101
|
Whipple CJ, Hall DH, DeBlasio S, Taguchi-Shiobara F, Schmidt RJ, Jackson DP. A conserved mechanism of bract suppression in the grass family. THE PLANT CELL 2010; 22:565-78. [PMID: 20305121 PMCID: PMC2861461 DOI: 10.1105/tpc.109.073536] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Suppression of inflorescence leaf, or bract, growth has evolved multiple times in diverse angiosperm lineages, including the Poaceae and Brassicaceae. Studies of Arabidopsis thaliana mutants have revealed several genes involved in bract suppression, but it is not known if these genes play a similar role in other plants with suppressed bracts. We identified maize (Zea mays) tassel sheath (tsh) mutants, characterized by the loss of bract suppression, that comprise five loci (tsh1-tsh5). We used map-based cloning to identify Tsh1 and found that it encodes a GATA zinc-finger protein, a close homolog of HANABA TARANU (HAN) of Arabidopsis. The bract suppression function of Tsh1 is conserved throughout the grass family, as we demonstrate that the rice (Oryza sativa) NECK LEAF1 (NL1) and barley (Hordeum vulgare) THIRD OUTER GLUME (TRD) genes are orthologous with Tsh1. Interestingly, NL1/Tsh1/TRD expression and function are not conserved with HAN. The existence of paralogous NL1/Tsh1/TRD-like genes in the grasses indicates that the NL1/Tsh1/TRD lineage was created by recent duplications that may have facilitated its neofunctionalization. A comparison with the Arabidopsis genes regulating bract suppression further supports the hypothesis that the convergent evolution of bract suppression in the Poaceae involved recruitment of a distinct genetic pathway.
Collapse
Affiliation(s)
| | - Darren H. Hall
- Division of Biology, University of California at San Diego, La Jolla, CA 92093
| | - Stacy DeBlasio
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Robert J. Schmidt
- Division of Biology, University of California at San Diego, La Jolla, CA 92093
| | - David P. Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- Adress correspondence to
| |
Collapse
|
102
|
Jones SI, Gonzalez DO, Vodkin LO. Flux of transcript patterns during soybean seed development. BMC Genomics 2010; 11:136. [PMID: 20181280 PMCID: PMC2846912 DOI: 10.1186/1471-2164-11-136] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 02/24/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND To understand gene expression networks leading to functional properties of the soybean seed, we have undertaken a detailed examination of soybean seed development during the stages of major accumulation of oils, proteins, and starches, as well as the desiccating and mature stages, using microarrays consisting of up to 27,000 soybean cDNAs. A subset of these genes on a highly-repetitive 70-mer oligonucleotide microarray was also used to support the results. RESULTS It was discovered that genes related to cell growth and maintenance processes, as well as energy processes like photosynthesis, decreased in expression levels as the cotyledons approached the mature, dry stage. Genes involved with some storage proteins had their highest expression levels at the stage of highest fresh weight. However, genes encoding many transcription factors and DNA binding proteins showed higher expression levels in the desiccating and dry seeds than in most of the green stages. CONCLUSIONS Data on 27,000 cDNAs have been obtained over five stages of soybean development, including the stages of major accumulation of agronomically-important products, using two different types of microarrays. Of particular interest are the genes found to peak in expression at the desiccating and dry seed stages, such as those annotated as transcription factors, which may indicate the preparation of pathways that will be needed later in the early stages of imbibition and germination.
Collapse
Affiliation(s)
- Sarah I Jones
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Delkin O Gonzalez
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
- Current address: Dow AgroSciences, Indianaoplis, IN 46268, USA
| | - Lila O Vodkin
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
103
|
Hohm T, Zitzler E, Simon R. A dynamic model for stem cell homeostasis and patterning in Arabidopsis meristems. PLoS One 2010; 5:e9189. [PMID: 20169148 PMCID: PMC2820555 DOI: 10.1371/journal.pone.0009189] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 01/22/2010] [Indexed: 11/19/2022] Open
Abstract
Plants maintain stem cells in their meristems as a source for new undifferentiated cells throughout their life. Meristems are small groups of cells that provide the microenvironment that allows stem cells to prosper. Homeostasis of a stem cell domain within a growing meristem is achieved by signalling between stem cells and surrounding cells. We have here simulated the origin and maintenance of a defined stem cell domain at the tip of Arabidopsis shoot meristems, based on the assumption that meristems are self-organizing systems. The model comprises two coupled feedback regulated genetic systems that control stem cell behaviour. Using a minimal set of spatial parameters, the mathematical model allows to predict the generation, shape and size of the stem cell domain, and the underlying organizing centre. We use the model to explore the parameter space that allows stem cell maintenance, and to simulate the consequences of mutations, gene misexpression and cell ablations.
Collapse
Affiliation(s)
- Tim Hohm
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
- Computer Engineering and Networks Laboratory, Zürich, Switzerland
| | - Eckart Zitzler
- Computer Engineering and Networks Laboratory, Zürich, Switzerland
| | - Rüdiger Simon
- Institute of Genetics, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
104
|
Jiang K, Zhu T, Diao Z, Huang H, Feldman LJ. The maize root stem cell niche: a partnership between two sister cell populations. PLANTA 2010; 231:411-24. [PMID: 20041334 PMCID: PMC2799627 DOI: 10.1007/s00425-009-1059-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 11/05/2009] [Indexed: 05/19/2023]
Abstract
Using transcript profile analysis, we explored the nature of the stem cell niche in roots of maize (Zea mays). Toward assessing a role for specific genes in the establishment and maintenance of the niche, we perturbed the niche and simultaneously monitored the spatial expression patterns of genes hypothesized as essential. Our results allow us to quantify and localize gene activities to specific portions of the niche: to the quiescent center (QC) or the proximal meristem (PM), or to both. The data point to molecular, biochemical and physiological processes associated with the specification and maintenance of the niche, and include reduced expression of metabolism-, redox- and certain cell cycle-associated transcripts in the QC, enrichment of auxin-associated transcripts within the entire niche, controls for the state of differentiation of QC cells, a role for cytokinins specifically in the PM portion of the niche, processes (repair machinery) for maintaining DNA integrity and a role for gene silencing in niche stabilization. To provide additional support for the hypothesized roles of the above-mentioned and other transcripts in niche specification, we overexpressed, in Arabidopsis, homologs of representative genes (eight) identified as highly enriched or reduced in the maize root QC. We conclude that the coordinated changes in expression of auxin-, redox-, cell cycle- and metabolism-associated genes suggest the linkage of gene networks at the level of transcription, thereby providing additional insights into events likely associated with root stem cell niche establishment and maintenance.
Collapse
Affiliation(s)
- Keni Jiang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Tong Zhu
- Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709 USA
| | - Zhaoyan Diao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Haiyan Huang
- Department of Statistics, University of California, Berkeley, CA 94720 USA
| | - Lewis J. Feldman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
105
|
|
106
|
Abstract
Flowers contain the male and female sexual organs that are critical for plant reproduction and survival. Each individual flower is produced from a floral meristem that arises on the flank of the shoot apical meristem and consists of four organ types: sepals, petals, stamens, and carpels. Because floral meristems contain a transient stem-cell pool that generates a small number of organs composed of a limited number of cell types, they are excellent model systems for studying stem-cell maintenance and termination, cell fate specification, organ morphogenesis, and pattern formation.
Collapse
Affiliation(s)
- Elisa Fiume
- Plant Gene Expression Center, U.S. Department of Agriculture-ARS/UC Berkeley & Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
107
|
Dodsworth S. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 2009; 336:1-9. [DOI: 10.1016/j.ydbio.2009.09.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 12/13/2022]
|
108
|
Rieu I, Laux T. Signaling pathways maintaining stem cells at the plant shoot apex. Semin Cell Dev Biol 2009; 20:1083-8. [PMID: 19770061 DOI: 10.1016/j.semcdb.2009.09.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/29/2022]
Abstract
The above ground organs of plants are generated by the shoot apical meristem. Cellular characteristics and molecular markers indicate that the shoot meristem is patterned into domains with different functions, with stem cells residing in the outer three cell layers of the central zone of the meristem. The boundaries of the domains are determined by positional signals. Here we will discuss our current understanding of the signaling network involved in determining stem cell fate and in setting the boundaries of the stem cell niche at the plant shoot apex.
Collapse
Affiliation(s)
- Ivo Rieu
- Institute of Biology III, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| | | |
Collapse
|
109
|
Needham CJ, Manfield IW, Bulpitt AJ, Gilmartin PM, Westhead DR. From gene expression to gene regulatory networks in Arabidopsis thaliana. BMC SYSTEMS BIOLOGY 2009; 3:85. [PMID: 19728870 PMCID: PMC2760521 DOI: 10.1186/1752-0509-3-85] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 09/03/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The elucidation of networks from a compendium of gene expression data is one of the goals of systems biology and can be a valuable source of new hypotheses for experimental researchers. For Arabidopsis, there exist several thousand microarrays which form a valuable resource from which to learn. RESULTS A novel Bayesian network-based algorithm to infer gene regulatory networks from gene expression data is introduced and applied to learn parts of the transcriptomic network in Arabidopsis thaliana from a large number (thousands) of separate microarray experiments. Starting from an initial set of genes of interest, a network is grown by iterative addition to the model of the gene, from another defined set of genes, which gives the 'best' learned network structure. The gene set for iterative growth can be as large as the entire genome. A number of networks are inferred and analysed; these show (i) an agreement with the current literature on the circadian clock network, (ii) the ability to model other networks, and (iii) that the learned network hypotheses can suggest new roles for poorly characterized genes, through addition of relevant genes from an unconstrained list of over 15,000 possible genes. To demonstrate the latter point, the method is used to suggest that particular GATA transcription factors are regulators of photosynthetic genes. Additionally, the performance in recovering a known network from different amounts of synthetically generated data is evaluated. CONCLUSION Our results show that plausible regulatory networks can be learned from such gene expression data alone. This work demonstrates that network hypotheses can be generated from existing gene expression data for use by experimental biologists.
Collapse
|
110
|
Sun B, Xu Y, Ng KH, Ito T. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 2009; 23:1791-804. [PMID: 19651987 DOI: 10.1101/gad.1800409] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Developmental regulation of the floral meristem ensures that plants of the same species have similarly sized flowers with a fixed number of floral organs. The maintenance of stem cells in the floral meristem is terminated after the production of a fixed number of floral organ primordia. Precise repression of the Arabidopsis thaliana homeobox gene WUSCHEL (WUS) by the floral homeotic protein AGAMOUS (AG) plays a major part in this process. Here we show that KNUCKLES (KNU) mediates the repression of WUS in floral meristem determinacy control. AG directly induces the transcription of KNU, which encodes a C2H2-type zinc finger protein with a conserved transcriptional repression motif. In turn, KNU represses WUS transcription to abolish stem cell activity. We also show that the timing of KNU induction is key in balancing proliferation and differentiation in flower development. Delayed KNU expression results in an indeterminate meristem, whereas ectopic KNU expression prematurely terminates the floral meristem. Furthermore, KNU induction by AG is preceded by changes in repressive histone modification at the KNU locus, which occurs in an AG-dependent manner. This study provides a mechanistic link between transcriptional feedback and epigenetic regulation in plant stem cell proliferation.
Collapse
Affiliation(s)
- Bo Sun
- Temasek Life Sciences Laboratory (TLL), National University of Singapore, Singapore, Singapore
| | | | | | | |
Collapse
|
111
|
Wang L, Yin H, Qian Q, Yang J, Huang C, Hu X, Luo D. NECK LEAF 1, a GATA type transcription factor, modulates organogenesis by regulating the expression of multiple regulatory genes during reproductive development in rice. Cell Res 2009; 19:598-611. [DOI: 10.1038/cr.2009.36] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
112
|
Miwa H, Kinoshita A, Fukuda H, Sawa S. Plant meristems: CLAVATA3/ESR-related signaling in the shoot apical meristem and the root apical meristem. JOURNAL OF PLANT RESEARCH 2009; 122:31-9. [PMID: 19104754 DOI: 10.1007/s10265-008-0207-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 11/27/2008] [Indexed: 05/23/2023]
Abstract
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUS-CLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species.
Collapse
Affiliation(s)
- Hiroki Miwa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
113
|
Han P, Li Q, Zhu YX. Mutation of Arabidopsis BARD1 causes meristem defects by failing to confine WUSCHEL expression to the organizing center. THE PLANT CELL 2008; 20:1482-93. [PMID: 18591352 PMCID: PMC2483370 DOI: 10.1105/tpc.108.058867] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/02/2008] [Accepted: 06/14/2008] [Indexed: 05/18/2023]
Abstract
Stem cell fate in the Arabidopsis thaliana shoot apical meristem (SAM) is controlled by WUSCHEL (WUS) and CLAVATA. Here, we examine BARD1 (for BRCA1-associated RING domain 1), which had previously been implicated in DNA repair functions; we find that it also regulates WUS expression. We observed severe SAM defects in the knockout mutant bard1-3. WUS transcripts accumulated >238-fold in bard1-3 compared with the wild type and were located mainly in the outermost cell layers instead of the usual organizing center. A specific WUS promoter region was recognized by nuclear protein extracts obtained from wild-type plants, and this protein-DNA complex was recognized by antibodies against BARD1. The double mutant (wus-1 bard1-3) showed prematurely terminated SAM structures identical to those of wus-1, indicating that BARD1 functions through regulation of WUS. BARD1 overexpression resulted in reduced WUS transcript levels, giving a wus-1-like phenotype. Either full-length BARD1 or a clone that encoded the C-terminal domain (BARD1:C-ter;bard1-3) was sufficient to complement the bard1-3 phenotype, indicating that BARD1 functions through its C-terminal domain. Our data suggest that BARD1 regulates SAM organization and maintenance by limiting WUS expression to the organizing center.
Collapse
Affiliation(s)
- Pei Han
- National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | |
Collapse
|
114
|
Sablowski R. The dynamic plant stem cell niches. CURRENT OPINION IN PLANT BIOLOGY 2007; 10:639-44. [PMID: 17692560 DOI: 10.1016/j.pbi.2007.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/02/2007] [Accepted: 07/03/2007] [Indexed: 05/16/2023]
Abstract
Stem cells exist in specific locations called niches, where extracellular signals maintain stem cell division and prevent differentiation. In plants, the best characterised niches are within the shoot and root meristems. Networks of regulatory genes and intercellular signals maintain meristem structure in spite of constant cell displacement by division. Recent works have improved our understanding of how these networks function at the cellular and molecular levels, particularly in the control of the stem cell population in the shoot meristem. The meristem regulatory genes have been found to function partly through localised control of widely used signals such as cytokinin and auxin. The retinoblastoma protein has also emerged as a key regulator of cell differentiation in the meristems.
Collapse
Affiliation(s)
- Robert Sablowski
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
115
|
Tucker MR, Laux T. Connecting the paths in plant stem cell regulation. Trends Cell Biol 2007; 17:403-10. [PMID: 17766120 DOI: 10.1016/j.tcb.2007.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 01/11/2023]
Abstract
Stem cell niches are specialized microenvironments where pluripotent cells are maintained to provide undifferentiated cells for the formation of new tissues and organs. The balance between stem cell maintenance within the niche and differentiation of cells that exit it is regulated by local cell-cell communication, together with external cues. Recent findings have shown connections between key developmental pathways and added significant insights into the central principles of stem cell maintenance in plant meristems. These insights include the convergence of important stem cell transcriptional regulators with cytokinin signaling in the shoot meristem, the biochemical dissection of peptide signaling in the shoot niche and the identification of conserved regulators in shoot and root niches.
Collapse
Affiliation(s)
- Matthew R Tucker
- Institute of Biology III, University of Freiburg, Freiburg 79104, Germany
| | | |
Collapse
|
116
|
Bi YM, Wang RL, Zhu T, Rothstein SJ. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 2007; 8:281. [PMID: 17705847 PMCID: PMC1994689 DOI: 10.1186/1471-2164-8-281] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/16/2007] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited. RESULTS To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress. CONCLUSION Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rong-Lin Wang
- Ecological Exposure Research Division, National Exposure Research Lab, US EPA, 26 W. Martin Luther King Dr., Cincinnati, OH 45268, USA
| | - Tong Zhu
- Syngenta Biotechnology Inc., 3054 Cornwallis Road, Research Triangle Park, North Carolina, 27709, USA
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
117
|
Bi YM, Wang RL, Zhu T, Rothstein SJ. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis. BMC Genomics 2007. [PMID: 17705847 DOI: 10.1186/1471-2164-8-281/tables/6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited. RESULTS To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress. CONCLUSION Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| | | | | | | |
Collapse
|
118
|
Li H, He Z, Lu G, Lee SC, Alonso J, Ecker JR, Luan S. A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis. THE PLANT CELL 2007; 19:2403-16. [PMID: 17704213 PMCID: PMC2002612 DOI: 10.1105/tpc.107.053579] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 07/19/2007] [Accepted: 07/26/2007] [Indexed: 05/16/2023]
Abstract
Chromatin-based silencing provides a crucial mechanism for the regulation of gene expression. We have identified a WD40 domain cyclophilin, CYCLOPHILIN71 (CYP71), which functions in gene repression and organogenesis in Arabidopsis thaliana. Disruption of CYP71 resulted in ectopic activation of homeotic genes that regulate meristem development. The cyp71 mutant plants displayed dramatic defects, including reduced apical meristem activity, delayed and abnormal lateral organ formation, and arrested root growth. CYP71 was associated with the chromatin of target gene loci and physically interacted with histone H3. The cyp71 mutant showed reduced methylation of H3K27 at target loci, consistent with the derepression of these genes in the mutant. As CYP71 has close homologs in eukaryotes ranging from fission yeast to human, we propose that it serves as a highly conserved histone remodeling factor involved in chromatin-based gene silencing in eukaryotic organisms.
Collapse
Affiliation(s)
- Hong Li
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | |
Collapse
|
119
|
González-Carranza ZH, Rompa U, Peters JL, Bhatt AM, Wagstaff C, Stead AD, Roberts JA. Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1370-82. [PMID: 17496113 PMCID: PMC1914148 DOI: 10.1104/pp.106.092288] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A fast neutron-mutagenized population of Arabidopsis (Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt (hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein (At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, Pro(PGAZAT):beta-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using Pro(HWS):beta-glucuronidase or Pro(HWS):green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro(35S):HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development.
Collapse
Affiliation(s)
- Zinnia H González-Carranza
- Plant Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | | | | | | | | | | | |
Collapse
|
120
|
Sonoda Y, Yao SG, Sako K, Sato T, Kato W, Ohto MA, Ichikawa T, Matsui M, Yamaguchi J, Ikeda A. SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:586-96. [PMID: 17461786 DOI: 10.1111/j.1365-313x.2007.03062.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Post-embryonic plant growth is dependent on a functional shoot apical meristem (SAM) that provides cells for continuous development of new aerial organs. However, how the SAM is dynamically maintained during vegetative development remains largely unclear. We report here the characterization of a new SAM maintenance mutant, sha1-1 (shoot apical meristem arrest 1-1), that shows a primary SAM-deficient phenotype at the adult stage. The SHA1 gene encodes a novel RING finger protein, and is expressed most intensely in the shoot apex. We show that, in the sha1-1 mutant, the primary SAM develops normally during the juvenile vegetative stage, but cell layer structure becomes disorganized after entering the adult vegetative stage, resulting in a dysfunctional SAM that cannot initiate floral primordia. The sha1-1 SAM terminates completely at the stage when the wild-type begins to bolt, producing adult plants with a primary inflorescence-deficient phenotype. These observations indicate that SHA1, a putative E3 ligase, is required for post-embryonic SAM maintenance by controlling proper cellular organization.
Collapse
Affiliation(s)
- Yutaka Sonoda
- Faculty of Advanced Life Science and Graduate School of Life Science, Hokkaido University, Kita-ku N10-W8, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Jung JH, Park CM. MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. PLANTA 2007; 225:1327-38. [PMID: 17109148 DOI: 10.1007/s00425-006-0439-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/26/2006] [Indexed: 05/04/2023]
Abstract
The miR166/165 group and its target genes regulate diverse aspects of plant development, including apical and lateral meristem formation, leaf polarity, and vascular development. We demonstrate here that MIR166/165 genes are dynamically controlled in regulating shoot apical meristem (SAM) and floral development in parallel to the WUSCHEL (WUS)-CLAVATA (CLV) pathway. Although miR166 and miR165 cleave same target mRNAs, individual MIR166/165 genes exhibit distinct expression domains in different plant tissues. The MIR166/165 expression is also temporarily regulated. Consistent with the dynamic expression patterns, an array of alterations in SAM activities and floral architectures was observed in the miR166/165-overproducing plants. In addition, when a MIR166a-overexpressing mutant was genetically crossed with mutants defective in the WUS-CLV pathway, the resultant crosses exhibited additive phenotypic effects, suggesting that the miR166/165-mediated signal exerts its role via a distinct signaling pathway.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Molecular Signaling Laboratory, Department of Chemistry, Seoul National University, Seoul, 151-742, South Korea
| | | |
Collapse
|
122
|
Abstract
Despite the large evolutionary distance between the plant and animal kingdoms, stem cells in both reside in specialized cellular contexts called stem-cell niches. Although stem-cell-specification factors have been recruited from plant-specific gene families, maintenance factors that repress stem-cell differentiation are conserved between plants and animals. Recent evidence indicates that stem cells in multicellular organisms can be specified by kingdom-specific patterning mechanisms that connect to a related core of epigenetic stem-cell factors.
Collapse
Affiliation(s)
- Ben Scheres
- Molecular Genetics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
123
|
Manfield IW, Devlin PF, Jen CH, Westhead DR, Gilmartin PM. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. PLANT PHYSIOLOGY 2007; 143:941-58. [PMID: 17208962 PMCID: PMC1803723 DOI: 10.1104/pp.106.090761] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In vitro analyses of plant GATA transcription factors have implicated some proteins in light-mediated and circadian-regulated gene expression, and, more recently, the analysis of mutants has uncovered further diverse roles for plant GATA factors. To facilitate function discovery for the 29 GATA genes in Arabidopsis (Arabidopsis thaliana), we have experimentally verified gene structures and determined expression patterns of all family members across adult tissues and suspension cell cultures, as well as in response to light and signals from the circadian clock. These analyses have identified two genes that are strongly developmentally light regulated, expressed predominantly in photosynthetic tissue, and with transcript abundance peaking before dawn. In contrast, several GATA factor genes are light down-regulated. The products of these light-regulated genes are candidates for those proteins previously implicated in light-regulated transcription. Coexpression of these genes with well-characterized light-responsive transcripts across a large microarray data set supports these predictions. Other genes show additional tissue-specific expression patterns suggesting novel and unpredicted roles. Genome-wide analysis using coexpression scatter plots for paralogous gene pairs reveals unexpected differences in cocorrelated gene expression profiles. Clustering the Arabidopsis GATA factor gene family by similarity of expression patterns reveals that genes of recent descent do not uniformly show conserved current expression profiles, yet some genes showing more distant evolutionary origins have acquired common expression patterns. In addition to defining developmental and environmental dynamics of GATA transcript abundance, these analyses offer new insights into the evolution of gene expression profiles following gene duplication events.
Collapse
Affiliation(s)
- Iain W Manfield
- Centre for Plant Sciences, Institute for Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
124
|
Aida M, Tasaka M. Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. PLANT MOLECULAR BIOLOGY 2006; 60:915-28. [PMID: 16724261 DOI: 10.1007/s11103-005-2760-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Accepted: 09/02/2005] [Indexed: 05/09/2023]
Abstract
Formation of lateral organ primordia from the shoot apical meristem creates boundaries that separate the primordium from surrounding tissue. Morphological and gene expression studies indicate the presence of a distinct set of cells that define the boundaries in the plant shoot apex. Cells at the boundary usually display reduced growth activity that results in separation of adjacent organs or tissues and this morphological boundary coincides with the border of different cell identities. Such morphogenetic and patterning events and their spatial coordination are controlled by a number of boundary-specific regulatory genes. The boundary may also act as a reference point for the generation of new meristems such as axillary meristems. Many of the genes involved in meristem initiation are expressed in the boundary. This review summarizes the cellular characters of the shoot organ boundary and the roles of regulatory genes that control different aspects of this unique region in plant development.
Collapse
Affiliation(s)
- Mitsuhiro Aida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | | |
Collapse
|
125
|
Bhalla PL, Singh MB. Molecular control of stem cell maintenance in shoot apical meristem. PLANT CELL REPORTS 2006; 25:249-56. [PMID: 16315035 DOI: 10.1007/s00299-005-0071-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 09/30/2005] [Accepted: 10/02/2005] [Indexed: 05/05/2023]
Abstract
Sustained post-embryonic organ initiation and development in plants depends on coordinating the formation and differentiation of pluripotent stem cells in apical meristems. Transcriptional regulation and intercellular signalling appear to play key roles in this coordination process. Here we discuss the current knowledge about the molecular regulation of stem cell maintenance in the shoot apical meristem and recent attempts to delineate the molecular signatures of "stemness" in flowering plants. We also outline contemporary molecular approaches for deciphering the process of stem cell renewal in the shoot apical meristem.
Collapse
Affiliation(s)
- Prem L Bhalla
- Australian Research Council Centre of Excellence for Integrative Legume Research, Institute of Land and Food Resources, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
126
|
Veit B. Stem cell signalling networks in plants. PLANT MOLECULAR BIOLOGY 2006; 60:793-810. [PMID: 16724253 DOI: 10.1007/s11103-006-0033-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 02/23/2006] [Indexed: 05/09/2023]
Abstract
The essential nature of meristematic tissues is addressed with reference to conceptual frameworks that have been developed to explain the behaviour of animal stem cells. Comparisons are made between different types of plant meristems with the objective of highlighting common themes that might illuminate underlying mechanisms. A more in depth comparison of the root and shoot apical meristems is made which suggests a common mechanism for maintaining stem cells. The relevance of organogenesis to stem cell maintenance is discussed, along with the nature of underlying mechanisms which help ensure that stem cell production is balanced with the depletion of cells through differentiation. Mechanisms that integrate stem cell behaviour in the whole plant are considered, with a focus on the roles of auxin and cytokinin. The review concludes with a brief discussion of epigenetic mechanisms that act to stabilise and maintain stem cell populations.
Collapse
Affiliation(s)
- Bruce Veit
- Plant Breeding and Genomics, AgResearch Ltd, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
127
|
Aida M, Tasaka M. Genetic control of shoot organ boundaries. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:72-7. [PMID: 16337829 DOI: 10.1016/j.pbi.2005.11.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 11/22/2005] [Indexed: 05/05/2023]
Abstract
The initiation of plant lateral organs from the shoot meristem is associated with the formation of boundaries that separate the primordia from surrounding tissue. A distinctive set of cells is present along the boundary, and these 'boundary cells' display characteristic patterns of cell division, morphology and gene expression. A certain class of the NAC transcription factors is important for growth suppression at the boundary, and auxin and microRNAs participate in boundary formation by regulating NAC gene expression. Other factors regulate different aspects of boundary functions, such as the establishment of the border of different cell identities, the initiation of axillary meristems, or the proper development of organs and tissues in adjacent regions.
Collapse
Affiliation(s)
- Mitsuhiro Aida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| | | |
Collapse
|
128
|
Liu PP, Koizuka N, Martin RC, Nonogaki H. The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:960-71. [PMID: 16359389 DOI: 10.1111/j.1365-313x.2005.02588.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In many plant species, seed dormancy is broken by cold stratification, a pre-chilling treatment of fully imbibed seeds. Although the ecological importance of seed response to cold temperature is well appreciated, the mechanisms underlying the physiological changes during cold stratification is unknown. Here we show that the GATA zinc finger protein expressed in Arabidopsis seeds during cold stratification plays a critical role in germination. Characterization of an enhancer-trap population identified multiple lines that exhibited beta-glucuronidase (GUS) expression in the micropylar end of the seed (named Blue Micropylar End, BME lines). One of these lines, BME3, had a T-DNA insertion site in the 5' upstream region of a GATA-type zinc finger transcription factor gene (termed BME3-ZF). The BME3-ZF mRNA accumulated in seeds during cold stratification. Characterization of the BME3-ZF promoter indicated that this gene was activated specifically in the embryonic axis, which was still enclosed by the endosperm. The zinc finger gene knockout plants produced seeds exhibiting deeper dormancy, which showed reduced response to cold stratification. The ungerminated knockout seeds exhibited testa rupture, but failed to penetrate the endosperm layer. Application of gibberellic acid (GA3) rescued impaired germination of knockout seeds without cold stratification, indicating that the normal GA signal transduction pathway is present in the knockout mutants. Expression of GA20-oxidase and GA3-oxidase genes was greatly reduced in the knockout seeds, suggesting the potential involvement of the zinc finger protein in GA biosynthesis. These results suggest that the GATA zinc finger protein is a positive regulator of seed germination.
Collapse
Affiliation(s)
- Po-Pu Liu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
129
|
Williams L, Fletcher JC. Stem cell regulation in the Arabidopsis shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:582-6. [PMID: 16183326 DOI: 10.1016/j.pbi.2005.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/13/2005] [Indexed: 05/04/2023]
Abstract
The aerial structure of higher plants is generated dynamically throughout the life cycle through the activity of stem cells that are located at the growing shoot tip, the apical meristem. The stem cells continuously divide to renew themselves and provide cells for leaf, stem and flower formation. Stem cell maintenance is governed by intercellular communication between the apical stem cells and the underlying organizing centre. Recent advances have been made in understanding the mechanisms that induce shoot stem cell identity, and that control the position and size of the organizing centre. Elements such as chromatin remodeling factors, transcription factors and microRNAs are newly implicated in these regulatory processes. These advances provide a framework for our understanding of how signals are integrated to specify and position the stem cell niche in the shoot apical meristem.
Collapse
Affiliation(s)
- Leor Williams
- USDA-ARS Plant Gene Expression Center, 800 Buchanan Street, Albany, California 94710, and Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
130
|
Bi YM, Zhang Y, Signorelli T, Zhao R, Zhu T, Rothstein S. Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:680-92. [PMID: 16262716 DOI: 10.1111/j.1365-313x.2005.02568.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Arabidopsis GATA transcription factor family has 30 members, the biological function of most of which is poorly understood. Homozygous T-DNA insertion lines for 23 of the 30 members were identified and analyzed. Genetic screening of the insertion lines in defined growth conditions revealed one line with an altered phenotype, while the other lines showed no obvious change. This line, SALK_001778, has a T-DNA insertion in the second exon of At5g56860 which prevents the expression of the GATA domain. Genetic analysis of the mutant demonstrated that the phenotypic change is caused by a single gene effect and is recessive to the wild-type allele. In wild-type plants, the expression of At5g56860 is shoot-specific, occurs at an early stage of development and is inducible by nitrate. Loss of expression of At5g56860 in the loss-of-function mutant plants resulted in reduced chlorophyll levels. A transcript profiling experiment revealed that a considerable proportion of genes downregulated in the loss-of-function mutants are involved in carbon metabolism and At5g56860 is thus designated GNC (GATA, nitrate-inducible, carbon metabolism-involved). gnc mutants with no GNC expression are more sensitive to exogenous glucose, and two hexose transporter genes, with a possible connection to glucose signaling, are significantly downregulated, while GNC over-expressing transgenic plants upregulate their expression and are less sensitive to exogenous glucose. These observations suggest a function for GNC in regulating carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | | | |
Collapse
|
131
|
Vernoux T, Benfey PN. Signals that regulate stem cell activity during plant development. Curr Opin Genet Dev 2005; 15:388-94. [PMID: 15967658 DOI: 10.1016/j.gde.2005.06.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/08/2005] [Indexed: 11/22/2022]
Abstract
Plant stem cells are used continuously to generate new structures during the entire life-span of the organism. In the adult plant, stem cells are found in specialized structures called meristems. The meristems contain the stem cell niche together with rapidly dividing daughter cells that will ultimately differentiate into specific cell types. Some of the master genes that orchestrate the establishment and maintenance of the stem cell niche have now been identified in both the root and the shoot. Recent results show that these genes also determine the fate of the stem cells and that feedback signals from differentiated cells are involved in stem cell specification. These advances have provided a framework to understand how short-range and long-range signals are integrated to specify and position the stem cell niche in the meristems, and how the differentiation potential of plant stem cells is controlled.
Collapse
Affiliation(s)
- Teva Vernoux
- DCMB group, Department of Biology, Duke University, Box 91000, Research Drive, Durham, NC 27708, USA
| | | |
Collapse
|
132
|
Nakayama N, Arroyo JM, Simorowski J, May B, Martienssen R, Irish VF. Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. THE PLANT CELL 2005; 17:2486-506. [PMID: 16055634 PMCID: PMC1197429 DOI: 10.1105/tpc.105.033985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To identify genes involved in Arabidopsis thaliana petal and stamen organogenesis, we used a gene trap approach to examine the patterns of reporter expression at each stage of flower development of 1765 gene trap lines. In 80 lines, the reporter gene showed petal- and/or stamen-specific expression or lack of expression, or expression in distinct patterns within the petals and/or the stamens, including distinct suborgan domains of expression, such as tissue-specific lines marking epidermis and vasculature, as well as lines demarcating the proximodistal or abaxial/adaxial axes of the organs. Interestingly, reporter gene expression was typically restricted along the proximodistal axis of petals and stamens, indicating the importance of this developmental axis in patterning of gene expression domains in these organs. We identified novel domains of gene expression along the axis marking the midregion of the petals and apical and basal parts of the anthers. Most of the genes tagged in these 80 lines were identified, and their possible functions in petal and/or stamen differentiation are discussed. We also scored the floral phenotypes of the 1765 gene trap lines and recovered two mutants affecting previously uncharacterized genes. In addition to revealing common domains of gene expression, the gene trap lines reported here provide both useful markers and valuable starting points for reverse genetic analyses of the differentiation pathways in petal and stamen development.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | |
Collapse
|
133
|
Bäurle I, Laux T. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. THE PLANT CELL 2005; 17:2271-80. [PMID: 15980263 PMCID: PMC1182488 DOI: 10.1105/tpc.105.032623] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pluripotent stem cells are localized in specialized microenvironments, called stem cell niches, where signals from surrounding cells maintain their undifferentiated status. In the Arabidopsis thaliana shoot meristem, the homeobox gene WUSCHEL (WUS) is expressed in the organizing center underneath the stem cells and integrates regulatory information from several pathways to define the boundaries of the stem cell niche. To investigate how these boundaries are precisely maintained within the proliferating cellular context of the shoot meristem, we analyzed the transcriptional control of the WUS gene. Our results show that the WUS promoter contains distinct regulatory regions that control tissue specificity and levels of transcription in a combinatorial manner. However, a 57-bp regulatory region is all that is required to control the boundaries of WUS transcription in the shoot meristem stem cell niche, and this activity can be further assigned to two adjacent short sequence motifs within this region. Our results indicate that the diverse regulatory pathways that control the stem cells in the shoot meristem converge at these two short sequence elements of the WUS promoter, suggesting that the integration of regulatory signals takes place at the level of a central transactivating complex.
Collapse
Affiliation(s)
| | - Thomas Laux
- To whom correspondence should be addressed. E-mail ; fax 49-761-203-2745
| |
Collapse
|
134
|
Anderson GH, Veit B, Hanson MR. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 2005; 3:12. [PMID: 15845148 PMCID: PMC1131892 DOI: 10.1186/1741-7007-3-12] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2005] [Accepted: 04/21/2005] [Indexed: 12/11/2022] Open
Abstract
Background Flowering plant development is wholly reliant on growth from meristems, which contain totipotent cells that give rise to all post-embryonic organs in the plant. Plants are uniquely able to alter their development throughout their lifespan through the generation of new organs in response to external signals. To identify genes that regulate meristem-based growth, we considered homologues of Raptor proteins, which regulate cell growth in response to nutrients in yeast and metazoans as part of a signaling complex with the target of rapamycin (TOR) kinase. Results We identified AtRaptor1A and AtRaptor1B, two loci predicted to encode Raptor proteins in Arabidopsis. Disruption of AtRaptor1B yields plants with a wide range of developmental defects: roots are thick and grow slowly, leaf initiation and bolting are delayed and the shoot inflorescence shows reduced apical dominance. AtRaptor1A AtRaptor1B double mutants show normal embryonic development but are unable to maintain post-embryonic meristem-driven growth. AtRaptor transcripts accumulate in dividing and expanding cells and tissues. Conclusion The data implicate the TOR signaling pathway, a major regulator of cell growth in yeast and metazoans, in the maintenance of growth from the shoot apical meristem in plants. These results provide insights into the ways in which TOR/Raptor signaling has been adapted to regulate plant growth and development, and indicate that in plants, as in other eukaryotes, there is some Raptor-independent TOR activity.
Collapse
Affiliation(s)
| | - Bruce Veit
- AgResearch, Private Bag 11008, Tennent Drive, Palmerston North, 5301, New Zealand
| | - Maureen R Hanson
- Molecular Biology and Genetics, Cornell University, Ithaca, 14853, USA
| |
Collapse
|