101
|
Jiang H, Wu Q, Jin J, Sheng L, Yan H, Cheng B, Zhu S. Genome-wide identification and expression profiling of ankyrin-repeat gene family in maize. Dev Genes Evol 2013; 223:303-18. [PMID: 23839078 DOI: 10.1007/s00427-013-0447-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/08/2013] [Indexed: 01/10/2023]
Abstract
Members of the ankyrin repeats (ANK) gene family encode ANK domain that are common in diverse organisms and play important roles in cell growth and development, such as cell-cell signal transduction and cell cycle regulation. Recently, genome-wide identification and evolutionary analyses of the ANK gene family have been carried out in Arabidopsis and rice. However, little is known regarding the ANK genes in the entire maize genome. In this study, we described the identification and structural characterization of 71 ANK genes in maize (ZmANK). Then, comprehensive bioinformatics analyses of ZmANK genes family were performed including phylogenetic, domain and motif analysis, chromosomal localization, intron/exon structural patterns, gene duplications and expression profiling. Domain composition analyses showed that ZmANK genes formed ten subfamilies. Five tandem duplications and 14 segmental duplications were identified in ZmANK genes. Furthermore, we took comparative analysis of the total ANK gene family in Arabidopsis, rice and maize, ZmANKs were more closely paired with OsANKs than with AtANKs. At last, expression profile analyses were performed. Forty-one members of ZmANK genes held EST sequences records. Semi-quantitative expression and microarray data analysis of these 41 ZmANK genes demonstrated that ZmANK genes exhibit a various expression pattern, suggesting that functional diversification of ZmANK genes family. The results will present significant insights to explore ANK genes expression and function in future studies in maize.
Collapse
Affiliation(s)
- Haiyang Jiang
- Key Laboratory of Crop Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | | | | | | | | | | | | |
Collapse
|
102
|
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H. Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 2013; 9:e1003370. [PMID: 23754942 PMCID: PMC3675028 DOI: 10.1371/journal.ppat.1003370] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 04/04/2013] [Indexed: 12/17/2022] Open
Abstract
The circadian clock integrates temporal information with environmental cues in regulating plant development and physiology. Recently, the circadian clock has been shown to affect plant responses to biotic cues. To further examine this role of the circadian clock, we tested disease resistance in mutants disrupted in CCA1 and LHY, which act synergistically to regulate clock activity. We found that cca1 and lhy mutants also synergistically affect basal and resistance gene-mediated defense against Pseudomonas syringae and Hyaloperonospora arabidopsidis. Disrupting the circadian clock caused by overexpression of CCA1 or LHY also resulted in severe susceptibility to P. syringae. We identified a downstream target of CCA1 and LHY, GRP7, a key constituent of a slave oscillator regulated by the circadian clock and previously shown to influence plant defense and stomatal activity. We show that the defense role of CCA1 and LHY against P. syringae is at least partially through circadian control of stomatal aperture but is independent of defense mediated by salicylic acid. Furthermore, we found defense activation by P. syringae infection and treatment with the elicitor flg22 can feedback-regulate clock activity. Together this data strongly supports a direct role of the circadian clock in defense control and reveal for the first time crosstalk between the circadian clock and plant innate immunity.
Collapse
Affiliation(s)
- Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Qiguang Xie
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Ryan G. Anderson
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Gina Ng
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Nicholas C. Seitz
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Thomas Peterson
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - C. Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - John M. McDowell
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dongdong Kong
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - June M. Kwak
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Department of Cell Biology and Molecular Genetics, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, United States of America
- Department of Plant Molecular Systems Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, Republic of Korea
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| |
Collapse
|
103
|
Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:157. [PMID: 23761797 PMCID: PMC3669760 DOI: 10.3389/fpls.2013.00157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 05/20/2023]
Abstract
Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Chong Zhang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Ute Albrecht
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| | - Rena Shimizu
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Guanfeng Wang
- Department of Biological Sciences, University of Maryland Baltimore CountyBaltimore, MD, USA
| | - Kim D. Bowman
- United States Horticultural Research Laboratory, Agricultural Research Service, United States Department of AgricultureFort Pierce, FL, USA
| |
Collapse
|
104
|
Lu H, Zhang C, Albrecht U, Shimizu R, Wang G, Bowman KD. Overexpression of a citrus NDR1 ortholog increases disease resistance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:157. [PMID: 23761797 DOI: 10.3389/fpls.2013.00157.4:157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/07/2013] [Indexed: 05/23/2023]
Abstract
Emerging devastating diseases, such as Huanglongbing (HLB) and citrus canker, have caused tremendous losses to the citrus industry worldwide. Genetic engineering is a powerful approach that could allow us to increase citrus resistance against these diseases. The key to the success of this approach relies on a thorough understanding of defense mechanisms of citrus. Studies of Arabidopsis and other plants have provided a framework for us to better understand defense mechanisms of citrus. Salicylic acid (SA) is a key signaling molecule involved in basal defense and resistance (R) gene-mediated defense against broad-spectrum pathogens. The Arabidopsis gene NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE 1) is a positive regulator of SA accumulation and is specifically required for signaling mediated by a subset of R genes upon recognition of their cognate pathogen effectors. Our bioinformatic analysis identified an ortholog of NDR1 from citrus, CsNDR1. Overexpression of CsNDR1 complemented susceptibility conferred by the Arabidopsis ndr1-1 mutant to Pseudomonas syringae strains and also led to enhanced resistance to an oomycete pathogen Hyaloperonospora arabidopsidis. Such heightened resistance is associated with increased SA production and expression of the defense marker gene PATHOGENESIS RELATED 1 (PR1). In addition, we found that expression of PR1 and accumulation of SA were induced to modest levels in citrus infected with Candidatus Liberibacter asiaticus, the bacterial pathogen associated with HLB disease. Thus, our data suggest that CsNDR1 is a functional ortholog of Arabidopsis NDR1. Since Ca. L. asiaticus infection only activates modest levels of defense responses in citrus, we propose that genetically increasing SA/NDR1-mediated pathways could potentially lead to enhanced resistance against HLB, citrus canker, and other destructive diseases challenging global citrus production.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
105
|
Pérez-Pérez JM, Esteve-Bruna D, González-Bayón R, Kangasjärvi S, Caldana C, Hannah MA, Willmitzer L, Ponce MR, Micol JL. Functional Redundancy and Divergence within the Arabidopsis RETICULATA-RELATED Gene Family. PLANT PHYSIOLOGY 2013; 162:589-603. [PMID: 23596191 PMCID: PMC3668055 DOI: 10.1104/pp.113.217323] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/17/2013] [Indexed: 05/20/2023]
Abstract
A number of Arabidopsis (Arabidopsis thaliana) mutants exhibit leaf reticulation, having green veins that stand out against paler interveinal tissues, fewer cells in the interveinal mesophyll, and normal perivascular bundle sheath cells. Here, to examine the basis of leaf reticulation, we analyzed the Arabidopsis RETICULATA-RELATED (RER) gene family, several members of which cause leaf reticulation when mutated. Although transcripts of RE, RER1, and RER3 were mainly detected in the bundle sheath cells of expanded leaves, functional RER3:GREEN FLUORESCENT PROTEIN was visualized in the chloroplast membranes of all photosynthetic cells. Leaf reticulation in the re and rer3 loss-of-function mutants occurred, along with accumulation of reactive oxygen species, in a photoperiod-dependent manner. A comparison of re and rer3 leaf messenger RNA expression profiles showed more than 200 genes were similarly misexpressed in both mutants. In addition, metabolic profiles of mature leaves revealed that several biosynthetic pathways downstream of pyruvate are altered in re and rer3. Double mutant analysis showed that only re rer1 and rer5 rer6 exhibited synergistic phenotypes, indicating functional redundancy. The redundancy between RE and its closest paralog, RER1, was confirmed by overexpressing RER1 in re mutants, which partially suppressed leaf reticulation. Our results show that RER family members can be divided into four functional modules with divergent functions. Moreover, these results provide insights into the origin of the reticulated phenotype, suggesting that the RER proteins functionally interconnect photoperiodic growth, amino acid homeostasis, and reactive oxygen species metabolism during Arabidopsis leaf growth.
Collapse
|
106
|
Yuan X, Zhang S, Qing X, Sun M, Liu S, Su H, Shu H, Li X. Superfamily of ankyrin repeat proteins in tomato. Gene 2013; 523:126-36. [PMID: 23587915 DOI: 10.1016/j.gene.2013.03.122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/11/2013] [Accepted: 03/27/2013] [Indexed: 01/18/2023]
Abstract
The ankyrin repeat (ANK) protein family plays a crucial role in plant growth and development and in response to biotic and abiotic stresses. However, no detailed information concerning this family is available for tomato (Solanum lycopersicum) due to the limited information on whole genome sequences. In this study, we identified a total of 130 ANK genes in tomato genome (SlANK), and these genes were distributed across all 12 chromosomes at various densities. And chromosomal localizations of SlANK genes indicated 25 SlANK genes were involved in tandem duplications. Based on their domain composition, all of the SlANK proteins were grouped into 13 subgroups. A combined phylogenetic tree was constructed with the aligned SlANK protein sequences. This tree revealed that the SlANK proteins comprise five major groups. An analysis of the expression profiles of SlANK genes in tomato in different tissues and in response to stresses showed that the SlANK proteins play roles in plant growth, development and stress responses. To our knowledge, this is the first report of a genome-wide analysis of the tomato ANK gene family. This study provides valuable information regarding the classification and putative functions of SlANK genes in tomato.
Collapse
Affiliation(s)
- Xiaowei Yuan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Mou S, Liu Z, Guan D, Qiu A, Lai Y, He S. Functional analysis and expressional characterization of rice ankyrin repeat-containing protein, OsPIANK1, in basal defense against Magnaporthe oryzae attack. PLoS One 2013; 8:e59699. [PMID: 23555750 PMCID: PMC3608567 DOI: 10.1371/journal.pone.0059699] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/17/2013] [Indexed: 11/18/2022] Open
Abstract
The ankyrin repeat-containing protein gene OsPIANK1 (AK068021) in rice (Oryza sativa L.) was previously shown to be upregulated following infection with the rice leaf blight pathogen Xanthomonas oryzae pv oryzae (Xoo). In this study, we further characterized the role of OsPIANK1 in basal defense against Magnaporthe oryzae (M.oryzae) by 5' deletion analysis of its promoter and overexpression of the gene. The promoter of OsPIANK1 with 1,985 bps in length was sufficient to induce the OsPIANK1 response to inoculation with M.oryzae and to exogenous application of methyl jasmonate (MeJA) or salicylic acid (SA), but not to exogenous application of abscisic acid (ABA). A TCA-element present in the region between -563 bp and -249 bp may be responsible for the OsPIANK1 response to both M.oryzae infection and exogenous SA application. The JERE box, CGTCA-box, and two MYB binding sites locating in the region between -1985 bp and -907 bp may be responsible for the response of OsPIANK1 to exogenous MeJA. OsPIANK1 expression was upregulated after inoculation with M.oryzae and after treatment with exogenous SA and MeJA. Overexpression of OsPIANK1 enhanced resistance of rice to M.oryzae, although it did not confer complete resistance. The enhanced resistance to M.oryzae was accompanied by enhanced transcriptional expression of SA- and JA-dependent genes such as NH1, WKRY13, PAL, AOS2, PR1b, and PR5. This evidence suggests that OsPIANK1 acted as a positive regulator in rice basal defense mediated by SA- and JA-signaling pathways.
Collapse
Affiliation(s)
- Shaoliang Mou
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhiqin Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deyi Guan
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ailian Qiu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yan Lai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shuilin He
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Education Minster Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- * E-mail:
| |
Collapse
|
108
|
Meinke DW. A survey of dominant mutations in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2013; 18:84-91. [PMID: 22995285 DOI: 10.1016/j.tplants.2012.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.
Collapse
Affiliation(s)
- David W Meinke
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
109
|
Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Syst Biol 2013; 8:606. [PMID: 22929616 PMCID: PMC3435506 DOI: 10.1038/msb.2012.39] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/25/2012] [Indexed: 01/09/2023] Open
Abstract
Deep profiling of the transcriptome and proteome during leaf development reveals unexpected responses to water deficit, as well as a surprising lack of protein-level fluctuations during the day–night cycle, despite clear changes at the transcript level. ![]()
Transcript and protein variation patterns reflect the functional stages of the leaf. Protein and transcript levels correlate well during leaf development, with some notable exceptions. Diurnal transcript-level fluctuations are not matched by corresponding diurnal fluctuations in the detected proteome. Continuous reduced soil water content results in reduced leaf growth, but the plant adapts at molecular levels without showing a typical drought response.
Leaves have a central role in plant energy capture and carbon conversion and therefore must continuously adapt their development to prevailing environmental conditions. To reveal the dynamic systems behaviour of leaf development, we profiled Arabidopsis leaf number six in depth at four different growth stages, at both the end-of-day and end-of-night, in plants growing in two controlled experimental conditions: short-day conditions with optimal soil water content and constant reduced soil water conditions. We found that the lower soil water potential led to reduced, but prolonged, growth and an adaptation at the molecular level without a drought stress response. Clustering of the protein and transcript data using a decision tree revealed different patterns in abundance changes across the growth stages and between end-of-day and end-of-night that are linked to specific biological functions. Correlations between protein and transcript levels depend on the time-of-day and also on protein localisation and function. Surprisingly, only very few of >1700 quantified proteins showed diurnal abundance fluctuations, despite strong fluctuations at the transcript level.
Collapse
|
110
|
Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Ponce MR, Micol JL. PORPHOBILINOGEN DEAMINASE deficiency alters vegetative and reproductive development and causes lesions in Arabidopsis. PLoS One 2013; 8:e53378. [PMID: 23308205 PMCID: PMC3540089 DOI: 10.1371/journal.pone.0053378] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 01/30/2023] Open
Abstract
The Arabidopsis rugosa1 (rug1) mutant has irregularly shaped leaves and reduced growth. In the absence of pathogens, leaves of rug1 plants have spontaneous lesions reminiscent of those seen in lesion-mimic mutants; rug1 plants also express cytological and molecular markers associated with defence against pathogens. These rug1 phenotypes are made stronger by dark/light transitions. The rug1 mutant also has delayed flowering time, upregulation of the floral repressor FLOWERING LOCUS C (FLC) and downregulation of the flowering promoters FT and SOC1/AGL20. Vernalization suppresses the late flowering phenotype of rug1 by repressing FLC. Microarray analysis revealed that 280 nuclear genes are differentially expressed between rug1 and wild type; almost a quarter of these genes are involved in plant defence. In rug1, the auxin response is also affected and several auxin-responsive genes are downregulated. We identified the RUG1 gene by map-based cloning and found that it encodes porphobilinogen deaminase (PBGD), also known as hydroxymethylbilane synthase, an enzyme of the tetrapyrrole biosynthesis pathway, which produces chlorophyll, heme, siroheme and phytochromobilin in plants. PBGD activity is reduced in rug1 plants, which accumulate porphobilinogen. Our results indicate that Arabidopsis PBGD deficiency impairs the porphyrin pathway and triggers constitutive activation of plant defence mechanisms leading to leaf lesions and affecting vegetative and reproductive development.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | | | - Rebeca González-Bayón
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| |
Collapse
|
111
|
Sun A, Nie S, Xing D. Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides. PLANT PHYSIOLOGY 2012; 160:1081-96. [PMID: 22926319 PMCID: PMC3461531 DOI: 10.1104/pp.112.201798] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/26/2012] [Indexed: 05/19/2023]
Abstract
The perception of lipopolysaccharides (LPS) by plant cells can lead to nitric oxide (NO) production and defense gene induction. However, the signaling cascades underlying these cellular responses have not yet been resolved. This work investigated the biosynthetic origin of NO and the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1) to gain insight into the mechanism involved in LPS-induced resistance of Arabidopsis (Arabidopsis thaliana). Analysis of inhibitors and mutants showed that LPS-induced NO synthesis was mainly mediated by an arginine-utilizing source of NO generation. Furthermore, LPS-induced NO caused transcript accumulation of alternative oxidase genes and increased antioxidant enzyme activity, which enhanced antioxidant capacity and modulated redox state. We also analyzed the subcellular localization of NPR1 to identify the mechanism for protein-modulated plant innate immunity triggered by LPS. LPS-activated defense responses, including callose deposition and defense-related gene expression, were found to be regulated through an NPR1-dependent pathway. In summary, a significant NO synthesis induced by LPS contributes to the LPS-induced defense responses by up-regulation of defense genes and modulation of cellular redox state. Moreover, NPR1 plays an important role in LPS-triggered plant innate immunity.
Collapse
Affiliation(s)
| | | | - Da Xing
- Corresponding author; e-mail
| |
Collapse
|
112
|
Yang Y, Zhang Y, Ding P, Johnson K, Li X, Zhang Y. The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. PLANT PHYSIOLOGY 2012; 159:1857-65. [PMID: 22740615 PMCID: PMC3425218 DOI: 10.1104/pp.112.197152] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plants utilize a large number of immune receptors to recognize pathogens and activate defense responses. A small number of these receptors belong to the receptor-like protein family. Previously, we showed that a gain-of-function mutation in the receptor-like protein SNC2 (for Suppressor of NPR1, Constitutive2) leads to constitutive activation of defense responses in snc2-1D mutant plants. To identify defense signaling components downstream of SNC2, we carried out a suppressor screen in the snc2-1D mutant background of Arabidopsis (Arabidopsis thaliana). Map-based cloning of one of the suppressor genes, BDA1 (for bian da; "becoming big" in Chinese), showed that it encodes a protein with amino-terminal ankyrin repeats and carboxyl-terminal transmembrane domains. Loss-of-function mutations in BDA1 suppress the dwarf morphology and constitutive defense responses in snc2-1D npr1-1 (for nonexpressor of pathogenesis-related genes1,1) and also result in enhanced susceptibility to bacterial pathogens. In contrast, a gain-of-function allele of bda1 isolated from a separate genetic screen to search for mutants with enhanced pathogen resistance was found to constitutively activate cell death and defense responses. These data suggest that BDA1 is a critical signaling component that functions downstream of SNC2 to regulate plant immunity.
Collapse
|
113
|
Frei dit Frey N, Mbengue M, Kwaaitaal M, Nitsch L, Altenbach D, Häweker H, Lozano-Duran R, Njo MF, Beeckman T, Huettel B, Borst JW, Panstruga R, Robatzek S. Plasma membrane calcium ATPases are important components of receptor-mediated signaling in plant immune responses and development. PLANT PHYSIOLOGY 2012; 159:798-809. [PMID: 22535420 PMCID: PMC3375942 DOI: 10.1104/pp.111.192575] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 04/24/2012] [Indexed: 05/18/2023]
Abstract
Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by FLAGELLIN SENSING2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FLS2-mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca(2+)-ATPase (ACA8) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are required for limiting the growth of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca(2+) ions, which is crucial for many of the well-described downstream responses (e.g. generation of reactive oxygen species and the transcriptional activation of defense-associated genes). Mutant aca8 aca10 plants show decreased flg22-induced Ca(2+) and reactive oxygen species bursts and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase-dependent flg22-induced gene expression is elevated, whereas calcium-dependent protein kinase-dependent flg22-induced gene expression is reduced. These results demonstrate that the fine regulation of Ca(2+) fluxes across the plasma membrane is critical for the coordination of the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor complex and signaling kinases via the secondary messenger Ca(2+). ACA8 also interacts with other RKs such as BRI1 and CLV1 known to regulate plant development, and both aca8 and aca10 mutants show morphological phenotypes, suggesting additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca(2+) ATPases appear to represent general regulatory components of RK-mediated signaling pathways.
Collapse
|
114
|
Alcázar R, Parker JE. The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. TRENDS IN PLANT SCIENCE 2011; 16:666-75. [PMID: 21963982 DOI: 10.1016/j.tplants.2011.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/28/2011] [Accepted: 09/05/2011] [Indexed: 05/21/2023]
Abstract
Plants have evolved polymorphic immune receptors to recognize pathogens causing disease. However, triggering of resistance needs to be tuned to the local environment to maintain a balance between defense and growth. We consider here the impact of temperature as a key environmental factor influencing immune pathway activation in Arabidopsis. Genetic compensatory and molecular buffering mechanisms affecting the diversification, functionality and subcellular dynamics of immune receptors, reveal multiple points at which temperature intersects with host resistance signaling systems, including a role of at least one receptor in sensing temperature change. Analysis of temperature-dependent autoimmunity caused by allelic mismatches in hybrids of evolutionary diverged Arabidopsis accessions is illuminating processes by which plants maintain 'poise' between immune responsiveness and fitness in natural populations.
Collapse
Affiliation(s)
- Rubén Alcázar
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany.
| | | |
Collapse
|
115
|
Brachi B, Morris GP, Borevitz JO. Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 2011; 12:232. [PMID: 22035733 PMCID: PMC3333769 DOI: 10.1186/gb-2011-12-10-232] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Genome-wide association studies (GWAS) have been even more successful in plants than in humans. Mapping approaches can be extended to dissect adaptive genetic variation from structured background variation in an ecological context.
Collapse
Affiliation(s)
- Benjamin Brachi
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
116
|
Abstract
Properly coordinated defense signaling networks are critical for the fitness of plants. One hub of the defense networks is centered on salicylic acid (SA), which plays a key role in activating disease resistance in plants. However, while a number of genes are known to affect SA-mediated defense, relatively little is known about how these gene interact genetically with each other. Here we exploited the unique defense-sensitized Arabidopsis mutant accelerated cell death (acd) 6-1 to dissect functional relationships among key components in the SA hub. We show that while enhanced disease susceptibility (eds) 1-2 and phytoalexin deficient (pad) 4-1 suppressed acd6-1-conferred small size, cell death, and defense phenotypes, a combination of these two mutations did not incur additive suppression. This suggests that EDS1 and PAD4 act in the same signaling pathway. To further evaluate genetic interactions among SA regulators, we constructed 10 pairwise crosses in the acd6-1 background among mutants defective in: SA INDUCTION-DEFICIENT 2 for SA biosynthesis; AGD2-LIKE DEFENSE 1, EDS5, and PAD4 for SA accumulation; and NONEXPRESSOR OF PR GENES 1 for SA signaling. Systematic analysis of the triple mutants based on their suppression of acd6-1-conferred phenotypes revealed complex and interactive genetic relationships among the tested SA genes. Our results suggest a more comprehensive view of the gene networks governing SA function and provide a framework for further interrogation of the important roles of SA and possibly other signaling molecules in regulating plant disease resistance.
Collapse
|
117
|
Lee JY, Wang X, Cui W, Sager R, Modla S, Czymmek K, Zybaliov B, van Wijk K, Zhang C, Lu H, Lakshmanan V. A plasmodesmata-localized protein mediates crosstalk between cell-to-cell communication and innate immunity in Arabidopsis. THE PLANT CELL 2011; 23:3353-73. [PMID: 21934146 PMCID: PMC3203451 DOI: 10.1105/tpc.111.087742] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plasmodesmata (PD) are thought to play a fundamental role in almost every aspect of plant life, including normal growth, physiology, and developmental responses. However, how specific signaling pathways integrate PD-mediated cell-to-cell communication is not well understood. Here, we present experimental evidence showing that the Arabidopsis thaliana plasmodesmata-located protein 5 (PDLP5; also known as HOPW1-1-INDUCED GENE1) mediates crosstalk between PD regulation and salicylic acid-dependent defense responses. PDLP5 was found to localize at the central region of PD channels and associate with PD pit fields, acting as an inhibitor to PD trafficking, potentially through its capacity to modulate PD callose deposition. As a regulator of PD, PDLP5 was also essential for conferring enhanced innate immunity against bacterial pathogens in a salicylic acid-dependent manner. Based on these findings, a model is proposed illustrating that the regulation of PD closure mediated by PDLP5 constitutes a crucial part of coordinated control of cell-to-cell communication and defense signaling.
Collapse
Affiliation(s)
- Jung-Youn Lee
- Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19711, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H. Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1508-19. [PMID: 21543726 PMCID: PMC3135961 DOI: 10.1104/pp.111.176776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/26/2011] [Indexed: 05/18/2023]
Abstract
The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Lu
- Corresponding author; e-mail
| |
Collapse
|
119
|
Stuttmann J, Hubberten HM, Rietz S, Kaur J, Muskett P, Guerois R, Bednarek P, Hoefgen R, Parker JE. Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. THE PLANT CELL 2011; 23:2788-803. [PMID: 21784950 PMCID: PMC3226217 DOI: 10.1105/tpc.111.087684] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/27/2011] [Accepted: 07/07/2011] [Indexed: 05/18/2023]
Abstract
Reliance of biotrophic pathogens on living plant tissues to propagate implies strong interdependence between host metabolism and nutrient uptake by the pathogen. However, factors determining host suitability and establishment of infection are largely unknown. We describe a loss-of-inhibition allele of ASPARTATE KINASE2 and a loss-of-function allele of DIHYDRODIPICOLINATE SYNTHASE2 identified in a screen for Arabidopsis thaliana mutants with increased resistance to the obligate biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa). Through different molecular mechanisms, these mutations perturb amino acid homeostasis leading to overaccumulation of the Asp-derived amino acids Met, Thr, and Ile. Although detrimental for the plant, the mutations do not cause defense activation, and both mutants retain full susceptibility to the adapted obligate biotrophic fungus Golovinomyces orontii (Go). Chemical treatments mimicking the mutants' metabolic state identified Thr as the amino acid suppressing Hpa but not Go colonization. We conclude that perturbations in amino acid homeostasis render the mutant plants unsuitable as an infection substrate for Hpa. This may be explained by deployment of the same amino acid biosynthetic pathways by oomycetes and plants. Our data show that the plant host metabolic state can, in specific ways, influence the ability of adapted biotrophic strains to cause disease.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | | | - Steffen Rietz
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Jagreet Kaur
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Paul Muskett
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Raphael Guerois
- Commissariat á l’Energie Atomique, Institut de Biologie et Technologies de Saclay, Laboratoire de Biologie Structurale et Radiobiologie and Centre National de la Recherche Scientifique, Unités de Recherche Associées 2096, F-91191 Gif-sur-Yvette, France
| | - Paweł Bednarek
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
- Address correspondence to
| |
Collapse
|
120
|
Abstract
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
121
|
Wang GY, Shi JL, Ng G, Battle SL, Zhang C, Lu H. Circadian clock-regulated phosphate transporter PHT4;1 plays an important role in Arabidopsis defense. MOLECULAR PLANT 2011; 4:516-26. [PMID: 21447757 PMCID: PMC3988428 DOI: 10.1093/mp/ssr016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 02/10/2011] [Indexed: 05/18/2023]
Abstract
The Arabidopsis accelerated cell death 6-1 (acd6-1) mutant shows constitutive defense, cell death, and extreme dwarf phenotypes. In a screen for acd6-1 suppressors, we identified a mutant that was disrupted by a T-DNA in the PHOSPHATE TRANSPORTER 4;1 (PHT4;1) gene. The suppressor mutant pht4;1-1 is dominant, expresses truncated PHT4;1 transcripts, and is more susceptible to virulent Pseudomonas syringae strains but not to several avirulent strains. Treatment with a salicylic acid (SA) agonist induced a similar level of resistance in Col-0 and pht4;1-1, suggesting that PHT4;1 acts upstream of the SA pathway. Genetic analysis further indicates that PHT4;1 contributes to SID2-dependent and -independent pathways. Transgenic expression of the DNA fragment containing the PHT4;1-1 region or the full-length PHT4;1 gene in wild-type conferred enhanced susceptibility to Pseudomonas infection. Interestingly, expression of PHT4;1 is regulated by the circadian clock. Together, these data suggest that the phosphate transporter PHT4;1 is critical for basal defense and also implicate a potential role of the circadian clock in regulating innate immunity of Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
122
|
Lee JY, Lu H. Plasmodesmata: the battleground against intruders. TRENDS IN PLANT SCIENCE 2011; 16:201-10. [PMID: 21334962 DOI: 10.1016/j.tplants.2011.01.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/10/2011] [Accepted: 01/22/2011] [Indexed: 05/03/2023]
Abstract
Plasmodesmata are intercellular channels that establish a symplastic communication pathway between neighboring cells in plants. Owing to this role, opportunistic microbial pathogens have evolved to exploit plasmodesmata as gateways to spread infection from cell to cell within the plant. However, although these pathogens have acquired the capacity to breach the plasmodesmal trafficking pathway, plants are unlikely to relinquish control over a structure essential for their survival so easily. In this review, we examine evidence that suggests plasmodesmata play an active role in plant immunity against viral, fungal and bacterial pathogens. We discuss how these pathogens differ in their lifestyles and infection modes, and present the defense strategies that plants have adopted to prevent the intercellular spread of an infection.
Collapse
Affiliation(s)
- Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA.
| | | |
Collapse
|
123
|
Ramírez V, Agorio A, Coego A, García-Andrade J, Hernández MJ, Balaguer B, Ouwerkerk PB, Zarra I, Vera P. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1920-35. [PMID: 21282403 PMCID: PMC3091096 DOI: 10.1104/pp.110.171843] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 01/31/2011] [Indexed: 05/18/2023]
Abstract
In this study, we show that the Arabidopsis (Arabidopsis thaliana) transcription factor MYB46, previously described to regulate secondary cell wall biosynthesis in the vascular tissue of the stem, is pivotal for mediating disease susceptibility to the fungal pathogen Botrytis cinerea. We identified MYB46 by its ability to bind to a new cis-element located in the 5' promoter region of the pathogen-induced Ep5C gene, which encodes a type III cell wall-bound peroxidase. We present genetic and molecular evidence indicating that MYB46 modulates the magnitude of Ep5C gene induction following pathogenic insults. Moreover, we demonstrate that different myb46 knockdown mutant plants exhibit increased disease resistance to B. cinerea, a phenotype that is accompanied by selective transcriptional reprogramming of a set of genes encoding cell wall proteins and enzymes, of which extracellular type III peroxidases are conspicuous. In essence, our results substantiate that defense-related signaling pathways and cell wall integrity are interconnected and that MYB46 likely functions as a disease susceptibility modulator to B. cinerea through the integration of cell wall remodeling and downstream activation of secondary lines of defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain (V.R., A.A., A.C., J.G.-A., M.J.H., B.B., P.V.); Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands (P.B.F.O.); Departamento de Fisiología Vegetal, Universidad de Santiago, Campus Sur, 15782 Santiago de Compostela, Spain (I.Z.)
| |
Collapse
|
124
|
Natural allelic variation underlying a major fitness trade-off in Arabidopsis thaliana. Nature 2010; 465:632-6. [PMID: 20520716 PMCID: PMC3055268 DOI: 10.1038/nature09083] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 04/14/2010] [Indexed: 11/08/2022]
Abstract
Plants can defend themselves against a wide array of enemies, yet one of the most striking observations is the variability in the effectiveness of such defences, both within and between species. Some of this variation can be explained by conflicting pressures from pathogens with different modes of attack1. A second explanation comes from an evolutionary tug of war, in which pathogens adapt to evade detection, until the plant has evolved new recognition capabilities for pathogen invasion2-5. If selection is, however, sufficiently strong, susceptible hosts should remain rare. That this is not the case is best justified by costs incurred from constitutive defences in a pest free environment6-11. Using a combination of forward genetics and genome-wide association analyses, we demonstrate that allelic diversity at a single locus, ACCELERATED CELL DEATH 6 (ACD6)12,13, underpins dramatic pleiotropic differences in both vegetative growth and resistance to microbial infection and herbivory among natural Arabidopsis thaliana strains. A hyperactive ACD6 allele, compared to the reference allele, strongly enhances resistance to a broad range of pathogens from different phyla, but at the same time slows the production of new leaves and greatly reduces the biomass of mature leaves. This allele segregates at intermediate frequency both throughout the worldwide range of A. thaliana and within local populations, consistent with this allele providing substantial fitness benefits despite its drastic impact on growth.
Collapse
|
125
|
Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, Xie Q. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:12-23. [PMID: 20042021 DOI: 10.1111/j.1365-313x.2009.04120.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Geminiviruses include a large number of single-stranded DNA viruses that are emerging as useful tools to dissect many fundamental processes in plant hosts. However, there have been no reports yet regarding the genetic dissection of the geminivirus-plant interaction. Here, a high-throughput approach was developed to screen Arabidopsis activation-tagged mutants which are resistant to geminivirus Beet severe curly top virus (BSCTV) infection. A mutant, lsb1 (less susceptible to BSCTV 1), was identified, in which BSCTV replication was impaired and BSCTV infectivity was reduced. We found that the three genes closest to the T-DNA were up-regulated in lsb1, and the phenotypes of lsb1 could only be recapitulated by the overexpression of GDU3 (GLUTAMINE DUMPER 3), a gene implicated in amino acid transport. We further demonstrated that activation of LSB1/GDU3 increased the expression of components in the salicylic acid (SA) pathway, which is known to counter geminivirus infection, including the upstream regulator ACD6. These data indicate that up-regulation of LSB1/GDU3 affects BSCTV infection by activating the SA pathway. This study thus provides a new approach to study of the geminivirus-host interaction.
Collapse
Affiliation(s)
- Hao Chen
- Stake Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 West Xin-Gang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010; 465:627-31. [PMID: 20336072 PMCID: PMC3023908 DOI: 10.1038/nature08800] [Citation(s) in RCA: 1200] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 12/30/2009] [Indexed: 11/09/2022]
Abstract
Although pioneered by human geneticists as a potential solution to the challenging problem of finding the genetic basis of common human diseases1,2, advances in genotyping and sequencing technology have made genome-wide association (GWA) studies an obvious general approach for studying the genetics of natural variation and traits of agricultural importance. They are particularly useful when inbred lines are available because once these lines have been genotyped, they can be phenotyped multiple times, making it possible (as well as extremely cost-effective) to study many different traits in many different environments, while replicating the phenotypic measurements to reduce environmental noise. Here we demonstrate the power of this approach by carrying out a GWA study of 107 phenotypes in Arabidopsis thaliana, a widely distributed, predominantly selfing model plant, known to harbor considerable genetic variation for many adaptively important traits3. Our results are dramatically different from those of human GWA studies in that we identify many common alleles with major effect, but they are also, in many cases, harder to interpret because confounding by complex genetics and population structure make it difficult to distinguish true from false associations. However, a priori candidates are significantly overrepresented among these associations as well, making many of them excellent candidates for follow-up experiments by the Arabidopsis community. Our study clearly demonstrates the feasibility of GWA studies in A. thaliana, and suggests that the approach will be appropriate for many other organisms.
Collapse
Affiliation(s)
- Susanna Atwell
- Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Kami C, Lorrain S, Hornitschek P, Fankhauser C. Light-regulated plant growth and development. Curr Top Dev Biol 2010; 91:29-66. [PMID: 20705178 DOI: 10.1016/s0070-2153(10)91002-8] [Citation(s) in RCA: 458] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Collapse
Affiliation(s)
- Chitose Kami
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | | | | |
Collapse
|
128
|
Huang J, Zhao X, Yu H, Ouyang Y, Wang L, Zhang Q. The ankyrin repeat gene family in rice: genome-wide identification, classification and expression profiling. PLANT MOLECULAR BIOLOGY 2009; 71:207-226. [PMID: 19609685 DOI: 10.1007/s11103-009-9518-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Accepted: 06/12/2009] [Indexed: 05/28/2023]
Abstract
Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice.
Collapse
Affiliation(s)
- Jianyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | | | | | | | |
Collapse
|
129
|
Lu H. Dissection of salicylic acid-mediated defense signaling networks. PLANT SIGNALING & BEHAVIOR 2009; 4:713-7. [PMID: 19820324 PMCID: PMC2801381 DOI: 10.4161/psb.4.8.9173] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/03/2009] [Indexed: 05/18/2023]
Abstract
The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
130
|
Kim C, Lemke C, Paterson AH. Functional dissection of drought-responsive gene expression patterns in Cynodon dactylon L. PLANT MOLECULAR BIOLOGY 2009; 70:1-16. [PMID: 19152115 DOI: 10.1007/s11103-009-9453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 01/05/2009] [Indexed: 05/08/2023]
Abstract
Water deficit is one of the main abiotic factors that affect plant productivity in subtropical regions. To identify genes induced during the water stress response in Bermudagrass (Cynodon dactylon), cDNA macroarrays were used. The macroarray analysis identified 189 drought-responsive candidate genes from C. dactylon, of which 120 were up-regulated and 69 were down-regulated. The candidate genes were classified into seven groups by cluster analysis of expression levels across two intensities and three durations of imposed stress. Annotation using BLASTX suggested that up-regulated genes may be involved in proline biosynthesis, signal transduction pathways, protein repair systems, and removal of toxins, while down-regulated genes were mostly related to basic plant metabolism such as photosynthesis and glycolysis. The functional classification of gene ontology (GO) was consistent with the BLASTX results, also suggesting some crosstalk between abiotic and biotic stress. Comparative analysis of cis-regulatory elements from the candidate genes implicated specific elements in drought response in Bermudagrass. Although only a subset of genes was studied, Bermudagrass shared many drought-responsive genes and cis-regulatory elements with other botanical models, supporting a strategy of cross-taxon application of drought-responsive genes, regulatory cues, and physiological-genetic information.
Collapse
Affiliation(s)
- Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA 30602, USA
| | | | | |
Collapse
|
131
|
Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L. Early genomic responses to salicylic acid in Arabidopsis. PLANT MOLECULAR BIOLOGY 2009; 70:79-102. [PMID: 19199050 DOI: 10.1007/s11103-009-9458-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 01/11/2009] [Indexed: 05/21/2023]
Abstract
Salicylic acid (SA) is a stress-induced hormone involved in the activation of defense genes. Here we analyzed the early genetic responses to SA of wild type and npr1-1 mutant Arabidopsis seedlings, using Complete Arabidopsis Transcriptome MicroArray (CATMAv2) chip. We identified 217 genes rapidly induced by SA (early SAIGs); 193 by a NPR1-dependent and 24 by a NPR1-independent pathway. These two groups of genes also differed in their functional classification, expression profiles and over-representation of cis-elements, supporting differential pathways for their activation. Examination of the expression patterns for selected early SAIGs from both groups indicated that their activation by SA required TGA2/5/6 subclass of transcription factors. These genes were also activated by Pseudomonas syringae pv. tomato AvrRpm1, suggesting that they might play a role in defense against bacteria. This study gives a global idea of the early response to SA in Arabidopsis seedlings, expanding our knowledge about SA function in plant defense.
Collapse
Affiliation(s)
- Francisca Blanco
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, P.O. Box 114-D, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
132
|
Lu H, Salimian S, Gamelin E, Wang G, Fedorowski J, LaCourse W, Greenberg JT. Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:401-12. [PMID: 19144005 PMCID: PMC2727925 DOI: 10.1111/j.1365-313x.2009.03791.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pathogen infection leads to the activation of defense signaling networks in plants. To study these networks and the relationships between their components, we introduced various defense mutations into acd6-1, a constitutive gain-of-function Arabidopsis mutant that is highly disease resistant. acd6-1 plants show spontaneous cell death, reduced stature, and accumulate high levels of camalexin (an anti-fungal compound) and salicylic acid (SA; a signaling molecule). Disruption of several defense genes revealed that in acd6-1, SA levels/signaling were positively correlated with the degree of disease resistance and defense gene expression. Salicylic acid also modulates the severity of cell death. However, accumulation of camalexin in acd6-1 is largely unaffected by reducing the level of SA. In addition, acd6-1 shows ethylene- and jasmonic acid-mediated signaling that is antagonized and therefore masked by the presence of SA. Mutant analysis revealed a new relationship between the signaling components NPR1 and PAD4 and also indicated that multiple defense pathways were required for phenotypes conferred by acd6-1. In addition, our data confirmed that the size of acd6-1 was inversely correlated with SA levels/signaling. We exploited this unique feature of acd6-1 to identify two genes disrupted in acd6-1 suppressor (sup) mutants: one encodes a known SA biosynthetic component (SID2) and the other encodes an uncharacterized putative metalloprotease (At5g20660). Taken together, acd6-1 is a powerful tool not only for dissecting defense regulatory networks but also for discovering novel defense genes.
Collapse
Affiliation(s)
- Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
- To whom correspondence should be addressed: , 410-455-5972 (phone); 410-455-3875 (fax)
| | - Sasan Salimian
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Emily Gamelin
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 E. 57 street, Chicago, IL 60637
| | - Guoying Wang
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jennifer Fedorowski
- Department of Biochemistry and Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - William LaCourse
- Department of Biochemistry and Chemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 E. 57 street, Chicago, IL 60637
| |
Collapse
|
133
|
Zhang X, Li D, Zhang H, Wang X, Zheng Z, Song F. Molecular characterization of rice OsBIANK1, encoding a plasma membrane-anchored ankyrin repeat protein, and its inducible expression in defense responses. Mol Biol Rep 2009; 37:653-60. [PMID: 19288292 DOI: 10.1007/s11033-009-9507-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
A rice gene, OsBIANK1, encoding a protein containing a typical ankyrin repeat domain, was cloned and identified. The OsBIANK1 protein, consisting of 329 amino acids, contains a conserved ankyrin repeat domain with two ankyrin repeats organized in tandem and was showed to be localized on cytoplasmic membrane during transient expression in onion epidermal cells. Expression of OsBIANK1 was induced by treatment with benzothiadiazole (BTH), a chemical inducer capable of inducing disease resistance response in rice. In BTH-treated rice seedlings, expression of OsBIANK1 was further induced by infection with Magnaporthe grisea, the rice blast fungus, as compared with those in water-treated seedlings. Our preliminary results confirm previous evidences that OsBIANK1 may be involved in regulation of disease resistance response in rice.
Collapse
Affiliation(s)
- Xinchun Zhang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, 310029, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
134
|
Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC. Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1435-51. [PMID: 19176722 PMCID: PMC2649394 DOI: 10.1104/pp.108.132985] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 01/23/2009] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) is a critical mediator of plant innate immunity. It plays an important role in limiting the growth and reproduction of the virulent powdery mildew (PM) Golovinomyces orontii on Arabidopsis (Arabidopsis thaliana). To investigate this later phase of the PM interaction and the role played by SA, we performed replicated global expression profiling for wild-type and SA biosynthetic mutant isochorismate synthase1 (ics1) Arabidopsis from 0 to 7 d after infection. We found that ICS1-impacted genes constitute 3.8% of profiled genes, with known molecular markers of Arabidopsis defense ranked very highly by the multivariate empirical Bayes statistic (T(2) statistic). Functional analyses of T(2)-selected genes identified statistically significant PM-impacted processes, including photosynthesis, cell wall modification, and alkaloid metabolism, that are ICS1 independent. ICS1-impacted processes include redox, vacuolar transport/secretion, and signaling. Our data also support a role for ICS1 (SA) in iron and calcium homeostasis and identify components of SA cross talk with other phytohormones. Through our analysis, 39 novel PM-impacted transcriptional regulators were identified. Insertion mutants in one of these regulators, PUX2 (for plant ubiquitin regulatory X domain-containing protein 2), results in significantly reduced reproduction of the PM in a cell death-independent manner. Although little is known about PUX2, PUX1 acts as a negative regulator of Arabidopsis CDC48, an essential AAA-ATPase chaperone that mediates diverse cellular activities, including homotypic fusion of endoplasmic reticulum and Golgi membranes, endoplasmic reticulum-associated protein degradation, cell cycle progression, and apoptosis. Future work will elucidate the functional role of the novel regulator PUX2 in PM resistance.
Collapse
Affiliation(s)
- Divya Chandran
- Department of Plant and Microbial Biology , University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Sakamoto H, Matsuda O, Iba K. ITN1, a novel gene encoding an ankyrin-repeat protein that affects the ABA-mediated production of reactive oxygen species and is involved in salt-stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:411-22. [PMID: 18643991 DOI: 10.1111/j.1365-313x.2008.03614.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Salt stress and abscisic acid (ABA) induce accumulation of reactive oxygen species (ROS) in plant cells. ROS not only act as second messengers for the activation of salt-stress responses, but also have deleterious effects on plant growth due to their cytotoxicity. Therefore, the timing and degree of activation of ROS-producing or ROS-scavenging enzymes must be tightly regulated under salt-stress conditions. We identified a novel locus of Arabidopsis, designated itn1 (increased tolerance to NaCl1), whose disruption leads to increased salt-stress tolerance in vegetative tissues. ITN1 encodes a transmembrane protein with an ankyrin-repeat motif that has been implicated in diverse cellular processes such as signal transduction. Comparative microarray analysis between wild-type and the itn1 mutant revealed that induction of genes encoding the ROS-producing NADPH oxidases (RBOHC and RBOHD) under salt-stress conditions was suppressed in the mutant. This suppression was accompanied by a corresponding reduction in ROS accumulation. The ABA-induced expression of RBOHC and RBOHD was also suppressed in the mutant, as was the case for RD29A, an ABA-inducible marker gene. However, the ABA-induced expression of another marker gene, RD22, was not impaired in the mutant. These results suggest that the itn1 mutation partially impairs ABA signaling pathways, possibly leading to the reduction in ROS accumulation under salt-stress conditions. We discuss the possible mechanisms underlying the salt-tolerant phenotype of the itn1 mutant.
Collapse
Affiliation(s)
- Hikaru Sakamoto
- Department of Biological Sciences, Faculty of Sciences, Kyushu University, Fukuoka, 812-8581 Japan
| | | | | |
Collapse
|
136
|
Hong JK, Choi DS, Kim SH, Yi SY, Kim YJ, Hwang BK. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility. PLANTA 2008; 228:485-497. [PMID: 18506481 DOI: 10.1007/s00425-008-0752-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
Plant integral membrane proteins have essential roles in diverse internal and external physiological processes as signal receptors or ion transporters. The pepper CaPIMP1 gene encoding a putative integral membrane protein with four transmembrane domains was isolated and functionally characterized from pepper leaves infected with the avirulent strain Xanthomonas campestris pv. vesicatoria (Xcv). CaPIMP1-green fluorescence protein (GFP) fusions localized to the plasma membrane in onion cells, as observed by confocal microscopy. CaPIMP1 was expressed in an organ-specific manner in healthy pepper plants. Infection with Xcv induced differential accumulation of CaPIMP1 transcripts in pepper leaf tissues during compatible and incompatible interactions. The function of CaPIMP1 was examined by using the virus-induced gene silencing technique in pepper plants and by overexpression in Arabidopsis. CaPIMP1-silenced pepper plants were highly susceptible to Xcv infection and expressed lower levels of the defense-related gene CaSAR82A. CaPIMP1 overexpression (CaPIMP1-OX) in transgenic Arabidopsis conferred enhanced resistance to P. syringae pv. tomato infection, accompanied by enhanced AtPDF1.2 gene expression. In contrast, CaPIMP1-OX plants were highly susceptible to the biotrophic oomycete Hyaloperonospora parasitica. Taken together, we propose that CaPIMP1 plays distinct roles in both bacterial disease resistance and oomycete disease susceptibility.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
137
|
Lee MW, Jelenska J, Greenberg JT. Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:452-65. [PMID: 18266921 DOI: 10.1111/j.1365-313x.2008.03439.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant infection responses result from the interaction of pathogen-derived molecules with host components. For the bacterial pathogen Pseudomonas syringae, these molecules are often effector proteins (Hops) that are injected into plant cells. P. syringae carrying hopW1-1 have restricted host range on some Arabidopsis thaliana accessions. At least two Arabidopsis genomic regions are important for the natural variation that conditions resistance to P. syringae/hopW1-1. HopW1-1 elicits a resistance response, and consequently the accumulation of the signal molecule salicylic acid (SA) and transcripts of HWI1 (HopW1-1-Induced Gene1). This work identified three HopW1-1-interacting (WIN) plant proteins: a putative acetylornithine transaminase (WIN1), a protein phosphatase (WIN2) and a firefly luciferase superfamily protein (WIN3). Importantly, WIN2 and WIN3 are partially required for HopW1-1-induced disease resistance, SA production and HWI1 expression. The requirement for WIN2 is specific for HopW1-1-induced resistance, whereas WIN3 is important for responses to several effectors. Overexpression of WIN2 or WIN3 confers resistance to virulent P. syringae, which is consistent with these proteins being defense components. Several known genes important for SA production or signaling are also partially (EDS1, NIM1/NPR1, ACD6 and ALD1) or strongly (PAD4) required for the robust resistance induced by HopW1-1, suggesting a key role for SA in the HopW1-1-induced resistance response. Finally, WIN1 is an essential protein, the overexpression of which over-rides the resistance response to HopW1-1 (and several other defense-inducing effectors), and delays SA and HWI1 induction. Thus, the WIN proteins have different roles in modulating plant defense.
Collapse
Affiliation(s)
- Min Woo Lee
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57th Street EBC410, Chicago, IL 60637, USA
| | | | | |
Collapse
|
138
|
Kang B, Grancher N, Koyffmann V, Lardemer D, Burney S, Ahmad M. Multiple interactions between cryptochrome and phototropin blue-light signalling pathways in Arabidopsis thaliana. PLANTA 2008; 227:1091-1099. [PMID: 18183416 DOI: 10.1007/s00425-007-0683-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/23/2007] [Indexed: 05/25/2023]
Abstract
Higher plants contain two structurally unrelated flavoprotein blue-light photoreceptors, the cryptochromes and the phototropins, which mediate largely distinct response pathways. Cryptochromes regulate plant development and photomorphogenesis whereas phototropins are primarily implicated in photomovement responses such as phototropism and chloroplast relocation. In the present study we identify interactions between cryptochromes and phototropins in several photoresponses of Arabidopsis thaliana. Cryptochromes are shown to exert a positive effect on phototropic curvature under long-term irradiation conditions. Specifically, in a phot1-deficient genetic background (phot1 mutant), curvature is reduced in the absence of cryptochromes, particularly at wavelengths where cryptochromes show preferential absorption. Phototropins in turn exert a small promotive effect on such cryptochrome-mediated responses as hypocotyl elongation and anthocyanin accumulation. These effects are apparent in a cryptochrome-deficient (cry1cry2 mutant) genetic background. In addition to positive interactions between signalling pathways, we demonstrate that the cryptochromes also exert a negative regulatory effect. Levels of phot1 protein decrease in blue light as a function of cryptochrome photoreceptor activation. This negative regulation occurs in part at the level of phot1 transcription but may also involve post-transcriptional mechanisms. These two classes of photoreceptor thereby reciprocally modulate their overall responsivity to blue light through multiple forms of interaction.
Collapse
Affiliation(s)
- Bin Kang
- Penn State University, Media, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
139
|
Weston DJ, Gunter LE, Rogers A, Wullschleger SD. Connecting genes, coexpression modules, and molecular signatures to environmental stress phenotypes in plants. BMC SYSTEMS BIOLOGY 2008; 2:16. [PMID: 18248680 PMCID: PMC2277374 DOI: 10.1186/1752-0509-2-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/04/2008] [Indexed: 11/21/2022]
Abstract
Background One of the eminent opportunities afforded by modern genomic technologies is the potential to provide a mechanistic understanding of the processes by which genetic change translates to phenotypic variation and the resultant appearance of distinct physiological traits. Indeed much progress has been made in this area, particularly in biomedicine where functional genomic information can be used to determine the physiological state (e.g., diagnosis) and predict phenotypic outcome (e.g., patient survival). Ecology currently lacks an analogous approach where genomic information can be used to diagnose the presence of a given physiological state (e.g., stress response) and then predict likely phenotypic outcomes (e.g., stress duration and tolerance, fitness). Results Here, we demonstrate that a compendium of genomic signatures can be used to classify the plant abiotic stress phenotype in Arabidopsis according to the architecture of the transcriptome, and then be linked with gene coexpression network analysis to determine the underlying genes governing the phenotypic response. Using this approach, we confirm the existence of known stress responsive pathways and marker genes, report a common abiotic stress responsive transcriptome and relate phenotypic classification to stress duration. Conclusion Linking genomic signatures to gene coexpression analysis provides a unique method of relating an observed plant phenotype to changes in gene expression that underlie that phenotype. Such information is critical to current and future investigations in plant biology and, in particular, to evolutionary ecology, where a mechanistic understanding of adaptive physiological responses to abiotic stress can provide researchers with a tool of great predictive value in understanding species and population level adaptation to climate change.
Collapse
Affiliation(s)
- David J Weston
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6422, USA.
| | | | | | | |
Collapse
|
140
|
Golisz A, Sugano M, Fujii Y. Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3099-109. [PMID: 18603616 PMCID: PMC2504356 DOI: 10.1093/jxb/ern168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Buckwheat (Fagopyrum esculentum Moench) is an important annual plant cultivated for grain or as a cover crop in many countries, and it is also used for weed suppression in agro-economic systems through its release of allelochemicals. Little is known, however, concerning the mode of action of allelochemicals or plant defence response against them. Here, microarrays revealed 94, 85, and 28 genes with significantly higher expression after 6 h of exposure to the allelochemicals fagomine, gallic acid, and rutin, respectively, compared with controls. These induced genes fell into different functional categories, mainly: interaction with the environment; subcellular localization; protein with binding function or cofactor requirement; cell rescue; defence and virulence; and metabolism. Consistent with these results, plant response to allelochemicals was similar to that for pathogens (biotic stress) or herbicides (abiotic stress), which increase the concentration of reactive oxygen species (ROS; with consequent oxidative stress) in plant cells. The data indicate that allelochemicals might have relevant functions, at least in part, in the cross-talk between biotic and abiotic stress signalling because they generate ROS, which has been proposed as a key shared process between these two stress mechanisms.
Collapse
|
141
|
Lee MW, Lu H, Jung HW, Greenberg JT. A key role for the Arabidopsis WIN3 protein in disease resistance triggered by Pseudomonas syringae that secrete AvrRpt2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1192-200. [PMID: 17918621 DOI: 10.1094/mpmi-20-10-1192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Effector proteins injected by the pathogenic bacteria Pseudomonas syringae into plants can have profound effects on the pathogen-host interaction due to their efficient recognition by plants and the subsequent triggering of defenses. The AvrRpt2 effector triggers strong local and systemic defense (called systemic acquired resistance [SAR]) responses in Arabidopsis thaliana plants that harbor a functional RPS2 gene that encodes an R protein in the coiled-coil, nucleotide-binding domain, leucine-rich repeat class. The newly identified win3-T mutant shows greatly reduced resistance to P syringae carrying avrRpt2. In win3-T plants, RIN4 cleavage, an early AvrRpt2-induced event, is normal. However, salicylic acid accumulation is compromised, as is SAR induction and the local hypersensitive cell death response after infection by P syringae carrying avrRpt2. WIN3 encodes a member of the firefly luciferase protein superfamily. Expression of WIN3 at an infection site partially requires PAD4, a protein known to play a quantitative role in RPS2-mediated signaling. WIN3 expression in tissue distal to an infection site requires multiple salicylic acid regulatory genes. Finally, win3-T plants show modestly increased susceptibility to virulent P syringae and modestly reduced SAR in response to P. syringae carrying avrRpm1. Thus, WIN3 is a key element of the RPS2 defense response pathway and a basal and systemic defense component.
Collapse
Affiliation(s)
- Min Woo Lee
- Molecular Genetics and Cell Biology Department, The University of Chicago, 1103 East 57th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
142
|
Lu S, Sun YH, Amerson H, Chiang VL. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 51:1077-98. [PMID: 17635765 DOI: 10.1111/j.1365-313x.2007.03208.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that can have large-scale regulatory effects on development and on stress responses in plants. The endemic rust fungus Cronartium quercuum f. sp. fusiforme causes fusiform rust disease in pines, resulting in the development of spindle-shaped galls (cankers) on branches or stems. This disease is the most destructive disease of pines in the southern USA. To test whether miRNAs play roles in fusiform rust gall development, we cloned and identified 26 miRNAs from stem xylem of loblolly pine (Pinus taeda), which belong to four conserved and seven loblolly pine-specific miRNA families. Forty-three targets for nine of these 11 families were experimentally validated in vivo. Sequence analysis suggested that the target cleavage site may be determined not only by the miRNA sequence but also by the target sequence. Members of three loblolly pine-specific miRNA families target a large number of non-protein coding transcripts, and one of these families could also initiate secondary phased production from its target of a putative trans-acting short interfering RNA (ta-siRNA). Expression of 10 of these 11 miRNA families was significantly repressed in the galled stem. PCR-based transcript quantification showed complex expression patterns of these miRNAs and their targets in the galled tissues and in tissues surrounding the gall. We further predict 82 plant disease-related transcripts that may also response to miRNA regulation in pine. These results reveal a new genetic basis for host-pathogen interactions in the development of fusiform rust gall.
Collapse
Affiliation(s)
- Shanfa Lu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
143
|
Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 2007; 17:499-508. [PMID: 17350264 PMCID: PMC1857343 DOI: 10.1016/j.cub.2007.02.028] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 02/09/2007] [Accepted: 02/12/2007] [Indexed: 11/15/2022]
Abstract
BACKGROUND The plant pathogen Pseudomonas syringae injects 20-40 different proteins called effectors into host plant cells, yet the functions and sites of action of these effectors in promoting pathogenesis are largely unknown. Plants in turn defend themselves against P. syringae by activating the salicylic acid (SA)-mediated signaling pathway. The P. syringae-specific HopI1 effector has a putative chloroplast-targeting sequence and a J domain. J domains function by activating 70 kDa heat-shock proteins (Hsp70). RESULTS HopI1 is a ubiquitous P. syringae virulence effector that acts inside plant cells. When expressed in plants, HopI1 localizes to chloroplasts, the site of SA synthesis. HopI1 causes chloroplast thylakoid structure remodeling and suppresses SA accumulation. HopI1's C terminus has bona fide J domain activity that is necessary for HopI1-mediated virulence and thylakoid remodeling. Furthermore, HopI1-expressing plants have increased heat tolerance, establishing that HopI1 can engage the plant stress-response machinery. CONCLUSIONS These results strongly suggest that chloroplast Hsp70 is targeted by the P. syringae HopI1 effector to promote bacterial virulence by suppressing plant defenses. The targeting of Hsp70 function through J domain proteins is known to occur in a mammalian virus, SV40. However, this is the first example of a bacterial pathogen exploiting a J domain protein to promote pathogenesis through alterations of chloroplast structure and function.
Collapse
Affiliation(s)
- Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
| | - Nan Yao
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
- State Key Laboratory of Biocontrol, College of Life Science, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Boris A. Vinatzer
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
- Current Address: Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Latham Hall, Blacksburg, VA 24061, USA
| | - Christine M. Wright
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh PA 15260, USA
| | - Jeffrey L. Brodsky
- Department of Biological Sciences, University of Pittsburgh, 274 Crawford Hall, Pittsburgh PA 15260, USA
| | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 1103 East 57 Street, EBC409, Chicago IL 60637, USA
| |
Collapse
|
144
|
Kumagai H, Hakoyama T, Umehara Y, Sato S, Kaneko T, Tabata S, Kouchi H. A novel ankyrin-repeat membrane protein, IGN1, is required for persistence of nitrogen-fixing symbiosis in root nodules of Lotus japonicus. PLANT PHYSIOLOGY 2007; 143:1293-305. [PMID: 17277093 PMCID: PMC1820915 DOI: 10.1104/pp.106.095356] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix(-) mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8-9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis.
Collapse
Affiliation(s)
- Hirotaka Kumagai
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
145
|
Eulgem T, Tsuchiya T, Wang XJ, Beasley B, Cuzick A, Tör M, Zhu T, McDowell JM, Holub E, Dangl JL. EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:829-39. [PMID: 17253987 DOI: 10.1111/j.1365-313x.2006.02999.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Specific disease resistance of Arabidopsis thaliana against the Hyaloperonospora parasitica isolate Hiks1 (HpHiks1) is mediated by RPP7. Although this disease resistance gene encodes a typical nucleotide binding site leucine-rich repeat (NB-LRR) disease resistance protein, its function is independent of the defense hormone salicylic acid and most known genes required for plant immune responses. We identified EDM2 (enhanced downy mildew 2) in a genetic screen for RPP7 suppressors. Mutations of EDM2 phenocopy RPP7 mutations, but do not affect other tested disease resistance genes. We isolated EDM2 by map-based cloning. The predicted EDM2 protein is structurally unrelated to previously identified components of the plant immune system, bears typical features of transcriptional regulators, including plant homeodomain (PHD)-finger-like domains, and defines a plant-specific protein family. In edm2 mutants both constitutive and HpHiks1-induced RPP7 transcript levels are reduced, suggesting that EDM2 is either a direct or an indirect regulator of RPP7 expression. Microarray analyses defined a set of defense-associated genes, the expression of which is suppressed during successful HpHiks1 colonization of either rpp7 or edm2 plants. This transcriptional phenotype is counteracted by an EDM2/RPP7-dependent mechanism.
Collapse
Affiliation(s)
- Thomas Eulgem
- Department of Biology, CB#3280 University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Hong JK, Choi HW, Hwang IS, Hwang BK. Role of a novel pathogen-induced pepper C3-H-C4 type RING-finger protein gene, CaRFPI, in disease susceptibility and osmotic stress tolerance. PLANT MOLECULAR BIOLOGY 2007; 63:571-88. [PMID: 17149652 DOI: 10.1007/s11103-006-9110-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 11/01/2006] [Indexed: 05/12/2023]
Abstract
Limited information is available about the roles of RING-finger proteins in plant defense. A pepper CaRFP1 encoding the C3-H-C4 type RING-finger protein that physically interacted with the basic PR-1 protein CABPR1 was isolated from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. The CaRFP1 protein has VWFA domain, and N-terminal serine-rich and C-terminal cysteine-rich regions. The CaRFP1 transcripts accumulated earlier than did those of the basic PR-1 gene CABPR1 during the incompatible interaction of pepper leaves with X. campestris pv. vesicatoria, as well as in the systemic, uninoculated pepper leaf tissues. The CaRFP1 gene also was induced in pepper leaf tissues infected by Colletotrichum coccodes. The CaRFP1 gene was strongly induced much earlier by salicylic acid, ethylene and methyl jasmonate treatments, as well as environmental stresses including methyl viologen, mannitol and NaCl treatments. Overexpression of the CaRFP1 gene in the transgenic Arabidopsis plants conferred disease susceptibility to Pseudomonas syringae pv. tomato infection, accompanied by reduced PR-2 and PR-5 gene expression, suggesting that the CaRFP1 acts as an E3 ligase for polyubiquitination of target PR proteins. Exogenous salicylic acid treatment also abolished PR-2 and PR-5 gene expression in the transgenic plants. Differential osmotic stress tolerance was induced by high salt and drought in the CaRFPI-overexpressing plants during germination and seedling development, which was closely correlated with abscisic acid sensitivity of Arabidopsis plants. These results suggest that the CaRFP1 gene functions as an early defense regulator controlling bacterial disease susceptibility and osmotic stress tolerance.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
147
|
Park SJ, Huang Y, Ayoubi P. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. PLANTA 2006; 223:932-47. [PMID: 16292568 DOI: 10.1007/s00425-005-0148-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/28/2005] [Indexed: 05/03/2023]
Abstract
The phloem-feeding by greenbug (Schizaphis graminum) elicits unique interactions with their host plants. To investigate the expression profiles of sorghum genes responsive to greenbug feeding, two subtractive cDNA libraries were constructed through different combinatorial subtractions in a strong greenbug resistance sorghum M627 line and a susceptible Tx7000 line with or without greenbug infestation. A total of 3,508 cDNAs were selected from the two cDNA libraries, and subsequent cDNA microarray and northern blot analyses were performed for identification of sorghum genes responsive to greenbugs. In total, 157 sorghum transcripts were identified to be differentially expressed by greenbug feeding. The greenbug responsive genes were isolated and classified into nine categories according to the functional roles in plant metabolic pathways, such as defense, signal transduction, cell wall fortification, oxidative burst/stress, photosynthesis, development, cell maintenance, abiotic stress, and unknown function. Overall, the profiles of sorghum genes, responsive to greenbug phloem-feeding shared common identities with other expression profiles known to be elicited by diverse stresses, including pathogenesis, abiotic stress, and wounding. In addition to well-known defense related regulators such as salicylic acid, jasmonic acid, and abscisic acid, auxin and gibberellic acid were also involved in mediation of the defense responses against greenbug phloem-feeding in sorghum.
Collapse
Affiliation(s)
- Sung-Jin Park
- Plant Science Program and Department of Forestry, Oklahoma State University, Stillwater, 74078, USA
| | | | | |
Collapse
|
148
|
|
149
|
Lu H, Liu Y, Greenberg JT. Structure-function analysis of the plasma membrane- localized Arabidopsis defense component ACD6. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:798-809. [PMID: 16297071 DOI: 10.1111/j.1365-313x.2005.02567.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The ACCELERATED CELL DEATH 6 (ACD6) protein, composed of an ankyrin-repeat domain and a predicted transmembrane region, is a necessary positive regulator of Arabidopsis defenses. ACD6 overexpression confers enhanced disease resistance by priming stronger and quicker defense responses during pathogen infection, plant development or treatment with an agonist of the key defense regulator salicylic acid (SA). Modulation of ACD6 affects both SA-dependent and SA-independent defenses. ACD6 localizes to the plasma membrane and is an integral membrane protein with a cytoplasmic ankyrin domain. An activated version of ACD6 with a predicted transmembrane helix mutation called ACD6-1 has the same localization and overall topology as the wild-type protein. A genetic screen for mutants that suppress acd6-1-conferred phenotypes identified 17 intragenic mutations of ACD6. The majority of these mutations reside in the ankyrin domain and in predicted transmembrane helices, suggesting that both ankyrin and transmembrane domains are important for ACD6 function. One mutation (S638F) also identified a key residue in a putative loop between two transmembrane helices. This mutation did not alter the stability or localization of ACD6, suggesting that S635 is a critical residue for ACD6 function. Based on structural modeling, two ankyrin domain mutations are predicted to be in surface-accessible residues. As ankyrin repeats are protein interaction modules, these mutations may disrupt protein-protein interactions. A plausible scenario is that information exchange between the ankyrin and transmembrane domains is involved in activating defense signaling.
Collapse
Affiliation(s)
- Hua Lu
- Department of Molecular Genetics and Cell Biology, The University of Chicago, IL 60637, USA
| | | | | |
Collapse
|
150
|
Van Damme M, Andel A, Huibers RP, Panstruga R, Weisbeek PJ, Van den Ackerveken G. Identification of arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:583-92. [PMID: 15986928 DOI: 10.1094/mpmi-18-0583] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plants are susceptible to a limited number of pathogens. Most infections fail due to active defense or absence of compatibility. Many components of the plant's surveillance system and defense arsenal have been identified in the last decades. However, knowledge is limited on compatibility; in particular, the role of plant factors in the infection process. To gain insight into these processes, we have initiated an Arabidopsis thaliana mutant screen for reduced susceptibility to the downy mildew pathogen Hyaloperonospora parasitica. Ethyl methane sulfonate (EMS) mutants were generated in the highly susceptible Arabidopsis line Ler eds1-2. Eight downy mildew-resistant (dmr) mutants were analyzed in detail, corresponding to six different loci. Microscopic analysis showed that, in all mutants, H. parasitica growth was severely reduced. Resistance of dmr3, dmr4, and dmr5 was associated with constitutive expression of PR-1. Furthermore, dmr3 and dmr4, but not dmr5, also were resistant to Pseudomonas syringae and Golovinomyces orontii, respectively. However, enhanced activation of plant defense was not observed in dmr1, dmr2, and dmr6. We postulate that, in these susceptibility mutants, cellular processes are disrupted which are required for H. parasitica infection. This interesting new set of mutants provides a basis to elucidate the molecular processes underlying susceptibility to downy mildew in Arabidopsis.
Collapse
Affiliation(s)
- Mireille Van Damme
- Department of Molecular and Cellular Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|