101
|
Liu M, Lei L, Miao F, Powers C, Zhang X, Deng J, Tadege M, Carver BF, Yan L. The STENOFOLIA gene from Medicago alters leaf width, flowering time and chlorophyll content in transgenic wheat. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:186-196. [PMID: 28509374 PMCID: PMC5785358 DOI: 10.1111/pbi.12759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 05/15/2023]
Abstract
Molecular genetic analyses revealed that the WUSCHEL-related homeobox (WOX) gene superfamily regulates several programs in plant development. Many different mechanisms are reported to underlie these alterations. The WOX family member STENOFOLIA (STF) is involved in leaf expansion in the eudicot Medicago truncutula. Here, we report that when this gene was ectopically expressed in a locally adapted hard red winter wheat cultivar (Triticum aestivum), the transgenic plants showed not only widened leaves but also accelerated flowering and increased chlorophyll content. These desirable traits were stably inherited in the progeny plants. STF binds to wheat genes that have the (GA)n /(CT)n DNA cis element, regardless of sequences flanking the DNA repeats, suggesting a mechanism for its pleiotropic effects. However, the amino acids between position 91 and 262 in the STF protein that were found to bind with the (GA)n motif have no conserved domain with any other GAGA-binding proteins in animals or plants. We also found that STF interacted with a variety of proteins in wheat in yeast 2 hybrid assays. We conclude that the eudicot STF gene binds to (GA)n /(CT)n DNA elements and can be used to regulate leaf width, flowering time and chlorophyll content in monocot wheat.
Collapse
Affiliation(s)
- Meiyan Liu
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
School of Life ScienceJiangsu Normal UniversityXuzhouJiangsuChina
| | - Lei Lei
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Fang Miao
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
- Present address:
College of Life ScienceNorthwest A&F UniversityYanglingShaanxi712100China
| | - Carol Powers
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Xiaoyu Zhang
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Jungpeng Deng
- Department of Biochemistry and Molecular BiologyOklahoma State UniversityStillwaterOKUSA
| | - Million Tadege
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Brett F. Carver
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
102
|
Shi J, Dong J, Xue J, Wang H, Yang Z, Jiao Y, Xu L, Huang H. Model for the role of auxin polar transport in patterning of the leaf adaxial-abaxial axis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:469-480. [PMID: 28849614 DOI: 10.1111/tpj.13670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 05/27/2023]
Abstract
Leaf adaxial-abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial-abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin-associated marker gene WUSCHEL-RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial-abaxial polarity. How middle domain and margins function in the process is discussed.
Collapse
Affiliation(s)
- Jianmin Shi
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiaqiang Dong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jingshi Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yuling Jiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
103
|
Min Y, Kramer EM. The Aquilegia JAGGED homolog promotes proliferation of adaxial cell types in both leaves and stems. THE NEW PHYTOLOGIST 2017; 216:536-548. [PMID: 27864962 DOI: 10.1111/nph.14282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
In order to explore the functional conservation of JAGGED, a key gene involved in the sculpting of lateral organs in several model species, we identified its ortholog AqJAG in the lower eudicot species Aquilegia coerulea. We analyzed the expression patterns of AqJAG in various tissues and developmental stages, and used RNAi-based methods to generate knockdown phenotypes of AqJAG. AqJAG was strongly expressed in shoot apices, floral meristems, lateral root primordia and all lateral organ primordia. Silencing of AqJAG revealed a wide range of defects in the developing stems, leaves and flowers; strongest phenotypes include severe reduction of leaflet laminae due to a decrease in cell size and number, change of adaxial cell identity, outgrowth of laminar-like tissue on the inflorescence stem, and early arrest of floral meristems and floral organ primordia. Our results indicate that AqJAG plays a critical role in controlling primordia initiation and distal growth of floral organs, and laminar development of leaflets. Most strikingly, we demonstrated that AqJAG disproportionally controls the behavior of cells with adaxial identity in vegetative tissues, providing evidence of how cell proliferation is controlled in an identity-specific manner.
Collapse
Affiliation(s)
- Ya Min
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| | - Elena M Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Ave., Cambridge, MA, 02138, USA
| |
Collapse
|
104
|
Guan C, Wu B, Yu T, Wang Q, Krogan NT, Liu X, Jiao Y. Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis. Curr Biol 2017; 27:2940-2950.e4. [PMID: 28943086 DOI: 10.1016/j.cub.2017.08.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022]
Abstract
The flattening of leaves to form broad blades is an important adaptation that maximizes photosynthesis. However, the molecular mechanism underlying this process remains unclear. The WUSCHEL-RELATED HOMEOBOX (WOX) genes WOX1 and PRS are expressed in the leaf marginal domain to enable leaf flattening, but the nature of WOX expression establishment remains elusive. Here, we report that adaxial-expressed MONOPTEROS (MP) and abaxial-enriched auxin together act as positional cues for patterning the WOX domain. MP directly binds to the WOX1 and PRS promoters and activates their expression. Furthermore, redundant abaxial-enriched ARF repressors suppress WOX1 and PRS expression, also through direct binding. In particular, we show that ARF2 is redundantly required with ARF3 and ARF4 to maintain the abaxial identity. Taken together, these findings explain how adaxial-abaxial polarity patterns the mediolateral axis and subsequent lateral expansion of leaves.
Collapse
Affiliation(s)
- Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Binbin Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingqing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Naden T Krogan
- Department of Biology, American University, Washington, DC 20016, USA
| | - Xigang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
105
|
Identification and Functional Divergence Analysis of WOX Gene Family in Paper Mulberry. Int J Mol Sci 2017; 18:ijms18081782. [PMID: 28813005 PMCID: PMC5578171 DOI: 10.3390/ijms18081782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023] Open
Abstract
The WOX (WUSCHEL-related homeobox) is a plant-specific transcription factor involved in plant development and stress response. However, few studies have been reported on the WOX gene in woody plants. In this study, 10 BpWOX genes were isolated from paper mulberry by RACE-PCR and categorized into three clades through phylogenetic analysis, ancient, intermediate and WUS clade. Among them, five members had the transcriptional activity detected by yeast one-hybrid and seven were uniquely localized to the nucleus through green fluorescent protein (GFP) observation. The expression patterns of BpWOX genes in different tissues and under diverse treatments were quantified by the qRT-PCR method. Results showed that BpWUS was expressed in the apical bud, stem and root, BpWOX5 and BpWOX7 functioned only in the root tip, and three BpWOXs regulated leaf development redundantly. BpWOX9 and BpWOX10 were induced by indole-3-acetic acid (IAA) or jasmonic acid (JA), while BpWOX2 was repressed by five phytohormones. Interestingly, most BpWOX genes were responsive to the abiotic stress stimuli of drought, salt, cold, and cadmium (CdCl2). Together, our study revealed that BpWOXs were functionally divergent during paper mulberry development and environmental adaptation, which might be related to their evolutionary relationships. Our work will benefit the systematic understanding of the precise function of WOX in plant development and environmental stress responses.
Collapse
|
106
|
Morel P, Heijmans K, Rozier F, Zethof J, Chamot S, Bento SR, Vialette-Guiraud A, Chambrier P, Trehin C, Vandenbussche M. Divergence of the Floral A-Function between an Asterid and a Rosid Species. THE PLANT CELL 2017; 29. [PMID: 28646074 PMCID: PMC5559753 DOI: 10.1105/tpc.17.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The ABC model is widely used as a genetic framework for understanding floral development and evolution. In this model, the A-function is required for the development of sepals and petals and to antagonize the C-function in the outer floral whorls. In the rosid species Arabidopsis thaliana, the AP2-type AP2 transcription factor represents a major A-function protein, but how the A-function is encoded in other species is not well understood. Here, we show that in the asterid species petunia (Petunia hybrida), AP2B/BLIND ENHANCER (BEN) confines the C-function to the inner petunia floral whorls, in parallel with the microRNA BLINDBEN belongs to the TOE-type AP2 gene family, members of which control flowering time in Arabidopsis. In turn, we demonstrate that the petunia AP2-type REPRESSOR OF B-FUNCTION (ROB) genes repress the B-function (but not the C-function) in the first floral whorl, together with BEN We propose a combinatorial model for patterning the B- and C-functions, leading to the homeotic conversion of sepals into petals, carpels, or stamens, depending on the genetic context. Combined with earlier results, our findings suggest that the molecular mechanisms controlling the spatial restriction of the floral organ identity genes are more diverse than the well-conserved B and C floral organ identity functions.
Collapse
Affiliation(s)
- Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Klaas Heijmans
- Institute for Water and Wetland Research, Radboud University Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Jan Zethof
- Institute for Water and Wetland Research, Radboud University Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Suzanne Rodrigues Bento
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Aurélie Vialette-Guiraud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Christophe Trehin
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342 Lyon, France
| |
Collapse
|
107
|
Wang D, Cao G, Fang P, Xia L, Cheng B. Comparative transcription analysis of different Antirrhinum phyllotaxy nodes identifies major signal networks involved in vegetative-reproductive transition. PLoS One 2017; 12:e0178424. [PMID: 28570685 PMCID: PMC5453694 DOI: 10.1371/journal.pone.0178424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Vegetative-reproductive phase change is an indispensable event which guarantees several aspects of successful meristem behaviour and organ development. Antirrhinum majus undergoes drastic changes of shoot architecture during the phase change, including phyllotactic change and leaf type alteration from opposite decussate to spiral. However, the regulation mechanism in both of phyllotactic morphology changes is still unclear. Here, the Solexa/Illumina RNA-seq high-throughput sequencing was used to evaluate the global changes of transcriptome levels among four node regions during phyllotactic development. More than 86,315,782 high quality reads were sequenced and assembled into 58,509 unigenes. These differentially expressed genes (DEGs) were classified into 118 pathways described in the KEGG database. Based on the heat-map analysis, a large number of DEGs were overwhelmingly distributed in the hormone signal pathway as well as the carbohydrate biosynthesis and metabolism. The quantitative real time (qRT)-PCR results indicated that most of DEGs were highly up-regulated in the swapping regions of phyllotactic morphology. Moreover, transcriptions factors (TFs) with high transcripts were also identified, controlling the phyllotactic morphology by the regulation of hormone and sugar-metabolism signal pathways. A number of DEGs did not align with any databases and might be novel genes involved in the phyllotactic development. These genes will serve as an invaluable genetic resource for understanding the molecular mechanism of the phyllotactic development.
Collapse
Affiliation(s)
- Dongliang Wang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Geyang Cao
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Peng Fang
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lin Xia
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
- * E-mail:
| |
Collapse
|
108
|
Boccacci P, Mela A, Pavez Mina C, Chitarra W, Perrone I, Gribaudo I, Gambino G. Cultivar-specific gene modulation in Vitis vinifera: analysis of the promoters regulating the expression of WOX transcription factors. Sci Rep 2017; 7:45670. [PMID: 28358354 PMCID: PMC5372460 DOI: 10.1038/srep45670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
Abstract
The family of Wuschel-related Homeobox (WOX) genes is a class of transcription factors involved in the early stages of embryogenesis and organ development in plants. Some of these genes have shown different transcription levels in embryogenic tissues and mature organs in two different cultivars of Vitis vinifera: ‘Chardonnay’ (CH) and ‘Cabernet Sauvignon’ (CS). Therefore, we investigated the genetic basis responsible for these differences by cloning and sequencing in both the cultivars the promoter regions (~2000 bp) proximal to the transcription start site of five VvWOX genes. We then introduced these promoters into Arabidopsis thaliana for expression pattern characterisation using the GUS reporter gene. In the transgenic Arabidopsis, two promoters isolated from CS (pVvWOX13C_CS and pVvWOX6_CS) induced increased expression compared to the sequence isolated in CH, confirming the data obtained in grapevine tissues. These results were corroborated by transient expression assays using the agroinfiltration approach in grapevine somatic embryos. Truncated versions of pVvWOX13C demonstrated that few nucleotide differences between the sequences isolated from CH and CS are pivotal for the transcriptional regulation of VvWOX13C. Analysis of promoters using heterologous and homologous systems appear to be effective for exploring gene modulation linked with intervarietal sequence variation in grapevine.
Collapse
Affiliation(s)
- Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino. Strada delle Cacce 73, 10135 Torino, Italy
| | - Anita Mela
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Catalina Pavez Mina
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino. Strada delle Cacce 73, 10135 Torino, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino. Strada delle Cacce 73, 10135 Torino, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Grugliasco Unit. Largo P. Braccini 2, 10095 Grugliasco-TO, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino. Strada delle Cacce 73, 10135 Torino, Italy
| |
Collapse
|
109
|
Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis. PLoS Genet 2017; 13:e1006649. [PMID: 28264034 PMCID: PMC5358894 DOI: 10.1371/journal.pgen.1006649] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/20/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs.
Collapse
|
110
|
Zhong J, Powell S, Preston JC. Organ boundary NAC-domain transcription factors are implicated in the evolution of petal fusion. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:893-902. [PMID: 27500862 DOI: 10.1111/plb.12493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/05/2016] [Indexed: 05/25/2023]
Abstract
UNLABELLED Research rationale: Evolution of fused petals (sympetaly) is considered to be an important innovation that has repeatedly led to increased pollination efficiency, resulting in accelerated rates of plant diversification. Although little is known about the underlying regulation of sympetaly, genetic pathways ancestrally involved in organ boundary establishment (e.g. CUP SHAPED COTYLEDON [CUC] 1-3 genes) are strong candidates. In sympetalous petunia, mutations in the CUC1/2-like orthologue NO APICAL MERISTEM (NAM) inhibit shoot apical meristem formation. Despite this, occasional 'escape shoots' develop flowers with extra petals and fused inter-floral whorl organs. Central methods: To To determine if petunia CUC-like genes regulate additional floral patterning, we used virus-induced silencing (VIGS) following establishment of healthy shoot apices to re-examine the role of NAM in petunia petal development, and uniquely characterise the CUC3 orthologue NH16. KEY RESULTS Confirming previous results, we found that reduced floral NAM/NH16 expression caused increased petal-stamen and stamen-carpel fusion, and often produced extra petals. However, further to previous results, all VIGS plants infected with NAM or NH16 constructs exhibited reduced fusion in the petal whorl compared to control plants. MAIN CONCLUSIONS Together with previous data, our results demonstrate conservation of petunia CUC-like genes in establishing inter-floral whorl organ boundaries, as well as functional evolution to affect the fusion of petunia petals.
Collapse
Affiliation(s)
- J Zhong
- Department of Plant Biology, The University of Vermont, Burlington, VT, USA
| | - S Powell
- Department of Plant Biology, The University of Vermont, Burlington, VT, USA
| | - J C Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, USA.
| |
Collapse
|
111
|
Segatto ALA, Thompson CE, Freitas LB. Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species. Genet Mol Biol 2016; 39:658-664. [PMID: 27768156 PMCID: PMC5127159 DOI: 10.1590/1678-4685-gmb-2016-0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/31/2016] [Indexed: 12/14/2022] Open
Abstract
Developmental genes are believed to contribute to major changes during plant
evolution, from infrageneric to higher levels. Due to their putative high sequence
conservation, developmental genes are rarely used as molecular markers, and few
studies including these sequences at low taxonomic levels exist.
WUSCHEL-related homeobox genes (WOX) are
transcription factors exclusively present in plants and are involved in developmental
processes. In this study, we characterized the infrageneric genetic variation of
Petunia WOX genes. We obtained phylogenetic relationships
consistent with other phylogenies based on nuclear markers, but with higher
statistical support, resolution in terminals, and compatibility with flower
morphological changes.
Collapse
Affiliation(s)
- Ana Lúcia Anversa Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Claudia Elizabeth Thompson
- Center for Biotechnology, Department of Molecular Biology and Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Loreta Brandão Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
112
|
Alvarez JP, Furumizu C, Efroni I, Eshed Y, Bowman JL. Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife 2016; 5. [PMID: 27710768 PMCID: PMC5096885 DOI: 10.7554/elife.15023] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/30/2016] [Indexed: 12/29/2022] Open
Abstract
Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved. DOI:http://dx.doi.org/10.7554/eLife.15023.001
Collapse
Affiliation(s)
- John Paul Alvarez
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Chihiro Furumizu
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Idan Efroni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuval Eshed
- Department of Plant and environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia.,Department of Plant Biology, University of California, Davis, Davis, California, United States
| |
Collapse
|
113
|
Yoshikawa T, Tanaka SY, Masumoto Y, Nobori N, Ishii H, Hibara KI, Itoh JI, Tanisaka T, Taketa S. Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. BREEDING SCIENCE 2016; 66:416-24. [PMID: 27436952 PMCID: PMC4902465 DOI: 10.1270/jsbbs.16019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit thin leaves accompanied by short stature. Detailed histological analysis revealed that leaf marginal tissues, such as sawtooth hairs and sclerenchymatous cells, were lacked in nld1, suggesting that narrowed leaf of nld1 was attributable to the defective development of the marginal regions in the leaves. The defective marginal developments were also appeared in internodes and glumes in spikelets. Map-based cloning revealed that NLD1 encodes a WUSCHEL-RELATED HOMEOBOX 3 (WOX3), an ortholog of the maize NARROW SHEATH genes. In situ hybridization showed that NLD1 transcripts were localized in the marginal edges of leaf primordia from the initiating stage. From these results, we concluded that NLD1 plays pivotal role in the increase of organ width and in the development of marginal tissues in lateral organs in barley.
Collapse
Affiliation(s)
- Takanori Yoshikawa
- School of Agricultural Regional Vitalization, Kibi International University,
Minamiawaji, Hyogo 656-0484,
Japan
- Corresponding author (e-mail: )
| | - Shin-Ya Tanaka
- School of Agricultural Regional Vitalization, Kibi International University,
Minamiawaji, Hyogo 656-0484,
Japan
| | - Yuuki Masumoto
- School of Agricultural Regional Vitalization, Kibi International University,
Minamiawaji, Hyogo 656-0484,
Japan
| | - Naoya Nobori
- School of Agricultural Regional Vitalization, Kibi International University,
Minamiawaji, Hyogo 656-0484,
Japan
| | - Hiroto Ishii
- School of Agricultural Regional Vitalization, Kibi International University,
Minamiawaji, Hyogo 656-0484,
Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural and Life Sciences, University of Tokyo,
Tokyo 113-8657,
Japan
| | - Jun-Ichi Itoh
- Graduate School of Agricultural and Life Sciences, University of Tokyo,
Tokyo 113-8657,
Japan
| | - Takatoshi Tanisaka
- School of Agricultural Regional Vitalization, Kibi International University,
Minamiawaji, Hyogo 656-0484,
Japan
| | - Shin Taketa
- Group of Genetic Resources and Functions, Institute of Plant Science and Resources, Okayama University,
Kurashiki, Okayama 710-0046,
Japan
| |
Collapse
|
114
|
Endress PK. Development and evolution of extreme synorganization in angiosperm flowers and diversity: a comparison of Apocynaceae and Orchidaceae. ANNALS OF BOTANY 2016; 117:749-67. [PMID: 26292994 PMCID: PMC4845794 DOI: 10.1093/aob/mcv119] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/22/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Apocynaceae and Orchidaceae are two angiosperm families with extreme flower synorganization. They are unrelated, the former in eudicots, the latter in monocots, but they converge in the formation of pollinia and pollinaria, which do not occur in any other angiosperm family, and for which extreme synorganization of floral organs is a precondition. In each family extensive studies on flower development and evolution have been performed; however, newer comparative studies focusing on flower synorganization and involving both families together are lacking. SCOPE For this study an extensive search through the morphological literature has been conducted. Based on this and my own studies on flowers in various Apocynaceae and Orchidaceae and complex flowers in other angiosperms with scanning electron microscopy and with microtome section series, a review on convergent floral traits in flower development and architecture in the two families is presented. KEY FINDINGS There is a tendency of protracted development of synorganized parts in Apocynaceae and Orchidaceae (development of synorganization of two or more organs begins earlier the more accentuated it is at anthesis). Synorganization (or complexity) also paves the way for novel structures. One of the most conspicuous such novel structures in Apocynaceae is the corona, which is not the product of synorganization of existing organs; however, it is probably enhanced by synorganization of other, existing, floral parts. In contrast to synorganized parts, the corona appears developmentally late. CONCLUSIONS Synorganization of floral organs may lead to a large number of convergences in clades that are only very distantly related. The convergences that have been highlighted in this comparative study should be developmentally investigated directly in parallel in future studies.
Collapse
Affiliation(s)
- Peter K Endress
- Institute of Systematic Botany, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
115
|
Affiliation(s)
- Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Bioscience, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK73401, USA
| |
Collapse
|
116
|
Liang J, Liu B, Wu J, Cheng F, Wang X. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2016; 7:94. [PMID: 26904064 PMCID: PMC4746309 DOI: 10.3389/fpls.2016.00094] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/18/2016] [Indexed: 05/26/2023]
Abstract
Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage.
Collapse
|
117
|
Vandenbussche M, Chambrier P, Rodrigues Bento S, Morel P. Petunia, Your Next Supermodel? FRONTIERS IN PLANT SCIENCE 2016; 7:72. [PMID: 26870078 PMCID: PMC4735711 DOI: 10.3389/fpls.2016.00072] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/15/2016] [Indexed: 05/24/2023]
Abstract
Plant biology in general, and plant evo-devo in particular would strongly benefit from a broader range of available model systems. In recent years, technological advances have facilitated the analysis and comparison of individual gene functions in multiple species, representing now a fairly wide taxonomic range of the plant kingdom. Because genes are embedded in gene networks, studying evolution of gene function ultimately should be put in the context of studying the evolution of entire gene networks, since changes in the function of a single gene will normally go together with further changes in its network environment. For this reason, plant comparative biology/evo-devo will require the availability of a defined set of 'super' models occupying key taxonomic positions, in which performing gene functional analysis and testing genetic interactions ideally is as straightforward as, e.g., in Arabidopsis. Here we review why petunia has the potential to become one of these future supermodels, as a representative of the Asterid clade. We will first detail its intrinsic qualities as a model system. Next, we highlight how the revolution in sequencing technologies will now finally allows exploitation of the petunia system to its full potential, despite that petunia has already a long history as a model in plant molecular biology and genetics. We conclude with a series of arguments in favor of a more diversified multi-model approach in plant biology, and we point out where the petunia model system may further play a role, based on its biological features and molecular toolkit.
Collapse
|
118
|
Li PS, Thomas DC, Saunders RMK. Phylogenetic Reconstruction, Morphological Diversification and Generic Delimitation of Disepalum (Annonaceae). PLoS One 2015; 10:e0143481. [PMID: 26630651 PMCID: PMC4668016 DOI: 10.1371/journal.pone.0143481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/04/2015] [Indexed: 01/02/2023] Open
Abstract
Taxonomic delimitation of Disepalum (Annonaceae) is contentious, with some researchers favoring a narrow circumscription following segregation of the genus Enicosanthellum. We reconstruct the phylogeny of Disepalum and related taxa based on four chloroplast and two nuclear DNA regions as a framework for clarifying taxonomic delimitation and assessing evolutionary transitions in key morphological characters. Maximum parsimony, maximum likelihood and Bayesian methods resulted in a consistent, well-resolved and strongly supported topology. Disepalum s.l. is monophyletic and strongly supported, with Disepalum s.str. and Enicosanthellum retrieved as sister groups. Although this topology is consistent with both taxonomic delimitations, the distribution of morphological synapomorphies provides greater support for the inclusion of Enicosanthellum within Disepalum s.l. We propose a novel infrageneric classification with two subgenera. Subgen. Disepalum (= Disepalum s.str.) is supported by numerous synapomorphies, including the reduction of the calyx to two sepals and connation of petals. Subgen. Enicosanthellum lacks obvious morphological synapomorphies, but possesses several diagnostic characters (symplesiomorphies), including a trimerous calyx and free petals in two whorls. We evaluate changes in petal morphology in relation to hypotheses of the genetic control of floral development and suggest that the compression of two petal whorls into one and the associated fusion of contiguous petals may be associated with the loss of the pollination chamber, which in turn may be associated with a shift in primary pollinator. We also suggest that the formation of pollen octads may be selectively advantageous when pollinator visits are infrequent, although this would only be applicable if multiple ovules could be fertilized by each octad; since the flowers are apocarpous, this would require an extragynoecial compitum to enable intercarpellary growth of pollen tubes. We furthermore infer that the monocarp fruit stalks are likely to have evolved independently from those in other Annonaceae genera and may facilitate effective dispersal by providing a color contrast within the fruit.
Collapse
Affiliation(s)
- Pui-Sze Li
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Daniel C. Thomas
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Richard M. K. Saunders
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- * E-mail:
| |
Collapse
|
119
|
Xu M, Xie W, Huang M. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar. PHYSIOLOGIA PLANTARUM 2015; 155:446-56. [PMID: 25998748 DOI: 10.1111/ppl.12349] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 05/24/2023]
Abstract
The plant-specific WUSCHEL-related HOMEOBOX (WOX) transcription factors play important roles in key developmental processes, but knowledge regarding functional characterization of WOX genes in poplar remains limited. To reveal genes and signaling pathways associated with adventitious rooting in poplar, here we isolated and characterized two WOX genes through the rapid amplification of cDNA ends (RACE), sequence aligning, expression profiling, protoplast transfection and poplar transformation. Detailed information about the sequence similarity, structural features, evolutionary relationships, expression patterns and subcellular localization of the two genes were revealed. Overexpression of either PeWOX11a or PeWOX11b not only increased the number of adventitious roots on the cuttings but also induced ectopic roots in the aerial parts of transgenic poplars. Meanwhile, their overexpression in transgenic poplars affected axillary bud and leaf development. These results suggest that PeWOX11a and PeWOX11b were involved in multiple developmental processes of poplar, especially in adventitious root formation. Our results provide new insights into the molecular mechanisms underlying adventitious root formation of poplar.
Collapse
Affiliation(s)
- Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Wenfan Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Minren Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| |
Collapse
|
120
|
Zhong J, Preston JC. Bridging the gaps: evolution and development of perianth fusion. THE NEW PHYTOLOGIST 2015; 208:330-335. [PMID: 26094556 DOI: 10.1111/nph.13517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
One of the most striking innovations in flower development is the congenital or postgenital union of petals (sympetaly) which has enabled dramatic specialization in flower structure and possibly accelerated speciation rates. Sympetalous flowers exhibit extraordinary variation in development, including the degree and timing of fusion, and fusion with other floral organs. Different axes of corolla tube complexity can be disentangled at the developmental level, with most variation being explained by differences in coordinated growth between interconnected and lobed regions of neighboring petal primordia, and between lower and upper portions of the corolla tube, defined by the stamen insertion boundary. Genetically, inter- and intra-specific variation in the degree of petal fusion is controlled by various inputs from genes that affect organ boundary and lateral growth, signaling between different cell types, and production of the cuticle. It is thus hypothesized that the evolution and diversification of fused petals, at least within the megadiverse Asteridae clade of core eudicots, have occurred through the modification of a conserved genetic pathway previously involved in free petal development.
Collapse
Affiliation(s)
- Jinshun Zhong
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Jill C Preston
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
121
|
Wang P, Li C, Li C, Zhao C, Xia H, Zhao S, Hou L, Gao C, Wan S, Wang X. Identification and expression dynamics of three WUSCHEL related homeobox 13 (WOX13) genes in peanut. Dev Genes Evol 2015; 225:221-33. [PMID: 26115849 DOI: 10.1007/s00427-015-0506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
WUSCHEL-related homeobox (WOX) genes play key roles in plant stem cell maintenance and development. WOX genes showed specific expression patterns which are important for their functions. WOX13 subfamily genes as the ancestor genes of this family were less studied in the past. In this study, we cloned three Arachis hypogaea (peanut) WOX13 (AhWOX13) subfamily genes from peanut: WOX13A and WOX13B1, 2. WOX13B1 encoded a same protein as WOX13B2, and there were only two-base difference between these two genes. Differential expression patterns were observed for these three AhWOX13 subfamily genes in different tissues and developmental stages. Phylogenic trees analysis showed that these AhWOX13 subfamily genes were the most conserved WOX genes and belonged to the ancient clade of WOX family. This was also supported by the conserved motif analysis. Selective pressure analysis showed that the WOX family genes mainly underwent weak purifying selection (ω = 0.58097), while many positive mutations accumulated during the evolution history. Under the purifying selection, gene duplication event and loss of duplicated gene play important roles in the expansion and evolution of WOX family.
Collapse
Affiliation(s)
- Pengfei Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Lutova LA, Dodueva IE, Lebedeva MA, Tvorogova VE. Transcription factors in developmental genetics and the evolution of higher plants. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415030084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
123
|
Specht CD, Howarth DG. Adaptation in flower form: a comparative evodevo approach. THE NEW PHYTOLOGIST 2015; 206:74-90. [PMID: 25470511 DOI: 10.1111/nph.13198] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/15/2014] [Indexed: 05/10/2023]
Abstract
Evolutionary developmental biology (evodevo) attempts to explain how the process of organismal development evolves, utilizing a comparative approach to investigate changes in developmental pathways and processes that occur during the evolution of a given lineage. Evolutionary genetics uses a population approach to understand how organismal changes in form or function are linked to underlying genetics, focusing on changes in gene and genotype frequencies within populations and the fixation of genotypic variation into traits that define species or evoke speciation events. Microevolutionary processes, including mutation, genetic drift, natural selection and gene flow, can provide the foundation for macroevolutionary patterns observed as morphological evolution and adaptation. The temporal element linking microevolutionary processes to macroevolutionary patterns is development: an organism's genotype is converted to phenotype by ontogenetic processes. Because selection acts upon the phenotype, the connection between evolutionary genetics and developmental evolution becomes essential to understanding adaptive evolution in organismal form and function. Here, we discuss how developmental genetic studies focused on key developmental processes could be linked within a comparative framework to study the developmental genetics of adaptive evolution, providing examples from research on two key processes of plant evodevo - floral symmetry and organ fusion - and their role in the adaptation of floral form.
Collapse
Affiliation(s)
- Chelsea D Specht
- Departments of Plant and Microbial Biology, Integrative Biology, and the University and Jepson Herbaria, University of California, 111 Koshland Hall, Berkeley, CA, 94720, USA
| | - Dianella G Howarth
- Department of Biological Sciences, St John's University, 8000 Utopia Pkwy, Jamaica, NY, 11439, USA
| |
Collapse
|
124
|
Fukushima K, Fujita H, Yamaguchi T, Kawaguchi M, Tsukaya H, Hasebe M. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat Commun 2015; 6:6450. [PMID: 25774486 PMCID: PMC4382701 DOI: 10.1038/ncomms7450] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/30/2015] [Indexed: 11/22/2022] Open
Abstract
Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. The pitcher-shaped leaf of the carnivorous plant Sarracenia purpurea acts as a pitfall trap to capture small animals. Here, Fukushima et al. analyse pitcher leaf development and propose that this unusual shape evolved from ancestral planar leaves through changes in the orientation of cell division.
Collapse
Affiliation(s)
- Kenji Fukushima
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hironori Fujita
- National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Takahiro Yamaguchi
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayoshi Kawaguchi
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuyasu Hasebe
- 1] 1Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki 444-8585, Japan [2] National Institute for Basic Biology, Myodaiji-cho, Nishigonaka 38, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
125
|
Morphology and anatomy of needle-leaves and cladode-like structures inAbies firmaSiebold & Zucc. (Pinaceae, Coniferales) and their evolutionary relevance. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/fedr.201400050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
126
|
Niu L, Lin H, Zhang F, Watira TW, Li G, Tang Y, Wen J, Ratet P, Mysore KS, Tadege M. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:480-92. [PMID: 25492397 DOI: 10.1111/tpj.12743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/03/2014] [Indexed: 05/09/2023]
Abstract
The Medicago truncatula WOX gene, STENOFOLIA (STF), and its orthologs in Petunia, pea, and Nicotiana sylvestris are required for leaf blade outgrowth and floral organ development as demonstrated by severe phenotypes in single mutants. But the Arabidopsis wox1 mutant displays a narrow leaf phenotype only when combined with the prs/wox3 mutant. In maize and rice, WOX3 homologs are major regulators of leaf blade development. Here we investigated the role of WOX3 in M. truncatula development by isolating the lfl/wox3 loss-of-function mutant and performing genetic crosses with the stf mutant. Lack of WOX3 function in M. truncatula leads to a loose-flower (lfl) phenotype, where defects are observed in sepal and petal development, but leaf blades are apparently normal. The stf lfl double mutant analysis revealed that STF and LFL act mainly independently with minor redundant functions in flower development, but LFL has no obvious role in leaf blade outgrowth in M. truncatula on its own or in combination with STF. Interestingly, LFL acts as a transcriptional repressor by recruiting TOPLESS in the same manner as STF does, and can substitute for STF function in leaf blade and flower development if expressed under the STF promoter. STF also complements the lfl mutant phenotype in the flower if expressed under the LFL promoter. Our data suggest that the STF/WOX1 and LFL/WOX3 genes of M. truncatula employ a similar mechanism of action in organizing cell proliferation for lateral outgrowth but may have evolved different cis elements to acquire distinct functions.
Collapse
Affiliation(s)
- Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Zhang F, Tadege M. Repression of AS2 by WOX family transcription factors is required for leaf development in Medicago and Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e993291. [PMID: 25807065 PMCID: PMC4623463 DOI: 10.4161/15592324.2014.993291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
WOX transcription factors are key regulators of meristematic activity in plants. The Medicago WOX gene, STF, functions in maintenance of leaf marginal meristem, analogous to the function of WUS in the shoot apical meristem. Both STF and WUS directly repress AS2 expression in their respective domains. Ectopic expression of AS2 with WUS promoter leads to a narrow leaf phenotype and other phenotypes similar to the wus mutant. We also found that a wox1 prs wus triple mutant produces much narrower leaf blades than the wox1 prs double mutant, indicating that WUS genetically interacts with WOX1 and PRS in Arabidopsis leaf blade development. Our data points to a general requirement for AS2 repression in meristematic regions to allow cell proliferation.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences; Institute for Agricultural Biosciences; Oklahoma State University; Ardmore, OK USA
| | - Million Tadege
- Department of Plant and Soil Sciences; Institute for Agricultural Biosciences; Oklahoma State University; Ardmore, OK USA
- Correspondence to: Million Tadege;
| |
Collapse
|
128
|
Abstract
The independent origin and evolution of leaves as small, simple microphylls or larger, more complex megaphylls in plants has shaped and influenced the natural composition of the environment. Significant contributions have come from megaphyllous leaves, characterized usually as flat, thin lamina entrenched with photosynthetic organelles and stomata, which serve as the basis of primary productivity. During the course of evolution, the megaphylls have attained complexity not only in size or venation patterns but also in shape. This has fascinated scientists worldwide, and research has progressed tremendously in understanding the concept of leaf shape determination. Here, we review these studies and discuss the various factors that contributed towards shaping the leaf; initiated as a small bulge on the periphery of the shoot apical meristem (SAM) followed by asymmetric outgrowth, expansion and maturation until final shape is achieved. We found that the underlying factors governing these processes are inherently genetic: PIN1 and KNOX1 are indicators of leaf initiation, HD-ZIPIII, KANADI, and YABBY specify leaf outgrowth while ANGUSTIFOLIA3 and GROWTH-REGULATING FACTOR5 control leaf expansion and maturation; besides, recent research has identified new players such as APUM23, known to specify leaf polarity. In addition to genetic control, environmental factors also play an important role during the final adjustment of leaf shape. This immense amount of information available will serve as the basis for studying and understanding innovative leaf morphologies viz. the pitchers of the carnivorous plant Nepenthes which have evolved to provide additional support to the plant survival in its nutrient-deficient habitat. In hindsight, formation of the pitcher tube in Nepenthes might involve the recruitment of similar genetic mechanisms that occur during sympetaly in Petunia.
Collapse
Affiliation(s)
- Jeremy Dkhar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
129
|
Scutt CP, Vandenbussche M. Current trends and future directions in flower development research. ANNALS OF BOTANY 2014; 114:1399-406. [PMID: 25335868 PMCID: PMC4204790 DOI: 10.1093/aob/mcu224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 05/05/2023]
Abstract
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.
Collapse
Affiliation(s)
- Charlie P Scutt
- Laboratoire de Reproduction et Développement des Plantes, (Unité mixte de recherche 5667: CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | - Michiel Vandenbussche
- Laboratoire de Reproduction et Développement des Plantes, (Unité mixte de recherche 5667: CNRS-INRA-Université de Lyon), Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
130
|
Costanzo E, Trehin C, Vandenbussche M. The role of WOX genes in flower development. ANNALS OF BOTANY 2014; 114:1545-53. [PMID: 24973416 PMCID: PMC4204783 DOI: 10.1093/aob/mcu123] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/29/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. SCOPE In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. CONCLUSIONS This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.
Collapse
Affiliation(s)
- Enrico Costanzo
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Christophe Trehin
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France
| | - Michiel Vandenbussche
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
131
|
A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:14619-24. [PMID: 25246576 DOI: 10.1073/pnas.1406446111] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.
Collapse
|
132
|
Chandler JW, Werr W. Arabidopsis floral phytomer development: auxin response relative to biphasic modes of organ initiation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3097-110. [PMID: 24744428 PMCID: PMC4071828 DOI: 10.1093/jxb/eru153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNRÖSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation.
Collapse
Affiliation(s)
- J W Chandler
- Institute of Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany.
| | - W Werr
- Institute of Developmental Biology, Cologne Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
133
|
Vandenbussche M, Zethof J, Gerats T. Transposon display: a versatile method for transposon tagging. Methods Mol Biol 2014; 1057:239-50. [PMID: 23918433 DOI: 10.1007/978-1-62703-568-2_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Transposon tagging has been used successfully in a range of organisms for the cloning of mutants of interest. In species containing high copy numbers of transposable elements combined with a high transposition rate, forward cloning can be quite challenging and requires specific high-resolution methods. Here we detail an updated version of the Transposon Display technique, which allows visualization of large numbers of transposon-flanking sequences simultaneously in a highly robust and reproducible manner. This strategy was developed for the analysis of the transpositional behavior of the dTph1 transposon and for the forward cloning of mutants, particularly in the Petunia W138 background, individuals of which can contain >200 copies of the endogenous dTph1 element. The method is derived from the AFLP technique and can in principle easily be adapted to any system.
Collapse
Affiliation(s)
- Michiel Vandenbussche
- UMR 5667 CNRS-INRA-ENS Lyon-Unversité Lyon I, RDP Laboratory, ENS Lyon, Lyon, Cedex, France
| | | | | |
Collapse
|
134
|
Hepworth J, Lenhard M. Regulation of plant lateral-organ growth by modulating cell number and size. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:36-42. [PMID: 24507492 DOI: 10.1016/j.pbi.2013.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/04/2013] [Accepted: 11/06/2013] [Indexed: 05/23/2023]
Abstract
Leaves and floral organs grow to distinct, species-specific sizes and shapes. Research over the last few years has increased our understanding of how genetic pathways modulate cell proliferation and cell expansion to determine these sizes and shapes. In particular, the timing of proliferation arrest is an important point of control for organ size, and work on the regulators involved is showing how this control is achieved mechanistically and integrates environmental information. We are also beginning to understand how growth differs in different organs to produce their characteristic shapes, and how growth is integrated between different tissues that make up plant organs. Lastly, components of the general machinery in eukaryotic cells have been identified as having important roles in growth control.
Collapse
Affiliation(s)
- Jo Hepworth
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, House 26, 14476 Potsdam, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, House 26, 14476 Potsdam, Germany.
| |
Collapse
|
135
|
Zhang F, Wang Y, Li G, Tang Y, Kramer EM, Tadege M. STENOFOLIA recruits TOPLESS to repress ASYMMETRIC LEAVES2 at the leaf margin and promote leaf blade outgrowth in Medicago truncatula. THE PLANT CELL 2014; 26:650-64. [PMID: 24585835 PMCID: PMC3967031 DOI: 10.1105/tpc.113.121947] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 05/22/2023]
Abstract
The Medicago truncatula WUSCHEL-related homeobox (WOX) gene, STENOFOLIA (STF), plays a key role in leaf blade outgrowth by promoting cell proliferation at the adaxial-abaxial junction. STF functions primarily as a transcriptional repressor, but the underlying molecular mechanism is unknown. Here, we report the identification of a protein interaction partner and a direct target, shedding light on the mechanism of STF function. Two highly conserved motifs in the C-terminal domain of STF, the WUSCHEL (WUS) box and the STF box, cooperatively recruit TOPLESS (Mt-TPL) family corepressors, and this recruitment is required for STF function, as deletion of these two domains (STFdel) impaired blade outgrowth whereas fusing Mt-TPL to STFdel restored function. The homeodomain motif is required for direct repression of ASYMMETRIC LEAVES2 (Mt-AS2), silencing of which partially rescues the stf mutant phenotype. STF and LAMINALESS1 (LAM1) are functional orthologs. A single amino acid (Asn to Ile) substitution in the homeodomain abolished the repression of Mt-AS2 and STF's ability to complement the lam1 mutant of Nicotiana sylvestris. Our data together support a model in which STF recruits corepressors to transcriptionally repress its targets during leaf blade morphogenesis. We propose that recruitment of TPL/TPL-related proteins may be a common mechanism in the repressive function of modern/WUS clade WOX genes.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| | - Yewei Wang
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| | - Guifen Li
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma 73401
| | - Elena M. Kramer
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401
| |
Collapse
|
136
|
Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom. ScientificWorldJournal 2014; 2014:534140. [PMID: 24511289 PMCID: PMC3913392 DOI: 10.1155/2014/534140] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/19/2013] [Indexed: 12/24/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) is a large group of transcription factors specifically found in plants. WOX members contain the conserved homeodomain essential for plant development by regulating cell division and differentiation. However, the evolutionary relationship of WOX members in plant kingdom remains to be elucidated. In this study, we searched 350 WOX members from 50 species in plant kingdom. Linkage analysis of WOX protein sequences demonstrated that amino acid residues 141-145 and 153-160 located in the homeodomain are possibly associated with the function of WOXs during the evolution. These 350 members were grouped into 3 clades: the first clade represents the conservative WOXs from the lower plant algae to higher plants; the second clade has the members from vascular plant species; the third clade has the members only from spermatophyte species. Furthermore, among the members of Arabidopsis thaliana and Oryza sativa, we observed ubiquitous expression of genes in the first clade and the diversified expression pattern of WOX genes in distinct organs in the second clade and the third clade. This work provides insight into the origin and evolutionary process of WOXs, facilitating their functional investigations in the future.
Collapse
|
137
|
Tasaki K, Nakatsuka A, Cheon KS, Kobayashi N. Expression of MADS-box Genes in Narrow-petaled Cultivars of Rhododendron macrosepalum Maxim. ACTA ACUST UNITED AC 2014. [DOI: 10.2503/jjshs1.ch-030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
138
|
Fukushima K, Hasebe M. Adaxial-abaxial polarity: the developmental basis of leaf shape diversity. Genesis 2013; 52:1-18. [PMID: 24281766 DOI: 10.1002/dvg.22728] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/15/2013] [Accepted: 11/22/2013] [Indexed: 02/05/2023]
Abstract
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial-abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Basic Biology, School of Life Science, Graduate University for Advance Studies (SOKENDAI), Okazaki, 444-8585, Japan; National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | | |
Collapse
|
139
|
Nardmann J, Werr W. Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. THE NEW PHYTOLOGIST 2013; 199:1081-1092. [PMID: 23721178 DOI: 10.1111/nph.12343] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/23/2013] [Indexed: 05/05/2023]
Abstract
Evolutionary studies addressing plant architecture have uncovered several significant dichotomies between lower and higher land plant radiations, which are based on differences in meristem histology and function. Here, we assess the establishment of different stem cell niches during land plant evolution based on genes of the stem cell-promoting WUSCHEL (WUS) clade of the WOX (WUSCHEL-related homeobox) gene family. WOX gene orthology was addressed by phylogenetic analyses of full-length WOX protein sequences and cellular expression pattern studies indicate process homology. Gene amplifications in the WUS clade were present in the last common ancestor (LCA) of extant gymnosperms and angiosperms. Whereas the evolution of complex multicellular shoot and root meristems relates to members in the WUS/WOX5 sub-branch, the evolution of marginal and plate meristems or the vascular cambium is associated with gene duplications that gave rise to WOX3 and WOX4, respectively. A fourth WUS clade member, WOX2, was apparently recruited for apical cell fate specification during early embryogenesis. The evolution and functional interplay of WOX3 and WOX4 possibly promoted a novel mode of leaf development, and evolutionary adaptations in their activities have contributed to the great diversity in shape and architecture of leaves in seed plants.
Collapse
Affiliation(s)
- Judith Nardmann
- Institute of Developmental Biology, University Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Wolfgang Werr
- Institute of Developmental Biology, University Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
140
|
Wang Z, Chen J, Liu W, Luo Z, Wang P, Zhang Y, Zheng R, Shi J. Transcriptome characteristics and six alternative expressed genes positively correlated with the phase transition of annual cambial activities in Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook). PLoS One 2013; 8:e71562. [PMID: 23951189 PMCID: PMC3741379 DOI: 10.1371/journal.pone.0071562] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/01/2013] [Indexed: 11/24/2022] Open
Abstract
Background The molecular mechanisms that govern cambial activity in angiosperms are well established, but little is known about these molecular mechanisms in gymnosperms. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook), a diploid (2n = 2x = 22) gymnosperm, is one of the most important industrial and commercial timber species in China. Here, we performed transcriptome sequencing to identify the repertoire of genes expressed in cambium tissue of Chinese fir. Methodology/Principal Findings Based on previous studies, the four stage-specific cambial tissues of Chinese fir were defined using transmission electron microscopy (TEM). In total, 20 million sequencing reads (3.6 Gb) were obtained using Illumina sequencing from Chinese fir cambium tissue collected at active growth stage, with a mean length of 131 bp and a N50 of 90 bp. SOAPdenovo software was used to assemble 62,895 unigenes. These unigenes were further functionally annotated by comparing their sequences to public protein databases. Expression analysis revealed that the altered expression of six homologous genes (ClWOX1, ClWOX4, ClCLV1-like, ClCLV-like, ClCLE12, and ClPIN1-like) correlated positively with changes in cambial activities; moreover, these six genes might be directly involved in cambial function in Chinese fir. Further, the full-length cDNAs and DNAs for ClWOX1 and ClWOX4 were cloned and analyzed. Conclusions In this study, a large number of tissue/stage-specific unigene sequences were generated from the active growth stage of Chinese fir cambium. Transcriptome sequencing of Chinese fir not only provides extensive genetic resources for understanding the molecular mechanisms underlying cambial activities in Chinese fir, but also is expected to be an important foundation for future genetic studies of Chinese fir. This study indicates that ClWOX1 and ClWOX4 could be possible reverse genetic target genes for revealing the molecular mechanisms of cambial activities in Chinese fir.
Collapse
Affiliation(s)
- Zhanjun Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Weidong Liu
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Zhanshou Luo
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Pengkai Wang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Yanjuan Zhang
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
| | - Renhua Zheng
- Fujian Academies of Forestry, Southern Mountain Timber Forest Cultivation Lab, the Ministry of Forestry, Fuzhou, China
| | - Jisen Shi
- Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Nanjing Forestry University, Nanjing, China
- * E-mail:
| |
Collapse
|
141
|
Segatto ALA, Turchetto-Zolet AC, Aizza LCB, Monte-Bello CC, Dornelas MC, Margis R, Freitas LB. MAEWEST expression in flower development of two petunia species. Int J Mol Sci 2013; 14:13796-807. [PMID: 23823801 PMCID: PMC3742218 DOI: 10.3390/ijms140713796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/14/2013] [Accepted: 06/28/2013] [Indexed: 11/16/2022] Open
Abstract
Changes in flower morphology may influence the frequency and specificity of animal visitors. In Petunia (Solanaceae), adaptation to different pollinators is one of the factors leading to species diversification within the genus. This study provides evidence that differential expression patterns of MAWEWEST (MAW) homologs in different Petunia species may be associated with adaptive changes in floral morphology. The Petunia × hybrida MAW gene belongs to the WOX (WUSCHEL-related homeobox) transcription factor family and has been identified as a controller of petal fusion during corolla formation. We analyzed the expression patterns of P. inflata and P. axillaris MAW orthologs (PiMAW and PaMAW, respectively) by reverse transcriptase polymerase chain reaction (RT-PCR), reverse transcription–quantitative PCR (qRT-PCR) and in situ hybridization in different tissues and different developmental stages of flowers in both species. The spatial expression patterns of PiMAW and PaMAW were similar in P. inflata and P. axillaris. Nevertheless, PaMAW expression level in P. axillaris was higher during the late bud development stage as compared to PiMAW in P. inflata. This work represents an expansion of petunia developmental research to wild accessions.
Collapse
Affiliation(s)
- Ana Lúcia A. Segatto
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970 Porto Alegre, RS, Brazil; E-Mail:
| | - Andreia Carina Turchetto-Zolet
- Laboratory of Genomes and Plant Population, Center of Biotechnology and Department of Biophysics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970 Porto Alegre, RS, Brazil; E-Mails: (A.C.T.-Z.); (R.M.)
| | - Lilian Cristina B. Aizza
- Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, P.O. Box 6109, 13418-970 Campinas, SP, Brazil; E-Mails: (L.C.B.A.); (C.C.M.B.); (M.C.D.)
| | - Carolina C. Monte-Bello
- Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, P.O. Box 6109, 13418-970 Campinas, SP, Brazil; E-Mails: (L.C.B.A.); (C.C.M.B.); (M.C.D.)
| | - Marcelo C. Dornelas
- Department of Plant Biology, Institute of Biology, Universidade Estadual de Campinas, P.O. Box 6109, 13418-970 Campinas, SP, Brazil; E-Mails: (L.C.B.A.); (C.C.M.B.); (M.C.D.)
| | - Rogerio Margis
- Laboratory of Genomes and Plant Population, Center of Biotechnology and Department of Biophysics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970 Porto Alegre, RS, Brazil; E-Mails: (A.C.T.-Z.); (R.M.)
| | - Loreta B. Freitas
- Laboratory of Molecular Evolution, Department of Genetics, Universidade Federal do Rio Grande do Sul, P.O. Box 15053, 91501-970 Porto Alegre, RS, Brazil; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-51-3308-9820; Fax: +55-51-3308-7311
| |
Collapse
|
142
|
Hedman H, Zhu T, von Arnold S, Sohlberg JJ. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer picea abies reveals extensive conservation as well as dynamic patterns. BMC PLANT BIOLOGY 2013; 13:89. [PMID: 23758772 PMCID: PMC3701499 DOI: 10.1186/1471-2229-13-89] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 06/03/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Members of the WUSCHEL-RELATED HOMEOBOX (WOX) gene family have important functions during all stages of plant development and have been implicated in the development of morphological novelties during evolution. Most studies have examined the function of these genes in angiosperms and very little is known from other plant species. RESULTS In this study we examine the presence and expression of WOX genes in the conifer Picea abies. We have cloned 11 WOX genes from both mRNA and genomic DNA and examined their phylogenetic relationship to WOX genes from other species as well as their expression during somatic embryogenesis and in adult tissues. CONCLUSIONS Our study shows that all major radiations within the WOX gene family took place before the angiosperm-gymnosperm split and that there has been a recent expansion within the intermediate clade in the Pinaceae family. Furthermore, we show that the genes from the intermediate clade are preferentially expressed during embryo development in Picea abies. Our data also indicates that there are clear orthologs of both WUS and WOX5 present in the P. abies genome.
Collapse
Affiliation(s)
- Harald Hedman
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| | - Tianqing Zhu
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| | - Sara von Arnold
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| | - Joel J Sohlberg
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, Uppsala, SE, 75007, Sweden
| |
Collapse
|
143
|
Lin H, Niu L, Tadege M. STENOFOLIA acts as a repressor in regulating leaf blade outgrowth. PLANT SIGNALING & BEHAVIOR 2013; 8:e24464. [PMID: 23603965 PMCID: PMC3909033 DOI: 10.4161/psb.24464] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 03/27/2013] [Indexed: 05/24/2023]
Abstract
We recently reported that the Medicago WOX gene, STENOFOLIA (STF), acts as a transcriptional repressor in regulating leaf blade outgrowth. By using the Nicotiana sylvestris bladeless lam1 mutant as a genetic tool, we showed that the WUS-box, which is conserved among WUS clade WOX genes, is partly responsible for the repressive activity of STF. All members of the modern/WUS clade genes (WUS, WOX1-WOX7) in Arabidopsis that contain intact WUS-box can substitute for STF/LAM1 function while the intermediate and ancient clade members including WOX9,WOX11 and WOX13 cannot, due to lack of the intact WUS-box. Taken together, our results reveal a conserved repression mechanism playing a central role in cell proliferation conferred to the evolutionarily dynamic WOX gene family with acquisition of a repressor domain.
Collapse
|
144
|
Cho SH, Yoo SC, Zhang H, Pandeya D, Koh HJ, Hwang JY, Kim GT, Paek NC. The rice narrow leaf2 and narrow leaf3 loci encode WUSCHEL-related homeobox 3A (OsWOX3A) and function in leaf, spikelet, tiller and lateral root development. THE NEW PHYTOLOGIST 2013; 198:1071-1084. [PMID: 23551229 DOI: 10.1111/nph.12231] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/10/2013] [Indexed: 05/20/2023]
Abstract
· In order to understand the molecular genetic mechanisms of rice (Oryza sativa) organ development, we studied the narrow leaf2 narrow leaf3 (nal2 nal3; hereafter nal2/3) double mutant, which produces narrow-curly leaves, more tillers, fewer lateral roots, opened spikelets and narrow-thin grains. · We found that narrow-curly leaves resulted mainly from reduced lateral-axis outgrowth with fewer longitudinal veins and more, larger bulliform cells. Opened spikelets, possibly caused by marginal deformity in the lemma, gave rise to narrow-thin grains. · Map-based cloning revealed that NAL2 and NAL3 are paralogs that encode an identical OsWOX3A (OsNS) transcriptional activator, homologous to NARROW SHEATH1 (NS1) and NS2 in maize and PRESSED FLOWER in Arabidopsis. · OsWOX3A is expressed in the vascular tissues of various organs, where nal2/3 mutant phenotypes were displayed. Expression levels of several leaf development-associated genes were altered in nal2/3, and auxin transport-related genes were significantly changed, leading to pin mutant-like phenotypes such as more tillers and fewer lateral roots. OsWOX3A is involved in organ development in rice, lateral-axis outgrowth and vascular patterning in leaves, lemma and palea morphogenesis in spikelets, and development of tillers and lateral roots.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Soo-Cheul Yoo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Haitao Zhang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Devendra Pandeya
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Hee-Jong Koh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Ji-Young Hwang
- Department of Molecular Biotechnology, Dong-A University, Busan, 604-714, Korea
| | - Gyung-Tae Kim
- Department of Molecular Biotechnology, Dong-A University, Busan, 604-714, Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| |
Collapse
|
145
|
The Leaf Adaxial-Abaxial Boundary and Lamina Growth. PLANTS 2013; 2:174-202. [PMID: 27137371 PMCID: PMC4844365 DOI: 10.3390/plants2020174] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/04/2013] [Accepted: 03/14/2013] [Indexed: 12/25/2022]
Abstract
In multicellular organisms, boundaries have a role in preventing the intermingling of two different cell populations and in organizing the morphogenesis of organs and the entire organism. Plant leaves have two different cell populations, the adaxial (or upper) and abaxial (or lower) cell populations, and the boundary is considered to be important for lamina growth. At the boundary between the adaxial and abaxial epidermis, corresponding to the margin, margin-specific structures are developed and structurally separate the adaxial and abaxial epidermis from each other. The adaxial and abaxial cells are determined by the adaxial and abaxial regulatory genes (including transcription factors and small RNAs), respectively. Among many lamina-growth regulators identified by recent genetic analyses, it has been revealed that the phytohormone, auxin, and the WOX family transcription factors act at the adaxial-abaxial boundary downstream of the adaxial-abaxial pattern. Furthermore, mutant analyses of the WOX genes shed light on the role of the adaxial-abaxial boundary in preventing the mixing of the adaxial and abaxial features during lamina growth. In this review, we highlight the recent studies on the dual role of the adaxial-abaxial boundary.
Collapse
|
146
|
Lin H, Niu L, McHale NA, Ohme-Takagi M, Mysore KS, Tadege M. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants. Proc Natl Acad Sci U S A 2013; 110:366-71. [PMID: 23248305 PMCID: PMC3538250 DOI: 10.1073/pnas.1215376110] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The WUSCHEL related homeobox (WOX) genes play key roles in stem cell maintenance, embryonic patterning, and lateral organ development. WOX genes have been categorized into three clades--ancient, intermediate, and modern/WUS--based on phylogenetic analysis, but a functional basis for this classification has not been established. Using the classical bladeless lam1 mutant of Nicotiana sylvestris as a genetic tool, we examined the function of the Medicago truncatula WOX gene, STENOFOLIA (STF), in controlling leaf blade outgrowth. STF and LAM1 are functional orthologs. We found that the introduction of mutations into the WUS-box of STF (STFm1) reduces its ability to complement the lam1 mutant. Fusion of an exogenous repressor domain to STFm1 restores complementation, whereas fusion of an exogenous activator domain to STFm1 enhances the narrow leaf phenotype. These results indicate that transcriptional repressor activity mediated by the WUS-box of STF acts to promote blade outgrowth. With the exception of WOX7, the WUS-box is conserved in the modern clade WOX genes, but is not found in members of the intermediate or ancient clades. Consistent with this, all members of the modern clade except WOX7 can complement the lam1 mutant when expressed using the STF promoter, but members of the intermediate and ancient clades cannot. Furthermore, we found that fusion of either the WUS-box or an exogenous repressor domain to WOX7 or to members of intermediate and ancient WOX clades results in a gain-of-function ability to complement lam1 blade outgrowth. These results suggest that modern clade WOX genes have evolved for repressor activity through acquisition of the WUS-box.
Collapse
Affiliation(s)
- Hao Lin
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401
| | - Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401
| | - Neil A. McHale
- Department of Biochemistry and Genetics, Connecticut Agricultural Experiment Station, New Haven, CT 06504
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8562, Japan; and
| | | | - Million Tadege
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401
| |
Collapse
|
147
|
Romera-Branchat M, Ripoll JJ, Yanofsky MF, Pelaz S. The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:37-49. [PMID: 22946675 DOI: 10.1111/tpj.12010] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/20/2012] [Accepted: 08/29/2012] [Indexed: 05/18/2023]
Abstract
The Arabidopsis fruit forms a seedpod that develops from the fertilized gynoecium. It is mainly comprised of an ovary in which three distinct tissues can be differentiated: the valves, the valve margins and the replum. Separation of cells at the valve margin allows for the valves to detach from the replum and thus dispersal of the seeds. Valves and valve margins are located in lateral positions whereas the replum is positioned medially and retains meristematic properties resembling the shoot apical meristem (SAM). Members of the WUSCHEL-related homeobox family have been involved in stem cell maintenance in the SAM, and within this family, we found that WOX13 is expressed mainly in meristematic tissues including the replum. We also show that wox13 loss-of-function mutations reduce replum size and enhance the phenotypes of mutants affected in the replum identity gene RPL. Conversely, misexpression of WOX13 produces, independently from BP and RPL, an oversized replum and valve defects that closely resemble those of mutants in JAG/FIL activity genes. Our results suggest that WOX13 promotes replum development by likely preventing the activity of the JAG/FIL genes in medial tissues. This regulation seems to play a role in establishing the gradient of JAG/FIL activity along the medio-lateral axis of the fruit critical for proper patterning. Our data have allowed us to incorporate the role of WOX13 into the regulatory network that orchestrates fruit patterning.
Collapse
Affiliation(s)
- Maida Romera-Branchat
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB, Jordi Girona 18, 08034, Barcelona, Spain
| | - Juan José Ripoll
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Martin F Yanofsky
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093-0116, USA
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB, Jordi Girona 18, 08034, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Lluís Companys, 23, 08010, Barcelona, Spain
| |
Collapse
|
148
|
Ohmori Y, Tanaka W, Kojima M, Sakakibara H, Hirano HY. WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. THE PLANT CELL 2013; 25:229-41. [PMID: 23371950 PMCID: PMC3584538 DOI: 10.1105/tpc.112.103432] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 12/19/2012] [Accepted: 01/06/2013] [Indexed: 05/19/2023]
Abstract
The shoot apical meristem is the ultimate source of the cells that constitute the entire aboveground portion of the plant body. In Arabidopsis thaliana, meristem maintenance is regulated by the negative feedback loop of WUSCHEL-CLAVATA (WUS-CLV). Although CLV-like genes, such as FLORAL ORGAN NUMBER1 (FON1) and FON2, have been shown to be involved in maintenance of the reproductive meristems in rice (Oryza sativa), current understanding of meristem maintenance remains insufficient. In this article, we demonstrate that the FON2-LIKE CLE PROTEIN1 (FCP1) and FCP2 genes encoding proteins with similar CLE domains are involved in negative regulation of meristem maintenance in the vegetative phase. In addition, we found that WUSCHEL-RELATED HOMEOBOX4 (WOX4) promotes the undifferentiated state of the meristem in rice and that WOX4 function is associated with cytokinin action. Consistent with similarities in the shoot apical meristem phenotypes caused by overexpression of FCP1 and downregulation of WOX4, expression of WOX4 was negatively regulated by FCP1 (FCP2). Thus, FCP1/2 and WOX4 are likely to be involved in maintenance of the vegetative meristem in rice.
Collapse
Affiliation(s)
- Yoshihiro Ohmori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Wakana Tanaka
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Mikiko Kojima
- RIKEN Plant Science Center, Tsurumi, Yokohama 230-0045, Japan
| | | | - Hiro-Yuki Hirano
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan
- Address correspondence to
| |
Collapse
|
149
|
Zhang H, Wu K, Wang Y, Peng Y, Hu F, Wen L, Han B, Qian Q, Teng S. A WUSCHEL-like homeobox gene, OsWOX3B responses to NUDA/GL-1 locus in rice. RICE (NEW YORK, N.Y.) 2012; 5:30. [PMID: 27234248 PMCID: PMC5520835 DOI: 10.1186/1939-8433-5-30] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/27/2012] [Indexed: 05/12/2023]
Abstract
BACKGROUND Most of the rice varieties are pubescent. However, the presence of trichomes is an undesirable characteristic in rice production because trichomes can cause atmospheric pollution. The use of glabrous rice varieties represents a solution to this problem. Yunnan Nuda Rice, a glabrous cultivar that constitutes approximately 20% of rice germplasms in Yunnan can provide important recourse for breeding of glabrous rice varieties. RESULTS The "Nuda" phenotype in Yunnan Nuda Rice was found to be controlled by a single recessive allelic gene within the well-characterized GL-1 locus. A high-resolution genetic and physical map was constructed using 1,192 Nuda individuals from the F2 population that was delivered from the cross between the Yunnan Nuda variety HMK and the pubescent TN1 variety. The NUDA/GL-1 gene was mapped to a 28.5 kb region containing six annotated genes based on the Nipponbare genomic sequence. By comparing the sequences and expression patterns of different pubescent and glabrous varieties, LOC_Os05g02730, a WUSCHEL-like homeobox gene (OsWOX3B) was identified as the candidate gene. This hypothesis was confirmed by RNA interference (RNAi) and transgenic complementation. Trichome deficiency in RNAi lines was associated with increased efficiency of grain packaging but did not affect the main agronomic traits. CONCLUSION NUDA/GL-1 locus encodes OsWOX3B gene.
Collapse
Affiliation(s)
- Honglei Zhang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Kun Wu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Yufeng Wang
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yu Peng
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Fengyi Hu
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wen
- Puer Agricultural Research Institute, Puer, 66500 China
| | - Bin Han
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310006 China
| | - Sheng Teng
- Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, The Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
150
|
Nakata M, Okada K. The three-domain model: a new model for the early development of leaves in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:1423-7. [PMID: 22951404 PMCID: PMC3548863 DOI: 10.4161/psb.21959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Blade outgrowth and region-specific cell differentiation are crucial events during the early development of plant leaves, and the progression of both of these events requires a normal adaxial-abaxial pattern. In a recent study, we had demonstrated that two WUSCHEL-RELATED HOMEOBOX (WOX) family genes, i.e., PRESSED FLOWER (PRS) and WOX1, act redundantly in blade outgrowth and adaxial-abaxial patterning. During leaf development, the two genes are expressed in the domain between the adaxial and abaxial domains, designated "the middle domain." Together with additional data, we recently proposed "the three-domain model" in which the middle domain is distinct from the adaxial and abaxial domains and plays a key role in blade outgrowth and the pattern formation of the three domains through the function of two WOX genes. In this report, we provide three additional results that reinforce our model: (1) an expanded pattern of abaxial-specific MIR165A expression in prs wox1, (2) a genetic interaction between the two WOX genes and adaxial-specific REVOLUTA gene in adaxial-abaxial patterning and (3) an altered expression pattern of the middle domain-specific marker, consistent with disruption of the adaxial-abaxial pattern.
Collapse
Affiliation(s)
- Miyuki Nakata
- National Institute for Basic Biology, Myodaiji-cho, Okazaki Aichi, Japan.
| | | |
Collapse
|