101
|
Song W, Wang F, Chen L, Ma R, Zuo X, Cao A, Xie S, Chen X, Jin X, Li H. GhVTC1, the Key Gene for Ascorbate Biosynthesis in Gossypium hirsutum, Involves in Cell Elongation Under Control of Ethylene. Cells 2019; 8:cells8091039. [PMID: 31492030 PMCID: PMC6769745 DOI: 10.3390/cells8091039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/02/2023] Open
Abstract
L-Ascorbate (Asc) plays important roles in cell growth and plant development, and its de novo biosynthesis was catalyzed by the first rate-limiting enzyme VTC1. However, the function and regulatory mechanism of VTC1 involved in cell development is obscure in Gossypium hirsutum. Herein, the Asc content and AsA/DHA ratio were accumulated and closely linked with fiber development. The GhVTC1 encoded a typical VTC1 protein with functional conserved domains and expressed preferentially during fiber fast elongation stages. Functional complementary analysis of GhVTC1 in the loss-of-function Arabidopsis vtc1-1 mutants indicated that GhVTC1 is genetically functional to rescue the defects of mutants to normal or wild type (WT). The significant shortened primary root in vtc1-1 mutants was promoted to the regular length of WT by the ectopic expression of GhVTC1 in the mutants. Additionally, GhVTC1 expression was induced by ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the GhVTC1 promoter showed high activity and included two ethylene-responsive elements (ERE). Moreover, the 5'-truncted promoters containing the ERE exhibited increased activity by ACC treatment. Our results firstly report the cotton GhVTC1 function in promoting cell elongation at the cellular level, and serve as a foundation for further understanding the regulatory mechanism of Asc-mediated cell growth via the ethylene signaling pathway.
Collapse
Affiliation(s)
- Wangyang Song
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Fei Wang
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Lihua Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Rendi Ma
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiaoyu Zuo
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Aiping Cao
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Shuangquan Xie
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xifeng Chen
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China
| | - Xiang Jin
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
102
|
Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1706-1722. [PMID: 31111642 PMCID: PMC6686129 DOI: 10.1111/pbi.13167] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 05/11/2023]
Abstract
Trichomes are specialized epidermal cells and a vital plant organ that protect plants from various harms and provide valuable resources for plant development and use. Some key genes related to trichomes have been identified in the model plant Arabidopsis thaliana through glabrous mutants and gene cloning, and the hub MYB-bHLH-WD40, consisting of several factors including GLABRA1 (GL1), GL3, TRANSPARENT TESTA GLABRA1 (TTG1), and ENHANCER OF GLABRA3 (EGL3), has been established. Subsequently, some upstream transcription factors, phytohormones and epigenetic modification factors have also been studied in depth. In cotton, a very important fibre and oil crop globally, in addition to the key MYB-like factors, more important regulators and potential molecular mechanisms (e.g. epigenetic modifiers, distinct metabolic pathways) are being exploited during different fibre developmental stages. This occurs due to increased cotton research, resulting in the discovery of more complex regulation mechanisms from the allotetraploid genome of cotton. In addition, some conservative as well as specific mediators are involved in trichome development in other species. This study summarizes molecular mechanisms in trichome development and provides a detailed comparison of the similarities and differences between Arabidopsis and cotton, analyses the possible reasons for the discrepancy in identification of regulators, and raises future questions and foci for understanding trichome development in more detail.
Collapse
Affiliation(s)
- Zhi Wang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
103
|
Salih H, Gong W, He S, Xia W, Odongo MR, Du X. Long non-coding RNAs and their potential functions in Ligon-lintless-1 mutant cotton during fiber development. BMC Genomics 2019; 20:661. [PMID: 31426741 PMCID: PMC6700839 DOI: 10.1186/s12864-019-5978-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 07/16/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are part of genes, which are not translated into proteins and play a vital role in plant growth and development. Nevertheless, the presence of LncRNAs and how they functions in Ligon-lintless-1 mutant during the early cessation of cotton fiber development are still not well understood. In order to investigate the function of LncRNAs in cotton fiber development, it is necessary and important to identify LncRNAs and their potential roles in fiber cell development. RESULTS In this work, we identified 18,333 LncRNAs, with the proportion of long intergenic noncoding RNAs (LincRNAs) (91.5%) and anti-sense LncRNAs (8.5%), all transcribed from Ligon-lintless-1 (Li1) and wild-type (WT). Expression differences were detected between Ligon-lintless-1 and wild-type at 0 and 8 DPA (day post anthesis). Pathway analysis and Gene Ontology based on differentially expressed LncRNAs on target genes, indicated fatty acid biosynthesis and fatty acid elongation being integral to lack of fiber in mutant cotton. The result of RNA-seq and RT-qPCR clearly singles out two potential LncRNAs, LNC_001237 and LNC_017085, to be highly down-regulated in the mutant cotton. The two LncRNAs were found to be destabilized or repressed by ghr-miR2950. Both RNA-seq analysis and RT-qPCR results in Ligon-lintless-1 mutant and wild-type may provide strong evidence of LNC_001237, LNC_017085 and ghr-miR2950 being integral molecular elements participating in various pathways of cotton fiber development. CONCLUSION The results of this study provide fundamental evidence for the better understanding of LncRNAs regulatory role in the molecular pathways governing cotton fiber development. Further research on designing and transforming LncRNAs will help not only in the understanding of their functions but will also in the improvement of fiber quality.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
- Zalingei University, Central Darfur, Sudan
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Shoupu He
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Wang Xia
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Magwanga Richard Odongo
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, 455000 China
| |
Collapse
|
104
|
Qin Y, Sun H, Hao P, Wang H, Wang C, Ma L, Wei H, Yu S. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines. BMC Genomics 2019; 20:633. [PMID: 31382896 PMCID: PMC6683361 DOI: 10.1186/s12864-019-5986-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/19/2019] [Indexed: 12/27/2022] Open
Abstract
Background Improving the yield and fiber quality of upland cotton is a goal of plant breeders. However, increasing the yield and quality of cotton fibers is becoming more urgent. While the growing human population needs more cotton fiber, climate change is reducing the amount of land on which cotton can be planted, or making it difficult to ensure that water and other resources will be available in optimal quantities. The most logical means of improving yield and quality is understanding and manipulating the genes involved. Here, we used comparative transcriptomics to explore differences in gene expression between long- and short-fiber cotton lines to identify candidate genes useful for cotton improvement. Results Light and electron microscopy revealed that the initial fiber density was significantly greater in our short-fiber group (SFG) than in our long-fiber group (LFG). Compared with the SFG fibers, the LFG fibers were longer at all developmental stages. Comparison of the LFG and SFG transcriptomes revealed a total of 3538 differentially expressed genes (DEGs). Notably, at all three developmental stages examined, two expression patterns, consistently downregulated (profile 0) and consistently upregulated (profile 7), were identified, and both were significantly enriched in the SFG and LFG. Twenty-two DEGs known to be involved in fiber initiation were detected in profile 0, while 31 DEGs involved in fiber elongation were detected in profile 7. Functional annotation suggested that these DEGs, which included ERF1, TUA2, TUB1, and PER64, affect fiber elongation by participating in the ethylene response, microtubule synthesis, and/or the peroxidase (POD) catalytic pathway. qRT-PCR was used to confirm the RNA sequencing results for select genes. Conclusions A comparison of SFG and LFG transcription profiles revealed modest but important differences in gene expression between the groups. Notably, our results confirm those of previous studies suggesting that genes involved in ethylene, tubulin, and POD pathways play important roles in fiber development. The 22 consistently downregulated DEGs involved in fiber initiation and the 31 consistently upregulated genes involved in fiber elongation are seemingly good candidate genes for improving fiber initiation and elongation in cotton. Electronic supplementary material The online version of this article (10.1186/s12864-019-5986-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Huiru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Pengbo Hao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Congcong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, 455000, China.
| |
Collapse
|
105
|
Liu X, Wu X, Sun C, Rong J. Identification and Expression Profiling of the Regulator of Chromosome Condensation 1 (RCC1) Gene Family in Gossypium Hirsutum L. under Abiotic Stress and Hormone Treatments. Int J Mol Sci 2019; 20:E1727. [PMID: 30965557 PMCID: PMC6479978 DOI: 10.3390/ijms20071727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
The regulator of chromosome condensation 1 (RCC1) is the nucleotide exchange factor for a GTPase called the Ras-related nuclear protein, and it is important for nucleo-plasmic transport, mitosis, nuclear membrane assembly, and control of chromatin agglutination during the S phase of mitosis in animals. In plants, RCC1 molecules act mainly as regulating factors for a series of downstream genes during biological processes such as the ultraviolet-B radiation (UV-B) response and cold tolerance. In this study, 56 genes were identified in upland cotton by searching the associated reference genomes. The genes were found to be unevenly distributed on 26 chromosomes, except A06, A12, D03, and D12. Phylogenetic analysis by maximum-likelihood revealed that the genes were divided into five subgroups. The RCC1 genes within the same group shared similar exon/intron patterns and conserved motifs in their encoded proteins. Most genes of the RCC1 family are expressed differently under various hormone treatments and are negatively controlled by salt stress. Gh_A05G3028 and Gh_D10G2310, which encode two proteins located in the nucleus, were strongly induced under salt treatment, while mutants of their homoeologous gene (UVR8) in Arabidopsis and VIGS (virus induced gene silencing) lines of the two genes above in G. hirsutum exhibited a salt-sensitive phenotype indicating their potential role in salt resistance in cotton. These results provide valuable reference data for further study of RCC1 genes in cotton.
Collapse
Affiliation(s)
- Xiao Liu
- The State Key Laboratory of Subtropical Silviculture, College of Forest and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China.
| | - Xingchen Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China.
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China.
| | - Junkang Rong
- The State Key Laboratory of Subtropical Silviculture, College of Forest and Biotechnology, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China.
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China.
| |
Collapse
|
106
|
Skalák J, Vercruyssen L, Claeys H, Hradilová J, Černý M, Novák O, Plačková L, Saiz-Fernández I, Skaláková P, Coppens F, Dhondt S, Koukalová Š, Zouhar J, Inzé D, Brzobohatý B. Multifaceted activity of cytokinin in leaf development shapes its size and structure in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:805-824. [PMID: 30748050 DOI: 10.1111/tpj.14285] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/05/2019] [Accepted: 01/10/2019] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin has been shown to affect many aspects of plant development ranging from the regulation of the shoot apical meristem to leaf senescence. However, some studies have reported contradictory effects of cytokinin on leaf physiology. Therefore cytokinin treatments cause both chlorosis and increased greening and both lead to decrease or increase in cell size. To elucidate this multifaceted role of cytokinin in leaf development, we have employed a system of temporal controls over the cytokinin pool and investigated the consequences of modulated cytokinin levels in the third leaf of Arabidopsis. We show that, at the cell proliferation phase, cytokinin is needed to maintain cell proliferation by blocking the transition to cell expansion and the onset of photosynthesis. Transcriptome profiling revealed regulation by cytokinin of a gene suite previously shown to affect cell proliferation and expansion and thereby a molecular mechanism by which cytokinin modulates a molecular network underlying the cellular responses. During the cell expansion phase, cytokinin stimulates cell expansion and differentiation. Consequently, a cytokinin excess at the cell expansion phase results in an increased leaf and rosette size fueled by higher cell expansion rate, yielding higher shoot biomass. Proteome profiling revealed the stimulation of primary metabolism by cytokinin, in line with an increased sugar content that is expected to increase turgor pressure, representing the driving force of cell expansion. Therefore, the developmental timing of cytokinin content fluctuations, together with a tight control of primary metabolism, is a key factor mediating transitions from cell proliferation to cell expansion in leaves.
Collapse
Affiliation(s)
- Jan Skalák
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Liesbeth Vercruyssen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Hannes Claeys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Jana Hradilová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Iñigo Saiz-Fernández
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Patricie Skaláková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Frederik Coppens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Stijn Dhondt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Šárka Koukalová
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Jan Zouhar
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-61300, Brno, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, CZ-61265, Brno, Czech Republic
| |
Collapse
|
107
|
Co-Expression Network Analysis and Hub Gene Selection for High-Quality Fiber in Upland Cotton (Gossypium hirsutum) Using RNA Sequencing Analysis. Genes (Basel) 2019; 10:genes10020119. [PMID: 30736327 PMCID: PMC6410125 DOI: 10.3390/genes10020119] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023] Open
Abstract
Upland cotton (Gossypium hirsutum) is grown for its elite fiber. Understanding differential gene expression patterns during fiber development will help to identify genes associated with fiber quality. In this study, we used two recombinant inbred lines (RILs) differing in fiber quality derived from an intra-hirsutum population to explore expression profiling differences and identify genes associated with high-quality fiber or specific fiber-development stages using RNA sequencing. Overall, 72/27, 1137/1584, 437/393, 1019/184, and 2555/1479 differentially expressed genes were up-/down-regulated in an elite fiber line (L1) relative to a poor-quality fiber line (L2) at 10, 15, 20, 25, and 30 days post-anthesis, respectively. Three-hundred sixty-three differentially expressed genes (DEGs) between two lines were colocalized in fiber strength (FS) quantitative trait loci (QTL). Short Time-series Expression Miner (STEM) analysis discriminated seven expression profiles; gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation were performed to identify difference in function between genes unique to L1 and L2. Co-expression network analysis detected five modules highly associated with specific fiber-development stages, especially for high-quality fiber tissues. The hub genes in each module were identified by weighted gene co-expression network analysis. Hub genes encoding actin 1, Rho GTPase-activating protein with PAK-box, TPX2 protein, bHLH transcription factor, and leucine-rich repeat receptor-like protein kinase were identified. Correlation networks revealed considerable interaction among the hub genes, transcription factors, and other genes.
Collapse
|
108
|
Differentially expressed genes between two groups of backcross inbred lines differing in fiber length developed from Upland × Pima cotton. Mol Biol Rep 2019; 46:1199-1212. [DOI: 10.1007/s11033-019-04589-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
|
109
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
110
|
Xiao G, Zhao P, Zhang Y. A Pivotal Role of Hormones in Regulating Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2019; 10:87. [PMID: 30838005 PMCID: PMC6382683 DOI: 10.3389/fpls.2019.00087] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
Cotton is the main source of renewable fiber in the world and is primarily used for textile production. Cotton fibers are single cells differentiated from the ovule epidermis and are an excellent model system for studying cell elongation, polyploidization, and cell wall biosynthesis. Plant hormones, which are present in relatively low concentrations, play important roles in various developmental processes, and recently, multiple reports have revealed the pivotal roles of hormones in regulating cotton fiber development. For example, exogenous application of hormones has been shown to promote the initiation and growth of fiber cells. However, a comprehensive understanding about phytohormone regulating fiber development is still unknown. Here, we focus on recent advances in elucidating the roles of multiple phytohormones in the control of fiber development, namely auxin, gibberellin, brassinosteroid, ethylene, cytokinin, abscisic acid, and strigolactones. We not only review the identification of genes involved in hormone biosynthetic and signaling pathways but also discuss the mechanisms of these phytohormones in regulating the initiation and elongation of fiber cells in cotton. Auxin, gibberellin, brassinosteroid, ethylene, jasmonic acid, and strigolactones play positive roles in fiber development, whereas cytokinin and abscisic acid inhibit fiber growth. Our aim is to provide a comprehensive review of the role of phytohormones in cotton fiber development that will serve as the basis for further elucidation of the mechanisms by which plant hormones regulate fiber growth.
Collapse
Affiliation(s)
- Guanghui Xiao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- *Correspondence: Guanghui Xiao,
| | - Peng Zhao
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Key Laboratory of the Ministry of Education for Medicinal Plant Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi’an, China
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in the Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
111
|
Ma J, Geng Y, Pei W, Wu M, Li X, Liu G, Li D, Ma Q, Zang X, Yu S, Zhang J, Yu J. Genetic variation of dynamic fiber elongation and developmental quantitative trait locus mapping of fiber length in upland cotton (Gossypium hirsutum L.). BMC Genomics 2018; 19:882. [PMID: 30522448 PMCID: PMC6282333 DOI: 10.1186/s12864-018-5309-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/25/2018] [Indexed: 02/04/2023] Open
Abstract
Background In upland cotton (Gossypium hirsutum L.), genotypes with the same mature fiber length (FL) might possess different genes and exhibit differential expression of genes related to fiber elongation at different fiber developmental stages. However, there is a lack of information on the genetic variation influencing fiber length and its quantitative trait loci (QTLs) during the fiber elongation stage. In this study, a subset of upland cotton accessions was selected based on a previous GWAS conducted in China and grown in multiple environments to determine the dynamic fiber length at 10, 15, 20, and 25 days post-anthesis (DPA) and maturity. The germplasm lines were genotyped with the Cotton 63 K Illumina single-nucleotide polymorphism (SNP) array for GWAS. Results A total of 25, 38, 57, 89 and 88 SNPs showed significant correlations with fiber length at 10, 15, 20 and 25 DPA and maturity, respectively. In addition, 60 more promising SNPs were detected in at least two tests and two FL developmental time points, and 20 SNPs were located within the confidence intervals of QTLs identified in previous studies. The fastest fiber-length growth rates were obtained at 10 to 15 DPA in 69 upland cotton lines and at 15 to 20 DPA in 14 upland cotton accessions, and 10 SNPs showed significant correlations with the fiber-length growth rate. A combined transcriptome and qRT-PCR analysis revealed that two genes (D10G1008 and D13G2037) showed differential expression between two long-fiber genotypes and two short-fiber genotypes. Conclusions This study provides important new insights into the genetic basis of the time-dependent fiber-length trait and reveals candidate SNPs and genes for improving fiber length in upland cotton. Electronic supplementary material The online version of this article (10.1186/s12864-018-5309-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianjiang Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shanxi, China.,State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Yanhui Geng
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Wenfeng Pei
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Man Wu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Xingli Li
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Dan Li
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - XinShan Zang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shanxi, China. .,State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China.
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 880033, USA.
| | - Jiwen Yu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Cotton Genetic Improvement, Ministry of Agriculture, Anyang, 455000, Henan, China.
| |
Collapse
|
112
|
Huang X, Wang B, Xi J, Zhang Y, He C, Zheng J, Gao J, Chen H, Zhang S, Wu W, Liang Y, Yi K. Transcriptome Comparison Reveals Distinct Selection Patterns in Domesticated and Wild Agave Species, the Important CAM Plants. Int J Genomics 2018; 2018:5716518. [PMID: 30596084 PMCID: PMC6282153 DOI: 10.1155/2018/5716518] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/21/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023] Open
Abstract
Agave species are an important family of crassulacean acid metabolism (CAM) plants with remarkable tolerance to heat and drought stresses (Agave deserti) in arid regions and multiple agricultural applications, such as spirit (Agave tequilana) and fiber (Agave sisalana) production. The agave genomes are commonly too large to sequence, which has significantly restricted our understanding to the molecular basis of stress tolerance and economic traits in agaves. In this study, we collected three transcriptome databases for comparison to reveal the phylogenic relationships and evolution patterns of the three agave species. The results indicated the close but distinctly domesticated relations between A. tequilana and A. sisalana. Natural abiotic and biotic selections are very important factors that have contributed to distinct economic traits in agave domestication together with artificial selection. Besides, a series of candidate unigenes regulating fructan, fiber, and stress response-related traits were identified in A. tequilana, A. sisalana, and A. deserti, respectively. This study represents the first transcriptome comparison within domesticated and wild agaves, which would serve as a guidance for further studies on agave evolution, environmental adaptation, and improvement of economically important traits.
Collapse
Affiliation(s)
- Xing Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingen Xi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | | | - Chunping He
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jinlong Zheng
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianming Gao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Helong Chen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shiqing Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Weihuai Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yanqiong Liang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kexian Yi
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
113
|
Ali U, Li H, Wang X, Guo L. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. MOLECULAR PLANT 2018; 11:1328-1343. [PMID: 30336328 DOI: 10.1016/j.molp.2018.10.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 05/12/2023]
Abstract
Plant sphingolipids are not only structural components of the plasma membrane and other endomembrane systems but also act as signaling molecules during biotic and abiotic stresses. However, the roles of sphingolipids in plant signal transduction in response to environmental cues are yet to be investigated in detail. In this review, we discuss the signaling roles of sphingolipid metabolites with a focus on plant sphingolipids. We also mention some microbial sphingolipids that initiate signals during their interaction with plants, because of the limited literatures on their plant analogs. The equilibrium of nonphosphorylated and phosphorylated sphingolipid species determine the destiny of plant cells, whereas molecular connections among the enzymes responsible for this equilibrium in a coordinated signaling network are poorly understood. A mechanistic link between the phytohormone-sphingolipid interplay has also not yet been fully understood and many key participants involved in this complex interaction operating under stress conditions await to be identified. Future research is needed to fill these gaps and to better understand the signal pathways of plant sphingolipids and their interplay with other signals in response to environmental stresses.
Collapse
Affiliation(s)
- Usman Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hehuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuemin Wang
- Department of Biology, University of Missouri, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
114
|
Park CH, Roh J, Youn JH, Son SH, Park JH, Kim SY, Kim TW, Kim SK. Arabidopsis ACC Oxidase 1 Coordinated by Multiple Signals Mediates Ethylene Biosynthesis and Is Involved in Root Development. Mol Cells 2018; 41:923-932. [PMID: 30352493 PMCID: PMC6199567 DOI: 10.14348/molcells.2018.0092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/14/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Ethylene regulates numerous aspects of plant growth and development. Multiple external and internal factors coordinate ethylene production in plant tissues. Transcriptional and post-translational regulations of ACC synthases (ACSs), which are key enzymes mediating a rate-limiting step in ethylene biosynthesis have been well characterized. However, the regulation and physiological roles of ACC oxidases (ACOs) that catalyze the final step of ethylene biosynthesis are largely unknown in Arabidopsis. Here, we show that Arabidopsis ACO1 exhibits a tissue-specific expression pattern that is regulated by multiple signals, and plays roles in the lateral root development in Arabidopsis. Histochemical analysis of the ACO1 promoter indicated that ACO1 expression was largely modulated by light and plant hormones in a tissue-specific manner. We demonstrated that point mutations in two E-box motifs on the ACO1 promoter reduce the light-regulated expression patterns of ACO1. The aco1-1 mutant showed reduced ethylene production in root tips compared to wild-type. In addition, aco1-1 displayed altered lateral root formation. Our results suggest that Arabidopsis ACO1 integrates various signals into the ethylene biosynthesis that is required for ACO1's intrinsic roles in root physiology.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305-4150,
USA
| | - Jeehee Roh
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji-Hyun Youn
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Seung-Hyun Son
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| | - Ji Hye Park
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Soon Young Kim
- Department of Biological Science, Andong National University, Andong 36729,
Korea
| | - Tae-Wuk Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763,
Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763,
Korea
| | - Seong-Ki Kim
- Department of Life Science, Chung-Ang University, Seoul 06974,
Korea
| |
Collapse
|
115
|
In Vitro Activity of PBTZ169 against Multiple Mycobacterium Species. Antimicrob Agents Chemother 2018; 62:AAC.01314-18. [PMID: 30150479 DOI: 10.1128/aac.01314-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
In this study, we demonstrate that PBTZ169 exhibits significant differences in in vitro activity against multiple Mycobacterium species. The amino acid polymorphism at codon 387 of decaprenylphosphoryl-beta-d-ribose oxidase (DprE1) can be used as a surrogate marker for in vitro susceptibility to PBTZ169 in mycobacteria. In addition, the amino acid substitution at codon 154 in DprE1 may be associated with acquired resistance to PBTZ169 in the Mycobacterium fortuitum mutants.
Collapse
|
116
|
Salih H, Gong W, He S, Mustafa NS, Du X. Comparative transcriptome analysis of TUCPs in Gossypium hirsutum Ligon-lintless-1 mutant and their proposed functions in cotton fiber development. Mol Genet Genomics 2018; 294:23-34. [DOI: 10.1007/s00438-018-1482-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
|
117
|
Ma R, Yuan H, An J, Hao X, Li H. A Gossypium hirsutum GDSL lipase/hydrolase gene (GhGLIP) appears to be involved in promoting seed growth in Arabidopsis. PLoS One 2018; 13:e0195556. [PMID: 29621331 PMCID: PMC5886685 DOI: 10.1371/journal.pone.0195556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/23/2018] [Indexed: 01/20/2023] Open
Abstract
GDSL lipase (GLIP) plays a pivotal role in plant cell growth as a multifunctional hydrolytic enzyme. Herein, a cotton (Gossypium hirsutum L. cv Xuzhou 142) GDSL lipase gene (GhGLIP) was obtained from developing ovules and fibers. The GhGLIP cDNA contained an open reading frame (ORF) of 1,143 base pairs (bp) and encodes a putative polypeptide of 380 amino acid residues. Sequence alignment indicated that GhGLIP includes four enzyme catalytic amino acid residue sites of Ser (S), Gly (G), Asn (N) and His (H), located in four conserved blocks. Phylogenetic tree analysis showed that GhGLIP belongs to the typical class IV lipase family with potential functions in plant secondary metabolism. Subcellular distribution analysis demonstrated that GhGLIP localized to the nucleus, cytoplasm and plasma membrane. GhGLIP was expressed predominantly at 5-15 day post anthesis (dpa) in developing ovules and elongating fibers, measured as mRNA levels and enzyme activity. Ectopic overexpression of GhGLIP in Arabidopsis plants resulted in enhanced seed development, including length and fresh weight. Meanwhile, there was increased soluble sugar and protein storage in transgenic Arabidopsis plants, coupled with the promotion of lipase activity. Moreover, the expression of cotton GhGLIP is induced by ethylene (ETH) treatment in vitro. A 1,954-bp GhGLIP promoter was isolated and expressed high activity in driving green fluorescence protein (GFP) expression in tobacco leaves. Cis-acting element analysis of the GhGLIP promoter (pGhGLIP) indicated the presence of an ethylene-responsive element (ERE), and transgenic tobacco leaves with ectopic expression of pGhGLIP::GFP-GUS showed increased GUS activity after ETH treatment. In summary, these results suggest that GhGLIP is a functional enzyme involved in ovule and fiber development and performs significant roles in seed development.
Collapse
Affiliation(s)
- Rendi Ma
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Hali Yuan
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Jing An
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Xiaoyun Hao
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
| | - Hongbin Li
- College of Life Sciences, Key Laboratory of Agrobiotechnolog, Shihezi University, Shihezi, Xinjiang, China
- Key Laboratory of Xinjiang Phytomedicine Resource Utilization, Ministry of Education, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
118
|
SSR-based association mapping of fiber quality in upland cotton using an eight-way MAGIC population. Mol Genet Genomics 2018; 293:793-805. [PMID: 29392407 DOI: 10.1007/s00438-018-1419-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
Abstract
The quality of fiber is significant in the upland cotton industry. As complex quantitative traits, fiber quality traits are worth studying at a genetic level. To investigate the genetic architecture of fiber quality traits, we conducted an association analysis using a multi-parent advanced generation inter-cross (MAGIC) population developed from eight parents and comprised of 960 lines. The reliable phenotypic data for six major fiber traits of the MAGIC population were collected from five environments in three locations. Phenotypic analysis showed that the MAGIC lines have a wider variation amplitude and coefficient than the founders. A total of 284 polymorphic SSR markers among eight parents screened from a high-density genetic map were used to genotype the MAGIC population. The MAGIC population showed abundant genetic variation and fast linkage disequilibrium (LD) decay (0.76 cM, r2 > 0.1), which revealed the advantages of high efficiency and power in QTL exploration. Association mapping via a mixed linear model identified 52 significant loci associated with six fiber quality traits; 14 of them were mapped in reported QTL regions with fiber-related or other agronomic traits. Nine markers demonstrated the pleiotropism that controls more than two fiber traits. Furthermore, two SSR markers, BNL1231 and BNL3452, were authenticated as hotspots that were mapped with multi-traits. In addition, we provided candidate regions and screened six candidate genes for identified loci according to the LD decay distance. Our results provide valuable QTL for further genetic mapping and will facilitate marker-based breeding for fiber quality in cotton.
Collapse
|
119
|
Yin J, Gosney MJ, Dilkes BP, Mickelbart MV. Dark period transcriptomic and metabolic profiling of two diverse Eutrema salsugineum accessions. PLANT DIRECT 2018; 2:e00032. [PMID: 31245703 PMCID: PMC6508522 DOI: 10.1002/pld3.32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 05/16/2023]
Abstract
Eutrema salsugineum is a model species for the study of plant adaptation to abiotic stresses. Two accessions of E. salsugineum, Shandong (SH) and Yukon (YK), exhibit contrasting morphology and biotic and abiotic stress tolerance. Transcriptome profiling and metabolic profiling from tissue samples collected during the dark period were used to investigate the molecular and metabolic bases of these contrasting phenotypes. RNA sequencing identified 17,888 expressed genes, of which 157 were not in the published reference genome, and 65 of which were detected for the first time. Differential expression was detected for only 31 genes. The RNA sequencing data contained 14,808 single nucleotide polymorphisms (SNPs) in transcripts, 3,925 of which are newly identified. Among the differentially expressed genes, there were no obvious candidates for the physiological or morphological differences between SH and YK. Metabolic profiling indicated that YK accumulates free fatty acids and long-chain fatty acid derivatives as compared to SH, whereas sugars are more abundant in SH. Metabolite levels suggest that carbohydrate and respiratory metabolism, including starch degradation, is more active during the first half of the dark period in SH. These metabolic differences may explain the greater biomass accumulation in YK over SH. The accumulation of 56% of the identified metabolites was lower in F1 hybrids than the mid-parent averages and the accumulation of 17% of the metabolites in F1 plants transgressed the level in both parents. Concentrations of several metabolites in F1 hybrids agree with previous studies and suggest a role for primary metabolism in heterosis. The improved annotation of the E. salsugineum genome and newly identified high-quality SNPs will permit accelerated studies using the standing variation in this species to elucidate the mechanisms of its diverse adaptations to the environment.
Collapse
Affiliation(s)
- Jie Yin
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
| | - Michael J. Gosney
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| | - Brian P. Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteINUSA
| | - Michael V. Mickelbart
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteINUSA
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteINUSA
| |
Collapse
|
120
|
Meng C, Yan Y, Liu Z, Chen L, Zhang Y, Li X, Wu L, Zhang G, Wang X, Ma Z. Systematic Analysis of Cotton Non-specific Lipid Transfer Protein Family Revealed a Special Group That Is Involved in Fiber Elongation. FRONTIERS IN PLANT SCIENCE 2018; 9:1285. [PMID: 30283464 PMCID: PMC6156462 DOI: 10.3389/fpls.2018.01285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/16/2018] [Indexed: 05/17/2023]
Abstract
Non-specific lipid transfer proteins (nsLTPs) had been previously isolated from cotton fiber but their functions were unclear so far. Bioinformatic analysis of the tetraploid cotton genome database identified 138 nsLTP genes, falling into the 11 groups as reported previously. Different from Arabidopsis, cacao, and other crops, cotton type XI genes were considerably expanded and diverged earlier on chromosome At11, Dt11, and Dt08. Corresponding to the type XI genes, the type XI proteins (GhLtpXIs) all contained an extra N-terminal cap resulting in larger molecular weight. The research revealed that the expression of type XI genes was dramatically increased in fibers of tetraploid cotton compared with the two diploid progenitors. High-level of GhLtpXIs expression was observed in long-fibered cotton cultivars during fiber elongation. Ectopic expression of GhLtpXIs in Arabidopsis significantly enhanced trichome length, suggesting that GhLtpXIs promoted fiber elongation. Overall, the findings of this research provide insights into phenotypic evolution of Gossypium species and regulatory mechanism of nsLTPs during fiber development. HIGHLIGHT A specific group, type XI nsLTPs, was identified with predominant expression in elongating fibers of Gossypium hirsutum based on evolutionary, transcriptional, and functional analyses.
Collapse
|
121
|
LaBonte NR, Zhao P, Woeste K. Signatures of Selection in the Genomes of Chinese Chestnut ( Castanea mollissima Blume): The Roots of Nut Tree Domestication. FRONTIERS IN PLANT SCIENCE 2018; 9:810. [PMID: 29988533 PMCID: PMC6026767 DOI: 10.3389/fpls.2018.00810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/25/2018] [Indexed: 05/18/2023]
Abstract
Chestnuts (Castanea) are major nut crops in East Asia and southern Europe, and are unique among temperate nut crops in that the harvested seeds are starchy rather than oily. Chestnut species have been cultivated for three millennia or more in China, so it is likely that artificial selection has affected the genome of orchard-grown chestnuts. The genetics of Chinese chestnut (Castanea mollissima Blume) domestication are also of interest to breeders of hybrid American chestnut, especially if the low-growing, branching habit of Chinese chestnut, an impediment to American chestnut restoration, is partly the result of artificial selection. We resequenced genomes of wild and orchard-derived Chinese chestnuts and identified selective sweeps based on pooled whole-genome SNP datasets. We present candidate gene loci for chestnut domestication and discuss the potential phenotypic effects of candidate loci, some of which may be useful genes for chestnut improvement in Asia and North America. Selective sweeps included predicted genes potentially related to flower phenology and development, fruit maturation, and secondary metabolism, and included some genes homologous to domestication candidates in other woody plants.
Collapse
Affiliation(s)
- Nicholas R. LaBonte
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Nicholas R. LaBonte
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Keith Woeste
- Hardwood Tree Improvement and Regeneration Center, Northern Research Station, USDA Forest Service, West Lafayette, IN, United States
| |
Collapse
|
122
|
Zhang J, Huang GQ, Zou D, Yan JQ, Li Y, Hu S, Li XB. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers. THE NEW PHYTOLOGIST 2018; 217:625-640. [PMID: 29105766 DOI: 10.1111/nph.14864] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/24/2017] [Indexed: 05/18/2023]
Abstract
Cotton (Gossypium hirsutum) fibers are the highly elongated and thickened single-cell trichomes on the seed epidermis. However, little is known about the molecular base of fiber cell wall thickening in detail. In this study, a cotton NAC transcription factor (GhFSN1) that is specifically expressed in secondary cell wall (SCW) thickening fibers was functionally characterized. The GhFSN1 transgenic cotton plants were generated to study how FSN1 regulates fiber SCW formation. Up-regulation of GhFSN1 expression in cotton resulted in an increase in SCW thickness of fibers but a decrease in fiber length. Transcriptomic analysis revealed that GhFSN1 activates or represses numerous downstream genes. GhFSN1 has the ability to form homodimers, binds to its promoter to activate itself, and might be degraded by the ubiquitin-mediated proteasome pathway. The direct targets of GhFSN1 include the fiber SCW-related GhDUF231L1, GhKNL1, GhMYBL1, GhGUT1 and GhIRX12 genes. GhFSN1 binds directly to a consensus sequence (GhNBS), (C/T)(C/G/T)TN(A/T)(G/T)(A/C/G)(A/G)(A/T/G)(A/T/G)AAG, which exists in the promoters of these SCW-related genes. Our data demonstrate that GhFSN1 acts as a positive regulator in controlling SCW formation of cotton fibers by activating its downstream SCW-related genes. Thus, these findings give us novel insights into comprehensive understanding of GhFSN1 function in fiber development.
Collapse
Affiliation(s)
- Jie Zhang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Dan Zou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Jing-Qiu Yan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Shan Hu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
123
|
Wu Z, Yang Y, Huang G, Lin J, Xia Y, Zhu Y. Cotton functional genomics reveals global insight into genome evolution and fiber development. J Genet Genomics 2017; 44:511-518. [PMID: 29169921 DOI: 10.1016/j.jgg.2017.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/17/2022]
Abstract
Due to the economic value of natural textile fiber, cotton has attracted much research attention, which has led to the publication of two diploid genomes and two tetraploid genomes. These big data facilitate functional genomic study in cotton, and allow researchers to investigate cotton genome structure, gene expression, and protein function on the global scale using high-throughput methods. In this review, we summarized recent studies of cotton genomes. Population genomic analyses revealed the domestication history of cultivated upland cotton and the roles of transposable elements in cotton genome evolution. Alternative splicing of cotton transcriptomes was evaluated genome-widely. Several important gene families like MYC, NAC, Sus and GhPLDα1 were systematically identified and classified based on genetic structure and biological function. High-throughput proteomics also unraveled the key functional proteins correlated with fiber development. Functional genomic studies have provided unprecedented insights into global-scale methods for cotton research.
Collapse
Affiliation(s)
- Zhiguo Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yan Yang
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Lin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuying Xia
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yuxian Zhu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
124
|
Wang L, He J, Yang Q, Lv X, Li J, Chen DDY, Ding X, Huang X, Zhou Q. Abnormal pinocytosis and valence-variable behaviors of cerium suggested a cellular mechanism for plant yield reduction induced by environmental cerium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:902-910. [PMID: 28738302 DOI: 10.1016/j.envpol.2017.07.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 07/09/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
The environmental safety of cerium (Ce) applications in many fields has been debated for almost a century because the cellular effects of environmental Ce on living organisms remain largely unclear. Here, using new, interdisciplinary methods, we surprisingly found that after Ce(III) treatment, Ce(III) was first recognized and anchored on the plasma membrane in leaf cells. Moreover, some trivalent Ce(III) was oxidized to tetravalent Ce(IV) in this organelle, which activated pinocytosis. Subsequently, more anchoring sites and stronger valence-variable behavior on the plasma membrane caused stronger pinocytosis to transport Ce(III and IV) into the leaf cells. Interestingly, a great deal of Ce was bound on the pinocytotic vesicle membrane; only a small amount of Ce was enclosed in the pinocytotic vesicles. Some pinocytic vesicles in the cytoplasm were deformed and broken. Upon breaking, pinocytic vesicles released Ce into the cytoplasm, and then these Ce particles self-assembled into nanospheres. The aforementioned special behaviors of Ce decreased the fluidity of the plasma membrane, inhibited the cellular growth of leaves, and finally, decreased plant yield. In summary, our findings directly show the special cellular behavior of Ce in plant cells, which may be the cellular basis of plant yield reduction induced by environmental Ce.
Collapse
Affiliation(s)
- Lihong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China; State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingfang He
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Qing Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xiaofen Lv
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Xiaolan Ding
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Xiaohua Huang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China.
| | - Qing Zhou
- State Key Laboratory of Food Science and Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
125
|
Transcriptome Analysis Suggests That Chromosome Introgression Fragments from Sea Island Cotton ( Gossypium barbadense) Increase Fiber Strength in Upland Cotton ( Gossypium hirsutum). G3-GENES GENOMES GENETICS 2017; 7:3469-3479. [PMID: 28874383 PMCID: PMC5633395 DOI: 10.1534/g3.117.300108] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton (Gossypium hirsutum) crossed with high-quality Sea Island cotton (G. barbadense). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase (MNS1)], XLOC_029945 (FLA8), and XLOC_075372 (snakin-1), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.
Collapse
|
126
|
Hande AS, Katageri IS, Jadhav MP, Adiger S, Gamanagatti S, Padmalatha KV, Dhandapani G, Kanakachari M, Kumar PA, Reddy VS. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.). BMC Genomics 2017; 18:675. [PMID: 28859611 PMCID: PMC5580217 DOI: 10.1186/s12864-017-4066-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Cotton fibre is a single cell and it is one of the best platforms for unraveling the genes express during various stages of fibre development. There are reports devoted to comparative transcriptome study on fiber cell initiation and elongation in tetraploid cultivated cotton. However, in the present investigation, comparative transcriptome study was made in diploid cultivated cotton using isogenic fuzzy-lintless (Fl) and normal fuzzy linted (FL) lines belong to Gossypium arboreum, diploid species at two stages, 0 and 10 dpa (days post anthesis), using Affymetrix cotton GeneChip genome array. Result Scanning electron microscopy (SEM) analysis uncovered the occurrence of few fibre cell initials in the Fl line as compared to many in Normal FL at −2 and 0 dpa. However, at 10 dpa there were no fibre cells found elongated in Fl but many elongated cells were found in FL line. Up-regulation of transcription factors, AP2-EREBP, C2H2, C3H, HB and WRKY was observed at 0 dpa whereas in 10 dpa transcription factors, AP2-EREBP, AUX/IAA, bHLH, C2H2, C3H, HB, MYB, NAC, Orphans, PLATZ and WRKY were found down regulated in Fl line. These transcription factors were mainly involved in metabolic pathways such as phytohormone signaling, energy metabolism of cell, fatty acid metabolism, secondary metabolism and other signaling pathways and are related directly or indirectly in fiber development. Quantitative real-time PCR was performed to check fold up or down-regulation of these genes and transcription factors (TFs) down regulated in mutants as compared to normal at 0 and 10 dpa. Conclusion This study elucidates that the up-regulation of transcription factors like AP2-EREBP, C2H2, C3H, HB, WRKY and phytohormone signaling genes at 0 dpa and their down-regulation at the 10 dpa might have constrain the fibre elongation in fuzzy-lintless line. Along with this the down-regulation of genes involved in synthesis of VLCFA chain, transcripts necessary for energy and cell wall metabolism, EXPANSINs, arabinogalactan proteins (AGPs), tubulin might also be the probable reason for reduced growth of fibres in the Fl. Plant receptor-like kinases (RLKs), Leucine Rich Repeats) LRR- family protein and signal transduction coding for mitogen-activated protein kinase (MAPK) cascade, have been engaged in coordination of cell elongation and SCW biosynthesis, down-regulation of these might loss the function leads to reduced fibre growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4066-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atul S Hande
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | | | | | - Sateesh Adiger
- University of Agricultural Sciences, Dharwad, Karnataka, India
| | | | | | - Gurusamy Dhandapani
- National Research Centre on Plant Biotechnology (NRCPB), IARI, New Delhi, India
| | | | | | - Vanga Siva Reddy
- Plant Transformation Group, International Centre for Genetic Engineering & Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
127
|
Sun X, Li Y, He W, Ji C, Xia P, Wang Y, Du S, Li H, Raikhel N, Xiao J, Guo H. Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nat Commun 2017; 8:15758. [PMID: 28604689 PMCID: PMC5472784 DOI: 10.1038/ncomms15758] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Ethylene is an important phytohormone that promotes the ripening of fruits and senescence of flowers thereby reducing their shelf lives. Specific ethylene biosynthesis inhibitors would help to decrease postharvest loss. Here, we identify pyrazinamide (PZA), a clinical drug used to treat tuberculosis, as an inhibitor of ethylene biosynthesis in Arabidopsis thaliana, using a chemical genetics approach. PZA is converted to pyrazinecarboxylic acid (POA) in plant cells, suppressing the activity of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO), the enzyme catalysing the final step of ethylene formation. The crystal structures of Arabidopsis ACO2 in complex with POA or 2-Picolinic Acid (2-PA), a POA-related compound, reveal that POA/2-PA bind at the active site of ACO, preventing the enzyme from interacting with its natural substrates. Our work suggests that PZA and its derivatives may be promising regulators of plant metabolism, in particular ethylene biosynthesis.
Collapse
Affiliation(s)
- Xiangzhong Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yaxin Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wenrong He
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Chenggong Ji
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Peixue Xia
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Yichuan Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuo Du
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Hongjiang Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Natasha Raikhel
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92507, USA
| | - Junyu Xiao
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.,Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Hongwei Guo
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China.,Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
128
|
Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics 2017; 18:427. [PMID: 28569138 PMCID: PMC5452627 DOI: 10.1186/s12864-017-3812-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/23/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) fibers are single-celled elongated trichomes, the molecular aspects of genetic variation in fiber length (FL) among genotypes are currently unknown. In this study, two backcross inbred lines (BILs), i.e., NMGA-062 ("Long") and NMGA-105 ("Short") with 32.1 vs. 27.2 mm in FL, respectively, were chosen to perform RNA-Seq on developing fibers at 10 days post anthesis (DPA). The two BILs differed in 4 quantitative trait loci (QTL) for FL and were developed from backcrosses between G. hirsutum as the recurrent parent and G. barbadense. RESULTS In total, 51.7 and 54.3 million reads were obtained and assembled to 49,508 and 49,448 transcripts in the two genotypes, respectively. Of 1551 differentially expressed genes (DEGs) between the two BILs, 678 were up-regulated and 873 down-regulated in "Long"; and 703 SNPs were identified in 339 DEGs. Further physical mapping showed that 8 DEGs were co-localized with the 4 FL QTL identified in the BIL population containing the two BILs. Four SNP markers in 3 DEGs that showed significant correlations with FL were developed. Among the three candidate genes encoding for proline-rich protein, D-cysteine desulfhydrase, and thaumatin-like protein, a SNP of thaumatin-like protein gene showed consistent correlations with FL across all testing environments. CONCLUSIONS This study represents one of the first investigations of positional candidate gene approach of QTL in cotton in integrating transcriptome and SNP identification based on RNA-Seq with linkage and physical mapping of QTL and genes, which will facilitate eventual cloning and identification of genes responsible for FL QTL. The candidate genes may serve as the foundation for further in-depth studies of the molecular mechanism of natural variation in fiber elongation.
Collapse
|
129
|
Qin LX, Chen Y, Zeng W, Li Y, Gao L, Li DD, Bacic A, Xu WL, Li XB. The cotton β-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:957-971. [PMID: 27888523 DOI: 10.1111/tpj.13434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/18/2016] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are highly glycosylated proteins that play pivotal roles in diverse developmental processes in plants. Type-II AG glycans, mostly O-linked to the hydroxyproline residues of the protein backbone, account for up to 95% w/w of the AGP, but their functions are still largely unclear. Cotton fibers are extremely elongated single-cell trichomes on the seed epidermis; however, little is known of the molecular basis governing the regulation of fiber cell development. Here, we characterized the role of a CAZy glycosyltransferase 31 (GT31) family member, GhGalT1, in cotton fiber development. The fiber length of the transgenic cotton overexpressing GhGalT1 was shorter than that of the wild type, whereas in the GhGalT1-silenced lines there was a notable increase in fiber length compared with wild type. The carbohydrate moieties of AGPs were altered in fibers of GhGalT1 transgenic cotton. The galactose: arabinose ratio of AG glycans was higher in GhGalT1 overexpression fibers, but was lower in GhGalT1-silenced lines, compared with that in the wild type. Overexpression of GhGalT1 upregulates transcript levels of a broad range of cell wall-related genes, especially the fasciclin-like AGP (FLA) backbone genes. An enzyme activity assay demonstrated that GhGalT1 is a β-1,3-galactosyltransferase (β-1,3-GalT) involved in biosynthesis of the β-1,3-galactan backbone of the type-II AG glycans of AGPs. We also show that GhGalT1 can form homo- and heterodimers with other cotton GT31 family members to facilitate AG glycan assembly of AGPs. Thus, our data demonstrate that GhGalT1 influences cotton fiber development via controlling the glycosylation of AGPs, especially FLAs.
Collapse
Affiliation(s)
- Li-Xia Qin
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yun Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wei Zeng
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Lu Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Deng-Di Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Wen-Liang Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
130
|
Wang N, Ma J, Pei W, Wu M, Li H, Li X, Yu S, Zhang J, Yu J. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics 2017; 18:218. [PMID: 28249560 PMCID: PMC5333453 DOI: 10.1186/s12864-017-3594-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid acyltransferase (LPAAT) encoded by a multigene family is a rate-limiting enzyme in the Kennedy pathway in higher plants. Cotton is the most important natural fiber crop and one of the most important oilseed crops. However, little is known on genes coding for LPAATs involved in oil biosynthesis with regard to its genome organization, diversity, expression, natural genetic variation, and association with fiber development and oil content in cotton. RESULTS In this study, a comprehensive genome-wide analysis in four Gossypium species with genome sequences, i.e., tetraploid G. hirsutum- AD1 and G. barbadense- AD2 and its possible ancestral diploids G. raimondii- D5 and G. arboreum- A2, identified 13, 10, 8, and 9 LPAAT genes, respectively, that were divided into four subfamilies. RNA-seq analyses of the LPAAT genes in the widely grown G. hirsutum suggest their differential expression at the transcriptional level in developing cottonseeds and fibers. Although 10 LPAAT genes were co-localised with quantitative trait loci (QTL) for cottonseed oil or protein content within a 25-cM region, only one single strand conformation polymorphic (SSCP) marker developed from a synonymous single nucleotide polymorphism (SNP) of the At-Gh13LPAAT5 gene was significantly correlated with cottonseed oil and protein contents in one of the three field tests. Moreover, transformed yeasts using the At-Gh13LPAAT5 gene with the two sequences for the SNP led to similar results, i.e., a 25-31% increase in palmitic acid and oleic acid, and a 16-29% increase in total triacylglycerol (TAG). CONCLUSIONS The results in this study demonstrated that the natural variation in the LPAAT genes to improving cottonseed oil content and fiber quality is limited; therefore, traditional cross breeding should not expect much progress in improving cottonseed oil content or fiber quality through a marker-assisted selection for the LPAAT genes. However, enhancing the expression of one of the LPAAT genes such as At-Gh13LPAAT5 can significantly increase the production of total TAG and other fatty acids, providing an incentive for further studies into the use of LPAAT genes to increase cottonseed oil content through biotechnology.
Collapse
Affiliation(s)
- Nuohan Wang
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jianjiang Ma
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.,College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Wenfeng Pei
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Man Wu
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haijing Li
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xingli Li
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Shuxun Yu
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China. .,College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, 880033, USA.
| | - Jiwen Yu
- National Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
131
|
Fang L, Gong H, Hu Y, Liu C, Zhou B, Huang T, Wang Y, Chen S, Fang DD, Du X, Chen H, Chen J, Wang S, Wang Q, Wan Q, Liu B, Pan M, Chang L, Wu H, Mei G, Xiang D, Li X, Cai C, Zhu X, Chen ZJ, Han B, Chen X, Guo W, Zhang T, Huang X. Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 2017; 18:33. [PMID: 28219438 PMCID: PMC5317056 DOI: 10.1186/s13059-017-1167-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
Background Cotton has been cultivated and used to make fabrics for at least 7000 years. Two allotetraploid species of great commercial importance, Gossypium hirsutum and Gossypium barbadense, were domesticated after polyploidization and are cultivated worldwide. Although the overall genetic diversity between these two cultivated species has been studied with limited accessions, their population structure and genetic variations remain largely unknown. Results We resequence the genomes of 147 cotton accessions, including diverse wild relatives, landraces, and modern cultivars, and construct a comprehensive variation map to provide genomic insights into the divergence and dual domestication of these two important cultivated tetraploid cotton species. Phylogenetic analysis shows two divergent groups for G. hirsutum and G. barbadense, suggesting a dual domestication processes in tetraploid cottons. In spite of the strong genetic divergence, a small number of interspecific reciprocal introgression events are found between these species and the introgression pattern is significantly biased towards the gene flow from G. hirsutum into G. barbadense. We identify selective sweeps, some of which are associated with relatively highly expressed genes for fiber development and seed germination. Conclusions We report a comprehensive analysis of the evolution and domestication history of allotetraploid cottons based on the whole genomic variation between G. hirsutum and G. barbadense and between wild accessions and modern cultivars. These results provide genomic bases for improving cotton production and for further evolution analysis of polyploid crops. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1167-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Gong
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yan Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunxiao Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoliang Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Huang
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yangkun Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuqi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS-SRRC, New Orleans, LA, 70124, USA
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agriculture and Reclamation Sciences, Xinjiang, 832000, China
| | - Jiedan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Bingliang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengqiao Pan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijing Chang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaitong Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaofu Mei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Dan Xiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinghe Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Caiping Cai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiefei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Jeffrey Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China.,Department of Molecular Biosciences, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, TX, 78712, USA
| | - Bin Han
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xiaoya Chen
- State Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, 210095, China. .,Agronomy Department, College of Agriculture and Biotechnology, Zhejiang University, Zhejiang, 310029, China.
| | - Xuehui Huang
- National Center for Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200233, China. .,College of life and environmental sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
132
|
Guo Y, Pang C, Jia X, Ma Q, Dou L, Zhao F, Gu L, Wei H, Wang H, Fan S, Su J, Yu S. An NAM Domain Gene, GhNAC79, Improves Resistance to Drought Stress in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2017; 8:1657. [PMID: 28993786 PMCID: PMC5622203 DOI: 10.3389/fpls.2017.01657] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/08/2017] [Indexed: 05/18/2023]
Abstract
Plant-specific NAC proteins comprise one of the largest transcription factor families in plants and play important roles in plant development and the stress response. Gossypium hirsutum L. is a major source of fiber, but its growth and productivity are limited by many biotic and abiotic stresses. In this study, the NAC domain gene GhNAC79 was functionally characterized in detail, and according to information about the cotton genome sequences, it was located on scaffold42.1, containing three exons and two introns. Promoter analysis indicated that the GhNAC79 promoter contained both basic and stress-related elements, and it was especially expressed in the cotyledon of Arabidopsis. A transactivation assay in yeast demonstrated that GhNAC79 was a transcription activator, and its activation domain was located at its C-terminus. The results of qRT-PCR proved that GhNAC79 was preferentially expressed at later stages of cotyledon and fiber development, and it showed high sensitivity to ethylene and meJA treatments. Overexpression of GhNAC79 resulted in an early flowering phenotype in Arabidopsis, and it also improved drought tolerance in both Arabidopsis and cotton. Furthermore, VIGS-induced silencing of GhNAC79 in cotton led to a drought-sensitive phenotype. In summary, GhNAC79 positively regulates drought stress, and it also responds to ethylene and meJA treatments, making it a candidate gene for stress studies in cotton.
Collapse
Affiliation(s)
- Yaning Guo
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- School of Life Science, Yulin UniversityYulin, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Xiaoyun Jia
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lingling Dou
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Fengli Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
| | - Shuxun Yu
- College of Agronomy, Northwest A&F UniversityYangling, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural SciencesAnyang, China
- *Correspondence: Shuxun Yu,
| |
Collapse
|
133
|
Hu H, He X, Tu L, Zhu L, Zhu S, Ge Z, Zhang X. GhJAZ2 negatively regulates cotton fiber initiation by interacting with the R2R3-MYB transcription factor GhMYB25-like. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:921-935. [PMID: 27419658 DOI: 10.1111/tpj.13273] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA) signaling has been well studied in Arabidopsis. Most reports focus on the role of JA in biological pathways, such as stress resistance, trichome initiation and anthocyanin accumulation. The JASMONATE ZIM-DOMAIN (JAZ) protein is one of the important repressors in the JA signaling pathway. Previous studies showed that JA functions in fiber initiation and elongation, but little is known about how JAZ genes function in fiber development. In this study, a cotton JAZ protein (GhJAZ2) containing a highly conserved TIFY motif and a C-terminal Jas domain was identified, and its function during cotton fiber development was analysed. Gene expression analysis showed that GhJAZ2 was preferentially expressed in the root, hypocotyl, flower and ovule 1 day before anthesis. Overexpression of GhJAZ2 inhibited both lint and fuzz fiber initiation, and reduced the fiber length. Yeast two-hybrid assays showed that GhJAZ2 interacted with the R2R3-MYB transcription factors GhMYB25-like and GhGL1, the bHLH transcription factor GhMYC2, the WD repeat protein GhWD40 and the unknown protein GhJI1. Among these transcription factors, previous studies showed that downregulation of GhMYB25-like leads to a fiberless phenotype in cotton seeds. Molecular and genetic evidence showed that the GhJAZ2 protein suppresses fiber initiation in the overexpressing lines by interacting with GhMYB25-like and suppressing GhMYB25-like activity. Our results suggested that GhJAZ2 functions as a primary transcription repressor during lint and fuzz fiber initiation by interacting with GhMYB25-like, GhGL1, GhMYC2, GhWD40 and GhJI1 to regulate the JA signaling pathway.
Collapse
Affiliation(s)
- Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sitao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zonghe Ge
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
134
|
Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Mol Genet Genomics 2016; 292:173-186. [DOI: 10.1007/s00438-016-1265-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
|
135
|
Zhang S, Shen L, Xia Y, Yang Q, Li X, Tang G, Jiang Y, Wang J, Li M, Zhu L. DNA methylation landscape of fat deposits and fatty acid composition in obese and lean pigs. Sci Rep 2016; 6:35063. [PMID: 27721392 PMCID: PMC5056348 DOI: 10.1038/srep35063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/23/2016] [Indexed: 01/19/2023] Open
Abstract
Obese and lean type pig breeds exhibit differences in their fat deposits and fatty acid composition. Here, we compared the effect of genome-wide DNA methylation on fatty acid metabolism between Landrace pigs (LP, leaner) and Rongchang pigs (RP, fatty). We found that LP backfat (LBF) had a higher polyunsaturated fatty acid content but a lower adipocyte volume than RP backfat (RBF). LBF exhibited higher global DNA methylation levels at the genome level than RBF. A total of 483 differentially methylated regions (DMRs) were located in promoter regions, mainly affecting olfactory and sensory activity and lipid metabolism. In LBF, the promoters of genes related to ATPase activity had significantly stronger methylation. This fact may suggest lower energy metabolism levels, which may result in less efficient lipid synthesis in LBF. Furthermore, we identified a DMR in the miR-4335 and miR-378 promoters and validated their methylation status by bisulfite sequencing PCR. The hypermethylation of the promoters of miR-4335 and miR-378 in LBF and the resulting silencing of the target genes may result in LBF's low content in saturated fatty acids and fat deposition capacity. This study provides a solid basis for exploring the epigenetic mechanisms affecting fat deposition and fatty acid composition.
Collapse
Affiliation(s)
- Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | | | - Qiong Yang
- Department of Animal Husbandry and Veterinary Medicine, Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanzhi Jiang
- Department of Biology, College of Life and Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinyong Wang
- Chongqing Academy of Animal Science, Rongchang, Chongqing, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
136
|
Ma L, Wang Y, Yan G, Wei S, Zhou D, Kuang M, Fang D, Xu S, Yang W. Global analysis of the developmental dynamics of Gossypium hirsutum based on strand-specific transcriptome. PHYSIOLOGIA PLANTARUM 2016; 158:106-121. [PMID: 26892265 DOI: 10.1111/ppl.12432] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 12/06/2015] [Accepted: 01/04/2016] [Indexed: 06/05/2023]
Abstract
Cotton is an economically important crop that provides both natural fiber and by-products such as oil and protein. Its global gene expression could provide insight into the biological processes underlying growth and development, which involve suites of genes expressed with temporal and spatial control by regulatory networks. Generally, the goal for cotton breeding is improvement of the fiber; thus, most previous research has focused on identifying genes specific to the fiber. However, seeds may also play an important role in fiber development. In this study, we constructed and systematically analyzed 21 strand-specific RNA-Seq libraries for Gossypium hirsutum, covering different tissues, organs and development stages, from which approximately 970 million reads were generated to provide a global view of gene expression during cotton development. The organ (tissue)-specific gene expression patterns were investigated, providing further insight into the dynamic programming associated with developmental processes and a way to study the coordination of development between fiber cells and ovules. Series of transcription factors and seed-specific genes have been identified as candidate genes that could elucidate key mechanisms and regulatory networks in nutrient accumulation during ovule development and in fiber development. This study reports comprehensive transcriptome dynamics at various stages of cotton development and will serve as a valuable genome-wide transcriptome resource for initial gene discovery and functional characterization of genes in cotton.
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Yanqin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Gentu Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shoujun Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Dayun Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Meng Kuang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Dan Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Shuangjiao Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| | - Weihua Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang 455000, China
| |
Collapse
|
137
|
Genome-wide landscape of DNA methylomes and their relationship with mRNA and miRNA transcriptomes in oxidative and glycolytic skeletal muscles. Sci Rep 2016; 6:32186. [PMID: 27561200 PMCID: PMC4999948 DOI: 10.1038/srep32186] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
The physiological, biochemical and functional differences between oxidative and glycolytic muscles play important roles in human metabolic health and in animal meat quality. To explore these differences, we determined the genome-wide landscape of DNA methylomes and their relationship with the mRNA and miRNA transcriptomes of the oxidative muscle psoas major (PMM) and the glycolytic muscle longissimus dorsi (LDM). We observed the hypo-methylation of sub-telomeric regions. A high mitochondrial content contributed to fast replicative senescence in PMM. The differentially methylated regions (DMRs) in promoters (478) and gene bodies (5,718) were mainly enriched in GTPase regulator activity and signaling cascade-mediated pathways. Integration analysis revealed that the methylation status within gene promoters (or gene bodies) and miRNA promoters was negatively correlated with mRNA and miRNA expression, respectively. Numerous genes were closely related to distinct phenotypic traits between LDM and PMM. For example, the hyper-methylation and down-regulation of HK-2 and PFKFB4 were related to decrease glycolytic potential in PMM. In addition, promoter hypo-methylation and the up-regulation of miR-378 silenced the expression of the target genes and promoted capillary biosynthesis in PMM. Together, these results improve understanding of muscle metabolism and development from genomic and epigenetic perspectives.
Collapse
|
138
|
Yang T, Xu R, Chen J, Liu A. β-Ketoacyl-acyl Carrier Protein Synthase I (KASI) Plays Crucial Roles in the Plant Growth and Fatty Acids Synthesis in Tobacco. Int J Mol Sci 2016; 17:E1287. [PMID: 27509494 PMCID: PMC5000684 DOI: 10.3390/ijms17081287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 11/16/2022] Open
Abstract
Fatty acids serve many functions in plants, but the effects of some key genes involved in fatty acids biosynthesis on plants growth and development are not well understood yet. To understand the functions of 3-ketoacyl-acyl-carrier protein synthase I (KASI) in tobacco, we isolated two KASI homologs, which we have designated NtKASI-1 and NtKASI-2. Expression analysis showed that these two KASI genes were transcribed constitutively in all tissues examined. Over-expression of NtKASI-1 in tobacco changed the fatty acid content in leaves, whereas over-expressed lines of NtKASI-2 exhibited distinct phenotypic features such as slightly variegated leaves and reduction of the fatty acid content in leaves, similar to the silencing plants of NtKASI-1 gene. Interestingly, the silencing of NtKASI-2 gene had no discernibly altered phenotypes compared to wild type. The double silencing plants of these two genes enhanced the phenotypic changes during vegetative and reproductive growth compared to wild type. These results uncovered that these two KASI genes had the partially functional redundancy, and that the KASI genes played a key role in regulating fatty acids synthesis and in mediating plant growth and development in tobacco.
Collapse
Affiliation(s)
- Tianquan Yang
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xuefu Road 88, Kunming 650223, China.
- University of Chinese Academy of Science, Beijing 100049, China.
| | - Ronghua Xu
- College of Life Sciences, Anhui Science and Technology University, Fengyang 233100, China.
| | - Jianghua Chen
- Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xuefu Road 88, Kunming 650223, China.
| | - Aizhong Liu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming 650201, China.
| |
Collapse
|
139
|
Liu W, Zhang B, He W, Wang Z, Li G, Liu J. Characterization of in vivo phosphorylation modification of differentially accumulated proteins in cotton fiber-initiation process. Acta Biochim Biophys Sin (Shanghai) 2016; 48:756-61. [PMID: 27297637 DOI: 10.1093/abbs/gmw055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 11/13/2022] Open
Abstract
Initiation of cotton fiber from ovule epidermal cells determines the ultimate number of fibers per cotton ovule, making it one of the restriction factors of cotton fiber yield. Previous comparative proteomics studies have collectively revealed 162 important differentially accumulated proteins (DAPs) in cotton fiber-initiation process, however, whether and how post-translational modifications, especially phosphorylation modification, regulate the expression and function of the DAPs are still unclear. Here we reported the successful identification of 17 phosphopeptides from 16 phosphoproteins out of the 162 DAPs using the integrated bioinformatics analyses of peptide mass fingerprinting data and targeted MS/MS identification method. In-depth analyses indicated that 15 of the 17 phosphorylation sites were novel phosphorylation sites first identified in plants, whereas 6 of the 16 phosphoproteins were found to be the phosphorylated isoforms of 6 proteins. The phosphorylation-regulated dynamic protein network derived from this study not only expanded our understanding of the cotton fiber-initiation process, but also provided a valuable resource for future functional studies of the phosphoproteins.
Collapse
Affiliation(s)
- Wenying Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenying He
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zi Wang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guanqiao Li
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinyuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
140
|
Takáč T, Vadovič P, Pechan T, Luptovčiak I, Šamajová O, Šamaj J. Comparative proteomic study of Arabidopsis mutants mpk4 and mpk6. Sci Rep 2016; 6:28306. [PMID: 27324189 PMCID: PMC4915016 DOI: 10.1038/srep28306] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/02/2016] [Indexed: 01/24/2023] Open
Abstract
Arabidopsis MPK4 and MPK6 are implicated in different signalling pathways responding to diverse external stimuli. This was recently correlated with transcriptomic profiles of Arabidopsis mpk4 and mpk6 mutants, and thus it should be reflected also on the level of constitutive proteomes. Therefore, we performed a shot gun comparative proteomic analysis of Arabidopsis mpk4 and mpk6 mutant roots. We have used bioinformatic tools and propose several new proteins as putative MPK4 and MPK6 phosphorylation targets. Among these proteins in the mpk6 mutant were important modulators of development such as CDC48A and phospholipase D alpha 1. In the case of the mpk4 mutant transcriptional reprogramming might be mediated by phosphorylation and change in the abundance of mRNA decapping complex VCS. Further comparison of mpk4 and mpk6 root differential proteomes showed differences in the composition and regulation of defense related proteins. The mpk4 mutant showed altered abundances of antioxidant proteins. The examination of catalase activity in response to oxidative stress revealed that this enzyme might be preferentially regulated by MPK4. Finally, we proposed developmentally important proteins as either directly or indirectly regulated by MPK4 and MPK6. These proteins contribute to known phenotypic defects in the mpk4 and mpk6 mutants.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavol Vadovič
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing &Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, MS 39759, USA
| | - Ivan Luptovčiak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
141
|
GhLTPG1, a cotton GPI-anchored lipid transfer protein, regulates the transport of phosphatidylinositol monophosphates and cotton fiber elongation. Sci Rep 2016; 6:26829. [PMID: 27311358 PMCID: PMC4911556 DOI: 10.1038/srep26829] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/09/2016] [Indexed: 11/18/2022] Open
Abstract
The cotton fibers are seed trichomes that elongate from the ovule epidermis. Polar lipids are required for the quick enlargement of cell membrane and fiber cell growth, however, how lipids are transported from the ovules into the developing fibers remains less known. Here, we reported the functional characterization of GhLTPG1, a GPI-anchored lipid transport protein, during cotton fiber elongation. GhLTPG1 was abundantly expressed in elongating cotton fibers and outer integument of the ovules, and GhLTPG1 protein was located on cell membrane. Biochemical analysis showed that GhLTPG1 specifically bound to phosphatidylinositol mono-phosphates (PtdIns3P, PtdIns4P and PtdIns5P) in vitro and transported PtdInsPs from the synthesis places to the plasma membranes in vivo. Expression of GhLTPG1 in Arabidopsis caused an increased number of trichomes, and fibers in GhLTPG1-knockdown cotton plants exhibited significantly reduced length, decreased polar lipid content, and repression of fiber elongation-related genes expression. These results suggested that GhLTPG1 protein regulates the cotton fiber elongation through mediating the transport of phosphatidylinositol monophosphates.
Collapse
|
142
|
Wang X, Ma Q, Dou L, Liu Z, Peng R, Yu S. Genome-wide characterization and comparative analysis of the MLO gene family in cotton. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 103:106-19. [PMID: 26986931 DOI: 10.1016/j.plaphy.2016.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/01/2016] [Accepted: 02/23/2016] [Indexed: 05/09/2023]
Abstract
In plants, MLO (Mildew Locus O) gene encodes a plant-specific seven transmembrane (TM) domain protein involved in several cellular processes, including susceptibility to powdery mildew (PM). In this study, a genome-wide characterization of the MLO gene family in G. raimondii L., G. arboreum L. and G. hirsutum L. was performed. In total, 22, 17 and 38 homologous sequences were identified for each species, respectively. Gene organization, including chromosomal location, gene clustering and gene duplication, was investigated. Homologues related to PM susceptibility in upland cotton were inferred by phylogenetic relationships with functionally characterized MLO proteins. To conduct a comparative analysis between MLO candidate genes from G. raimondii L., G. arboreum L. and G. hirsutum L., orthologous relationships and conserved synteny blocks were constructed. The transcriptional variation of 38 GhMLO genes in response to exogenous application of salt, mannitol (Man), abscisic acid (ABA), ethylene (ETH), jasmonic acid (JA) and salicylic acid (SA) was monitored. Further studies should be conducted to elucidate the functions of MLO genes in PM susceptibility and phytohormone signalling pathways.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, PR China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, 455000, PR China.
| | - Lingling Dou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, 455000, PR China.
| | - Zhen Liu
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, PR China.
| | - Renhai Peng
- Anyang Institute of Technology, College of Biology and Food Engineering, Anyang, Henan, 455000, PR China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, 455000, PR China.
| |
Collapse
|
143
|
Xiao GH, Wang K, Huang G, Zhu YX. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:577-89. [PMID: 26399709 PMCID: PMC5061104 DOI: 10.1111/jipb.12429] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 05/05/2023]
Abstract
Production of β-ketoacyl-CoA, which is catalyzed by 3-ketoacyl-CoA synthase (KCS), is the first step in very long chain fatty acid (VLCFA) biosynthesis. Here we identified 58 KCS genes from Gossypium hirsutum, 31 from G. arboreum and 33 from G. raimondii by searching the assembled cotton genomes. The gene family was divided into the plant-specific FAE1-type and the more general ELO-type. KCS transcripts were widely expressed and 32 of them showed distinct subgenome-specific expressions in one or more cotton tissues/organs studied. Six GhKCS genes rescued the lethality of elo2Δelo3Δ yeast double mutant, indicating that this gene family possesses diversified functions. Most KCS genes with GA-responsive elements (GAREs) in the promoters were significantly upregulated by gibberellin A3 (GA). Exogenous GA3 not only promoted fiber length, but also increased the thickness of cell walls significantly. GAREs present also in the promoters of several cellulose synthase (CesA) genes required for cell wall biosynthesis and they were all induced significantly by GA3 . Because GA treatment resulted in longer cotton fibers with thicker cell walls and higher dry weight per unit cell length, we suggest that it may regulate fiber elongation upstream of the VLCFA-ethylene pathway and also in the downstream steps towards cell wall synthesis.
Collapse
Affiliation(s)
- Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Kun Wang
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Xian Zhu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
144
|
Naoumkina M, Thyssen GN, Fang DD, Hinchliffe DJ, Florane CB, Jenkins JN. Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li 1 ) and -2 (Li 2 ) revealed a role for miRNAs and their targets in cotton fiber elongation. BMC Genomics 2016; 17:360. [PMID: 27184029 PMCID: PMC4869191 DOI: 10.1186/s12864-016-2715-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The length of cotton fiber is an important agronomic trait that directly affects the quality of yarn and fabric. Understanding the molecular basis of fiber elongation would provide a means for improvement of fiber length. Ligon-lintless-1 (Li 1 ) and -2 (Li 2 ) are monogenic and dominant mutations that result in an extreme reduction in the length of lint fiber on mature seeds. In a near-isogenic state with wild type cotton these two short fiber mutants provide an effective model system to study the mechanisms of fiber elongation. Plant miRNAs regulate many aspects of growth and development. However, the mechanism underlying the miRNA-mediated regulation of fiber development is largely unknown. RESULTS Small RNA libraries constructed from developing fiber cells of the short fiber mutants Li 1 and Li 2 and their near-isogenic wild type lines were sequenced. We identified 24 conservative and 147 novel miRNA families with targets that were detected through degradome sequencing. The distribution of the target genes into functional categories revealed the largest set of genes were transcription factors. Expression profiles of 20 miRNAs were examined across a fiber developmental time course in wild type and short fiber mutations. We conducted correlation analysis between miRNA transcript abundance and the length of fiber for 11 diverse Upland cotton lines. The expression patterns of 4 miRNAs revealed significant negative correlation with fiber lengths of 11 cotton lines. CONCLUSIONS Our results suggested that the mutations have changed the regulation of miRNAs expression during fiber development. Further investigations of differentially expressed miRNAs in the Li 1 and Li 2 mutants will contribute to better understanding of the regulatory mechanisms of cotton fiber development. Four miRNAs negatively correlated with fiber length are good candidates for further investigations of miRNA regulation of important genotype dependent fiber traits. Thus, our results will contribute to further studies on the role of miRNAs in cotton fiber development and will provide a tool for fiber improvement through molecular breeding.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Doug J Hinchliffe
- Cotton Chemistry and Utilization Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, USDA-ARS, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| |
Collapse
|
145
|
Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:5101-6. [PMID: 27092001 DOI: 10.1073/pnas.1522466113] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The already differentiated organs in plants have a remarkable capacity to regenerate new individuals under culture conditions. Plant in vitro regeneration practically starts with the induction of a pluripotent cell mass, the callus, from detached organs on auxin-rich callus-inducing medium (CIM), which is generally required for subsequent regeneration of new bodies. Recent studies show that CIM-induced callus formation occurs from the pericycle or pericycle-like cells through a root developmental pathway, whereas the signals involved in governing callus-forming capacity of pericycle cells remain unknown. Here we report that very-long-chain fatty acids (VLCFAs) play a critical role in confining the pericycle competence for callus formation and thus the regeneration capacity of Arabidopsis By genetic screening, we identified the callus formation-related 1 (cfr1) mutant, which bypasses the inhibition of callus-forming capacity in roots by solitary-root (slr/iaa14). We show that CFR1 encodes 3-ketoacyl-CoA synthase 1 (KCS1), which catalyzes a rate-limiting step of VLCFA biosynthesis. Our biochemical and genetic analyses demonstrate that VLCFAs restrict the pericycle competence for callus formation, at least in part, by regulating the transcription of Aberrant Lateral Root Formation 4 (ALF4). Moreover, we provide evidence that VLCFAs act as cell layer signals to mediate the pericycle competence for callus formation. Taken together, our results identify VLCFAs or their derivatives as the confining signals for mediating the pericycle competence for callus formation and thus the regeneration capacity of plant organs.
Collapse
|
146
|
Wang M, Wang P, Tu L, Zhu S, Zhang L, Li Z, Zhang Q, Yuan D, Zhang X. Multi-omics maps of cotton fibre reveal epigenetic basis for staged single-cell differentiation. Nucleic Acids Res 2016; 44:4067-79. [PMID: 27067544 PMCID: PMC4872108 DOI: 10.1093/nar/gkw238] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/28/2016] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifications are highlighted for their great importance in regulating plant development, but their function associated with single-cell differentiation remains undetermined. Here, we used the cotton fibre, which is the epidermal hair on the cotton ovule, as a model to investigate the regulatory role of DNA methylation in cell differentiation. The level of CHH (H = A, T, or C) DNA methylation level was found to increase during fibre development, accompanied by a decrease in RNA-directed DNA methylation (RdDM). Examination of nucleosome positioning revealed a gradual transition from euchromatin to heterochromatin for chromatin dynamics in developing fibres, which could shape the DNA methylation landscape. The observed increase in DNA methylation in fibres, compared with other ovule tissue, was demonstrated to be mediated predominantly by an active H3K9me2-dependent pathway rather than the RdDM pathway, which was inactive. Furthermore, integrated multi-omics analyses revealed that dynamic DNA methylation played a role in the regulation of lipid biosynthesis and spatio-temporal modulation of reactive oxygen species during fibre differentiation. Our study illustrates two divergent pathways mediating a continuous increase of DNA methylation and also sheds further light on the epigenetic basis for single-cell differentiation in plants. These data and analyses are made available to the wider research community through a comprehensive web portal.
Collapse
Affiliation(s)
- Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sitao Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qinghua Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
147
|
Li L, Wang M, Chen S, Zhao W, Zhao Y, Wang X, Zhang Y. A urinary metabonomics analysis of long-term effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:82-88. [PMID: 26969444 DOI: 10.1016/j.pestbp.2015.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The study was to assess the long-term toxic effects of acetochlor on rats. Two different doses (42.96 and 107.4 mg/kg body weight/day) of acetochlor were administered to Wistar rats through their food for over 24 weeks. Rat urine samples were collected at two time-points for the measurements of the metabonomics profiles with ultra-performance liquid chromatography-mass spectrometry (UPLC-MSMS). The results of clinical chemistry and histopathology suggested that long-term use of acetochlor in rats caused liver and kidney damage, and dysfunction of antioxidant system. The urinary metabonomics analysis indicated that the high and low-dose exposure of acetochlor could cause alterations of these metabonomics in urine in the rat. Significant changes of the levels of hippuric acid (0.403-fold decrease), citric acid (0.430-fold decrease), pantothenic acid (0.486-fold decrease), uracil (0.419-fold decrease), β-Alanine (0.325-fold decrease), nonanedioic acid (0.445-fold decrease), L-tyrosine (0.410-fold decrease), D-glucuronic acid (8.389-fold increase) and 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide in urine were observed. In addition, it may interfere with the fatty acid synthesis, the pyrimidine degradation and pantothenate biosynthesis. The level of 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide is detected in all treated groups which is not found in the control groups, indicating which can be used as an early, sensitive marker of acetochlor exposure in rat. This study illustrates the important utility of metabonomics approaches to understand the toxicity of long-term exposure of acetochlor.
Collapse
Affiliation(s)
- Longxue Li
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Maoqing Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Shuhong Chen
- Heilongjiang Center for Disease Control and Prevention, 40 Youfang Street, XiangFang District, Harbin, Heilongjiang Province, China
| | - Wei Zhao
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Yue Zhao
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Xu Wang
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Yang Zhang
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
148
|
Zou C, Wang Q, Lu C, Yang W, Zhang Y, Cheng H, Feng X, Prosper MA, Song G. Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum). SCIENCE CHINA-LIFE SCIENCES 2016; 59:164-71. [DOI: 10.1007/s11427-016-5000-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 02/02/2023]
|
149
|
Jin X, Wang L, He L, Feng W, Wang X. Two-dimensional gel electrophoresis-based analysis provides global insights into the cotton ovule and fiber proteomes. SCIENCE CHINA-LIFE SCIENCES 2016; 59:154-63. [PMID: 26803300 DOI: 10.1007/s11427-016-4999-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Proteomic analysis of upland cotton was performed to profile the global detectable proteomes of ovules and fibers using two-dimensional electrophoresis (2DE). A total of 1,203 independent protein spots were collected from representative 2DE gels, which were digested with trypsin and identified by matrix-assisted laser desorption and ionization-time-offlight/ time-of-flight (MALDI-TOF/TOF) mass spectrometry. The mass spectrometry or tandem mass spectrometry (MS or MS/MS) data were then searched against a local database constructed from Gossypium hirsutum genome sequences, resulting in successful identification of 975 protein spots (411 for ovules and 564 for fibers). Functional annotation analysis of the 975 identified proteins revealed that ovule-specific proteins were mainly enriched in functions related to fatty acid elongation, sulfur amino acid metabolism and post-replication repair, while fiber-specific proteins were enriched in functions related to root hair elongation, galactose metabolism and D-xylose metabolic processes. Further annotation analysis of the most abundant protein spots showed that 28.96% of the total proteins in the ovule were mainly located in the Golgi apparatus, endoplasmic reticulum, mitochondrion and ribosome, whereas in fibers, 27.02% of the total proteins were located in the cytoskeleton, nuclear envelope and cell wall. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses of the ovule-specific protein spots P61, P93 and P198 and fiber-specific protein spots 230, 477 and 511 were performed to validate the proteomics data. Protein-protein interaction network analyses revealed very different network cluster patterns between ovules and fibers. This work provides the largest protein identification dataset of 2DE-detectable proteins in cotton ovules and fibers and indicates potentially important roles of tissue-specific proteins, thus providing insights into the cotton ovule and fiber proteomes on a global scale.
Collapse
Affiliation(s)
- Xiang Jin
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Limin Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Liping He
- College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Weiqiang Feng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.,College of Horticulture and Landscape, Hainan University, Haikou, 570228, China
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China. .,The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
150
|
Microarray-based large scale detection of single feature polymorphism in Gossypium hirsutum L. J Genet 2015; 94:669-76. [PMID: 26690522 DOI: 10.1007/s12041-015-0584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microarrays offer an opportunity to explore the functional sequence polymorphism among different cultivars of many crop plants. The Affymetrix microarray expression data of five genotypes of Gossypium hirsutum L. at six different fibre developmental stages was used to identify single feature polymorphisms (SFPs). The background corrected and quantile-normalized log2 intensity values of all probes of triplicate data of each cotton variety were subjected to SFPs call by using SAM procedure in R language software. We detected a total of 37,473 SFPs among six pair genotype combinations of two superior (JKC777 and JKC725) and three inferior (JKC703, JKC737 and JKC783) using the expression data. The 224 SFPs covering 51 genes were randomly selected from the dataset of all six fibre developmental stages of JKC777 and JKC703 for validation by sequencing on a capillary sequencer. Of these 224 SFPs, 132 were found to be polymorphic and 92 monomorphic which indicate that the SFP prediction from the expression data in the present study confirmed a ~58.92% of true SFPs. We further identified that most of the SFPs are associated with genes involved in fatty acid, flavonoid, auxin biosynthesis etc. indicating that these pathways significantly involved in fibre development.
Collapse
|