101
|
Abstract
Cellular organelles move within the cellular volume and the effect of the resulting drag forces on the liquid causes bulk movement in the cytosol. The movement of both organelles and cytosol leads to an overall motion pattern called cytoplasmic streaming or cyclosis. This streaming enables the active and passive transport of molecules and organelles between cellular compartments. Furthermore, the fusion and budding of vesicles with and from the plasma membrane (exo/endocytosis) allow for transport of material between the inside and the outside of the cell. In the pollen tube, cytoplasmic streaming and exo/endocytosis are very active and fulfill several different functions. In this review, we focus on the logistics of intracellular motion and transport processes as well as their biophysical underpinnings. We discuss various modeling attempts that have been performed to understand both long-distance shuttling and short-distance targeting of organelles. We show how the combination of mechanical and mathematical modeling with cell biological approaches has contributed to our understanding of intracellular transport logistics.
Collapse
Affiliation(s)
- Youssef Chebli
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
102
|
Okuda S, Suzuki T, Kanaoka MM, Mori H, Sasaki N, Higashiyama T. Acquisition of LURE-binding activity at the pollen tube tip of Torenia fournieri. MOLECULAR PLANT 2013; 6:1074-90. [PMID: 23482369 DOI: 10.1093/mp/sst050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Pollen tube guidance is controlled by multiple complex interactions with the female tissues. Here, we show that pollen tubes of Torenia fournieri are regulated by a stylar tissue in a length-dependent manner to receive and respond to attractant LURE peptides secreted from synergid cells. We developed an immunostaining method to visualize LURE peptides bound at the plasma membrane of the tip region of the pollen tube. Using this method, we found that LURE peptides bound specifically to pollen tubes growing through a cut style. The peptides also bound to pollen tubes growing through a shorter style, which were not competent to respond to these peptides. These observations suggested a possibility that acquisition of the LURE peptide reception ability and acquisition of full competency are separable processes. RNA-Seq suggested that the transcription profile of pollen tubes was affected by both the length of the style and the cultivation period, consistently with physiological changes in binding activity and LURE response ability. The database generated from de novo RNA-Seq of Torenia pollen tubes was shown to be useful to identify pollen tube proteins by mass spectrometry. Our studies provide insight and an effective platform for protein identification to understand pollen tube guidance.
Collapse
Affiliation(s)
- Satohiro Okuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | |
Collapse
|
103
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
104
|
Li S, Ge FR, Xu M, Zhao XY, Huang GQ, Zhou LZ, Wang JG, Kombrink A, McCormick S, Zhang XS, Zhang Y. Arabidopsis COBRA-LIKE 10, a GPI-anchored protein, mediates directional growth of pollen tubes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:486-97. [PMID: 23384085 DOI: 10.1111/tpj.12139] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/29/2013] [Accepted: 01/31/2012] [Indexed: 05/06/2023]
Abstract
Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)-anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C-terminal hydrophobic residues. GPI-anchored proteins are widespread cell sensors in mammals, especially during egg-sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell-cell communications in plants.
Collapse
Affiliation(s)
- Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018 Shandong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Qi X, Zheng H. Rab-A1c GTPase defines a population of the trans-Golgi network that is sensitive to endosidin1 during cytokinesis in Arabidopsis. MOLECULAR PLANT 2013; 6:847-59. [PMID: 23075992 DOI: 10.1093/mp/sss116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In plant cells, Rab-A proteins have been implicated to play important roles in membrane trafficking from the trans-Golgi network (TGN) to the plasma membrane/cell wall and to the newly formed cell plate in cytokinesis. But how different Rab-A proteins may work in the TGN is not well studied. We show here that RAB-A1c defines a population of TGN that is partially overlapped with the VHA-a1 marked-TGN. Interestingly, the morphology of RAB-A1c defined-TGN is sensitive to endosidin 1 (ES1), but not to wortmannin. In mitotic cells, RAB-A1c is relocated to the cell plate. We revealed that this process could be interrupted by ES1, but not by wortmannin. In addition, root growth and cytokinesis in root mitotic cells of rab-a1a/b/c triple mutant seedlings are hypersensitive to lower concentrations of ES1. ES1 is known to selectively block the transport of several plasma membrane auxin transporters, including PIN2 and AUX1 at the TGN. Together with the known facts that members of Rab-A1 proteins are involved in auxin-mediated responses in root growth and that mutations in TRAPPII, a protein complex that acts upstream of RAB-A1c, also selectively impair the transport of PIN2 and AUX1 at the TGN, we propose that the Rab-A1-mediated trafficking pathways around the TGN, but not Rab-A1s directly, are the target of ES1.
Collapse
Affiliation(s)
- Xingyun Qi
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|
106
|
Vaškovičová K, Žárský V, Rösel D, Nikolič M, Buccione R, Cvrčková F, Brábek J. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol Direct 2013; 8:8. [PMID: 23557484 PMCID: PMC3663805 DOI: 10.1186/1745-6150-8-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 03/21/2013] [Indexed: 02/08/2023] Open
Abstract
Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants – two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA. Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
Collapse
Affiliation(s)
- Katarína Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 43, Prague 2, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
107
|
Domozych DS, Fujimoto C, LaRue T. Polar Expansion Dynamics in the Plant Kingdom: A Diverse and Multifunctional Journey on the Path to Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2013; 2:148-73. [PMID: 27137370 PMCID: PMC4844288 DOI: 10.3390/plants2010148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/24/2013] [Accepted: 03/01/2013] [Indexed: 12/18/2022]
Abstract
Polar expansion is a widespread phenomenon in plants spanning all taxonomic groups from the Charophycean Green Algae to pollen tubes in Angiosperms and Gymnosperms. Current data strongly suggests that many common features are shared amongst cells displaying polar growth mechanics including changes to the structural features of localized regions of the cell wall, mobilization of targeted secretion mechanisms, employment of the actin cytoskeleton for directing secretion and in many cases, endocytosis and coordinated interaction of multiple signal transduction mechanisms prompted by external biotic and abiotic cues. The products of polar expansion perform diverse functions including delivery of male gametes to the egg, absorption, anchorage, adhesion and photo-absorption efficacy. A comparative analysis of polar expansion dynamics is provided with special emphasis on those found in early divergent plants.
Collapse
Affiliation(s)
- David S Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| | - Chelsea Fujimoto
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| | - Therese LaRue
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, NY 12866, USA.
| |
Collapse
|
108
|
Choi SW, Tamaki T, Ebine K, Uemura T, Ueda T, Nakano A. RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. THE PLANT CELL 2013; 25:1174-87. [PMID: 23532067 PMCID: PMC3634684 DOI: 10.1105/tpc.112.108803] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/26/2013] [Accepted: 03/14/2013] [Indexed: 05/18/2023]
Abstract
Cell surface proteins play critical roles in the perception of environmental stimuli at the plasma membrane (PM) and ensuing signal transduction. Intracellular localization of such proteins must be strictly regulated, which requires elaborate integration of exocytic and endocytic trafficking pathways. Subcellular localization of Arabidopsis thaliana FLAGELLIN SENSING2 (FLS2), a receptor that recognizes bacterial flagellin, also depends on membrane trafficking. However, our understanding about the mechanisms involved is still limited. In this study, we visualized ligand-induced endocytosis of FLS2 using green fluorescent protein (GFP)-tagged FLS2 expressed in Nicotiana benthamiana. Upon treatment with the flg22 peptide, internalized FLS2-GFP from the PM was transported to a compartment with properties intermediate between the trans-Golgi network (TGN) and the multivesicular endosome. This compartment gradually discarded the TGN characteristics as it continued along the trafficking pathway. We further found that FLS2 endocytosis involves distinct RABA/RAB11 subgroups at different steps. Moreover, we demonstrated that transport of de novo-synthesized FLS2 to the PM also involves a distinct RABA/RAB11 subgroup. Our results demonstrate the complex regulatory system for properly localizing FLS2 and functional differentiation in RABA members in endo- and exocytosis.
Collapse
Affiliation(s)
- Seung-won Choi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Tamaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, PRESTO, Saitama 332-0012, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| |
Collapse
|
109
|
Zhu L, Zhang Y, Kang E, Xu Q, Wang M, Rui Y, Liu B, Yuan M, Fu Y. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization. THE PLANT CELL 2013; 25:851-67. [PMID: 23463774 PMCID: PMC3634693 DOI: 10.1105/tpc.113.110528] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca(2+)-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.
Collapse
|
110
|
Jiang J, Jiang J, Qiu L, Miao Y, Yao L, Cao J. Identification of gene expression profile during fertilization in Brassica campestris subsp. chinensis. Genome 2013; 56:39-48. [PMID: 23379337 DOI: 10.1139/gen-2012-0088] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization is controlled by a complex gene regulatory network. To study the fertilization mechanism, we determined time courses of the four developmental stages of fertilization in Chinese cabbage pak-choi (Brassica campestris subsp. chinensis) by cytological observation. We then used the Arabidopsis ATH1 microarray to characterize the gene expression profiles of pollinated and unpollinated pistils in B. campestris subsp. chinensis. The result showed 44 up-regulated genes and 33 down-regulated genes in pollinated pistils compared with unpollinated pistils. Gene ontology analysis identified 20% of the up-regulated genes as belonging to the category of cell wall metabolism. We compared the up-regulated genes in pollinated pistils with previously identified pollen development related genes. Ten genes were found to be in common, which were termed as continuously expressed genes, in the two processes in the present article. Their expression patterns during pollen development and fertilization processes were then verified by RT-PCR. One of the continuously expressed genes, the homologous gene of At3g01270 in B. campestris subsp. chinensis, was confirmed as specifically expressed in microspores and pollinated pistils by using in situ hybridization. The potential biological functions of the other continuously expressed genes were also discussed.
Collapse
Affiliation(s)
- Jingjing Jiang
- a Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|
111
|
Wang C, Gui CP, Liu HK, Zhang D, Mosig A. An image skeletonization-based tool for pollen tube morphology analysis and phenotyping. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:131-41. [PMID: 23116178 DOI: 10.1111/j.1744-7909.2012.01184.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The mechanism underlying pollen tube growth involves diverse genes and molecular pathways. Alterations in the regulatory genes or pathways cause phenotypic changes reflected by cellular morphology, which can be captured using fluorescence microscopy. Determining and classifying pollen tube morphological phenotypes in such microscopic images is key to our understanding the involvement of genes and pathways. In this context, we propose a computational method to extract quantitative morphological features, and demonstrate that these features reflect morphological differences relevant to distinguish different defects of pollen tube growth. The corresponding software tool furthermore includes a novel semi-automated image segmentation approach, allowing to highly accurately identify the boundary of a pollen tube in a microscopic image.
Collapse
Affiliation(s)
- Chaofeng Wang
- CAS-MPG Partner Institute and CAS Key Laboratory for Computational Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
112
|
Abstract
Tip growth is employed throughout the plant kingdom. Our understanding of tip growth has benefited from modern tools in molecular genetics, which have enabled the functional characterization of proteins mediating tip growth. Here we first discuss the evolutionary role of tip growth in land plants and then describe the prominent model tip-growth systems, elaborating on some advantages and disadvantages of each. Next we review the organization of tip-growing cells, the role of the cytoskeleton, and recent developments concerning the physiological basis of tip growth. Finally, we review advances in the understanding of the extracellular signals that are known to guide tip-growing cells.
Collapse
Affiliation(s)
- Caleb M Rounds
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| | | |
Collapse
|
113
|
Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A. Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:240-9. [PMID: 22974509 DOI: 10.1111/tpj.12023] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 08/31/2012] [Accepted: 09/10/2012] [Indexed: 05/20/2023]
Abstract
RAB GTPases are key regulators of membrane traffic. Among them, RAB11, a widely conserved sub-group, has evolved in a unique way in plants; plant RAB11 members show notable diversity, whereas yeast and animals have only a few RAB11 members. Fifty-seven RAB GTPases are encoded in the Arabidopsis thaliana genome, 26 of which are classified in the RAB11 group (further divided into RABA1-RABA6 sub-groups). Although several plant RAB11 members have been shown to play pivotal roles in plant-unique developmental processes, including cytokinesis and tip growth, molecular and physiological functions of the majority of RAB11 members remain unknown. To reveal precise functions of plant RAB11, we investigated the subcellular localization and dynamics of the largest sub-group of Arabidopsis RAB11, RABA1, which has nine members. RABA1 members reside on mobile punctate structures adjacent to the trans-Golgi network and co-localized with VAMP721/722, R-SNARE proteins that operate in the secretory pathway. In addition, the constitutive-active mutant of RABA1b, RABA1b(Q72L) , was present on the plasma membrane. The RABA1b -containing membrane structures showed actin-dependent dynamic motion . Vesicles labeled by GFP-RABA1b moved dynamically, forming queues along actin filaments. Interestingly, Arabidopsis plants whose four major RABA1 members were knocked out, and those expressing the dominant-negative mutant of RABA1B, exhibited hypersensitivity to salinity stress. Altogether, these results indicate that RABA1 members mediate transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance.
Collapse
Affiliation(s)
- Rin Asaoka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomohiro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jun Ito
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198, Japan
| | - Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Emi Ito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
114
|
An L, Zhou Z, Sun L, Yan A, Xi W, Yu N, Cai W, Chen X, Yu H, Schiefelbein J, Gan Y. A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:474-90. [PMID: 22762888 DOI: 10.1111/j.1365-313x.2012.05094.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although root hair development in Arabidopsis thaliana has been extensively studied, it remains unknown whether the zinc finger proteins, the largest family of transcription factors in plants, are involved in this process. Here we report that the C2H2 zinc finger protein ZINC FINGER PROTEIN 5 (ZFP5) is a key regulator of root hair initiation and morphogenesis in Arabidopsis. ZFP5 is mainly expressed in root and preferentially in root hair cells. Using both zfp5 mutants and ZFP5 RNAi lines, we show that reduction in ZFP5 function leads to fewer and much shorter root hairs compared to wild-type. Genetic and molecular experiments demonstrate that ZFP5 exerts its effect on root hair development by directly promoting expression of the CAPRICE (CPC) gene. Furthermore, we show that ZFP5 expression is induced by cytokinin, and that ZFP5 mediates cytokinin and ethylene effects on the formation and growth of root hairs. These results suggest that ZFP5 integrates various plant hormone cues to control root epidermal cell development in Arabidopsis.
Collapse
Affiliation(s)
- Lijun An
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Meringer MV, Villasuso AL, Pasquaré SJ, Giusto NM, Machado EE, Racagni GE. Comparative phytohormone profiles, lipid kinase and lipid phosphatase activities in barley aleurone, coleoptile, and root tissues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:83-88. [PMID: 22784988 DOI: 10.1016/j.plaphy.2012.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 06/14/2012] [Indexed: 06/01/2023]
Abstract
We analyzed lipid kinase and lipid phosphatase activities and determined endogenous phytohormone levels by liquid chromatography-tandem mass spectrometry in root and coleoptile tissues following germination of barley (Hordeum vulgare) seeds. The enzymes showing highest activity in aleurone cells were diacylglycerol kinase (DAG-k, EC 2.7.1.107) and phosphatidate kinase (PA-k). The ratio of gibberellins (GAs) to abscisic acid (ABA) was 2-fold higher in aleurone than in coleoptile or root tissues. In coleoptiles, phosphatidylinositol 4-kinase (PI4-k, EC 2.7.1.67) showed the highest enzyme activity, and jasmonic acid (JA) level was higher than in aleurone. In roots, activities of PI4-k, DAG-k, and PA-k were similar, and salicylic acid (SA) showed the highest concentration. In the assays to evaluate the hydrolysis of DGPP (diacylglycerol pyrophosphate) and PA (phosphatidic acid) we observed that PA hydrolysis by LPPs (lipid phosphate phosphatases) was not modified; however, the diacylglycerol pyrophosphate phosphatase (DGPPase) was strikingly higher in coleoptile and root tissues than to aleurone. Relevance of these findings in terms of signaling responses and seedling growth is discussed.
Collapse
Affiliation(s)
- Maria V Meringer
- Dpto. Química Biológica, FCEFQN, Universidad Nacional de Río Cuarto, X5804BYA Río Cuarto, Córdoba, Argentina
| | | | | | | | | | | |
Collapse
|
116
|
Klöpper TH, Kienle N, Fasshauer D, Munro S. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 2012; 10:71. [PMID: 22873208 PMCID: PMC3425129 DOI: 10.1186/1741-7007-10-71] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Membrane-bound organelles are a defining feature of eukaryotic cells, and play a central role in most of their fundamental processes. The Rab G proteins are the single largest family of proteins that participate in the traffic between organelles, with 66 Rabs encoded in the human genome. Rabs direct the organelle-specific recruitment of vesicle tethering factors, motor proteins, and regulators of membrane traffic. Each organelle or vesicle class is typically associated with one or more Rab, with the Rabs present in a particular cell reflecting that cell's complement of organelles and trafficking routes. RESULTS Through iterative use of hidden Markov models and tree building, we classified Rabs across the eukaryotic kingdom to provide the most comprehensive view of Rab evolution obtained to date. A strikingly large repertoire of at least 20 Rabs appears to have been present in the last eukaryotic common ancestor (LECA), consistent with the 'complexity early' view of eukaryotic evolution. We were able to place these Rabs into six supergroups, giving a deep view into eukaryotic prehistory. CONCLUSIONS Tracing the fate of the LECA Rabs revealed extensive losses with many extant eukaryotes having fewer Rabs, and none having the full complement. We found that other Rabs have expanded and diversified, including a large expansion at the dawn of metazoans, which could be followed to provide an account of the evolutionary history of all human Rabs. Some Rab changes could be correlated with differences in cellular organization, and the relative lack of variation in other families of membrane-traffic proteins suggests that it is the changes in Rabs that primarily underlies the variation in organelles between species and cell types.
Collapse
Affiliation(s)
- Tobias H Klöpper
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | |
Collapse
|
117
|
Fujimoto M, Ueda T. Conserved and plant-unique mechanisms regulating plant post-Golgi traffic. FRONTIERS IN PLANT SCIENCE 2012; 3:197. [PMID: 22973281 PMCID: PMC3428585 DOI: 10.3389/fpls.2012.00197] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/08/2012] [Indexed: 05/18/2023]
Abstract
Membrane traffic plays crucial roles in diverse aspects of cellular and organelle functions in eukaryotic cells. Molecular machineries regulating each step of membrane traffic including the formation, tethering, and fusion of membrane carriers are largely conserved among various organisms, which suggests that the framework of membrane traffic is commonly shared among eukaryotic lineages. However, in addition to the common components, each organism has also acquired lineage-specific regulatory molecules that may be associated with the lineage-specific diversification of membrane trafficking events. In plants, comparative genomic analyses also indicate that some key machineries of membrane traffic are significantly and specifically diversified. In this review, we summarize recent progress regarding plant-unique regulatory mechanisms for membrane traffic, with a special focus on vesicle formation and fusion components in the post-Golgi trafficking pathway.
Collapse
Affiliation(s)
- Masaru Fujimoto
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and TechnologyKawaguchi, Japan
- *Correspondence: Takashi Ueda, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. e-mail:
| |
Collapse
|
118
|
Patarroyo C, Laliberté JF, Zheng H. Hijack it, change it: how do plant viruses utilize the host secretory pathway for efficient viral replication and spread? FRONTIERS IN PLANT SCIENCE 2012; 3:308. [PMID: 23335933 PMCID: PMC3542527 DOI: 10.3389/fpls.2012.00308] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/21/2012] [Indexed: 05/18/2023]
Abstract
The secretory pathway of eukaryotic cells has an elaborated set of endomembrane compartments involved in the synthesis, modification, and sorting of proteins and lipids. The secretory pathway in plant cells shares many features with that in other eukaryotic cells but also has distinct characteristics important for fundamental cell and developmental processes and for proper immune responses. Recently, there has been evidence that the remodeling of this pathway, and often the formation of viral-induced organelles, play an important role in viral replication and spread. The modification of the host secretory pathway seems to be a common feature among most single-stranded positive ss(+)RNA and even some DNA viruses. In this review, we will present the recent advances in the understanding of the organization and dynamics of the plant secretory pathway and the molecular regulation of membrane trafficking in the pathway. We will also discuss how different plant viruses may interact with the host secretory pathway for their efficient replication and spread, with a focus on tobacco mosaic virus and turnip mosaic virus.
Collapse
Affiliation(s)
| | - Jean-François Laliberté
- INRS-Institut Armand-Frappier, Institut National de la Recherche ScientifiqueLaval, QC, Canada
| | - Huanquan Zheng
- Department of Biology, McGill UniversityMontreal, QC, Canada
- *Correspondence: Huanquan Zheng, Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, QC, Canada H3A 1B1. e-mail:
| |
Collapse
|
119
|
Richter S, Müller LM, Stierhof YD, Mayer U, Takada N, Kost B, Vieten A, Geldner N, Koncz C, Jürgens G. Polarized cell growth in Arabidopsis requires endosomal recycling mediated by GBF1-related ARF exchange factors. Nat Cell Biol 2011; 14:80-6. [PMID: 22138577 DOI: 10.1038/ncb2389] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 10/31/2011] [Indexed: 01/08/2023]
Abstract
Polarized tip growth is a fundamental cellular process in many eukaryotic organisms, mediating growth of neuronal axons and dendrites or fungal hyphae. In plants, pollen and root hairs are cellular model systems for analysing tip growth. Cell growth depends on membrane traffic. The regulation of this membrane traffic is largely unknown for tip-growing cells, in contrast to cells exhibiting intercalary growth. Here we show that in Arabidopsis, GBF1-related exchange factors for the ARF GTPases (ARF GEFs) GNOM and GNL2 play essential roles in polar tip growth of root hairs and pollen, respectively. When expressed from the same promoter, GNL2 (in contrast to the early-secretory ARF GEF GNL1) is able to replace GNOM in polar recycling of the auxin efflux regulator PIN1 from endosomes to the basal plasma membrane in non-tip growing cells. Thus, polar recycling facilitates polar tip growth, and GNL2 seems to have evolved to meet the specific requirement of fast-growing pollen in higher plants.
Collapse
Affiliation(s)
- Sandra Richter
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Qi X, Zheng H. Arabidopsis TRAPPII is functionally linked to Rab-A, but not Rab-D in polar protein trafficking in trans-Golgi network. PLANT SIGNALING & BEHAVIOR 2011; 6:1679-83. [PMID: 22067991 PMCID: PMC3329335 DOI: 10.4161/psb.6.11.17915] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The trans-Golgi network (TGN) in plant cells is an independent organelle, displaying rapid association and dissociation with Golgi bodies. In plant cells, the TGN is the site where secretory and endocytic membrane trafficking meet. Cell wall components, signaling molecules and auxin transporters have been found to undergo intracellular trafficking around the TGN. However, how different trafficking pathways are regulated and how different cargoes are sorted in the TGN is poorly defined in plant cells. Using a combined approach of genetic and in vivo imaging, we recently demonstrated that Arabidopsis TRAPPII acts in the TGN and is required for polar targeting of PIN2, but not PIN1, auxin efflux carrier in root tip cells. Here, we report that, TRAPPII in Arabidopsis is required for polar distribution of AUX1, an auxin influx carrier in protophloem cells and epidermal cells of Arabidopsis root tips. In yeast cells, TRAPPII serves as a guanine-nucleotide exchange factor (GEF) for Ypt1 and Ypt31/32 in late Golgi trafficking, while in mammalian cells, TRAPPII acts as a GEF for Rab1 (homolog of yeast Ypt1) in early Golgi trafficking. We show here that TRAPPII in Arabidopsis is functionally linked to Rab-A proteins, homologs of yeast Ypt31/32, but not Rab-D proteins, homologs of yeast Ypt1 and animal Rab1 proteins.
Collapse
|
121
|
Wang W, Wang L, Chen C, Xiong G, Tan XY, Yang KZ, Wang ZC, Zhou Y, Ye D, Chen LQ. Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5161-77. [PMID: 21765162 PMCID: PMC3193019 DOI: 10.1093/jxb/err221] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/20/2011] [Accepted: 06/20/2011] [Indexed: 05/19/2023]
Abstract
The cell wall is important for pollen tube growth, but little is known about the molecular mechanism that controls cell wall deposition in pollen tubes. Here, the functional characterization of the pollen-expressed Arabidopsis cellulose synthase-like D genes CSLD1 and CSLD4 that are required for pollen tube growth is reported. Both CSLD1 and CSLD4 are highly expressed in mature pollen grains and pollen tubes. The CSLD1 and CSLD4 proteins are located in the Golgi apparatus and transported to the plasma membrane of the tip region of growing pollen tubes, where cellulose is actively synthesized. Mutations in CSLD1 and CSLD4 caused a significant reduction in cellulose deposition in the pollen tube wall and a remarkable disorganization of the pollen tube wall layers, which disrupted the genetic transmission of the male gametophyte. In csld1 and csld4 single mutants and in the csld1 csld4 double mutant, all the mutant pollen tubes exhibited similar phenotypes: the pollen tubes grew extremely abnormally both in vitro and in vivo, which indicates that CSLD1 and CSLD4 are not functionally redundant. Taken together, these results suggest that CSLD1 and CSLD4 play important roles in pollen tube growth, probably through participation in cellulose synthesis of the pollen tube wall.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chen Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guangyan Xiong
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Yun Tan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ke-Zhen Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zi-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihua Zhou
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li-Qun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
122
|
Qi X, Kaneda M, Chen J, Geitmann A, Zheng H. A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:234-48. [PMID: 21689172 DOI: 10.1111/j.1365-313x.2011.04681.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cytokinesis and cell polarity are supported by membrane trafficking from the trans-Golgi network (TGN), but the molecular mechanisms that promote membrane trafficking from the TGN are poorly defined in plant cells. Here we show that TRAPPII in Arabidopsis regulates the post-Golgi trafficking that is crucial for assembly of the cell plate and cell polarity. Disruptions of AtTRS120 or AtTRS130, two genes encoding two key subunits of TRAPPII, result in defective cytokinesis and cell polarity in embryogenesis and seedling development. In attrs120 and attrs130, the organization and trafficking in the endoplasmic reticulum (ER)-Golgi interface are normal. However, post-Golgi trafficking to the cell plate and to the cell wall, but not to the vacuole, is impaired. Furthermore, TRAPPII is required for the selective transport of PIN2, but not PIN1, to the plasma membrane. We revealed that AtTRS130 is co-localized with RAB-A1c. Expression of constitutively active RAB-A1c partially rescues attrs130. RAB-A1c, which resides at the TGN, is delocalized to the cytosol in attrs130. We propose that TRAPPII in Arabidopsis acts upstream of Rab-A GTPases in post-Golgi membrane trafficking in plant cells.
Collapse
Affiliation(s)
- Xingyun Qi
- Developmental Biology Research Initiatives, Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
123
|
Munnik T, Nielsen E. Green light for polyphosphoinositide signals in plants. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:489-97. [PMID: 21775194 DOI: 10.1016/j.pbi.2011.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 05/04/2023]
Abstract
Plant genomes lack homologues of the inositol 1,4,5-trisphosphate receptor and protein kinase C, which are important components of the canonical phospholipase C signalling system in animals. Instead, plants seem to utilize alternative downstream signalling molecules, that is, InsP(6) and phosphatidic acid. Inositol lipids may also function as second messengers themselves. By reversible phosphorylation of the inositol headgroup, five biologically active plant polyphosphoinositides can be detected. Protein targets interact with specific polyphosphoinositide isomers via selective lipid-binding domains, thereby altering their intracellular localization and/or enzymatic activity. Such lipid-binding domains have also been used to create GFP based-lipid biosensors to visualize PPIs dynamics in vivo. Here, we highlight some recent advances and ideas on PPIs' role in plant signalling.
Collapse
Affiliation(s)
- Teun Munnik
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands.
| | | |
Collapse
|
124
|
Rounds CM, Lubeck E, Hepler PK, Winship LJ. Propidium iodide competes with Ca(2+) to label pectin in pollen tubes and Arabidopsis root hairs. PLANT PHYSIOLOGY 2011; 157:175-87. [PMID: 21768649 PMCID: PMC3165868 DOI: 10.1104/pp.111.182196] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 05/02/2023]
Abstract
We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.
Collapse
Affiliation(s)
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003 (C.M.R., P.K.H.); School of Natural Science, Hampshire College, Amherst, Massachusetts 01002 (E.L., L.J.W.)
| | | |
Collapse
|
125
|
Poulter NS, Bosch M, Franklin-Tong VE. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen. ANNALS OF BOTANY 2011; 108:659-75. [PMID: 21320881 PMCID: PMC3170148 DOI: 10.1093/aob/mcr022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca(2+)-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in 'self' pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases. SCOPE Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation. KEY RESULTS Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI. CONCLUSIONS This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.
Collapse
|
126
|
Li HJ, Xue Y, Jia DJ, Wang T, hi DQ, Liu J, Cui F, Xie Q, Ye D, Yang WC. POD1 regulates pollen tube guidance in response to micropylar female signaling and acts in early embryo patterning in Arabidopsis. THE PLANT CELL 2011; 23:3288-302. [PMID: 21954464 PMCID: PMC3203432 DOI: 10.1105/tpc.111.088914] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The pollen tube germinates from pollen and, during its migration, it perceives and responds to guidance cues from maternal tissue and from the female gametophyte. The putative female cues have recently been identified, but how the pollen tube responds to these signals remains to be unveiled. In a genetic screen for male determinants of the pollen tube response, we identified the pollen defective in guidance1 (pod1) mutant, in which the pollen tubes fail to target the female gametophyte. POD1 encodes a conserved protein of unknown function and is essential for positioning and orienting the cell division plane during early embryo development. Here, we demonstrate that POD1 is an endoplasmic reticulum (ER) luminal protein involved in ER protein retention. Further analysis shows that POD1 interacts with the Ca(2+) binding ER chaperone CALRETICULIN3 (CRT3), a protein in charge of folding of membrane receptors. We propose that POD1 modulates the activity of CRT3 or other ER resident factors to control the folding of proteins, such as membrane proteins in the ER. By this mechanism, POD1 may regulate the pollen tube response to signals from the female tissues during pollen tube guidance and early embryo patterning in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Xue
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Jie Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Tong Wang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao hi
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Liu
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - De Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 1000193, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular and Developmental Biology, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
127
|
Bottanelli F, Foresti O, Hanton S, Denecke J. Vacuolar transport in tobacco leaf epidermis cells involves a single route for soluble cargo and multiple routes for membrane cargo. THE PLANT CELL 2011; 23:3007-25. [PMID: 21856792 PMCID: PMC3180807 DOI: 10.1105/tpc.111.085480] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/17/2011] [Accepted: 07/14/2011] [Indexed: 05/15/2023]
Abstract
We tested if different classes of vacuolar cargo reach the vacuole via distinct mechanisms by interference at multiple steps along the transport route. We show that nucleotide-free mutants of low molecular weight GTPases, including Rab11, the Rab5 members Rha1 and Ara6, and the tonoplast-resident Rab7, caused induced secretion of both lytic and storage vacuolar cargo. In situ analysis in leaf epidermis cells indicates a sequential action of Rab11, Rab5, and Rab7 GTPases. Compared with Rab5 members, mutant Rab11 mediates an early transport defect interfering with the arrival of cargo at prevacuoles, while mutant Rab7 inhibits the final delivery to the vacuole and increases cargo levels in prevacuoles. In contrast with soluble cargo, membrane cargo may follow different routes. Tonoplast targeting of an α-TIP chimera was impaired by nucleotide-free Rha1, Ara6, and Rab7 similar to soluble cargo. By contrast, the tail-anchored tonoplast SNARE Vam3 shares only the Rab7-mediated vacuolar deposition step. The most marked difference was observed for the calcineurin binding protein CBL6, which was insensitive to all Rab mutants tested. Unlike soluble cargo, α-TIP and Vam3, CBL6 transport to the vacuole was COPII independent. The results indicate that soluble vacuolar proteins follow a single route to vacuoles, while membrane spanning proteins may use at least three different transport mechanisms.
Collapse
Affiliation(s)
| | | | | | - Jürgen Denecke
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
128
|
Sierocka I, Rojek A, Bielewicz D, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. Novel genes specifically expressed during the development of the male thalli and antheridia in the dioecious liverwort Pellia endiviifolia. Gene 2011; 485:53-62. [PMID: 21712080 DOI: 10.1016/j.gene.2011.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 11/18/2022]
Abstract
In bryophytes (lower plants), sex determination is manifested in the gametophyte generation by the production of egg- and sperm-forming gametangia. We identified four genes specifically expressed in the male thalli of dioecious liverwort Pellia endiviifolia species B using RDA-cDNA method. These are: PenB_TUA1 coding for an α-tubulin family protein, PenB_Raba1/11 coding for a Rab family protein, PenB_HMG-box coding for an HMG-box family protein and PenB_MT coding for an unknown transcript that contains an ORF of 295 amino acid residues. The expression of identified genes shows developmental and environmental regulation. PenB_TUA1 and PenB_Raba1/11 are expressed in the male thalli, regardless of whether they develop antheridia. PenB_HMG-box and PenB_MT are exclusively expressed in the male thalli-producing antheridia while growing in the field. Moreover, two genes PenB_TUA1 and PenB_Raba1/11 are encoded only in the male genome of P. endiviifolia sp B. Our studies show for the first time the specific contribution of identified genes in the liverwort male gametophyte development. In higher plants, correct regulation of α-tubulin and Rab family genes activity is essential for tip-focused membrane trafficking and growth of the male gametophyte. Thus these genes are critical to the reproductive success of these plants. Plant HMG-box proteins bind DNA and may affect chromatin structure, promoting the assembly of nucleoprotein complexes that control DNA-dependent processes including transcription. Our results show that genes connected with the gametogenesis processes are evolutionarily conserved from the liverworts - the oldest living land plants, to higher plants.
Collapse
Affiliation(s)
- Izabela Sierocka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
129
|
Qin Y, Yang Z. Rapid tip growth: insights from pollen tubes. Semin Cell Dev Biol 2011; 22:816-24. [PMID: 21729760 DOI: 10.1016/j.semcdb.2011.06.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/16/2011] [Accepted: 06/17/2011] [Indexed: 12/31/2022]
Abstract
Pollen tubes extend rapidly in an oscillatory manner by the extreme form of polarized growth, tip growth, and provide an exciting system for studying the spatiotemporal control of polarized cell growth. The Rho-family ROP GTPase is a key signaling molecule in this growth control and is periodically activated at the apical plasma membrane to spatially define the apical growth region and temporally precede the burst of growth. The spatiotemporal dynamics of ROP GTPase is interconnected with actin dynamics and polar exocytosis that is required for tip-targeted membrane and wall expansion. Recent advances in the study of the mechanistic interlinks between ROP-centered signaling and spatiotemporal dynamics of cell membrane and wall remodeling will be discussed.
Collapse
Affiliation(s)
- Yuan Qin
- Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
130
|
Qin YM, Zhu YX. How cotton fibers elongate: a tale of linear cell-growth mode. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:106-11. [PMID: 20943428 DOI: 10.1016/j.pbi.2010.09.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/02/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Cotton fibers (cotton lint) are single-celled trichomes that differentiate from the ovule epidermis. Unidirectional and fast-growing cells generally expand at the dome-shaped apical zone (tip-growth mode); however, previous studies suggest that elongating fiber cells expand via a diffuse-growth mode. Tip-localized Ca(2+) gradient and active secretary vesicle trafficking are two important phenomena of tip-growth. Recently, a high Ca(2+) gradient is found in the cytoplasm of fast-elongating cotton fiber cells near the growing tip. Several protein coding genes participating in vesicle coating and transport are highly expressed in elongating fiber cells. Taken together with the observation that ethylene acts as a positive regulator for cotton fiber and several Arabidopsis tissues that are known to elongate via tip growth prompted us to propose a linear-growth mode for similar cell types.
Collapse
Affiliation(s)
- Yong-Mei Qin
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | |
Collapse
|
131
|
Kang BH, Nielsen E, Preuss ML, Mastronarde D, Staehelin LA. Electron Tomography of RabA4b- and PI-4Kβ1-Labeled Trans Golgi Network Compartments in Arabidopsis. Traffic 2011; 12:313-29. [DOI: 10.1111/j.1600-0854.2010.01146.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
132
|
|
133
|
Rasmussen CG, Humphries JA, Smith LG. Determination of symmetric and asymmetric division planes in plant cells. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:387-409. [PMID: 21391814 DOI: 10.1146/annurev-arplant-042110-103802] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cellular organization of plant tissues is determined by patterns of cell division and growth coupled with cellular differentiation. Cells proliferate mainly via symmetric division, whereas asymmetric divisions are associated with initiation of new developmental patterns and cell types. Division planes in both symmetrically and asymmetrically dividing cells are established through the action of a cortical preprophase band (PPB) of cytoskeletal filaments, which is disassembled upon transition to metaphase, leaving behind a cortical division site (CDS) to which the cytokinetic phragmoplast is later guided to position the cell plate. Recent progress has been made in understanding PPB formation and function as well as the nature and function of the CDS. In asymmetrically dividing cells, division plane establishment is governed by cell polarity. Recent work is beginning to shed light on polarization mechanisms in asymmetrically dividing cells, with receptor-like proteins and potential downstream effectors emerging as important players in this process.
Collapse
Affiliation(s)
- Carolyn G Rasmussen
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
134
|
Park M, Jürgens G. Membrane traffic and fusion at post-Golgi compartments. FRONTIERS IN PLANT SCIENCE 2011; 2:111. [PMID: 22645561 PMCID: PMC3355779 DOI: 10.3389/fpls.2011.00111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 12/19/2011] [Indexed: 05/18/2023]
Abstract
Complete sequencing of the Arabidopsis genome a decade ago has facilitated the functional analysis of various biological processes including membrane traffic by which many proteins are delivered to their sites of action and turnover. In particular, membrane traffic between post-Golgi compartments plays an important role in cell signaling, taking care of receptor-ligand interaction and inactivation, which requires secretion, endocytosis, and recycling or targeting to the vacuole for degradation. Here, we discuss recent studies that address the identity of post-Golgi compartments, the machinery involved in traffic and fusion or functionally characterized cargo proteins that are delivered to or pass through post-Golgi compartments. We also provide an outlook on future challenges in this area of research.
Collapse
Affiliation(s)
- Misoon Park
- Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
| | - Gerd Jürgens
- Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of TübingenTübingen, Germany
- *Correspondence: Gerd Jürgens, Entwicklungsgenetik, Zentrum für Molekularbiologie der Pflanzen, University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany. e-mail:
| |
Collapse
|
135
|
Zhao Y, Yan A, Feijó JA, Furutani M, Takenawa T, Hwang I, Fu Y, Yang Z. Phosphoinositides regulate clathrin-dependent endocytosis at the tip of pollen tubes in Arabidopsis and tobacco. THE PLANT CELL 2010; 22:4031-44. [PMID: 21189293 PMCID: PMC3027160 DOI: 10.1105/tpc.110.076760] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 11/23/2010] [Accepted: 12/06/2010] [Indexed: 05/18/2023]
Abstract
Using the tip-growing pollen tube of Arabidopsis thaliana and Nicotiana tabacum as a model to investigate endocytosis mechanisms, we show that phosphatidylinositol-4-phosphate 5-kinase 6 (PIP5K6) regulates clathrin-dependent endocytosis in pollen tubes. Green fluorescent protein-tagged PIP5K6 was preferentially localized to the subapical plasma membrane (PM) in pollen tubes where it apparently converts phosphatidylinositol 4-phosphate (PI4P) to phosphatidylinositol 4,5-bisphosphate [PI(4,5)P(2)]. RNA interference-induced suppression of PIP5K6 expression impaired tip growth and inhibited clathrin-dependent endocytosis in pollen tubes. By contrast, PIP5K6 overexpression induced massive aggregation of the PM in pollen tube tips. This PM abnormality was apparently due to excessive clathrin-dependent membrane invagination because this defect was suppressed by the expression of a dominant-negative mutant of clathrin heavy chain. These results support a role for PI(4,5)P(2) in promoting early stages of clathrin-dependent endocytosis (i.e., membrane invagination). Interestingly, the PIP5K6 overexpression-induced PM abnormality was partially suppressed not only by the overexpression of PLC2, which breaks down PI(4,5)P(2), but also by that of PI4Kβ1, which increases the pool of PI4P. Based on these observations, we propose that a proper balance between PI4P and PI(4,5)P(2) is required for clathrin-dependent endocytosis in the tip of pollen tubes.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University–University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - An Yan
- Center for Plant Cell Biology, Department of Botany and Sciences, University of California, Riverside, California 92521
| | - José A. Feijó
- Seccao de Biologia Vegetal, Faculdade de Ciencias, Universidade de Lisboa 1700, Lisbon P-1749-016, Portugal
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | - Masahiro Furutani
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Inhwan Hwang
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenbiao Yang
- China Agricultural University–University of California-Riverside Joint Center for Biological Sciences and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Plant Cell Biology, Department of Botany and Sciences, University of California, Riverside, California 92521
| |
Collapse
|
136
|
Han B, Chen S, Dai S, Yang N, Wang T. Isobaric tags for relative and absolute quantification- based comparative proteomics reveals the features of plasma membrane-associated proteomes of pollen grains and pollen tubes from Lilium davidii. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:1043-1058. [PMID: 21106004 DOI: 10.1111/j.1744-7909.2010.00996.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mature pollen grains (PGs) from most plant species are metabolically quiescent. However, once pollinated onto stigma, they quickly hydrate and germinate. A PG can give rise to a vegetative cell-derived polarized pollen tube (PT), which represents a specialized polar cell. The polarized PT grows by the tip and requires interaction of different signaling molecules localized in the apical plasma membrane and active membrane trafficking. The mechanisms underlying the interaction and membrane trafficking are not well understood. In this work, we purified PG and PT plasma-membrane vesicles from Lilium davidii Duch. using the aqueous two-phase partition technique, then enriched plasma membrane proteins by using Brij58 and KCl to remove loosely bound contaminants. We identified 223 integral and membrane-associated proteins in the plasma membrane of PGs and PTs by using isobaric tags for relative and absolute quantification (iTRAQ) and 2-D high-performance liquid chromatography-tandem mass spectrometry. More than 68% of the proteins have putative transmembrane domains and/or lipid-modified motifs. Proteins involved in signal transduction, membrane trafficking and transport are predominant in the plasma-membrane proteome. We revealed most components of the clathrin-dependent endocytosis pathway. Statistical analysis revealed 14 proteins differentially expressed in the two development stages: in PTs, six upregulated and eight downregulated are mainly involved in signaling, transport and membrane trafficking. These results provide novel insights into polarized PT growth.
Collapse
Affiliation(s)
- Bing Han
- Research Center for Molecular & Developmental Biology, Key Laboratory of Photosynthesis & Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100093, China
| | | | | | | | | |
Collapse
|
137
|
Cvrčková F, Bezvoda R, Zárský V. Computational identification of root hair-specific genes in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:1407-18. [PMID: 21051945 PMCID: PMC3115242 DOI: 10.4161/psb.5.11.13358] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Activated cortical domains (ACDs) are regions of the plant cell cortex performing localized membrane turnover, delimited by concerted action of the cortical cytoskeleton and endomembrane compartments. Arabidopsis thaliana rhizodermis consists of two cell types differing by a single ACD (trichoblasts, carrying tip-growing root hairs, and hairless atrichoblasts), providing a model for the study of ACD determination. We compiled a set of genes specifically upregulated in root hairs from published transcriptome data, and compared it with a "virtual Arabidopsis root hair proteome", i.e. a list of computationally identified homologs of proteins from the published soybean root hair proteome. Both data sets were enriched in genes and proteins associated with root hairs in functional studies, but there was little overlap between the transcriptome and the proteome: the former captured gene products specific to root hairs, while the latter selected those abundant in root hairs but not necessarily specific to them. Decisive steps in ACD specification may be performed by signaling proteins of high expression specifity and low abundance. Nevertheless, 73 genes specifically transcribed in Arabidopsis trichoblasts or root hairs encode homologs of abundant root hair proteins from soybean. Most of them encode "housekeeping" proteins required for rapid tip growth. However, among the "candidates" is also a generative actin isoform, ACT11. Preliminary characterization of an act11 mutant allele indeed suggests a hitherto unexpected role for this gene in root and root hair development.
Collapse
Affiliation(s)
- Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Sciences, Charles University, Praha, Czech Republic.
| | | | | |
Collapse
|
138
|
Ovecka M, Berson T, Beck M, Derksen J, Samaj J, Baluska F, Lichtscheidl IK. Structural sterols are involved in both the initiation and tip growth of root hairs in Arabidopsis thaliana. THE PLANT CELL 2010; 22:2999-3019. [PMID: 20841426 PMCID: PMC2965552 DOI: 10.1105/tpc.109.069880] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 07/21/2010] [Accepted: 08/18/2010] [Indexed: 05/22/2023]
Abstract
Structural sterols are abundant in the plasma membrane of root apex cells in Arabidopsis thaliana. They specifically accumulate in trichoblasts during the prebulging and bulge stages and show a polar accumulation in the tip during root hair elongation but are distributed evenly in mature root hairs. Thus, structural sterols may serve as a marker for root hair initiation and growth. In addition, they may predict branching events in mutants with branching root hairs. Structural sterols were detected using the sterol complexing fluorochrome filipin. Application of filipin caused a rapid, concentration-dependent decrease in tip growth. Filipin-complexed sterols accumulated in globular structures that fused to larger FM4-64-positive aggregates in the tip, so-called filipin-induced apical compartments, which were closely associated with the plasma membrane. The plasma membrane appeared malformed and the cytoarchitecture of the tip zone was affected. Trans-Golgi network/early endosomal compartments containing molecular markers, such as small Rab GTPase RabA1d and SNARE Wave line 13 (VTI12), locally accumulated in these filipin-induced apical compartments, while late endosomes, endoplasmic reticulum, mitochondria, plastids, and cytosol were excluded from them. These data suggest that the local distribution and apical accumulation of structural sterols may regulate vesicular trafficking and plasma membrane properties during both initiation and tip growth of root hairs in Arabidopsis.
Collapse
Affiliation(s)
- Miroslav Ovecka
- Core Facility of Cell Imaging and Ultrastructure Research, University of Viena, A-1090 Viena, Austria.
| | | | | | | | | | | | | |
Collapse
|
139
|
Ischebeck T, Vu LH, Jin X, Stenzel I, Löfke C, Heilmann I. Functional cooperativity of enzymes of phosphoinositide conversion according to synergistic effects on pectin secretion in tobacco pollen tubes. MOLECULAR PLANT 2010; 3:870-81. [PMID: 20603382 DOI: 10.1093/mp/ssq031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Arabidopsis phosphoinositide kinases PI4Kβ1 and PIP5K5 have been implicated in the control of directional vesicle trafficking underlying polar tip growth in pollen tubes. PI4Kβ1 and PIP5K5 catalyze key consecutive steps of phosphoinositide conversion, and it appears obvious that phosphatidylinositol-4-phosphate formed by PI4Kβ1 might act as a substrate for phosphatidylinositol-4,5-bisphosphate formation by PIP5K5. However, this hypothesis has not been experimentally addressed and distinct localization patterns of PI4Kβ1, PIP5K5, and also PI-synthases (PIS) generating phosphatidylinositol suggest additional complexity. Here, the synergistic functionality of enzymes of phosphoinositide conversion was assessed. In tobacco and Arabidopsis pollen tubes, phosphoinositides influence the apical secretion of pectin, and increased pectin deposition results in characteristic morphological alterations. Catalytically active and dominant negative variants of PI4Kβ1 and PIP5K5 were systematically co-expressed in tobacco pollen tubes and the incidence of morphologies related to enhanced pectin secretion was evaluated. The data support a proposed functional interplay of PI4Kβ1 and PIP5K5 at the trans-Golgi network, mediating directional vesicle trafficking. Co-expression experiments additionally including PIS isoforms, PIS1 or PIS2, indicate that pectin secretion is synergistically mediated by PI4Kβ1 and PIP5K5 acting on PtdIns formed by PIS2 rather than PIS1. Possible ramifications for the preferential channeling of phosphoinositide intermediates between particular isoforms of PI pathway enzymes are discussed.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
140
|
Pang CY, Wang H, Pang Y, Xu C, Jiao Y, Qin YM, Western TL, Yu SX, Zhu YX. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 2010; 9:2019-33. [PMID: 20525998 DOI: 10.1074/mcp.m110.000349] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The quality of cotton fiber is determined by its final length and strength, which is a function of primary and secondary cell wall deposition. Using a comparative proteomics approach, we identified 104 proteins from cotton ovules 10 days postanthesis with 93 preferentially accumulated in the wild type and 11 accumulated in the fuzzless-lintless mutant. Bioinformatics analysis indicated that nucleotide sugar metabolism was the most significantly up-regulated biochemical process during fiber elongation. Seven protein spots potentially involved in pectic cell wall polysaccharide biosynthesis were specifically accumulated in wild-type samples at both the protein and transcript levels. Protein and mRNA expression of these genes increased when either ethylene or lignoceric acid (C24:0) was added to the culture medium, suggesting that these compounds may promote fiber elongation by modulating the production of cell wall polymers. Quantitative analysis revealed that fiber primary cell walls contained significantly higher amounts of pectin, whereas more hemicellulose was found in ovule samples. Significant fiber growth was observed when UDP-L-rhamnose, UDP-D-galacturonic acid, or UDP-D-glucuronic acid, all of which were readily incorporated into the pectin fraction of cell wall preparations, was added to the ovule culture medium. The short root hairs of Arabidopsis uer1-1 and gae6-1 mutants were complemented either by genetic transformation of the respective cotton cDNA or by adding a specific pectin precursor to the growth medium. When two pectin precursors, produced by either UDP-4-keto-6-deoxy-D-glucose 3,5-epimerase 4-reductase or by UDP-D-glucose dehydrogenase and UDP-D-glucuronic acid 4-epimerase successively, were used in the chemical complementation assay, wild-type root hair lengths were observed in both cut1 and ein2-5 Arabidopsis seedlings, which showed defects in C24:0 biosynthesis or ethylene signaling, respectively. Our results suggest that ethylene and C24:0 may promote cotton fiber and Arabidopsis root hair growth by activating the pectin biosynthesis network, especially UDP-L-rhamnose and UDP-D-galacturonic acid synthesis.
Collapse
Affiliation(s)
- Chao-You Pang
- The National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Ischebeck T, Seiler S, Heilmann I. At the poles across kingdoms: phosphoinositides and polar tip growth. PROTOPLASMA 2010; 240:13-31. [PMID: 20091065 PMCID: PMC2841259 DOI: 10.1007/s00709-009-0093-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/20/2009] [Indexed: 05/20/2023]
Abstract
Phosphoinositides (PIs) are minor, but essential phospholipid constituents of eukaryotic membranes, and are involved in the regulation of various physiological processes. Recent genetic and cell biological advances indicate that PIs play important roles in the control of polar tip growth in plant cells. In root hairs and pollen tubes, PIs control directional membrane trafficking required for the delivery of cell wall material and membrane area to the growing tip. So far, the exact mechanisms by which PIs control polarity and tip growth are unresolved. However, data gained from the analysis of plant, fungal and animal systems implicate PIs in the control of cytoskeletal dynamics, ion channel activity as well as vesicle trafficking. The present review aims at giving an overview of PI roles in eukaryotic cells with a special focus on functions pertaining to the control of cell polarity. Comparative screening of plant and fungal genomes suggests diversification of the PI system with increasing organismic complexity. The evolutionary conservation of the PI system among eukaryotic cells suggests a role for PIs in tip growing cells in models where PIs so far have not been a focus of attention, such as fungal hyphae.
Collapse
Affiliation(s)
- Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Seiler
- Department of Microbiology and Genetics; and DFG Research Center Molecular Physiology of the Brain (CMPB), Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
142
|
Kumar A, McClure B. Pollen-pistil interactions and the endomembrane system. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2001-13. [PMID: 20363870 DOI: 10.1093/jxb/erq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endomembrane system offers many potential points where plant mating can be effectively controlled. This results from two basic features of angiosperm reproduction: the requirement for pollen tubes to pass through sporophytic tissues to gain access to ovules and the physiology of pollen tube growth that provides it with the capacity to do so. Rapid pollen tube growth requires extravagant exocytosis and endocytosis activity as cell wall material is deposited and membrane is recovered from the actively growing tip. Moreover, recent results show that pollen tubes take up a great deal of material from the pistil extracellular matrix. Regarding the stigma and style as organs specialized for mate selection focuses attention on their complementary roles in secreting material to support the growth of compatible pollen tubes and discourage the growth of undesirable pollen. Since these processes also involve regulated activities of the endomembrane system, the potential for regulating mating by controlling endomembrane events exists in both pollen and pistil.
Collapse
Affiliation(s)
- Aruna Kumar
- Division of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
143
|
Wang H, Tse YC, Law AHY, Sun SSM, Sun YB, Xu ZF, Hillmer S, Robinson DG, Jiang L. Vacuolar sorting receptors (VSRs) and secretory carrier membrane proteins (SCAMPs) are essential for pollen tube growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:826-38. [PMID: 20030753 DOI: 10.1111/j.1365-313x.2009.04111.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Vacuolar sorting receptors (VSRs) are type-I integral membrane proteins that mediate biosynthetic protein traffic in the secretory pathway to the vacuole, whereas secretory carrier membrane proteins (SCAMPs) are type-IV membrane proteins localizing to the plasma membrane and early endosome (EE) or trans-Golgi network (TGN) in the plant endocytic pathway. As pollen tube growth is an extremely polarized and highly dynamic process, with intense anterograde and retrograde membrane trafficking, we have studied the dynamics and functional roles of VSR and SCAMP in pollen tube growth using lily (Lilium longiflorum) pollen as a model. Using newly cloned lily VSR and SCAMP cDNA (termed LIVSR and LISCAMP, respectively), as well as specific antibodies against VSR and SCAMP1 as tools, we have demonstrated that in growing lily pollen tubes: (i) transiently expressed GFP-VSR/GFP-LIVSR is located throughout the pollen tubes, excepting the apical clear-zone region, whereas GFP-LISCAMP is mainly concentrated in the tip region; (ii) VSRs are localized to the multivesicular body (MVB) and vacuole, whereas SCAMPs are localized to apical endocytic vesicles, TGN and vacuole; and (iii) microinjection of VSR or SCAMP antibodies and LlVSR small interfering RNAs (siRNAs) significantly reduced the growth rate of the lily pollen tubes. Taken together, both VSR and SCAMP are required for pollen tube growth, probably working together in regulating protein trafficking in the secretory and endocytic pathways, which need to be coordinated in order to support pollen tube elongation.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biology, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Gagne JM, Clark SE. The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. THE PLANT CELL 2010; 22:729-43. [PMID: 20348433 PMCID: PMC2861466 DOI: 10.1105/tpc.109.068734] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 03/03/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Abstract
Stem cell maintenance and differentiation are tightly regulated in multicellular organisms. In plants, proper control of the stem cell populations is critical for extensive postembryonic organogenesis. The Arabidopsis thaliana protein phosphatase type 2C proteins POLTERGEIST (POL) and PLL1 are essential for maintenance of both the root and shoot stem cells. Specifically, POL and PLL1 are required for proper specification of key asymmetric cell divisions during stem cell initiation and maintenance. POL and PLL1 are known to be integral components of the CLE/WOX signaling pathways, but the location and mechanisms by which POL and PLL1 are regulated within these pathways are unclear. Here, we show that POL and PLL1 are dual-acylated plasma membrane proteins whose membrane localization is required for proper function. Furthermore, this localization places POL and PLL1 in proximity of the upstream plasma membrane receptors that regulate their activity. Additionally, we find that POL and PLL1 directly bind to multiple lipids and that POL is catalytically activated by phosphatidylinositol (4) phosphate [PI(4)P] in vitro. Based on these results, we propose that the upstream receptors in the CLE/WOX signaling pathways may function to either limit PI(4)P availability or antagonize PI(4)P stimulation of POL/PLL1. Significantly, the findings presented here suggest that phospholipids play an important role in promoting stem cell specification.
Collapse
Affiliation(s)
| | - Steven E. Clark
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048
| |
Collapse
|
145
|
Kato N, He H, Steger AP. A systems model of vesicle trafficking in Arabidopsis pollen tubes. PLANT PHYSIOLOGY 2010; 152:590-601. [PMID: 19933386 PMCID: PMC2815877 DOI: 10.1104/pp.109.148700] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
Abstract
A systems model that describes vesicle trafficking during pollen tube growth in Arabidopsis (Arabidopsis thaliana) was constructed. The model is composed of ordinary differential equations that connect the molecular functions of genes expressed in pollen. The current model requires soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) and small GTPases, Arf or Rab, to reasonably predict tube growth as a function of time. Tube growth depends on vesicle trafficking that transports phospholipid and pectin to the tube tip. The vesicle trafficking genes identified by analyzing publicly available transcriptome data comprised 328 genes. Fourteen of them are up-regulated by the gibberellin signaling pathway during pollen development, which includes the SNARE genes SYP124 and SYP125 and the Rab GTPase gene RABA4D. The model results adequately fit the pollen tube growth of both previously reported wild-type and raba4d knockout lines. Furthermore, the difference of pollen tube growth in syp124/syp125 single and double mutations was quantitatively predicted based on the model analysis. In general, a systems model approach to vesicle trafficking arguably demonstrated the importance of the functional connections in pollen tube growth and can help guide future research directions.
Collapse
Affiliation(s)
- Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | |
Collapse
|
146
|
Abstract
The exocyst is an octameric vesicle tethering complex that functions upstream of SNARE mediated exocytotic vesicle fusion with the plasma membrane. All proteins in the complex have been conserved during evolution, and genes that encode the exocyst subunits are present in the genomes of all plants investigated to date. Although the plant exocyst has not been studied in great detail, it is likely that the basic function of the exocyst in vesicle tethering is conserved. Nevertheless, genomic and genetic studies suggest that the exocyst complex in plants may have more diversified roles than that in budding yeast. In this review, we compare the knowledge about the exocyst in plant cells to the well-studied exocyst in budding yeast, in order to explore similarities and differences in expression and function between these organisms, both of which have walled cells.
Collapse
Affiliation(s)
- Ying Zhang
- Laboratory of Plant Cell Biology, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
147
|
Phosphatidylinositol 4-Phosphate is Required for Tip Growth in Arabidopsis thaliana. LIPID SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03873-0_4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
148
|
Kost B. Regulatory and Cellular Functions of Plant RhoGAPs and RhoGDIs. INTEGRATED G PROTEINS SIGNALING IN PLANTS 2010. [DOI: 10.1007/978-3-642-03524-1_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
149
|
The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth. ACTA ACUST UNITED AC 2009; 23:87-93. [DOI: 10.1007/s00497-009-0118-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 10/22/2009] [Indexed: 01/01/2023]
|
150
|
McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK. Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. THE PLANT CELL 2009; 21:3026-40. [PMID: 19861555 PMCID: PMC2782290 DOI: 10.1105/tpc.109.069260] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/28/2009] [Accepted: 10/14/2009] [Indexed: 05/18/2023]
Abstract
We examined exocytosis during oscillatory growth in lily (Lilium formosanum and Lilium longiflorum) and tobacco (Nicotiana tabacum) pollen tubes using three markers: (1) changes in cell wall thickness by Nomarski differential interference contrast (DIC), (2) changes in apical cell wall fluorescence in cells stained with propidium iodide (PI), and (3) changes in apical wall fluorescence in cells expressing tobacco pectin methyl esterase fused to green fluorescent protein (PME-GFP). Using PI fluorescence, we quantified oscillatory changes in the amount of wall material from both lily and tobacco pollen tubes. Measurement of wall thickness by DIC was only possible with lily due to limitations of microscope resolution. PME-GFP, a direct marker for exocytosis, only provides information in tobacco because its expression in lily causes growth inhibition and cell death. We show that exocytosis in pollen tubes oscillates and leads the increase in growth rate; the mean phase difference between exocytosis and growth is -98 degrees +/- 3 degrees in lily and -124 degrees +/- 4 degrees in tobacco. Statistical analyses reveal that the anticipatory increase in wall material predicts, to a high degree, the rate and extent of the subsequent growth surge. Exocytosis emerges as a prime candidate for the initiation and regulation of oscillatory pollen tube growth.
Collapse
Affiliation(s)
| | - Joseph G. Kunkel
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Maurice Bosch
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University Plas Gogerddan, Aberystwyth, SY23 3EB, United Kingdom
| | - Caleb M. Rounds
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | | | - Peter K. Hepler
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|