101
|
Zhu M, Jeon BW, Geng S, Yu Y, Balmant K, Chen S, Assmann SM. Preparation of Epidermal Peels and Guard Cell Protoplasts for Cellular, Electrophysiological, and -Omics Assays of Guard Cell Function. Methods Mol Biol 2016; 1363:89-121. [PMID: 26577784 DOI: 10.1007/978-1-4939-3115-6_9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bioassays are commonly used to study stomatal phenotypes. There are multiple options in the choice of plant materials and species used for observation of stomatal and guard cell responses in vivo. Here, detailed procedures for bioassays of stomatal responses to abscisic acid (ABA) in Arabidopsis thaliana are described, including ABA promotion of stomatal closure, ABA inhibition of stomatal opening, and ABA promotion of reaction oxygen species (ROS) production in guard cells. We also include an example of a stomatal bioassay for the guard cell CO2 response using guard cell-enriched epidermal peels from Brassica napus. Highly pure preparations of guard cell protoplasts can be produced, which are also suitable for studies on guard cell signaling, as well as for studies on guard cell ion transport. Small-scale and large-scale guard cell protoplast preparations are commonly used for electrophysiological and -omics studies, respectively. We provide a procedure for small-scale guard cell protoplasting from A. thaliana. Additionally, a general protocol for large-scale preparation of guard cell protoplasts, with specifications for three different species, A. thaliana, B. napus, and Vicia faba is also provided.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Byeong Wook Jeon
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Sisi Geng
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Yunqing Yu
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| | - Kelly Balmant
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, University of Florida, 2033 Mowry Road, Gainesville, FL, 32610, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
102
|
Svozil J, Gruissem W, Baerenfaller K. Meselect - A Rapid and Effective Method for the Separation of the Main Leaf Tissue Types. FRONTIERS IN PLANT SCIENCE 2016; 7:1701. [PMID: 27895656 PMCID: PMC5108763 DOI: 10.3389/fpls.2016.01701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
Individual tissues of complex eukaryotic organisms have specific gene expression programs that control their functions. Therefore, tissue-specific molecular information is required to increase our understanding of tissue-specific processes. Established methods in plants to obtain specific tissues or cell types from their organ or tissue context typically require the enzymatic degradation of cell walls followed by fluorescence-activated cell sorting (FACS) using plants engineered for localized expression of green fluorescent protein. This has facilitated the acquisition of valuable data, mainly on root cell type-specific transcript and protein expression. However, FACS of different leaf cell types is difficult because of chlorophyll autofluorescence that interferes with the sorting process. Furthermore, the cell wall composition is different in each cell type. This results in long incubation times for refractory cell types, and cell sorting itself can take several hours. To overcome these limitations, we developed Meselect (mechanical separation of leaf compound tissues), a rapid and effective method for the separation of leaf epidermal, vascular and mesophyll tissues. Meselect is a novel combination of mechanical separation and rapid protoplasting, which benefits from the unique cell wall composition of the different tissue types. Meselect has several advantages over cell sorting: it does not require expensive equipment such as a cell sorter and does not depend on specific fluorescent reporter lines, the use of blenders as well as the inherent mixing of different cell types and of intact and damaged cells can be avoided, and the time between wounding of the leaf and freezing of the sample is short. The efficacy and specificity of the method to enrich the different leaf tissue types has been confirmed using Arabidopsis leaves, but it has also been successfully used for leaves of other plants such as tomato or cassava. The method is therefore useful for plant scientists investigating leaf development or responses to stimuli at the tissue-specific level.
Collapse
Affiliation(s)
- Julia Svozil
- *Correspondence: Katja Baerenfaller, Julia Svozil,
| | | | | |
Collapse
|
103
|
Mattei B, Spinelli F, Pontiggia D, De Lorenzo G. Comprehensive Analysis of the Membrane Phosphoproteome Regulated by Oligogalacturonides in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2016; 7:1107. [PMID: 27532006 PMCID: PMC4969306 DOI: 10.3389/fpls.2016.01107] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/12/2016] [Indexed: 05/03/2023]
Abstract
Early changes in the Arabidopsis thaliana membrane phosphoproteome in response to oligogalacturonides (OGs), a class of plant damage-associated molecular patterns (DAMPs), were analyzed by two complementary proteomic approaches. Differentially phosphorylated sites were determined through phosphopeptide enrichment followed by LC-MS/MS using label-free quantification; differentially phosphorylated proteins were identified by 2D-DIGE combined with phospho-specific fluorescent staining (phospho-DIGE). This large-scale phosphoproteome analysis of early OG-signaling enabled us to determine 100 regulated phosphosites using LC-MS/MS and 46 differential spots corresponding to 34 pdhosphoproteins using phospho-DIGE. Functional classification showed that the OG-responsive phosphoproteins include kinases, phosphatases and receptor-like kinases, heat shock proteins (HSPs), reactive oxygen species (ROS) scavenging enzymes, proteins related to cellular trafficking, transport, defense and signaling as well as novel candidates for a role in immunity, for which elicitor-induced phosphorylation changes have not been shown before. A comparison with previously identified elicitor-regulated phosphosites shows only a very limited overlap, uncovering the immune-related regulation of 70 phosphorylation sites and revealing novel potential players in the regulation of elicitor-dependent immunity.
Collapse
|
104
|
Scuffi D, Lamattina L, García-Mata C. Decoding the Interaction Between Nitric Oxide and Hydrogen Sulfide in Stomatal Movement. GASOTRANSMITTERS IN PLANTS 2016. [DOI: 10.1007/978-3-319-40713-5_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Liu Z, Li Y, Cao H, Ren D. Comparative phospho-proteomics analysis of salt-responsive phosphoproteins regulated by the MKK9-MPK6 cascade in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:138-50. [PMID: 26706066 DOI: 10.1016/j.plantsci.2015.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are involved in the salt stress response in plants. However, the identities of specific proteins operating downstream of MAPKs in the salt stress response remain unclear. Our studies showed that mkk9 and mpk6 null mutant seedlings are hyposensitive to salt stress. Moreover, we showed that MPK6 was activated by salt stress, indicating that the MKK9-MPK6 cascade mediated the salt stress response in Arabidopsis. To identify phosphoproteins downstream of the MKK9-MPK6 cascade in the salt stress response pathway, we performed two-dimensional electrophoresis (2-DE) with Pro-Q phosphoprotein staining and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) to identify phosphoproteins induced by salt treatment in mkk9, mpk6, and wild-type seedlings. Phosphorylation of 4 proteins, including Rubisco activase (RCA), plastid ribosomal protein S 1 (PRPS1), plastid division protein (FtsZ2-2), and tortifolia2 (TOR2), was found to be regulated by activation of MKK9-MPK6 cascade. Further Phospho-proteomics analysis of MKK9(DD) mutant seedlings revealed that RCA phosphorylation was up-regulated as a result of MKK9 activation. The finding that the MKK9-MPK6 cascade functions in the salt stress response by regulating phosphorylation of RCA, PRPS1, FtsZ2-2, and TOR2, provides a novel insight into the MAPK-related mechanisms underlying the salt stress response in plants.
Collapse
Affiliation(s)
- Zhenbin Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hanwei Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongtao Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
106
|
Daloso DM, Antunes WC, Pinheiro DP, Waquim JP, Araújo WL, Loureiro ME, Fernie AR, Williams TCR. Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening. PLANT, CELL & ENVIRONMENT 2015; 38:2353-71. [PMID: 25871738 DOI: 10.1111/pce.12555] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 05/21/2023]
Abstract
Transcriptomic and proteomic studies have improved our knowledge of guard cell function; however, metabolic changes in guard cells remain relatively poorly understood. Here we analysed metabolic changes in guard cell-enriched epidermal fragments from tobacco during light-induced stomatal opening. Increases in sucrose, glucose and fructose were observed during light-induced stomatal opening in the presence of sucrose in the medium while no changes in starch were observed, suggesting that the elevated fructose and glucose levels were a consequence of sucrose rather than starch breakdown. Conversely, reduction in sucrose was observed during light- plus potassium-induced stomatal opening. Concomitant with the decrease in sucrose, we observed an increase in the level as well as in the (13) C enrichment in metabolites of, or associated with, the tricarboxylic acid cycle following incubation of the guard cell-enriched preparations in (13) C-labelled bicarbonate. Collectively, the results obtained support the hypothesis that sucrose is catabolized within guard cells in order to provide carbon skeletons for organic acid production. Furthermore, they provide a qualitative demonstration that CO2 fixation occurs both via ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPcase). The combined data are discussed with respect to current models of guard cell metabolism and function.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Werner C Antunes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Daniela P Pinheiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Jardel P Waquim
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Marcelo E Loureiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Thomas C R Williams
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
- Departamento de Botânica, Universidade de Brasilia, Brasilia, Distrito Federal, 70910-900, Brazil
| |
Collapse
|
107
|
Merilo E, Jalakas P, Laanemets K, Mohammadi O, Hõrak H, Kollist H, Brosché M. Abscisic Acid Transport and Homeostasis in the Context of Stomatal Regulation. MOLECULAR PLANT 2015; 8:1321-33. [PMID: 26099923 DOI: 10.1016/j.molp.2015.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/04/2015] [Accepted: 06/08/2015] [Indexed: 05/18/2023]
Abstract
The discovery of cytosolic ABA receptors is an important breakthrough in stomatal research; signaling via these receptors is involved in determining the basal stomatal conductance and stomatal responsiveness. However, the source of ABA in guard cells is still not fully understood. The level of ABA increases in guard cells by de novo synthesis, recycling from inactive conjugates via β-glucosidases BG1 and BG2 and by import, whereas it decreases by hydroxylation, conjugation, and export. ABA importers include the NRT1/PTR family protein AIT1, ATP-binding cassette protein ABCG40, and possibly ABCG22, whereas the DTX family member DTX50 and ABCG25 function as ABA exporters. Here, we review the proteins involved in ABA transport and homeostasis and their physiological role in stomatal regulation. Recent experiments suggest that functional redundancy probably exists among ABA transporters between vasculature and guard cells and ABA recycling proteins, as stomatal functioning remained intact in abcg22, abcg25, abcg40, ait1, and bg1bg2 mutants. Only the initial response to reduced air humidity was significantly delayed in abcg22. Considering the reports showing autonomous ABA synthesis in guard cells, we discuss that rapid stomatal responses to atmospheric factors might depend primarily on guard cell-synthesized ABA, whereas in the case of long-term soil water deficit, ABA synthesized in the vasculature might have a significant role.
Collapse
Affiliation(s)
- Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Pirko Jalakas
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Kristiina Laanemets
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Omid Mohammadi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Mikael Brosché
- Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia; Division of Plant Biology, Department of Biosciences, University of Helsinki, P.O. Box 65 (Viikinkaari 1), FI-00014 Helsinki, Finland
| |
Collapse
|
108
|
Medeiros DB, Daloso DM, Fernie AR, Nikoloski Z, Araújo WL. Utilizing systems biology to unravel stomatal function and the hierarchies underpinning its control. PLANT, CELL & ENVIRONMENT 2015; 38:1457-70. [PMID: 25689387 DOI: 10.1111/pce.12517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 05/08/2023]
Abstract
Stomata control the concomitant exchange of CO2 and transpiration in land plants. While a constant supply of CO2 is need to maintain the rate of photosynthesis, the accompanying water losses must be tightly regulated to prevent dehydration and undesired metabolic changes. The factors affecting stomatal movement are directly coupled with the cellular networks of guard cells. Although the guard cell has been used as a model for characterization of signaling pathways, several important questions about its functioning remain elusive. Current modeling approaches describe the stomatal conductance in terms of relatively few easy-to-measure variables being unsuitable for in silico design of genetic manipulation strategies. Here, we argue that a system biology approach, combining modeling and high-throughput experiments, may be used to elucidate the mechanisms underlying stomata control and to determine targets for modulation of stomatal responses to environment. In support of our opinion, we review studies demonstrating how high-throughput approaches have provided a systems-view of guard cells. Finally, we emphasize the opportunities and challenges of genome-scale modeling and large-scale data integration for in silico manipulation of guard cell functions to improve crop yields, particularly under stress conditions which are of pertinence both to climate change and water use efficiency.
Collapse
Affiliation(s)
- David B Medeiros
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modeling Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
109
|
Adrian J, Chang J, Ballenger CE, Bargmann BOR, Alassimone J, Davies KA, Lau OS, Matos JL, Hachez C, Lanctot A, Vatén A, Birnbaum KD, Bergmann DC. Transcriptome dynamics of the stomatal lineage: birth, amplification, and termination of a self-renewing population. Dev Cell 2015; 33:107-18. [PMID: 25850675 DOI: 10.1016/j.devcel.2015.01.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 11/30/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
Abstract
Developmental transitions can be described in terms of morphology and the roles of individual genes, but also in terms of global transcriptional and epigenetic changes. Temporal dissections of transcriptome changes, however, are rare for intact, developing tissues. We used RNA sequencing and microarray platforms to quantify gene expression from labeled cells isolated by fluorescence-activated cell sorting to generate cell-type-specific transcriptomes during development of an adult stem-cell lineage in the Arabidopsis leaf. We show that regulatory modules in this early lineage link cell types that had previously been considered to be under separate control and provide evidence for recruitment of individual members of gene families for different developmental decisions. Because stomata are physiologically important and because stomatal lineage cells exhibit exemplary division, cell fate, and cell signaling behaviors, this dataset serves as a valuable resource for further investigations of fundamental developmental processes.
Collapse
Affiliation(s)
- Jessika Adrian
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jessica Chang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Bastiaan O R Bargmann
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | | | - Kelli A Davies
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - On Sun Lau
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Charles Hachez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Amy Lanctot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anne Vatén
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kenneth D Birnbaum
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
110
|
Misra BB, Acharya BR, Granot D, Assmann SM, Chen S. The guard cell metabolome: functions in stomatal movement and global food security. FRONTIERS IN PLANT SCIENCE 2015; 6:334. [PMID: 26042131 PMCID: PMC4436583 DOI: 10.3389/fpls.2015.00334] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 04/28/2015] [Indexed: 05/06/2023]
Abstract
Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other "omics" approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.
Collapse
Affiliation(s)
- Biswapriya B. Misra
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | | | - David Granot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Bet-Dagan, Israel
| | | | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| |
Collapse
|
111
|
Piasecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: conserved function of divergent chemicals. THE NEW PHYTOLOGIST 2015; 206:948-964. [PMID: 25659829 DOI: 10.1111/nph.13325] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/09/2015] [Indexed: 05/02/2023]
Abstract
Plant secondary metabolites carry out numerous functions in interactions between plants and a broad range of other organisms. Experimental evidence strongly supports the indispensable contribution of many constitutive and pathogen-inducible phytochemicals to plant innate immunity. Extensive studies on model plant species, particularly Arabidopsis thaliana, have brought significant advances in our understanding of the molecular mechanisms underpinning pathogen-triggered biosynthesis and activation of defensive secondary metabolites. However, despite the proven significance of secondary metabolites in plant response to pathogenic microorganisms, little is known about the precise mechanisms underlying their contribution to plant immunity. This insufficiency concerns information on the dynamics of cellular and subcellular localization of defensive phytochemicals during the encounters with microbial pathogens and precise knowledge on their mode of action. As many secondary metabolites are characterized by their in vitro antimicrobial activity, these compounds were commonly considered to function in plant defense as in planta antibiotics. Strikingly, recent experimental evidence suggests that at least some of these compounds alternatively may be involved in controlling several immune responses that are evolutionarily conserved in the plant kingdom, including callose deposition and programmed cell death.
Collapse
Affiliation(s)
- Anna Piasecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznan, Poland
| | - Nicolas Jedrzejczak-Rey
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
112
|
Kerwin R, Feusier J, Corwin J, Rubin M, Lin C, Muok A, Larson B, Li B, Joseph B, Francisco M, Copeland D, Weinig C, Kliebenstein DJ. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness. eLife 2015; 4. [PMID: 25867014 PMCID: PMC4396512 DOI: 10.7554/elife.05604] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/18/2015] [Indexed: 01/06/2023] Open
Abstract
Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana. DOI:http://dx.doi.org/10.7554/eLife.05604.001 ‘Genetic variation’ describes the naturally occurring differences in DNA sequences that are found among individuals of the same species. These genetic differences arise from random mutations and may be passed on to their offspring. Some of these mutations may improve the ability of an individual to survive and reproduce—known as fitness—and are likely to become more common in the population. Other mutations may reduce an individual's fitness and are likely to be lost. However, it is believed that most of the mutations will have no effect on the fitness of individuals. It is not known why many of these ‘neutral’ genetic differences are maintained in populations. Some researchers have proposed that they are kept by chance and that there is no direct advantage to the population of keeping them unless these neutral mutations later become beneficial. However, other researchers think that the genetic variation itself may improve the fitness of the population by allowing it to quickly adapt to changes in the environment. Arabidopsis thaliana is a small plant that lives in many different environments and has high levels of genetic variation in many of its physical traits. One of these traits is the production of molecules called glucosinolates, which help the plants to defend against herbivores and infection by microbes. Previous studies have suggested that variation in the genes that make glucosinolates may improve the fitness of A. thaliana populations. To test this idea, Kerwin et al. carried out a field trial using A. thaliana plants that were genetically identical except for some of the genes involved in the production of glucosinolates. Kerwin et al. grew the plants in several different environments over several years. The field trial shows that variation in these genes affected the fitness of the plants in each of the different environments. However, the fitness benefit depended on the environment, and no single gene variant provided the best fitness across all environments, or over all the years of the trial. Kerwin et al.'s findings suggest that changes in the environment may contribute to the maintenance of genetic variation in the genes that make glucosinolates. This raises the questions of how many other genes in plants (or other species such as humans) have genetic variation that contributes to fitness across varied environments; and how can this link be tested in natural settings. DOI:http://dx.doi.org/10.7554/eLife.05604.002
Collapse
Affiliation(s)
- Rachel Kerwin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Matthew Rubin
- Department of Botany, University of Wyoming, Laramie, United States
| | - Catherine Lin
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Alise Muok
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Brandon Larson
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Bindu Joseph
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Marta Francisco
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, Davis, United States
| | - Cynthia Weinig
- Department of Genetics, University of Utah, Salt Lake City, United States
| | | |
Collapse
|
113
|
Abstract
The protein content of plant cells is constantly being updated. This process is driven by the opposing actions of protein degradation, which defines the half-life of each polypeptide, and protein synthesis. Our understanding of the processes that regulate protein synthesis and degradation in plants has advanced significantly over the past decade. Post-transcriptional modifications that influence features of the mRNA populations, such as poly(A) tail length and secondary structure, contribute to the regulation of protein synthesis. Post-translational modifications such as phosphorylation, ubiquitination and non-enzymatic processes such as nitrosylation and carbonylation, govern the rate of degradation. Regulators such as the plant TOR kinase, and effectors such as the E3 ligases, allow plants to balance protein synthesis and degradation under developmental and environmental change. Establishing an integrated understanding of the processes that underpin changes in protein abundance under various physiological and developmental scenarios will accelerate our ability to model and rationally engineer plants.
Collapse
Affiliation(s)
- Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, Perth, Western Australia, Australia
| |
Collapse
|
114
|
Murata Y, Mori IC, Munemasa S. Diverse stomatal signaling and the signal integration mechanism. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:369-92. [PMID: 25665132 DOI: 10.1146/annurev-arplant-043014-114707] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Guard cells perceive a variety of chemicals produced metabolically in response to abiotic and biotic stresses, integrate the signals into reactive oxygen species and calcium signatures, and convert these signatures into stomatal movements by regulating turgor pressure. Guard cell behaviors in response to such complex signals are critical for plant growth and sustenance in stressful, ever-changing environments. The key open question is how guard cells achieve the signal integration to optimize stomatal aperture. Abscisic acid is responsible for stomatal closure in plants in response to drought, and its signal transduction has been well studied. Other plant hormones and low-molecular-weight compounds function as inducers of stomatal closure and mediators of signaling in guard cells. In this review, we summarize recent advances in research on the diverse stomatal signaling pathways, with specific emphasis on signal integration and signal interaction in guard cell movement.
Collapse
Affiliation(s)
- Yoshiyuki Murata
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan; ,
| | | | | |
Collapse
|
115
|
Svozil J, Gruissem W, Baerenfaller K. Proteasome targeting of proteins in Arabidopsis leaf mesophyll, epidermal and vascular tissues. FRONTIERS IN PLANT SCIENCE 2015; 6:376. [PMID: 26074939 PMCID: PMC4446536 DOI: 10.3389/fpls.2015.00376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/11/2015] [Indexed: 05/18/2023]
Abstract
Protein and transcript levels are partly decoupled as a function of translation efficiency and protein degradation. Selective protein degradation via the Ubiquitin-26S proteasome system (UPS) ensures protein homeostasis and facilitates adjustment of protein abundance during changing environmental conditions. Since individual leaf tissues have specialized functions, their protein composition is different and hence also protein level regulation is expected to differ. To understand UPS function in a tissue-specific context we developed a method termed Meselect to effectively and rapidly separate Arabidopsis thaliana leaf epidermal, vascular and mesophyll tissues. Epidermal and vascular tissue cells are separated mechanically, while mesophyll cells are obtained after rapid protoplasting. The high yield of proteins was sufficient for tissue-specific proteome analyses after inhibition of the proteasome with the specific inhibitor Syringolin A (SylA) and affinity enrichment of ubiquitylated proteins. SylA treatment of leaves resulted in the accumulation of 225 proteins and identification of 519 ubiquitylated proteins. Proteins that were exclusively identified in the three different tissue types are consistent with specific cellular functions. Mesophyll cell proteins were enriched for plastid membrane translocation complexes as targets of the UPS. Epidermis enzymes of the TCA cycle and cell wall biosynthesis specifically accumulated after proteasome inhibition, and in the vascular tissue several enzymes involved in glucosinolate biosynthesis were found to be ubiquitylated. Our results demonstrate that protein level changes and UPS protein targets are characteristic of the individual leaf tissues and that the proteasome is relevant for tissue-specific functions.
Collapse
Affiliation(s)
| | | | - Katja Baerenfaller
- *Correspondence: Katja Baerenfaller, Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology Zurich, Zurich Universitaetstrasse 2, 8092 Zurich, Switzerland
| |
Collapse
|
116
|
Genetic Variability in Glucosinolates in Seed ofBrassica juncea: Interest in Mustard Condiment. J CHEM-NY 2015. [DOI: 10.1155/2015/606142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brassica junceais mostly used for oil production which implies selection of genotypes with low glucosinolates level and high oil content. In contrast, condiment production needs varieties with high level in some glucosinolates including sinigrin. The genetic variability was studied mostly by molecular tools. The objectives were almost the decrease of glucosinolates level in order to use the oilcake for animal feed. The aim of this work is to study the genetic variability for different glucosinolates and their relationships with agronomical traits within a large collection ofBrassica junceagenotypes for condiment uses. A collection of 190 genotypes from different origins was studied in Dijon (France). Oil content and total glucosinolates, and sinigrin and gluconapin levels were measured. Flowering and maturation durations, seed yield, and yield components were also measured. Large variability was observed between genotypes for the measured traits within the studied collection. Total glucosinolates varied twofold between extreme genotypes. Values of sinigrin content varied from 0 to more than 134 µmol·g−1. Correlations between glucosinolates traits and both phenological and agronomical characters are presented and discussed for their potential for industrial condiment uses.
Collapse
|
117
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:1210. [PMID: 26858725 PMCID: PMC4729941 DOI: 10.3389/fpls.2015.01210] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/15/2015] [Indexed: 05/19/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet-Tolosan, France
- *Correspondence: Valérie Cotelle,
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS–CEA–Université Aix-MarseilleSaint-Paul-lez-Durance, France
| |
Collapse
|
118
|
Cotelle V, Leonhardt N. 14-3-3 Proteins in Guard Cell Signaling. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26858725 DOI: 10.3389/fpis.2015.01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Guard cells are specialized cells located at the leaf surface delimiting pores which control gas exchanges between the plant and the atmosphere. To optimize the CO2 uptake necessary for photosynthesis while minimizing water loss, guard cells integrate environmental signals to adjust stomatal aperture. The size of the stomatal pore is regulated by movements of the guard cells driven by variations in their volume and turgor. As guard cells perceive and transduce a wide array of environmental cues, they provide an ideal system to elucidate early events of plant signaling. Reversible protein phosphorylation events are known to play a crucial role in the regulation of stomatal movements. However, in some cases, phosphorylation alone is not sufficient to achieve complete protein regulation, but is necessary to mediate the binding of interactors that modulate protein function. Among the phosphopeptide-binding proteins, the 14-3-3 proteins are the best characterized in plants. The 14-3-3s are found as multiple isoforms in eukaryotes and have been shown to be involved in the regulation of stomatal movements. In this review, we describe the current knowledge about 14-3-3 roles in the regulation of their binding partners in guard cells: receptors, ion pumps, channels, protein kinases, and some of their substrates. Regulation of these targets by 14-3-3 proteins is discussed and related to their function in guard cells during stomatal movements in response to abiotic or biotic stresses.
Collapse
Affiliation(s)
- Valérie Cotelle
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS Castanet-Tolosan, France
| | - Nathalie Leonhardt
- UMR7265, Laboratoire de Biologie du Développement des Plantes, Service de Biologie Végétale et de Microbiologie Environnementales, Institut de Biologie Environnementale et Biotechnologie, CNRS-CEA-Université Aix-Marseille Saint-Paul-lez-Durance, France
| |
Collapse
|
119
|
Hou X, McMillan M, Coumans JVF, Poljak A, Raftery MJ, Pereg L. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant. PLoS One 2014; 9:e114435. [PMID: 25502569 PMCID: PMC4264754 DOI: 10.1371/journal.pone.0114435] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 01/25/2023] Open
Abstract
FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA− strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.
Collapse
Affiliation(s)
- Xingsheng Hou
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Mary McMillan
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - Joëlle V. F. Coumans
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- School of Rural Medicine, University of New England, Armidale, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
- The School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark J. Raftery
- Bioanalytical Mass Spectrometry Facility, Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Lily Pereg
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
- * E-mail: mailto:
| |
Collapse
|
120
|
Hyun TK, van der Graaff E, Albacete A, Eom SH, Großkinsky DK, Böhm H, Janschek U, Rim Y, Ali WW, Kim SY, Roitsch T. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance. PLoS One 2014; 9:e112946. [PMID: 25396746 PMCID: PMC4232524 DOI: 10.1371/journal.pone.0112946] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/17/2014] [Indexed: 11/19/2022] Open
Abstract
Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.
Collapse
Affiliation(s)
- Tae Kyung Hyun
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Eric van der Graaff
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Alfonso Albacete
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Espinardo, Murcia, Spain
| | - Seung Hee Eom
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Dominik K. Großkinsky
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
| | - Hannah Böhm
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Ursula Janschek
- Institute of Plant Sciences, University of Graz, Graz, Austria
| | - Yeonggil Rim
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Korea
| | - Walid Wahid Ali
- Department of Pharmaceutical Biology, University of Würzburg, Würzburg, Germany
| | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
| | - Thomas Roitsch
- Institute of Plant Sciences, University of Graz, Graz, Austria
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Taastrup, Denmark
- Global Change Research Centre, CzechGlobe AS CR, v.v.i., Drásov, Czech Republic
| |
Collapse
|
121
|
Madsen SR, Olsen CE, Nour-Eldin HH, Halkier BA. Elucidating the role of transport processes in leaf glucosinolate distribution. PLANT PHYSIOLOGY 2014; 166:1450-62. [PMID: 25209984 PMCID: PMC4226354 DOI: 10.1104/pp.114.246249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/07/2014] [Indexed: 05/02/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), a strategy to defend its leaves against herbivores is to accumulate glucosinolates along the midrib and at the margin. Although it is generally assumed that glucosinolates are synthesized along the vasculature in an Arabidopsis leaf, thereby suggesting that the margin accumulation is established through transport, little is known about these transport processes. Here, we show through leaf apoplastic fluid analysis and glucosinolate feeding experiments that two glucosinolate transporters, GTR1 and GTR2, essential for long-distance transport of glucosinolates in Arabidopsis, also play key roles in glucosinolate allocation within a mature leaf by effectively importing apoplastically localized glucosinolates into appropriate cells. Detection of glucosinolates in root xylem sap unambiguously shows that this transport route is involved in root-to-shoot glucosinolate allocation. Detailed leaf dissections show that in the absence of GTR1 and GTR2 transport activity, glucosinolates accumulate predominantly in leaf margins and leaf tips. Furthermore, we show that glucosinolates accumulate in the leaf abaxial epidermis in a GTR-independent manner. Based on our results, we propose a model for how glucosinolates accumulate in the leaf margin and epidermis, which includes symplasmic movement through plasmodesmata, coupled with the activity of putative vacuolar glucosinolate importers in these peripheral cell layers.
Collapse
Affiliation(s)
- Svend Roesen Madsen
- Danish National Research Foundation Center for Dynamic Molecular Interactions (S.R.M., H.H.N.-E., B.A.H.) and Department of Plant and Environmental Sciences, Faculty of Science (S.R.M., C.E.O., H.H.N.-E., B.A.H.), University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Carl Erik Olsen
- Danish National Research Foundation Center for Dynamic Molecular Interactions (S.R.M., H.H.N.-E., B.A.H.) and Department of Plant and Environmental Sciences, Faculty of Science (S.R.M., C.E.O., H.H.N.-E., B.A.H.), University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Hussam Hassan Nour-Eldin
- Danish National Research Foundation Center for Dynamic Molecular Interactions (S.R.M., H.H.N.-E., B.A.H.) and Department of Plant and Environmental Sciences, Faculty of Science (S.R.M., C.E.O., H.H.N.-E., B.A.H.), University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Barbara Ann Halkier
- Danish National Research Foundation Center for Dynamic Molecular Interactions (S.R.M., H.H.N.-E., B.A.H.) and Department of Plant and Environmental Sciences, Faculty of Science (S.R.M., C.E.O., H.H.N.-E., B.A.H.), University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
122
|
Yu Y, Assmann SM. Metabolite transporter regulation of ABA function and guard cell response. MOLECULAR PLANT 2014; 7:1505-7. [PMID: 25173402 DOI: 10.1093/mp/ssu093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Yunqing Yu
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802-5301, USA
| | - Sarah M Assmann
- Biology Department, Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802-5301, USA
| |
Collapse
|
123
|
Li CL, Wang M, Ma XY, Zhang W. NRGA1, a putative mitochondrial pyruvate carrier, mediates ABA regulation of guard cell ion channels and drought stress responses in Arabidopsis. MOLECULAR PLANT 2014; 7:1508-21. [PMID: 24842572 DOI: 10.1093/mp/ssu061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Abscisic acid (ABA) regulates ion channel activity and stomatal movements in response to drought and other stresses. Here, we show that the Arabidopsis thaliana gene NRGA1 is a putative mitochondrial pyruvate carrier which negatively regulates ABA-induced guard cell signaling. NRGA1 transcript was abundant in the A. thaliana leaf and particularly in the guard cells, and its product was directed to the mitochondria. The heterologous co-expression of NRGA1 and AtMPC1 in yeast complemented a loss-of-function mitochondrial pyruvate carrier (MPC) mutant. The nrga1 loss-of-function mutant was very sensitive to the presence of ABA in the context of stomatal movements, and exhibited a heightened tolerance to drought stress. Disruption of NRGA1 gene resulted in increased ABA inhibition of inward K(+) currents and ABA activation of slow anion currents in guard cells. The nrga1/NRGA1 functional complementation lines restored the mutant's phenotypes. Furthermore, transgenic lines of constitutively overexpressing NRGA1 showed opposite stomatal responses, reduced drought tolerance, and ABA sensitivity of guard cell inward K(+) channel inhibition and anion channel activation. Our findings highlight a putative role for the mitochondrial pyruvate carrier in guard cell ABA signaling in response to drought.
Collapse
Affiliation(s)
- Chun-Long Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Mei Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Xiao-Yan Ma
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Science, Shandong University, Jinan, 250100, China
| |
Collapse
|
124
|
Ronzier E, Corratgé-Faillie C, Sanchez F, Prado K, Brière C, Leonhardt N, Thibaud JB, Xiong TC. CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+ channels and reduces stomatal opening. PLANT PHYSIOLOGY 2014; 166:314-26. [PMID: 25037208 PMCID: PMC4149717 DOI: 10.1104/pp.114.240226] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/15/2014] [Indexed: 05/18/2023]
Abstract
Ca(2) (+)-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca(2+), CPKs can be sorted into three types: strictly Ca(2+)-dependent CPKs, Ca(2+)-stimulated CPKs (with a significant basal activity in the absence of Ca(2+)), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K(+) Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.
Collapse
Affiliation(s)
- Elsa Ronzier
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Claire Corratgé-Faillie
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Frédéric Sanchez
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Karine Prado
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Christian Brière
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Nathalie Leonhardt
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Jean-Baptiste Thibaud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| | - Tou Cheu Xiong
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 386, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5004, SupAgro, and Université Montpellier 2, Laboratoire de Biochimie & Physiologie Moléculaire des Plantes, F-34060 Montpellier cedex 2, France (E.R., C.C.-F., F.S., K.P., J.-B.T., T.C.X.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, 31326 Castanet-Tolosan, France (C.B.);Université Paul Sabatier, Pôle de Biotechnologies Végétales 24, Chemin de Borde Rouge, Boite Postale 42617 Auzeville, 31326 Castanet-Tolosan, France (C.B.); andLaboratoire de Biologie du Développement des Plantes, Unité Mixte de Recherche 7265 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Aix-Marseille II, Commissariat à l'Energie Atomique Cadarache Bat 156, 13108 St. Paul Lez Durance, France (N.L.)
| |
Collapse
|
125
|
Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M. Trehalose metabolism in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:544-67. [PMID: 24645920 DOI: 10.1111/tpj.12509] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.
Collapse
Affiliation(s)
- John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
126
|
Lee H, Garrett WM, Sullivan J, Forseth I, Natarajan SS. Proteomic analysis of the pulvinus, a heliotropic tissue, in Glycine max. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2014. [DOI: 10.4081/pb.2014.4887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Certain plant species respond to light, dark, and other environmental factors by leaf movement. Leguminous plants both track and avoid the sun through turgor changes of the pulvinus tissue at the base of leaves. Mechanisms leading to pulvinar turgor flux, particularly knowledge of the proteins involved, are not well-known. In this study we used two-dimensional gel electrophoresis and liquid chromatography-tandom mass spectrometry to separate and identify the proteins located in the soybean pulvinus. A total of 183 spots were separated and 195 proteins from 165 spots were identified and functionally analyzed using single enrichment analysis for gene ontology terms. The most significant terms were related to proton transport. Comparison with guard cell proteomes revealed similar significant processes but a greater number of pulvinus proteins are required for comparable analysis. To our knowledge, this is a novel report on the analysis of proteins found in soybean pulvinus. These findings provide a better understanding of the proteins required for turgor change in the pulvinus.
Collapse
|
127
|
Zhu M, Zhu N, Song WY, Harmon AC, Assmann SM, Chen S. Thiol-based redox proteins in abscisic acid and methyl jasmonate signaling in Brassica napus guard cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:491-515. [PMID: 24580573 PMCID: PMC4019734 DOI: 10.1111/tpj.12490] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/22/2013] [Accepted: 02/17/2014] [Indexed: 05/19/2023]
Abstract
Reversibly oxidized cysteine sulfhydryl groups serve as redox sensors or targets of redox sensing that are important in various physiological processes. However, little is known about redox-sensitive proteins in guard cells and how they function in stomatal signaling. In this study, Brassica napus guard-cell proteins altered by redox in response to abscisic acid (ABA) or methyl jasmonate (MeJA) were identified by complementary proteomics approaches, saturation differential in-gel electrophoresis and isotope-coded affinity tagging. In total, 65 and 118 potential redox-responsive proteins were identified in ABA- and MeJA-treated guard cells, respectively. All the proteins contain at least one cysteine, and over half of them are predicted to form intra-molecular disulfide bonds. Most of the proteins fall into the functional groups of 'energy', 'stress and defense' and 'metabolism'. Based on the peptide sequences identified by mass spectrometry, 30 proteins were common to ABA- and MeJA-treated samples. A total of 44 cysteines were mapped in the identified proteins, and their levels of redox sensitivity were quantified. Two of the proteins, a sucrose non-fermenting 1-related protein kinase and an isopropylmalate dehydrogenase, were confirmed to be redox-regulated and involved in stomatal movement. This study creates an inventory of potential redox switches, and highlights a protein redox regulatory mechanism in ABA and MeJA signal transduction in guard cells.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ning Zhu
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Wen-yuan Song
- Department of Plant Pathology, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Alice C. Harmon
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Sarah M. Assmann
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA
- Corresponding author: Sixue Chen, Ph.D., Tel: (352) 273-8330; Fax: (352) 273-8284,
| |
Collapse
|
128
|
Sweetlove LJ, Obata T, Fernie AR. Systems analysis of metabolic phenotypes: what have we learnt? TRENDS IN PLANT SCIENCE 2014; 19:222-30. [PMID: 24139444 DOI: 10.1016/j.tplants.2013.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/12/2013] [Accepted: 09/18/2013] [Indexed: 05/26/2023]
Abstract
Flux is one of the most informative measures of metabolic behavior. Its estimation requires integration of experimental and modeling approaches and, thus, is at the heart of metabolic systems biology. In this review, we argue that flux analysis and modeling of a range of plant systems points to the importance of the supply of metabolic inputs and demand for metabolic end-products as key drivers of metabolic behavior. This has implications for metabolic engineering, and the use of in silico models will be important to help design more effective engineering strategies. We also consider the importance of cell type-specific metabolism and the challenges of characterizing metabolism at this resolution. A combination of new measurement technologies and modeling approaches is bringing us closer to integrating metabolic behavior with whole-plant physiology and growth.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Toshihiro Obata
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany.
| |
Collapse
|
129
|
Li S, Sun P, Williams JS, Kao TH. Identification of the self-incompatibility locus F-box protein-containing complex in Petunia inflata. PLANT REPRODUCTION 2014; 27:31-45. [PMID: 24381071 DOI: 10.1007/s00497-013-0238-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/17/2013] [Indexed: 05/10/2023]
Abstract
The polymorphic S-locus regulating self-incompatibility (SI) in Petunia contains the S-RNase gene and a number of S-locus F-box (SLF) genes. While penetrating the style through the stigma, a pollen tube takes up all S-RNases, but only self S-RNase inhibits pollen tube growth. Recent evidence suggests that SLFs produced by pollen collectively interact with and detoxify non-self S-RNases, but none can interact with self S-RNase. An SLF may be the F-box protein component of an SCF complex (containing Cullin1, Skp1 and Rbx1), which mediates ubiquitination of protein substrates for degradation by the 26S proteasome. However, the precise nature of the complex is unknown. We used pollen extracts of a transgenic plant over-expressing GFP-fused S2-SLF1 (SLF1 of S 2-haplotype) for co-immunoprecipitation (Co-IP) followed by mass spectrometry (MS). We identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (an Rbx1). To validate the results, we raised transgenic plants over-expressing PiSSK1:FLAG:GFP and used pollen extracts for Co-IP-MS. The results confirmed the presence of PiCUL1-P and PiRBX1 in the complex and identified two different SLFs as the F-box protein component. Thus, all but Rbx1 of the complex may have evolved in SI, and all SLFs may be the F-box component of similar complexes.
Collapse
Affiliation(s)
- Shu Li
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | | | | |
Collapse
|
130
|
RNA-seq analysis of transcriptome and glucosinolate metabolism in seeds and sprouts of broccoli (Brassica oleracea var. italic). PLoS One 2014; 9:e88804. [PMID: 24586398 PMCID: PMC3937326 DOI: 10.1371/journal.pone.0088804] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/15/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Broccoli (Brassica oleracea var. italica), a member of Cruciferae, is an important vegetable containing high concentration of various nutritive and functional molecules especially the anticarcinogenic glucosinolates. The sprouts of broccoli contain 10-100 times higher level of glucoraphanin, the main contributor of the anticarcinogenesis, than the edible florets. Despite the broccoli sprouts' functional importance, currently available genetic and genomic tools for their studies are very limited, which greatly restricts the development of this functionally important vegetable. RESULTS A total of ∼85 million 251 bp reads were obtained. After de novo assembly and searching the assembled transcripts against the Arabidopsis thaliana and NCBI nr databases, 19,441 top-hit transcripts were clustered as unigenes with an average length of 2,133 bp. These unigenes were classified according to their putative functional categories. Cluster analysis of total unigenes with similar expression patterns and differentially expressed unigenes among different tissues, as well as transcription factor analysis were performed. We identified 25 putative glucosinolate metabolism genes sharing 62.04-89.72% nucleotide sequence identity with the Arabidopsis orthologs. This established a broccoli glucosinolate metabolic pathway with high colinearity to Arabidopsis. Many of the biosynthetic and degradation genes showed higher expression after germination than in seeds; especially the expression of the myrosinase TGG2 was 20-130 times higher. These results along with the previous reports about these genes' studies in Arabidopsis and the glucosinolate concentration in broccoli sprouts indicate the breakdown products of glucosinolates may play important roles in the stage of broccoli seed germination and sprout development. CONCLUSION Our study provides the largest genetic resource of broccoli to date. These data will pave the way for further studies and genetic engineering of broccoli sprouts and will also provide new insight into the genomic research of this species and its relatives.
Collapse
|
131
|
Martínez-Ballesta MDC, Muries B, Moreno DÁ, Dominguez-Perles R, García-Viguera C, Carvajal M. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress. PHYSIOLOGIA PLANTARUM 2014; 150:145-60. [PMID: 23837634 DOI: 10.1111/ppl.12082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/24/2013] [Accepted: 06/03/2013] [Indexed: 05/07/2023]
Abstract
Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation.
Collapse
|
132
|
A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat Commun 2014; 4:2215. [PMID: 23896897 PMCID: PMC3731666 DOI: 10.1038/ncomms3215] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/02/2013] [Indexed: 01/02/2023] Open
Abstract
Plants control CO2 uptake and water loss by modulating the aperture of stomata located in the epidermis. Stomatal opening is initiated by the activation of H(+)-ATPases in the guard-cell plasma membrane. In contrast to regulation of H(+)-ATPase activity, little is known about the translocation of the guard cell H(+)-ATPase to the plasma membrane. Here we describe the isolation of an Arabidopsis gene, PATROL1, that controls the translocation of a major H(+)-ATPase, AHA1, to the plasma membrane. PATROL1 encodes a protein with a MUN domain, known to mediate synaptic priming in neuronal exocytosis in animals. Environmental stimuli change the localization of plasma membrane-associated PATROL1 to an intracellular compartment. Plasma membrane localization of AHA1 and stomatal opening require the association of PATROL1 with AHA1. Increased stomatal opening responses in plants overexpressing PATROL1 enhance the CO2 assimilation rate, promoting plant growth.
Collapse
|
133
|
Abstract
Local adaptation and adaptive clines are pervasive in natural plant populations, yet the effects of these types of adaptation on genomic diversity are not well understood. With a data set of 202 accessions of Medicago truncatula genotyped at almost 2 million single nucleotide polymorphisms, we used mixed linear models to identify candidate loci responsible for adaptation to three climatic gradients-annual mean temperature (AMT), precipitation in the wettest month (PWM), and isothermality (ITH)-representing the major axes of climate variation across the species' range. Loci with the strongest association to these climate gradients tagged genome regions with high sequence similarity to genes with functional roles in thermal tolerance, drought tolerance, or resistance to herbivores of pathogens. Genotypes at these candidate loci also predicted the performance of an independent sample of plant accessions grown in climate-controlled conditions. Compared to a genome-wide sample of randomly drawn reference SNPs, candidates for two climate gradients, AMT and PWM, were significantly enriched for genic regions, and genome segments flanking genic AMT and PWM candidates harbored less nucleotide diversity, elevated differentiation between haplotypes carrying alternate alleles, and an overrepresentation of the most common haplotypes. These patterns of diversity are consistent with a history of soft selective sweeps acting on loci underlying adaptation to climate, but not with a history of long-term balancing selection.
Collapse
|
134
|
Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants. Methods Mol Biol 2014; 1083:55-64. [PMID: 24218210 DOI: 10.1007/978-1-62703-661-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cellular metabolites and ions can exhibit very specific spatiotemporal dynamics that are very challenging to monitor using extraction-based methods. Genetically encoded Föster resonance energy transfer sensors afford a powerful method of measuring these dynamics in situ and hence are now widely used in order to decode information communicated through the dynamics of cellular metabolites and ions. This methodology involves (1) the development of a suitable sensor, (2) genetic engineering of the sensor for its expression in the tissue of interest, and (3) measurement and characterization of the cellular metabolites and ions using optical imaging. This chapter describes the measurement aspects. We describe the imaging setup, sample preparation from leaf discs and root cells, performance of a perfusion experiment, and quantification of metabolite and ion concentrations from the imaging data. We also describe post-experiment analysis including estimation of sensor efficiency and spectral bleedthrough.
Collapse
|
135
|
Abstract
Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the rationale for selecting or not 2D gel-based proteomics as a proteomic strategy.
Collapse
|
136
|
Ischebeck T, Valledor L, Lyon D, Gingl S, Nagler M, Meijón M, Egelhofer V, Weckwerth W. Comprehensive cell-specific protein analysis in early and late pollen development from diploid microsporocytes to pollen tube growth. Mol Cell Proteomics 2014; 13:295-310. [PMID: 24078888 PMCID: PMC3879621 DOI: 10.1074/mcp.m113.028100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 09/24/2013] [Indexed: 01/10/2023] Open
Abstract
Pollen development in angiosperms is one of the most important processes controlling plant reproduction and thus productivity. At the same time, pollen development is highly sensitive to environmental fluctuations, including temperature, drought, and nutrition. Therefore, pollen biology is a major focus in applied studies and breeding approaches for improving plant productivity in a globally changing climate. The most accessible developmental stages of pollen are the mature pollen and the pollen tubes, and these are thus most frequently analyzed. To reveal a complete quantitative proteome map, we additionally addressed the very early stages, analyzing eight stages of tobacco pollen development: diploid microsporocytes, meiosis, tetrads, microspores, polarized microspores, bipolar pollen, desiccated pollen, and pollen tubes. A protocol for the isolation of the early stages was established. Proteins were extracted and analyzed by means of a new gel LC-MS fractionation protocol. In total, 3817 protein groups were identified. Quantitative analysis was performed based on peptide count. Exceedingly stage-specific differential protein regulation was observed during the conversion from the sporophytic to the gametophytic proteome. A map of highly specialized functionality for the different stages could be revealed from the metabolic activity and pronounced differentiation of proteasomal and ribosomal protein complex composition up to protective mechanisms such as high levels of heat shock proteins in the very early stages of development.
Collapse
Affiliation(s)
- Till Ischebeck
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Luis Valledor
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - David Lyon
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Stephanie Gingl
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Matthias Nagler
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Mónica Meijón
- ¶Gregor-Mendel-Institute for Molecular Plant Biology, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Volker Egelhofer
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| | - Wolfram Weckwerth
- From the ‡Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria
| |
Collapse
|
137
|
Estavillo GM, Verhertbruggen Y, Scheller HV, Pogson BJ, Heazlewood JL, Ito J. Isolation of the plant cytosolic fraction for proteomic analysis. Methods Mol Biol 2014; 1072:453-67. [PMID: 24136540 DOI: 10.1007/978-1-62703-631-3_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The cytosol is the fluid portion of the cell that is not partitioned by membranes. It contains a highly diverse collection of substances and is central to many essential cellular processes ranging from signal transduction, metabolite production and transport, protein biosynthesis and degradation to stress response and defense. Despite its importance, only a few proteomic studies have been performed on the plant cytosol. This is largely due to difficulties in isolating relatively pure samples from plant material free of disrupted organelle material. In this chapter we outline methods for isolating the cytosolic fraction from Arabidopsis cell cultures and seedlings and provide guidance on assessing purity for analysis by mass spectrometry.
Collapse
Affiliation(s)
- Gonzalo M Estavillo
- ARC Centre of Excellence in Plant Energy Biology and Research School of Biology, The Australian National University, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
138
|
Jin X, Wang RS, Zhu M, Jeon BW, Albert R, Chen S, Assmann SM. Abscisic acid-responsive guard cell metabolomes of Arabidopsis wild-type and gpa1 G-protein mutants. THE PLANT CELL 2013; 25:4789-811. [PMID: 24368793 PMCID: PMC3903988 DOI: 10.1105/tpc.113.119800] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 10/18/2013] [Accepted: 11/27/2013] [Indexed: 05/03/2023]
Abstract
Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography-multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼ 350 million guard cell protoplasts from ∼ 30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca(2+)-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1.
Collapse
Affiliation(s)
- Xiaofen Jin
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Rui-Sheng Wang
- Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Mengmeng Zhu
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Byeong Wook Jeon
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Reka Albert
- Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Sixue Chen
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, Florida 32610
| | - Sarah M. Assmann
- Biology Department, Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
139
|
Chen DH, Acharya BR, Liu W, Zhang W. Interaction between Calcium and Actin in Guard Cell and Pollen Signaling Networks. PLANTS (BASEL, SWITZERLAND) 2013; 2:615-34. [PMID: 27137395 PMCID: PMC4844389 DOI: 10.3390/plants2040615] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
Abstract
Calcium (Ca(2+)) plays important roles in plant growth, development, and signal transduction. It is a vital nutrient for plant physical design, such as cell wall and membrane, and also serves as a counter-cation for biochemical, inorganic, and organic anions, and more particularly, its concentration change in cytosol is a ubiquitous second messenger in plant physiological signaling in responses to developmental and environmental stimuli. Actin cytoskeleton is well known for its importance in cellular architecture maintenance and its significance in cytoplasmic streaming and cell division. In plant cell system, the actin dynamics is a process of polymerization and de-polymerization of globular actin and filamentous actin and that acts as an active regulator for calcium signaling by controlling calcium evoked physiological responses. The elucidation of the interaction between calcium and actin dynamics will be helpful for further investigation of plant cell signaling networks at molecular level. This review mainly focuses on the recent advances in understanding the interaction between the two aforementioned signaling components in two well-established model systems of plant, guard cell, and pollen.
Collapse
Affiliation(s)
- Dong-Hua Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| | - Biswa R Acharya
- Biology Department, Penn State University, University Park, PA 16802, USA.
| | - Wei Liu
- High-Tech Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Zhang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
140
|
Su Z, Ma X, Guo H, Sukiran NL, Guo B, Assmann SM, Ma H. Flower development under drought stress: morphological and transcriptomic analyses reveal acute responses and long-term acclimation in Arabidopsis. THE PLANT CELL 2013; 25:3785-807. [PMID: 24179129 PMCID: PMC3877795 DOI: 10.1105/tpc.113.115428] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/30/2013] [Accepted: 10/14/2013] [Indexed: 05/06/2023]
Abstract
Drought dramatically affects plant growth and crop yield, but previous studies primarily examined responses to drought during vegetative development. Here, to study responses to drought during reproductive development, we grew Arabidopsis thaliana plants with limited water, under conditions that allowed the plants to initiate and complete reproduction. Drought treatment from just after the onset of flowering to seed maturation caused an early arrest of floral development and sterility. After acclimation, plants showed reduced fertility that persisted throughout reproductive development. Floral defects included abnormal anther development, lower pollen viability, reduced filament elongation, ovule abortion, and failure of flowers to open. Drought also caused differential expression of 4153 genes, including flowering time genes flowering locus t, suppressor of overexpression of CO1, and leafy, genes regulating anther and pistil development, and stress-related transcription factors. Mutant phenotypes of hypersensitivity to drought and fewer differentially expressed genes suggest that dehydration response element B1A may have an important function in drought response in flowers. A more severe filament elongation defect under drought in myb21 plants demonstrated that appropriate stamen development requires MYB domain protein 21 under drought conditions. Our study reveals a regulatory cascade in reproductive responses and acclimation under drought.
Collapse
Affiliation(s)
- Zhao Su
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Xuan Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Huihong Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Noor Liyana Sukiran
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bin Guo
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Sarah M. Assmann
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Hong Ma
- Department of Biology and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802
- Intercollege Graduate Program in Cell and Developmental Biology, Pennsylvania State University, University Park, Pennsylvania 16802
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Institute of Genetics, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
141
|
Smékalová V, Doskočilová A, Komis G, Samaj J. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 2013; 32:2-11. [PMID: 23911976 DOI: 10.1016/j.biotechadv.2013.07.009] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/04/2023]
Abstract
The crosstalk between second messengers, hormones and mitogen-activated protein kinases (MAPKs) in plant signalling systems facilitates adaptation and survival in the face of diverse environmental stresses. This review focuses on the transduction of second messenger and hormone signals by MAPK modules in plant abiotic stress responses. We discuss how this crosstalk regulates gene expression (e.g. by controlling transcription factor activity) and other cellular and physiological responses to enable adaptation and/or resistance to abiotic stresses.
Collapse
Affiliation(s)
- Veronika Smékalová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Anna Doskočilová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
142
|
Abiko M, Furuta K, Yamauchi Y, Fujita C, Taoka M, Isobe T, Okamoto T. Identification of proteins enriched in rice egg or sperm cells by single-cell proteomics. PLoS One 2013; 8:e69578. [PMID: 23936051 PMCID: PMC3723872 DOI: 10.1371/journal.pone.0069578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/10/2013] [Indexed: 11/19/2022] Open
Abstract
In angiosperms, female gamete differentiation, fertilization, and subsequent zygotic development occur in embryo sacs deeply embedded in the ovaries. Despite their importance in plant reproduction and development, how the egg cell is specialized, fuses with the sperm cell, and converts into an active zygote for early embryogenesis remains unclear. This lack of knowledge is partly attributable to the difficulty of direct analyses of gametes in angiosperms. In the present study, proteins from egg and sperm cells obtained from rice flowers were separated by one-dimensional polyacrylamide gel electrophoresis and globally identified by highly sensitive liquid chromatography coupled with tandem mass spectroscopy. Proteome analyses were also conducted for seedlings, callus, and pollen grains to compare their protein expression profiles to those of gametes. The proteomics data have been deposited to the ProteomeXchange with identifier PXD000265. A total of 2,138 and 2,179 expressed proteins were detected in egg and sperm cells, respectively, and 102 and 77 proteins were identified as preferentially expressed in egg and sperm cells, respectively. Moreover, several rice or Arabidopsis lines with mutations in genes encoding the putative gamete-enriched proteins showed clear phenotypic defects in seed set or seed development. These results suggested that the proteomic data presented in this study are foundational information toward understanding the mechanisms of reproduction and early development in angiosperms.
Collapse
Affiliation(s)
- Mafumi Abiko
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,
| | - Kensyo Furuta
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,
| | - Yoshio Yamauchi
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Chiharu Fujita
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Masato Taoka
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Tokyo Metropolitan University, Tokyo, Japan
| | - Takashi Okamoto
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan,
| |
Collapse
|
143
|
Robbins ML, Roy A, Wang PH, Gaffoor I, Sekhon RS, de O Buanafina MM, Rohila JS, Chopra S. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize. J Proteomics 2013; 93:254-75. [PMID: 23811284 DOI: 10.1016/j.jprot.2013.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 12/17/2022]
Abstract
UNLABELLED The maize pericarp color1 (p1) gene encodes a Myb transcription factor that regulates the accumulation of 3-deoxyflavonoid pigments called phlobaphenes. The Unstable factor for orange1 (Ufo1) is a dominant epigenetic modifier of the p1 that results in ectopic pigmentation in pericarp. Presence of Ufo1-1 correlates with pleiotropic growth and developmental defects. To investigate the Ufo1-1-induced changes in the proteome, we conducted comparative proteomics analysis of P1-wr; Ufo1-1 pericarps using the 2-D DIGE and iTRAQ techniques. Most of the identified proteins were found to be involved in glycolysis, protein synthesis and modification, flavonoid and lignin biosynthesis and defense responses. Further, immunoblot analysis of internode protein extracts demonstrated that caffeoyl CoA O-methyltransferase (COMT) is post-transcriptionally down regulated in P1-wr; Ufo1-1 plants. Consistent with the down regulation of COMT, the concentrations of p-coumaric acid, syringaldehydes, and lignin are reduced in P1-wr; Ufo1-1 internodes. The reductions in these phenylpropanoids correlate with the bent stalk and stunted growth of P1-wr; Ufo1-1 plants. Finally, over-expression of the p1 in transgenic plants is also correlated with a lodging phenotype and reduced COMT expression. We conclude that ectopic expression of p1 can result in developmental defects that are correlated with altered regulation and synthesis of phenylpropanoid compounds including lignin. BIOLOGICAL SIGNIFICANCE Transcription factors have specific expression patterns that ensure that the biochemical pathways under their control are active in relevant tissues. Plant breeders can select for alleles of transcription factors that produce desirable expression patterns to improve a plant's growth, development, and defense against insects and pathogens. The resulting de novo accumulation of metabolites in plant tissues in significant quantities could have beneficial and/or detrimental consequences. To understand this problem we investigated how the aberrant expression of a classically-studied transcription factor pericarp color1 (p1) which regulates phenylpropanoid metabolism, affects the maize proteome in pericarp tissue. We utilized a dominant mutant Unstable factor for orange 1-1 (Ufo1-1) which reduces the epigenetic suppression of p1 in various tissues throughout the maize plant. Our proteomic analysis shows how, in the presence of Ufo1-1, key enzymes of the glycolytic and shikimic acid pathways were modulated to produce substrates required for flavonoid synthesis. The finding that the presence of Ufo1-1 affected the expression levels of various enzymes in the lignin pathway was of particular interest. We show that lignin was reduced in Ufo1-1 plants expressing p1 and was associated with the post-transcriptional down regulation of CoA O-methyltransferase (COMT) enzyme. We further correlated the down-regulation of COMT with plant bending phenotype in Ufo1-1 plants expressing p1 and to a stalk lodging phenotype of transgenic p1 plants. This study demonstrates that although there can be adverse consequences to aberrantly overexpressing transcription factors, there might also be benefits such as being able to reduce lignin content for biofuel crops. However, more research will be required to understand the genetic and epigenetic regulation of transcription factors and how their expression can be optimized to obtain desired traits in preferred tissue types. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Michael L Robbins
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | | | |
Collapse
|
144
|
del Carmen Martínez-Ballesta M, Moreno DA, Carvajal M. The physiological importance of glucosinolates on plant response to abiotic stress in Brassica. Int J Mol Sci 2013; 14:11607-25. [PMID: 23722664 PMCID: PMC3709749 DOI: 10.3390/ijms140611607] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 05/14/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022] Open
Abstract
Glucosinolates, a class of secondary metabolites, mainly found in Brassicaceae, are affected by the changing environment. This review is focusing on the physiological significance of glucosinolates and their hydrolysis products in the plant response to different abiotic stresses. Special attention is paid to the crosstalk between some of the physiological processes involved in stress response and glucosinolate metabolism, with the resulting connection between both pathways in which signaling mechanisms glucosinolate may act as signals themselves. The function of glucosinolates, further than in defense switching, is discussed in terms of alleviating pathogen attack under abiotic stress. The fact that the exogenous addition of glucosinolate hydrolysis products may alleviate certain stress conditions through its effect on specific proteins is described in light of the recent reports, but the molecular mechanisms involved in this response merit further research. Finally, the transient allocation and re-distribution of glucosinolates as a response to environmental changes is summarized.
Collapse
Affiliation(s)
- María del Carmen Martínez-Ballesta
- Plant Nutrition Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| | - Diego A. Moreno
- Phytochemistry Lab, Food Science and Technology Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| | - Micaela Carvajal
- Plant Nutrition Department, Centre of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus of Espinardo, Building 25, Murcia E-30100, Spain; E-Mail:
| |
Collapse
|
145
|
Shelden MC, Roessner U. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. FRONTIERS IN PLANT SCIENCE 2013; 4:123. [PMID: 23717314 PMCID: PMC3650683 DOI: 10.3389/fpls.2013.00123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 04/16/2013] [Indexed: 05/19/2023]
Abstract
Abiotic stresses such as low water availability and high salinity are major causes of cereal crop yield losses and significantly impact on sustainability. Wheat and barley are two of the most important cereal crops (after maize and rice) and are grown in increasingly hostile environments with soil salinity and drought both expected to increase this century, reducing the availability of arable land. Barley and wheat are classified as glycophytes (salt-sensitive), yet they are more salt-tolerant than other cereal crops such as rice and so are good models for studying salt tolerance in cereals. The exploitation of genetic variation of phenotypic traits through plant breeding could significantly improve growth of cereals in salinity-affected regions, thus leading to improved crop yields. Genetic variation in phenotypic traits for abiotic stress tolerance have been identified in land races and wild germplasm but the molecular basis of these differences is often difficult to determine due to the complex genetic nature of these species. High-throughput functional genomics technologies, such as transcriptomics, metabolomics, proteomics, and ionomics are powerful tools for investigating the molecular responses of plants to abiotic stress. The advancement of these technologies has allowed for the identification and quantification of transcript/metabolites in specific cell types and/or tissues. Using these new technologies on plants will provide a powerful tool to uncovering genetic traits in more complex species such as wheat and barley and provide novel insights into the molecular mechanisms of salinity stress tolerance.
Collapse
Affiliation(s)
| | - Ute Roessner
- Australian Centre for Plant Functional Genomics, School of Botany, University of MelbourneParkville VIC, Australia
| |
Collapse
|
146
|
Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci Biotechnol Biochem 2013; 77:977-83. [PMID: 23649257 DOI: 10.1271/bbb.120928] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Isothiocyanates, nitriles, and thiocyanates are degradation products of glucosinolates in crucifer plants. In this study, we investigated the stomatal response to allyl isothiocyanate (AITC), 3-butenenitrile (3BN), and ethyl thiocyanate (ESCN) in Arabidopsis. AITC, 3BN, and ESCN induced stomatal closure in the wild type and the atrbohD atrbohF mutant. Stomatal closure was inhibited by catalase and salicylhydroxamic acid (SHAM). The degradation products induced extracellular reactive oxygen species (ROS) production in the rosette leaves, and intracellular ROS accumulation, NO production, and cytosolic free calcium concentration ([Ca(2+)]cyt) oscillations in guard cells, which were inhibited by SHAM. These results suggest that glucosinolate degradation products induce stomatal closure accompanied by extracellular ROS production mediated by SHAM-sensitive peroxidases, intracellular ROS accumulation, and [Ca(2+)]cyt oscillation in Arabidopsis.
Collapse
|
147
|
Neilson EH, Goodger JQD, Woodrow IE, Møller BL. Plant chemical defense: at what cost? TRENDS IN PLANT SCIENCE 2013; 18:250-8. [PMID: 23415056 DOI: 10.1016/j.tplants.2013.01.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/20/2012] [Accepted: 01/04/2013] [Indexed: 05/18/2023]
Abstract
Plants are sessile organisms and dependent on deployment of secondary metabolites for their response to biotic and abiotic challenges. A trade-off is envisioned between resources allocated to growth, development, and reproduction and to the biosynthesis, storage, and maintenance of secondary metabolites. However, increasing evidence suggests that secondary metabolites serve auxiliary roles, including functions associated with primary metabolism. In this opinion article, we examine how the costs of plant chemical defense can be offset by multifunctional biosynthesis and the optimization of primary metabolism. These additional benefits may negate the trade-off between primary and secondary metabolism, and provide plants with an innate plasticity required for growth, development, and interactions with their environment.
Collapse
|
148
|
Arabidopsis nanodomain-delimited ABA signaling pathway regulates the anion channel SLAH3. Proc Natl Acad Sci U S A 2013; 110:8296-301. [PMID: 23630285 DOI: 10.1073/pnas.1211667110] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The phytohormone abscisic acid (ABA) plays a key role in the plant response to drought stress. Hence, ABA-dependent gene transcription and ion transport is regulated by a variety of protein kinases and phosphatases. However, the nature of the membrane-delimited ABA signal transduction steps remains largely unknown. To gain insight into plasma membrane-bound ABA signaling, we identified sterol-dependent proteins associated with detergent resistant membranes from Arabidopsis thaliana mesophyll cells. Among those, we detected the central ABA signaling phosphatase ABI1 (abscisic-acid insensitive 1) and the calcium-dependent protein kinase 21 (CPK21). Using fluorescence microscopy, we found these proteins to localize in membrane nanodomains, as observed by colocalization with the nanodomain marker remorin Arabidopsis thaliana remorin 1.3 (AtRem 1.3). After transient coexpression, CPK21 interacted with SLAH3 [slow anion channel 1 (SLAC1) homolog 3] and activated this anion channel. Upon CPK21 stimulation, SLAH3 exhibited the hallmark properties of S-type anion channels. Coexpression of SLAH3/CPK21 with ABI1, however, prevented proper nanodomain localization of the SLAH3/CPK21 protein complex, and as a result anion channel activation failed. FRET studies revealed enhanced interaction of SLAH3 and CPK21 within the plasma membrane in response to ABA and thus confirmed our initial observations. Interestingly, the ABA-induced SLAH3/CPK21 interaction was modulated by ABI1 and the ABA receptor RCAR1/PYL9 [regulatory components of ABA receptor 1/PYR1 (pyrabactin resistance 1)-like protein 9]. We therefore propose that ABA signaling via inhibition of ABI1 modulates the apparent association of a signaling and transport complex within membrane domains that is necessary for phosphorylation and activation of the S-type anion channel SLAH3 by CPK21.
Collapse
|
149
|
Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 2013; 11:e1001513. [PMID: 23526882 PMCID: PMC3602010 DOI: 10.1371/journal.pbio.1001513] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 11/19/2022] Open
Abstract
In Arabidopsis the stomatal defense response, a feature of the innate immunity in plants, involves oxylipin-mediated mechanisms that are independent of the phytohormone abscisic acid. Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity. Stomata are microscopic pores that are present in the epidermis of the aerial parts of higher plants, such as the leaves. These pores, which are flanked by a pair of cells called guard cells, regulate transpiration and the exchange of gas between leaves and the atmosphere. It is well documented that the phytohormone abscisic acid (ABA) is a key regulator that controls the osmotic pressure in guard cells, allowing pore size to be adjusted in response to environmental conditions. Recently, stomata have also been shown to play an important role in the innate immune response. Indeed, upon contact with microbes, plants actively close stomata to prevent the entry of microbes and the consequent colonization of host tissue. This response is known as the stomatal defense response. However, the molecular mechanisms that regulate this defense response are not well understood. Using a variety of approaches, we show in this study that LOX1, a gene that encodes lipoxygenase (LOX) in guard cells, plays a major role in stomatal defense in the model plant Arabidopsis thaliana. Mutations in LOX1 impair stomatal closure and make plants more susceptible to the bacterium Pseudomonas syringae pv. tomato. We also show that several LOX-derived metabolites, the oxylipins, are potent inducers of stomatal closure. Finally, we provide evidence to show that ABA plays only a minor role in stomatal defense response, specifically by modulating this response.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- CEA Cadarache, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Unité Mixte de Recherche 7265, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Aix-Marseille Université, Saint-Paul-lez-Durance, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Eldakak M, Milad SIM, Nawar AI, Rohila JS. Proteomics: a biotechnology tool for crop improvement. FRONTIERS IN PLANT SCIENCE 2013; 4:35. [PMID: 23450788 PMCID: PMC3584254 DOI: 10.3389/fpls.2013.00035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 02/11/2013] [Indexed: 05/24/2023]
Abstract
A sharp decline in the availability of arable land and sufficient supply of irrigation water along with a continuous steep increase in food demands have exerted a pressure on farmers to produce more with fewer resources. A viable solution to release this pressure is to speed up the plant breeding process by employing biotechnology in breeding programs. The majority of biotechnological applications rely on information generated from various -omic technologies. The latest outstanding improvements in proteomic platforms and many other but related advances in plant biotechnology techniques offer various new ways to encourage the usage of these technologies by plant scientists for crop improvement programs. A combinatorial approach of accelerated gene discovery through genomics, proteomics, and other associated -omic branches of biotechnology, as an applied approach, is proving to be an effective way to speed up the crop improvement programs worldwide. In the near future, swift improvements in -omic databases are becoming critical and demand immediate attention for the effective utilization of these techniques to produce next-generation crops for the progressive farmers. Here, we have reviewed the recent advances in proteomics, as tools of biotechnology, which are offering great promise and leading the path toward crop improvement for sustainable agriculture.
Collapse
Affiliation(s)
- Moustafa Eldakak
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
- Department of Genetics, Faculty of Agriculture, El Shatby, Alexandria UniversityAlexandria, Egypt
| | - Sanaa I. M. Milad
- Biotechnology Lab, Department of Crop Science, Faculty of Agriculture, El Shatby, Alexandria UniversityAlexandria, Egypt
| | - Ali I. Nawar
- Biotechnology Lab, Department of Crop Science, Faculty of Agriculture, El Shatby, Alexandria UniversityAlexandria, Egypt
| | - Jai S. Rohila
- Department of Biology and Microbiology, South Dakota State UniversityBrookings, SD, USA
| |
Collapse
|