Plant
- Host-Pathogen Interactions
- Lyases/genetics
- Lyases/metabolism
- Solanum lycopersicum/genetics
- Solanum lycopersicum/virology
- Molecular Sequence Data
- Phenotype
- Plant Diseases/genetics
- Plant Diseases/virology
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/virology
- RNA Interference
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/virology
Collapse
Affiliation(s)
- Hanako Shimura
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | | | - Takeaki Ishihara
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Nobutoshi Myojo
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Jun-ichi Inaba
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | - Kae Sueda
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| | | | - Chikara Masuta
- Research Faculty of Agriculture, Hokkaido
University, Kita-ku, Sapporo, Japan
| |
Collapse
|
121
|
McCormick KP, Willmann MR, Meyers BC. Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. SILENCE 2011; 2:2. [PMID: 21356093 PMCID: PMC3055805 DOI: 10.1186/1758-907x-2-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 02/28/2011] [Indexed: 01/30/2023]
Abstract
Prior to the advent of new, deep sequencing methods, small RNA (sRNA) discovery was dependent on Sanger sequencing, which was time-consuming and limited knowledge to only the most abundant sRNA. The innovation of large-scale, next-generation sequencing has exponentially increased knowledge of the biology, diversity and abundance of sRNA populations. In this review, we discuss issues involved in the design of sRNA sequencing experiments, including choosing a sequencing platform, inherent biases that affect sRNA measurements and replication. We outline the steps involved in preprocessing sRNA sequencing data and review both the principles behind and the current options for normalization. Finally, we discuss differential expression analysis in the absence and presence of biological replicates. While our focus is on sRNA sequencing experiments, many of the principles discussed are applicable to the sequencing of other RNA populations.
Collapse
Affiliation(s)
- Kevin P McCormick
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Matthew R Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| |
Collapse
|
122
|
de Felippes FF, Ott F, Weigel D. Comparative analysis of non-autonomous effects of tasiRNAs and miRNAs in Arabidopsis thaliana. Nucleic Acids Res 2010; 39:2880-9. [PMID: 21134910 PMCID: PMC3074149 DOI: 10.1093/nar/gkq1240] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In plants, small interfering RNAs (siRNAs) can trigger a silencing signal that may spread within a tissue to adjacent cells or even systemically to other organs. Movement of the signal is initially limited to a few cells, but in some cases the signal can be amplified and travel over larger distances. How far silencing initiated by other classes of plant small RNAs (sRNAs) than siRNAs can extend has been less clear. Using a system based on the silencing of the CH42 gene, we have tracked the mobility of silencing signals initiated in phloem companion cells by artificial microRNAs (miRNA) and trans-acting siRNA (tasiRNA) that have the same primary sequence. In this system, both the ta-siRNA and the miRNA act at a distance. Non-autonomous effects of the miRNA can be triggered by several different miRNA precursors deployed as backbones. While the tasiRNA also acts non-autonomously, it has a much greater range than the miRNA or hairpin-derived siRNAs directed against CH42, indicating that biogenesis can determine the non-autonomous effects of sRNAs. In agreement with this hypothesis, the silencing signals initiated by different sRNAs differ in their genetic requirements.
Collapse
|
123
|
Sinha SK. RNAi induced gene silencing in crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2010; 16:321-32. [PMID: 23572982 PMCID: PMC3550654 DOI: 10.1007/s12298-010-0036-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The RNA silencing is one of the innovative and efficient molecular biology tools to harness the down-regulation of expression of gene(s) specifically. To accomplish such selective modification of gene expression of a particular trait, homology dependent gene silencing uses a stunning variety of gene silencing viz. co-suppression, post-transcriptional gene silencing, virus-induced gene silencing etc. This family of diverse molecular phenomena has a common exciting feature of gene silencing which is collectively called RNA interference abbreviated to as RNAi. This molecular phenomenon has become a focal point of plant biology and medical research throughout the world. As a result, this technology has turned out to be a powerful tool in understanding the function of individual gene and has ultimately led to the tremendous use in crop improvement. This review article illustrates the application of RNAi in a broad area of crop improvement where this technology has been successfully used. It also provides historical perspective of RNAi discovery and its contemporary phenomena, mechanism of RNAi pathway.
Collapse
Affiliation(s)
- Subodh Kumar Sinha
- Department of Biochemistry, Faculty of Basic Sciences & Humanities, Rajendra Agricultural University, Pusa (Samastipur), Bihar India
| |
Collapse
|
124
|
Vermeersch L, De Winne N, Depicker A. Introns reduce transitivity proportionally to their length, suggesting that silencing spreads along the pre-mRNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:392-401. [PMID: 21049564 DOI: 10.1111/j.1365-313x.2010.04335.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endogenes rarely support transitive silencing, whereas most transgenes generally allow the spread of silencing to occur along the primary target. To determine whether the presence of introns might explain the difference, we investigated the influence of introns in the primary target on 3'–5' silencing transitivity. When present in a transgene, an intron-containing endogene fragment does not prohibit the spread of silencing across this fragment, indicating that introns do not preclude silencing transitivity along endogenes. Also, a multiple intron-containing genomic gene fragment that had previously been shown not to support transitivity in an endogenous context could support transitivity when present in a transgene. Nevertheless, genomic intron-containing fragments delayed the onset and diminished the efficiency of transitive silencing of a secondary target compared with the corresponding cDNA fragments. Remarkably, transitivity was impaired proportionally with the length of the pre-mRNA, and not of the mRNA. The latter result suggests that the RNA dependent RNA polymerase-based spreading of silencing progresses along the non-spliced rather than the fully processed mature mRNA.
Collapse
|
125
|
Diverging affinity of tospovirus RNA silencing suppressor proteins, NSs, for various RNA duplex molecules. J Virol 2010; 84:11542-54. [PMID: 20739523 DOI: 10.1128/jvi.00595-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The tospovirus NSs protein was previously shown to suppress the antiviral RNA silencing mechanism in plants. Here the biochemical analysis of NSs proteins from different tospoviruses, using purified NSs or NSs containing cell extracts, is described. The results showed that all tospoviral NSs proteins analyzed exhibited affinity to small double-stranded RNA molecules, i.e., small interfering RNAs (siRNAs) and micro-RNA (miRNA)/miRNA* duplexes. Interestingly, the NSs proteins from tomato spotted wilt virus (TSWV), impatiens necrotic spot virus (INSV), and groundnut ringspot virus (GRSV) also showed affinity to long double-stranded RNA (dsRNA), whereas tomato yellow ring virus (TYRV) NSs did not. The TSWV NSs protein was shown to be capable of inhibiting Dicer-mediated cleavage of long dsRNA in vitro. In addition, it suppressed the accumulation of green fluorescent protein (GFP)-specific siRNAs during coinfiltration with an inverted-repeat-GFP RNA construct in Nicotiana benthamiana. In vivo interference of TSWV NSs in the miRNA pathway was shown by suppression of an enhanced GFP (eGFP) miRNA sensor construct. The ability to stabilize miRNA/miRNA* by different tospovirus NSs proteins in vivo was demonstrated by increased accumulation and detection of both miRNA171c and miRNA171c* in tospovirus-infected N. benthamiana. All together, these data suggest that tospoviruses interfere in the RNA silencing pathway by sequestering siRNA and miRNA/miRNA* molecules before they are uploaded into their respective RNA-induced silencing complexes. The observed affinity to long dsRNA for only a subset of the tospoviruses studied is discussed in light of evolutional divergence and their ancestral relation to the animal-infecting members of the Bunyaviridae.
Collapse
|
126
|
Abstract
Plants have evolved a variety of gene silencing pathways mediated by small RNAs. Mostly 21 or 24 nt in size, these small RNAs repress the expression of sequence homologous genes at the transcriptional, post-transcriptional and translational levels. These pathways, also referred as RNA silencing pathways, play important roles in regulating growth and development as well as in response to both biotic and abiotic stress. Although the molecular basis of these complicated and interconnected pathways has become clear only in recent years, RNA silencing effects were observed and utilized in transgenic plants early in the plant biotechnology era, more than two decades ago. Today, with a better understanding of the pathways, various genetic engineering approaches have been developed to apply RNA silencing more effectively and broadly. In addition to summarizing the current models of RNA silencing, this review discusses examples of its potential uses and related issues concerning its application in plant biotechnology.
Collapse
Affiliation(s)
- Alessandra Frizzi
- Calgene Campus, Monsanto Company, 1920 Fifth Street, Davis, CA 95616, USA
| | | |
Collapse
|
127
|
Vaistij FE, Elias L, George GL, Jones L. Suppression of microRNA accumulation via RNA interference in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2010; 73:391-7. [PMID: 20300806 DOI: 10.1007/s11103-010-9625-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 03/08/2010] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNAs) are key regulatory molecules in plants. These small RNAs are processed in the nucleus from longer precursor transcripts that form distinct secondary structures. The miRNAs target specific messenger RNAs (mRNAs) and consequently down-regulate gene expression. The importance of these regulatory molecules is wide-ranging, however, few loss-of-function mutants have been identified in miRNA genes and understanding the biology of miRNA-target pairings has largely depended upon creating alterations in the sequences of the target genes. Here we demonstrate using Arabidopsis thaliana, that it is possible to use RNA interference (RNAi) to suppress accumulation of miRNAs. Significantly reduced accumulation of miR163 and miR171a was achieved using hairpin RNAi constructs that were designed to target both the primary miRNA transcripts and their promoters. The presence of DNA methylation in the targeted promoter regions suggests that inhibition of transcription of the miRNA precursors is responsible. Reduction of miRNA accumulation resulted in an increase in accumulation of the mRNA targets of these miRNAs. This demonstrates that knock-down of miRNA expression can be achieved, thereby providing a straightforward approach for disrupting miRNA-target pairings and studying miRNA functions.
Collapse
Affiliation(s)
- Fabián E Vaistij
- Centre for Novel Agricultural Products, University of York, York YO105YW, UK
| | | | | | | |
Collapse
|
128
|
Ying XB, Dong L, Zhu H, Duan CG, Du QS, Lv DQ, Fang YY, Garcia JA, Fang RX, Guo HS. RNA-dependent RNA polymerase 1 from Nicotiana tabacum suppresses RNA silencing and enhances viral infection in Nicotiana benthamiana. THE PLANT CELL 2010; 22:1358-72. [PMID: 20400679 PMCID: PMC2879737 DOI: 10.1105/tpc.109.072058] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 03/24/2010] [Accepted: 04/02/2010] [Indexed: 05/18/2023]
Abstract
Endogenous eukaryotic RNA-dependent RNA polymerases (RDRs) produce double-stranded RNA intermediates in diverse processes of small RNA synthesis in RNA silencing pathways. RDR6 is required in plants for posttranscriptional gene silencing induced by sense transgenes (S-PTGS) and has an important role in amplification of antiviral silencing. Whereas RDR1 is also involved in antiviral defense in plants, this does not necessarily proceed through triggering silencing. In this study, we show that Nicotiana benthamiana transformed with RDR1 from Nicotiana tabacum (Nt-RDR1 plants) exhibits hypersusceptibility to Plum pox potyvirus and other viruses, resembling RDR6-silenced (RDR6i) N. benthamiana. Analysis of transient induction of RNA silencing in N. benthamiana Nt-RDR1 and RDR6i plants revealed that Nt-RDR1 possesses silencing suppression activity. We found that Nt-RDR1 does not interfere with RDR6-dependent siRNA accumulation but turns out to suppress RDR6-dependent S-PTGS. Our results, together with previously published data, suggest that RDR1 might have a dual role, contributing, on one hand, to salicylic acid-mediated antiviral defense, and suppressing, on the other hand, the RDR6-mediated antiviral RNA silencing. We propose a scenario in which the natural loss-of-function variant of RDR1 in N. benthamiana may be the outcome of selective pressure to maintain a high RDR6-dependent antiviral defense, which would be required to face the hypersensitivity of this plant to a large number of viruses.
Collapse
Affiliation(s)
- Xiao-Bao Ying
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Dong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng-Guo Duan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Quan-Sheng Du
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dian-Qiu Lv
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Virus-Free Seedling Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, 150086, Haerbin
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Antonio Garcia
- Department of Plant Molecular Genetics, Centro National de Biotecnologia (Consejo Superior de Investigaciones Científicas), Campus Universidad Autonoma de Madrid, 28049 Madrid, Spain
| | - Rong-Xiang Fang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
129
|
Petsch KA, Ma C, Scanlon MJ, Jorgensen RA. Targeted forward mutagenesis by transitive RNAi. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:873-882. [PMID: 20003132 DOI: 10.1111/j.1365-313x.2009.04104.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A novel technique is described that targets specific populations of transcripts for homology-based gene silencing using transitive RNAi. This approach is designed to target a subset of the transcriptome in order to identify genes involved in a particular localized process, such as photosynthesis. As a proof-of-concept approach, mesophyll cells from Arabidopsis thaliana were laser-microdissected from whole leaves to generate a focused cDNA library that was bi-directionally cloned into a transitive RNAi vector that had been designed to induce silencing of homologous, endogenous genes. Approximately 15% of the transformant plants identified from both sense and antisense libraries exhibited visible phenotypes indicative of photosynthetic defects. Amplification from the genome and sequencing of cDNA inserts identified candidate genes underlying the phenotypes. For 10 of 11 such mutants, re-transformation with an RNAi construct corresponding to the candidate gene recapitulated the original mutant phenotype, and reduction of corresponding endogene transcripts was confirmed. In addition, one of the re-transformed transgenes also silenced transcripts of closely related family members, thereby demonstrating the utility of this approach for mutagenesis of redundant gene functions. Preliminary results using tissue-specific transitive RNAi forward mutagenesis of the Arabidopsis vegetative shoot apical meristem demonstrate the broad applicability of this forward mutagenesis technique for a variety of plant cell types.
Collapse
|
130
|
Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W. Transcriptional control of gene expression by microRNAs. Cell 2010; 140:111-22. [PMID: 20085706 DOI: 10.1016/j.cell.2009.12.023] [Citation(s) in RCA: 321] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 07/30/2009] [Accepted: 11/28/2009] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) control gene expression in animals and plants. Like another class of small RNAs, siRNAs, they affect gene expression posttranscriptionally. While siRNAs in addition act in transcriptional gene silencing, a role of miRNAs in transcriptional regulation has been less clear. We show here that in moss Physcomitrella patens mutants without a DICER-LIKE1b gene, maturation of miRNAs is normal but cleavage of target RNAs is abolished and levels of these transcripts are drastically reduced. These mutants accumulate miRNA:target-RNA duplexes and show hypermethylation of the genes encoding target RNAs, leading to gene silencing. This pathway occurs also in the wild-type upon hormone treatment. We propose that initiation of epigenetic silencing by DNA methylation depends on the ratio of the miRNA and its target RNA.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
131
|
Abstract
Plant defense responses against pathogens are mediated by activation and repression of a large array of genes. Host endogenous small RNAs are essential in this gene expression reprogramming process. Here, we discuss recent findings on pathogen-regulated host microRNAs (miRNAs) and small interfering RNAs (siRNAs) and their roles in plant-microbe interaction. We further introduce small RNA pathway components, including Dicer-like proteins (DCLs), double-stranded RNA (dsRNA) binding protein, RNA-dependent RNA polymerases (RDRs), small RNA methyltransferase HEN1, and Argonaute (AGO) proteins, that contribute to plant immune responses. The strategies that pathogens have evolved to suppress host small RNA pathways are also discussed. Collectively, host small RNAs and RNA silencing machinery constitute a critical layer of defense in regulating the interaction of pathogens with plants.
Collapse
Affiliation(s)
- Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Hailing Jin
- Departments of Plant Pathology and Microbiology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
132
|
Nishimura K, Hirai S, Kodama H. Effects of siRNAs targeting the spacer sequence of plant RNAi vectors on the specificity and efficiency of RNAi. J Biosci Bioeng 2009; 108:435-7. [PMID: 19804870 DOI: 10.1016/j.jbiosc.2009.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 10/20/2022]
Abstract
Small interfering RNAs (siRNAs) generated from the spacer region of hairpin RNAs were not detected in the RNA interference (RNAi) plants targeting the fatty acid desaturase gene. The expression of the desaturase gene was stably suppressed even when siRNAs targeting the spacer sequences were introduced into this plant.
Collapse
Affiliation(s)
- Kazuma Nishimura
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan.
| | | | | |
Collapse
|
133
|
Jamalkandi SA, Masoudi-Nejad A. Reconstruction of Arabidopsis thaliana fully integrated small RNA pathway. Funct Integr Genomics 2009; 9:419-32. [DOI: 10.1007/s10142-009-0141-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/24/2022]
|
134
|
Wypijewski K, Hornyik C, Shaw JA, Stephens J, Goraczniak R, Gunderson SI, Lacomme C. Ectopic 5' splice sites inhibit gene expression by engaging RNA surveillance and silencing pathways in plants. PLANT PHYSIOLOGY 2009; 151:955-65. [PMID: 19666706 PMCID: PMC2754638 DOI: 10.1104/pp.109.139733] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 08/04/2009] [Indexed: 05/25/2023]
Abstract
The quality control of mRNA maturation is a highly regulated process that surveys pre-mRNA integrity and eliminates improperly matured pre-mRNAs. In nature, certain viruses regulate the expression of their genes by hijacking the endogenous RNA quality control machinery. We demonstrate that the inclusion of 5' splice sites within the 3'-untranslated region of a reporter gene in plants alters the pre-mRNA cleavage and polyadenylation process, resulting in pre-mRNA degradation, exemplifying a regulatory mechanism conserved between kingdoms. Altered pre-mRNA processing was associated with an inhibition of homologous gene expression in trans and the preferential accumulation of 24-nucleotide (nt) short-interfering RNAs (siRNAs) as opposed to 21-nt siRNA subspecies, suggesting that degradation of the aberrant pre-mRNA involves the silencing machinery. However, gene expression was not restored by coexpression of a silencing suppressor or in an RNA-dependent RNA polymerase (RDR6)-deficient background despite reduced 24-nt siRNA accumulation. Our data highlight a complex cross talk between the quality control RNA machinery, 3'-end pre-mRNA maturation, and RNA-silencing pathways capable of discriminating among different types of aberrant RNAs.
Collapse
Affiliation(s)
- Krzysztof Wypijewski
- Plant Pathology Department, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
135
|
Alvarado V, Scholthof HB. Plant responses against invasive nucleic acids: RNA silencing and its suppression by plant viral pathogens. Semin Cell Dev Biol 2009; 20:1032-40. [PMID: 19524057 DOI: 10.1016/j.semcdb.2009.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 05/29/2009] [Accepted: 06/04/2009] [Indexed: 11/29/2022]
Abstract
RNA silencing is a common strategy shared by eukaryotic organisms to regulate gene expression, and also operates as a defense mechanism against invasive nucleic acids such as viral transcripts. The silencing pathway is quite sophisticated in higher eukaryotes but the distinct steps and nature of effector complexes vary between and even within species. To counteract this defense mechanism viruses have evolved the ability to encode proteins that suppress silencing to protect their genomes from degradation. This review focuses on our current understanding of how individual components of the plant RNA silencing mechanism are directed against viruses, and how in turn virus-encoded suppressors target one or more key events in the silencing cascade.
Collapse
Affiliation(s)
- Veria Alvarado
- Department of Plant Pathology and Microbiology, Texas A&M University, 2132 TAMU, College Station, TX 77843, United States
| | | |
Collapse
|
136
|
Kemppainen MJ, Pardo AG. pHg/pSILBAγ vector system for efficient gene silencing in homobasidiomycetes: optimization of ihpRNA - triggering in the mycorrhizal fungus Laccaria bicolor. Microb Biotechnol 2009; 3:178-200. [PMID: 21255319 PMCID: PMC3836584 DOI: 10.1111/j.1751-7915.2009.00122.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
pSILBAγ silencing vector was constructed for efficient RNA silencing triggering in the model mycorrhizal fungus Laccaria bicolor. This cloning vector carries the Agaricus bisporus gpdII promoter, two multiple cloning sites separated by a L. bicolor nitrate reductase intron and the Aspergillus nidulans trpC terminator. pSILBAγ allows an easy oriented two‐step PCR cloning of hairpin sequences to be expressed in basidiomycetes. With one further cloning step into pHg, a pCAMBIA1300‐based binary vector carrying a hygromycin resistance cassette, the pHg/pSILBAγ plasmid is used for Agrobacterium‐mediated transformation. The pHg/pSILBAγ system results in predominantly single integrations of RNA silencing triggering T‐DNAs in the fungal genome and the integration sites of the transgenes can be resolved by plasmid rescue. pSILBAγ construct and two other pSILBA plasmid variants (pSILBA and pSILBAα) were evaluated for their capacity to silence Laccaria nitrate reductase gene. While all pSILBA variants tested resulted in up to 65–76% of transformants with reduced growth on nitrate, pSILBAγ produced the highest number (65%) of strongly affected fungal strains. The strongly silenced phenotype was shown to correlate with T‐DNA integration in transcriptionally active genomic sites. pHg/pSILBAγ was shown to produce T‐DNAs with minimum CpG methylation in transgene promoter regions which assures the maximum silencing trigger production in Laccaria. Methylation of the target endogene was only slight in RNA silencing triggered with constructs carrying an intronic spacer hairpin sequence. The silencing capacity of the pHg/pSILBAγ was further tested with Laccaria inositol‐1,4,5‐triphosphate 5‐phosphatase gene. Besides its use in silencing triggering, the herein described plasmid system can also be used for transgene expression in Laccaria. pHg/pSILBAγ silencing system is optimized for L. bicolor but it should be highly useful also for other homobasidiomycetes, group of fungi currently lacking molecular tools for RNA silencing.
Collapse
Affiliation(s)
- Minna J Kemppainen
- Laboratorio de Micología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Roque Sáenz Peña 352, (B1876BXD) Bernal, Provincia de Buenos Aires, Argentina
| | | |
Collapse
|
137
|
De Riso V, Raniello R, Maumus F, Rogato A, Bowler C, Falciatore A. Gene silencing in the marine diatom Phaeodactylum tricornutum. Nucleic Acids Res 2009; 37:e96. [PMID: 19487243 PMCID: PMC2724275 DOI: 10.1093/nar/gkp448] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Diatoms are a major but poorly understood phytoplankton group. The recent completion of two whole genome sequences has revealed that they contain unique combinations of genes, likely recruited during their history as secondary endosymbionts, as well as by horizontal gene transfer from bacteria. A major limitation for the study of diatom biology and gene function is the lack of tools to generate targeted gene knockout or knockdown mutants. In this work, we have assessed the possibility of triggering gene silencing in Phaeodactylum tricornutum using constructs containing either anti-sense or inverted repeat sequences of selected target genes. We report the successful silencing of a GUS reporter gene expressed in transgenic lines, as well as the knockdown of endogenous phytochrome (DPH1) and cryptochrome (CPF1) genes. To highlight the utility of the approach we also report the first phenotypic characterization of a diatom mutant (cpf1). Our data open the way for reverse genetics in diatoms and represent a major advance for understanding their biology and ecology. Initial molecular analyses reveal that targeted downregulation likely occurs through transcriptional and post-transcriptional gene silencing mechanisms. Interestingly, molecular players involved in RNA silencing in other eukaryotes are only poorly conserved in diatoms.
Collapse
Affiliation(s)
- Valentina De Riso
- Laboratory of Ecology and Evolution of Plankton, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
138
|
Identification and characterization of barley RNA-directed RNA polymerases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:375-85. [DOI: 10.1016/j.bbagrm.2009.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 03/21/2009] [Accepted: 03/23/2009] [Indexed: 11/20/2022]
|
139
|
Luo QJ, Samanta MP, Köksal F, Janda J, Galbraith DW, Richardson CR, Ou-Yang F, Rock CD. Evidence for antisense transcription associated with microRNA target mRNAs in Arabidopsis. PLoS Genet 2009; 5:e1000457. [PMID: 19381263 PMCID: PMC2664332 DOI: 10.1371/journal.pgen.1000457] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 03/20/2009] [Indexed: 11/18/2022] Open
Abstract
Antisense transcription is a pervasive phenomenon, but its source and functional significance is largely unknown. We took an expression-based approach to explore microRNA (miRNA)-related antisense transcription by computational analyses of published whole-genome tiling microarray transcriptome and deep sequencing small RNA (smRNA) data. Statistical support for greater abundance of antisense transcription signatures and smRNAs was observed for miRNA targets than for paralogous genes with no miRNA cleavage site. Antisense smRNAs were also found associated with MIRNA genes. This suggests that miRNA-associated "transitivity" (production of small interfering RNAs through antisense transcription) is more common than previously reported. High-resolution (3 nt) custom tiling microarray transcriptome analysis was performed with probes 400 bp 5' upstream and 3' downstream of the miRNA cleavage sites (direction relative to the mRNA) for 22 select miRNA target genes. We hybridized RNAs labeled from the smRNA pathway mutants, including hen1-1, dcl1-7, hyl1-2, rdr6-15, and sgs3-14. Results showed that antisense transcripts associated with miRNA targets were mainly elevated in hen1-1 and sgs3-14 to a lesser extent, and somewhat reduced in dcl11-7, hyl11-2, or rdr6-15 mutants. This was corroborated by semi-quantitative reverse transcription PCR; however, a direct correlation of antisense transcript abundance in MIR164 gene knockouts was not observed. Our overall analysis reveals a more widespread role for miRNA-associated transitivity with implications for functions of antisense transcription in gene regulation. HEN1 and SGS3 may be links for miRNA target entry into different RNA processing pathways.
Collapse
Affiliation(s)
- Qing-Jun Luo
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Manoj P. Samanta
- Systemix Institute, Los Altos, California, United States of America
| | - Fatih Köksal
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States of America
| | - Jaroslav Janda
- BIO5 Institute and Department of Plant Science, University of Arizona, Tucson, Arizona, United States of America
| | - David W. Galbraith
- BIO5 Institute and Department of Plant Science, University of Arizona, Tucson, Arizona, United States of America
| | - Casey R. Richardson
- Department of Computer Science, Texas Tech University, Lubbock, Texas, United States of America
| | - Fangqian Ou-Yang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
140
|
Abstract
Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
Collapse
Affiliation(s)
- Megha Ghildiyal
- Department of Biochemistry and Molecular Pharmacology and Howard Hughes Medical Institute, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | | |
Collapse
|
141
|
Vaistij FE, Jones L. Compromised virus-induced gene silencing in RDR6-deficient plants. PLANT PHYSIOLOGY 2009; 149:1399-407. [PMID: 19129420 PMCID: PMC2649407 DOI: 10.1104/pp.108.132688] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 12/31/2008] [Indexed: 05/18/2023]
Abstract
RNA silencing in plants serves as a potent antiviral defense mechanism through the action of small interfering RNAs (siRNAs), which direct RNA degradation. siRNAs can be derived directly from the viral genome or via the action of host-encoded RNA-dependent RNA polymerases (RDRs). Plant genomes encode multiple RDRs, and it has been demonstrated that plants defective for RDR6 hyperaccumulate several classes of virus. In this study, we compared the effectiveness of virus-induced gene silencing (VIGS) and RNA-directed DNA methylation (RdDM) in wild-type and RDR6-deficient Nicotiana benthamiana plants. For the potexvirus Potato virus X (PVX) and the potyvirus Plum pox virus (PPV), the efficiency of both VIGS and RdDM were compromised in RDR6-defective plants despite accumulating high levels of viral siRNAs similar to infection of wild-type plants. The reduced efficiency of VIGS and RdDM was unrelated to the size class of siRNA produced and, at least for PVX, was not dependent on the presence of the virus-encoded silencing suppressor protein, 25K. We suggest that primary siRNAs produced from PVX and PPV in the absence of RDR6 may not be good effectors of silencing and that RDR6 is required to produce secondary siRNAs that drive a more effective antiviral response.
Collapse
Affiliation(s)
- Fabián E Vaistij
- Centre for Novel Agricultural Products , University of York, York YO10 5DD, UK.
| | | |
Collapse
|
142
|
Saleh MC, Tassetto M, van Rij RP, Goic B, Gausson V, Berry B, Jacquier C, Antoniewski C, Andino R. Antiviral immunity in Drosophila requires systemic RNA interference spread. Nature 2009; 458:346-50. [PMID: 19204732 PMCID: PMC3978076 DOI: 10.1038/nature07712] [Citation(s) in RCA: 210] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Accepted: 12/03/2008] [Indexed: 12/19/2022]
Abstract
Multicellular organisms evolved sophisticated defence systems to confer protection against pathogens. An important characteristic of these immune systems is their ability to act both locally at the site of infection and at distal uninfected locations. In insects, such as Drosophila melanogaster, RNA interference (RNAi) mediates antiviral immunity. However, the antiviral RNAi defence in flies seems to be a local, cell-autonomous process, as flies are thought to be unable to generate a systemic RNAi response. Here we show that a recently defined double-stranded RNA (dsRNA) uptake pathway is essential for effective antiviral RNAi immunity in adult flies. Mutant flies defective in this dsRNA uptake pathway were hypersensitive to infection with Drosophila C virus and Sindbis virus. Mortality in dsRNA-uptake-defective flies was accompanied by 100-to 10(5)-fold increases in viral titres and higher levels of viral RNA. Furthermore, inoculating naked dsRNA into flies elicited a sequence-specific antiviral immune response that required an intact dsRNA uptake pathway. These findings suggest that spread of dsRNA to uninfected sites is essential for effective antiviral immunity. Notably, infection with green fluorescent protein (GFP)-tagged Sindbis virus suppressed expression of host-encoded GFP at a distal site. Thus, similar to protein-based immunity in vertebrates, the antiviral RNAi response in flies also relies on the systemic spread of a virus-specific immunity signal.
Collapse
Affiliation(s)
- Maria-Carla Saleh
- Department of Microbiology and Immunology, University of California, San Francisco 94122-2280, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Fukunaga R, Doudna JA. dsRNA with 5' overhangs contributes to endogenous and antiviral RNA silencing pathways in plants. EMBO J 2009; 28:545-55. [PMID: 19165150 DOI: 10.1038/emboj.2009.2] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 12/23/2008] [Indexed: 11/09/2022] Open
Abstract
In plants, SGS3 and RNA-dependent RNA polymerase 6 (RDR6) are required to convert single- to double-stranded RNA (dsRNA) in the innate RNAi-based antiviral response and to produce both exogenous and endogenous short-interfering RNAs. Although a role for RDR6-catalysed RNA-dependent RNA polymerisation in these processes seems clear, the function of SGS3 is unknown. Here, we show that SGS3 is a dsRNA-binding protein with unexpected substrate selectivity favouring 5'-overhang-containing dsRNA. The conserved XS and coiled-coil domains are responsible for RNA-binding activity. Furthermore, we find that the V2 protein from tomato yellow leaf curl virus, which suppresses the RNAi-based host immune response, is a dsRNA-binding protein with similar specificity to SGS3. In competition-binding experiments, V2 outcompetes SGS3 for substrate dsRNA recognition, whereas a V2 point mutant lacking the suppressor function in vivo cannot efficiently overcome SGS3 binding. These findings suggest that SGS3 recognition of dsRNA containing a 5' overhang is required for subsequent steps in RNA-mediated gene silencing in plants, and that V2 functions as a viral suppressor by preventing SGS3 from accessing substrate RNAs.
Collapse
Affiliation(s)
- Ryuya Fukunaga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | |
Collapse
|
144
|
Naqvi AR, Islam MN, Choudhury NR, Haq QMR. The fascinating world of RNA interference. Int J Biol Sci 2009; 5:97-117. [PMID: 19173032 PMCID: PMC2631224 DOI: 10.7150/ijbs.5.97] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 11/02/2008] [Indexed: 12/14/2022] Open
Abstract
Micro- and short-interfering RNAs represent small RNA family that are recognized as critical regulatory species across the eukaryotes. Recent high-throughput sequencing have revealed two more hidden players of the cellular small RNA pool. Reported in mammals and Caenorhabditis elegans respectively, these new small RNAs are named piwi-interacting RNAs (piRNAs) and 21U-RNAs. Moreover, small RNAs including miRNAs have been identified in unicellular alga Chlamydomonas reinhardtii, redefining the earlier concept of multi-cellularity restricted presence of these molecules. The discovery of these species of small RNAs has allowed us to understand better the usage of genome and the number of genes present but also have complicated the situation in terms of biochemical attributes and functional genesis of these molecules. Nonetheless, these new pools of knowledge have opened up avenues for unraveling the finer details of the small RNA mediated pathways.
Collapse
Affiliation(s)
- Afsar Raza Naqvi
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi - 110 025, India
| | | | | | | |
Collapse
|
145
|
Abstract
Regions of DNA that bind to the nuclear matrix, or nucleoskeleton, are known as Matrix Attachment Regions (MARs). MARs are thought to play an important role in higher-order structure and chromatin organization within the nucleus. MARs are also thought to act as boundaries of chromosomal domains that act to separate regions of gene-rich, decondensed euchromatin from highly repetitive, condensed heterochromatin. Herein I will present evidence that MARs do indeed act as domain boundaries and can prevent the spread of silencing into active genes. Many fundamental questions remain unanswered about how MARs function in the nucleus. New findings in epigenetics indicate that MARs may also play an important role in the organization of genes and the eventual transport of their mRNAs through the nuclear pore.
Collapse
|
146
|
Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci U S A 2008; 105:20534-9. [PMID: 19075248 DOI: 10.1073/pnas.0809408105] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Small-interfering RNAs (siRNAs) from natural cis-antisense pairs derived from the 3'-coding region of the barley (Hordeum vulgare) CesA6 cellulose synthase gene substantially increase in abundance during leaf elongation. Strand-specific RT-PCR confirmed the presence of an antisense transcript of HvCesA6 that extends > or = 1230 bp from the 3' end of the CesA-coding sequence. The increases in abundance of the CesA6 antisense transcript and the 21-nt and 24-nt siRNAs derived from the transcript are coincident with the down-regulation of primary wall CesAs, several Csl genes, and GT8 glycosyl transferase genes, and are correlated with the reduction in rates of cellulose and (1 --> 3),(1 --> 4)-beta-D-glucan synthesis. Virus induced gene silencing using unique target sequences derived from HvCesA genes attenuated expression not only of the HvCesA6 gene, but also of numerous nontarget Csls and the distantly related GT8 genes and reduced the incorporation of D-(14)C-Glc into cellulose and into mixed-linkage (1 --> 3),(1 --> 4)-beta-D-glucans of the developing leaves. Unique target sequences for CslF and CslH conversely silenced the same genes and lowered rates of cellulose and (1 --> 3),(1 --> 4)-beta-D-glucan synthesis. Our results indicate that the expression of individual members of the CesA/Csl superfamily and glycosyl transferases share common regulatory control points, and siRNAs from natural cis-antisense pairs derived from the CesA/Csl superfamily could function in this global regulation of cell-wall synthesis.
Collapse
|
147
|
A stepwise pathway for biogenesis of 24-nt secondary siRNAs and spreading of DNA methylation. EMBO J 2008; 28:48-57. [PMID: 19078964 DOI: 10.1038/emboj.2008.260] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 11/17/2008] [Indexed: 01/06/2023] Open
Abstract
We used a transgene system to study spreading of RNA-directed DNA methylation (RdDM) during transcriptional gene silencing in Arabidopsis thaliana. Forward and reverse genetics approaches using this system delineated a stepwise pathway for the biogenesis of secondary siRNAs and unidirectional spreading of methylation from an upstream enhancer element into downstream sequences. Trans-acting, hairpin-derived primary siRNAs induce primary RdDM, independently of an enhancer-associated 'nascent' RNA, at the target enhancer region. Primary RdDM is a key step in the pathway because it attracts the secondary siRNA-generating machinery, including RNA polymerase IV, RNA-dependent RNA polymerase2 and Dicer-like3 (DCL3). These factors act in a turnover pathway involving a nascent RNA, which normally accumulates stably in non-silenced plants, to produce cis-acting secondary siRNAs that induce methylation in the downstream region. The identification of DCL3 in a forward genetic screen for silencing-defective mutants demonstrated a strict requirement for 24-nt siRNAs to direct methylation. A similar stepwise process for spreading of DNA methylation may occur in mammalian genomes, which are extensively transcribed in upstream regulatory regions.
Collapse
|
148
|
Wang L, Smith NA, Zhang L, Dennis ES, Waterhouse PM, Unrau PJ, Wang MB. Synthesis of complementary RNA by RNA-dependent RNA polymerases in plant extracts is independent of an RNA primer. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 35:1091-1099. [PMID: 32688857 DOI: 10.1071/fp08118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 08/15/2008] [Indexed: 06/11/2023]
Abstract
RNA-dependent RNA polymerase (RDR) activities were readily detected in extracts from cauliflower and broccoli florets, Arabidopsis thaliana (L.) Heynh callus tissue and broccoli nuclei. The synthesis of complementary RNA (cRNA) was independent of a RNA primer, whether or not the primer contained a 3' terminal 2'-O-methyl group or was phosphorylated at the 5' terminus. cRNA synthesis in plant extracts was not affected by loss-of-function mutations in the DICER-LIKE (DCL) proteins DCL2, DCL3, and DCL4, indicating that RDRs function independently of these DCL proteins. A loss-of-function mutation in RDR1, RDR2 or RDR6 did not significantly reduce the amount of cRNA synthesis. This indicates that these RDRs did not account for the bulk RDR activities in plant extracts, and suggest that either the individual RDRs each contribute a fraction of polymerase activity or another RDR(s) is predominant in the plant extract.
Collapse
Affiliation(s)
- Lei Wang
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| | - Neil A Smith
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| | - Lan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | | | - Peter J Unrau
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ming-Bo Wang
- CSIRO Plant Industry, PO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
149
|
Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W. Specific gene silencing by artificial MicroRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. PLANT PHYSIOLOGY 2008; 148:684-93. [PMID: 18753280 PMCID: PMC2556843 DOI: 10.1104/pp.108.128025] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/22/2008] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are approximately 21-nucleotide-long RNAs processed from nuclear-encoded transcripts, which include a characteristic hairpin-like structure. MiRNAs control the expression of target transcripts by binding to reverse complementary sequences directing cleavage or translational inhibition of the target RNA. Artificial miRNAs (amiRNAs) can be generated by exchanging the miRNA/miRNA* sequence within miRNA precursor genes, while maintaining the pattern of matches and mismatches in the foldback. Thus, for functional gene analysis, amiRNAs can be designed to target any gene of interest. The moss Physcomitrella patens exhibits the unique feature of a highly efficient homologous recombination mechanism, which allows for the generation of targeted gene knockout lines. However, the completion of the Physcomitrella genome necessitates the development of alternative techniques to speed up reverse genetics analyses and to allow for more flexible inactivation of genes. To prove the adaptability of amiRNA expression in Physcomitrella, we designed two amiRNAs, targeting the gene PpFtsZ2-1, which is indispensable for chloroplast division, and the gene PpGNT1 encoding an N-acetylglucosaminyltransferase. Both amiRNAs were expressed from the Arabidopsis (Arabidopsis thaliana) miR319a precursor fused to a constitutive promoter. Transgenic Physcomitrella lines harboring the overexpression constructs showed precise processing of the amiRNAs and an efficient knock down of the cognate target mRNAs. Furthermore, chloroplast division was impeded in PpFtsZ2-1-amiRNA lines that phenocopied PpFtsZ2-1 knockout mutants. We also provide evidence for the amplification of the initial amiRNA signal by secondary transitive small interfering RNAs, although these small interfering RNAs do not seem to have a major effect on sequence-related mRNAs, confirming specificity of the amiRNA approach.
Collapse
Affiliation(s)
- Basel Khraiwesh
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
150
|
Cymbidium ringspot virus harnesses RNA silencing to control the accumulation of virus parasite satellite RNA. J Virol 2008; 82:11851-8. [PMID: 18815304 DOI: 10.1128/jvi.01343-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cymbidium ringspot virus (CymRSV) satellite RNA (satRNA) is a parasitic subviral RNA replicon that replicates and accumulates at the cost of its helper virus. This 621-nucleotide (nt) satRNA species has no sequence similarity to the helper virus, except for a 51-nt-long region termed the helper-satellite homology (HSH) region, which is essential for satRNA replication. We show that the accumulation of satRNA strongly depends on temperature and on the presence of the helper virus p19 silencing suppressor protein, suggesting that RNA silencing plays a crucial role in satRNA accumulation. We also demonstrate that another member of the Tombusvirus genus, Carnation Italian ringspot virus (CIRV), supports satRNA accumulation at a higher level than CymRSV. Our results suggest that short interfering RNA (siRNA) derived from CymRSV targets satRNA more efficiently than siRNA from CIRV, possibly because of the higher sequence similarity between the HSH regions of the helper and CIRV satRNAs. RNA silencing sensor RNA carrying the putative satRNA target site in the HSH region was efficiently cleaved when transiently expressed in CymRSV-infected plants but not in CIRV-infected plants. Strikingly, replacing the CymRSV HSH box2 sequence with that of CIRV restores satRNA accumulation both at 24 degrees C and in the absence of the p19 suppressor protein. These findings demonstrate the extraordinary adaptation of this virus to its host in terms of harnessing the antiviral silencing response of the plant to control the virus parasite satRNA.
Collapse
|