101
|
Kanja C, Hammond‐Kosack KE. Proteinaceous effector discovery and characterization in filamentous plant pathogens. MOLECULAR PLANT PATHOLOGY 2020; 21:1353-1376. [PMID: 32767620 PMCID: PMC7488470 DOI: 10.1111/mpp.12980] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/03/2020] [Accepted: 07/05/2020] [Indexed: 05/26/2023]
Abstract
The complicated interplay of plant-pathogen interactions occurs on multiple levels as pathogens evolve to constantly evade the immune responses of their hosts. Many economically important crops fall victim to filamentous pathogens that produce small proteins called effectors to manipulate the host and aid infection/colonization. Understanding the effector repertoires of pathogens is facilitating an increased understanding of the molecular mechanisms underlying virulence as well as guiding the development of disease control strategies. The purpose of this review is to give a chronological perspective on the evolution of the methodologies used in effector discovery from physical isolation and in silico predictions, to functional characterization of the effectors of filamentous plant pathogens and identification of their host targets.
Collapse
Affiliation(s)
- Claire Kanja
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- School of BiosciencesUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
102
|
Rahnama M, Novikova O, Starnes JH, Zhang S, Chen L, Farman ML. Transposon-mediated telomere destabilization: a driver of genome evolution in the blast fungus. Nucleic Acids Res 2020; 48:7197-7217. [PMID: 32558886 PMCID: PMC7367193 DOI: 10.1093/nar/gkaa287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/03/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
The fungus Magnaporthe oryzae causes devastating diseases of crops, including rice and wheat, and in various grasses. Strains from ryegrasses have highly unstable chromosome ends that undergo frequent rearrangements, and this has been associated with the presence of retrotransposons (Magnaporthe oryzae Telomeric Retrotransposons-MoTeRs) inserted in the telomeres. The objective of the present study was to determine the mechanisms by which MoTeRs promote telomere instability. Targeted cloning, mapping, and sequencing of parental and novel telomeric restriction fragments (TRFs), along with MinION sequencing of genomic DNA allowed us to document the precise molecular alterations underlying 109 newly-formed TRFs. These included truncations of subterminal rDNA sequences; acquisition of MoTeR insertions by 'plain' telomeres; insertion of the MAGGY retrotransposons into MoTeR arrays; MoTeR-independent expansion and contraction of subtelomeric tandem repeats; and a variety of rearrangements initiated through breaks in interstitial telomere tracts that are generated during MoTeR integration. Overall, we estimate that alterations occurred in approximately sixty percent of chromosomes (one in three telomeres) analyzed. Most importantly, we describe an entirely new mechanism by which transposons can promote genomic alterations at exceptionally high frequencies, and in a manner that can promote genome evolution while minimizing collateral damage to overall chromosome architecture and function.
Collapse
Affiliation(s)
- Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Olga Novikova
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - John H Starnes
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Shouan Zhang
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Li Chen
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| | - Mark L Farman
- Department of Plant Pathology, University of Kentucky, 1405 Veteran's Dr., Lexington, KY 40546, USA
| |
Collapse
|
103
|
Wang Q, Li J, Lu L, He C, Li C. Novel Variation and Evolution of AvrPiz-t of Magnaporthe oryzae in Field Isolates. Front Genet 2020; 11:746. [PMID: 33005166 PMCID: PMC7484972 DOI: 10.3389/fgene.2020.00746] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
The product of the avirulence (Avr) gene of Magnaporthe oryzae can be detected by the product of the corresponding resistance (R) gene of rice and activates immunity to rice mediated by the R gene. The high degree of variability of M. oryzae isolates in pathogenicity makes the control of rice blast difficult. That resistance of the R gene in rice has been lost has been ascribed to the instability of the Avr gene in M. oryzae. Further study on the variation of the Avr genes in M. oryze field isolates may yield valuable information on the durable and effective deployment of R genes in rice production areas. AvrPiz-t and Piz-t are a pair of valuable genes in the Rice-Magnaporthe pathosystem. AvrPiz-t is detectable by Piz-t and determines the effectiveness of Piz-t. To effectively deploy the R gene Piz-t, the distribution, variation, and evolution of the corresponding Avr gene AvrPiz-t were found among 312 M. oryzae isolates collected from Yunnan rice production areas of China. PCR amplification and pathogenicity assays of AvrPiz-t showed that 202 isolates (64.7%) held AvrPiz-t alleles and were avirulent to IRBLzt-T (holding Piz-t). There were 42.3–83.3% avirulent isolates containing AvrPiz-t among seven regions in Yunnan Province. Meanwhile, 11 haplotypes of AvrPiz-t encoding three novel AvrPiz-t variants were identified among 100 isolates. A 198 bps insertion homologous to solo-LTR of the retrotransposon inago2 in the promoter region of AvrPiz-t in one isolate and a frameshift mutation of CDS in another isolate were identified among 100 isolates, and those two isolates had evolved to virulent from avirulent. Synonymous mutation and non-AUG-initiated N-terminal extensions keeps the AvrPiz-t gene avirulence function in M. oryzae field isolates in Yunnan. A haplotype network showed that H3 was an ancestral haplotype. Structure variance for absence (28.2%) or partial fragment loss (71.8%) of AvrPiz-t was found among 39 virulent isolates and may cause the AvrPiz-t avirulence function to be lost. Overall, AvrPiz-t evolved to virulent from avirulent forms via point mutation, retrotransposon, shift mutation, and structure variance under field conditions.
Collapse
Affiliation(s)
- Qun Wang
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jinbin Li
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengxing He
- Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
104
|
Petit-Houdenot Y, Langner T, Harant A, Win J, Kamoun S. A Clone Resource of Magnaporthe oryzae Effectors That Share Sequence and Structural Similarities Across Host-Specific Lineages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1032-1035. [PMID: 32460610 DOI: 10.1094/mpmi-03-20-0052-a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae) is a destructive plant pathogen that can infect about 50 species of both wild and cultivated grasses, including important crops such as rice and wheat. M. oryzae is composed of genetically differentiated lineages that tend to infect specific host genera. To date, most studies of M. oryzae effectors have focused on the rice-infecting lineage. We describe a clone resource of 195 effectors of Magnaporthe species predicted from all the major host-specific lineages. These clones are freely available as Golden Gate-compatible entry plasmids. Our aim is to provide the community with an open source effector clone library to be used in a variety of functional studies. We hope that this resource will encourage studies of M. oryzae effectors on diverse host species.
Collapse
Affiliation(s)
- Yohann Petit-Houdenot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850 Thiverval-Grignon, France
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UK, U.K
| |
Collapse
|
105
|
Chung H, Goh J, Han SS, Roh JH, Kim Y, Heu S, Shim HK, Jeong DG, Kang IJ, Yang JW. Comparative Pathogenicity and Host Ranges of Magnaporthe oryzae and Related Species. THE PLANT PATHOLOGY JOURNAL 2020; 36:305-313. [PMID: 32788889 PMCID: PMC7403518 DOI: 10.5423/ppj.ft.04.2020.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Host shifting and host expansion of fungal plant pathogens increases the rate of emergence of new pathogens and the incidence of disease in various crops, which threaten global food security. Magnaporthe species cause serious disease in rice, namely rice blast disease, as well as in many alternative hosts, including wheat, barley, and millet. A severe outbreak of wheat blast due to Magnaporthe oryzae occurred recently in Bangladesh, after the fungus was introduced from South America, causing great loss of yield. This outbreak of wheat blast is of growing concern, because it might spread to adjacent wheat-producing areas. Therefore, it is important to understand the host range and population structure of M. oryzae and related species for determining the evolutionary relationships among Magnaporthe species and for managing blast disease in the field. Here, we collected isolates of M. oryzae and related species from various Poaceae species, including crops and weeds surrounding rice fields, in Korea and determined their phylogenetic relationships and host species specificity. Internal transcribed spacer-mediated phylogenetic analysis revealed that M. oryzae and related species are classified into four groups primarily including isolates from rice, crabgrass, millet and tall fescue. Based on pathogenicity assays, M. oryzae and related species can infect different Poaceae hosts and move among hosts, suggesting the potential for host shifting and host expansion in nature. These results provide important information on the diversification of M. oryzae and related species with a broad range of Poaceae as hosts in crop fields.
Collapse
Affiliation(s)
- Hyunjung Chung
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jaeduk Goh
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Seong-Sook Han
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jae-Hwan Roh
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Korea
| | - Yangseon Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Hyeong-Kwon Shim
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Da Gyeong Jeong
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - In Jeong Kang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jung-Wook Yang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|
106
|
Latorre SM, Reyes-Avila CS, Malmgren A, Win J, Kamoun S, Burbano HA. Differential loss of effector genes in three recently expanded pandemic clonal lineages of the rice blast fungus. BMC Biol 2020; 18:88. [PMID: 32677941 PMCID: PMC7364606 DOI: 10.1186/s12915-020-00818-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Understanding the mechanisms and timescales of plant pathogen outbreaks requires a detailed genome-scale analysis of their population history. The fungus Magnaporthe (Syn. Pyricularia) oryzae-the causal agent of blast disease of cereals- is among the most destructive plant pathogens to world agriculture and a major threat to the production of rice, wheat, and other cereals. Although M. oryzae is a multihost pathogen that infects more than 50 species of cereals and grasses, all rice-infecting isolates belong to a single genetically defined lineage. Here, we combined the two largest genomic datasets to reconstruct the genetic history of the rice-infecting lineage of M. oryzae based on 131 isolates from 21 countries. RESULTS The global population of the rice blast fungus consists mainly of three well-defined genetic groups and a diverse set of individuals. Multiple population genetic tests revealed that the rice-infecting lineage of the blast fungus probably originated from a recombining diverse group in Southeast Asia followed by three independent clonal expansions that took place over the last ~ 200 years. Patterns of allele sharing identified a subpopulation from the recombining diverse group that introgressed with one of the clonal lineages before its global expansion. Remarkably, the four genetic lineages of the rice blast fungus vary in the number and patterns of presence and absence of candidate effector genes. These genes encode secreted proteins that modulate plant defense and allow pathogen colonization. In particular, clonal lineages carry a reduced repertoire of effector genes compared with the diverse group, and specific combinations of presence and absence of effector genes define each of the pandemic clonal lineages. CONCLUSIONS Our analyses reconstruct the genetic history of the rice-infecting lineage of M. oryzae revealing three clonal lineages associated with rice blast pandemics. Each of these lineages displays a specific pattern of presence and absence of effector genes that may have shaped their adaptation to the rice host and their evolutionary history.
Collapse
Affiliation(s)
- Sergio M Latorre
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany
| | - C Sarai Reyes-Avila
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Hernán A Burbano
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tuebingen, Germany.
- Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
107
|
Genetic Variation Bias toward Noncoding Regions and Secreted Proteins in the Rice Blast Fungus Magnaporthe oryzae. mSystems 2020; 5:5/3/e00346-20. [PMID: 32606028 PMCID: PMC7329325 DOI: 10.1128/msystems.00346-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genomes of plant pathogens are highly variable and plastic. Pathogen gene repertoires change quickly with the plant environment, which results in a rapid loss of plant resistance shortly after the pathogen emerges in the field. Extensive studies have evaluated natural pathogen populations to understand their evolutionary effects; however, the number of studies that have examined the dynamic processes of the mutation and adaptation of plant pathogens to host plants remains limited. Here, we applied experimental evolution and high-throughput pool sequencing to Magnaporthe oryzae, a fungal pathogen that causes massive losses in rice production, to observe the evolution of genome variation. We found that mutations, including single-nucleotide variants (SNVs), insertions and deletions (indels), and transposable element (TE) insertions, accumulated very rapidly throughout the genome of M. oryzae during sequential plant inoculation and preferentially in noncoding regions, while such mutations were not frequently found in coding regions. However, we also observed that new TE insertions accumulated with time and preferentially accumulated at the proximal region of secreted protein (SP) coding genes in M. oryzae populations. Taken together, these results revealed a bias in genetic variation toward noncoding regions and SP genes in M. oryzae and may contribute to the rapid adaptive evolution of the blast fungal effectors under host selection.IMPORTANCE Plants "lose" resistance toward pathogens shortly after their widespread emergence in the field because plant pathogens mutate and adapt rapidly under resistance selection. Thus, the rapid evolution of pathogens is a serious threat to plant health. Extensive studies have evaluated natural pathogen populations to understand their evolutionary effects; however, the study of the dynamic processes of the mutation and adaptation of plant pathogens to host plants remains limited. Here, by performing an experimental evolution study, we found a bias in genetic variation toward noncoding regions and SPs in the rice blast fungus Magnaporthe oryzae, which explains the ability of the rice blast fungus to maintain high virulence variation to overcome rice resistance in the field.
Collapse
|
108
|
High nucleotide sequence variation of avirulent gene, AVR-Pita1, in Thai rice blast fungus population. J Genet 2020. [DOI: 10.1007/s12041-020-01197-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
109
|
Plaumann PL, Koch C. The Many Questions about Mini Chromosomes in Colletotrichum spp. PLANTS 2020; 9:plants9050641. [PMID: 32438596 PMCID: PMC7284448 DOI: 10.3390/plants9050641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022]
Abstract
Many fungal pathogens carry accessory regions in their genome, which are not required for vegetative fitness. Often, although not always, these regions occur as relatively small chromosomes in different species. Such mini chromosomes appear to be a typical feature of many filamentous plant pathogens. Since these regions often carry genes coding for effectors or toxin-producing enzymes, they may be directly related to virulence of the respective pathogen. In this review, we outline the situation of small accessory chromosomes in the genus Colletotrichum, which accounts for ecologically important plant diseases. We summarize which species carry accessory chromosomes, their gene content, and chromosomal makeup. We discuss the large variation in size and number even between different isolates of the same species, their potential roles in host range, and possible mechanisms for intra- and interspecies exchange of these interesting genetic elements.
Collapse
|
110
|
Zhang N, Yang J, Fang A, Wang J, Li D, Li Y, Wang S, Cui F, Yu J, Liu Y, Peng Y, Sun W. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region. MOLECULAR PLANT PATHOLOGY 2020; 21:445-459. [PMID: 32087618 PMCID: PMC7060142 DOI: 10.1111/mpp.12894] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important 'cysteine-proline-alanine-arginine-serine' motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Jiyun Yang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Anfei Fang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Jiyang Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchun130118China
| | - Yuejiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Shanzhi Wang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Fuhao Cui
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
| | - Junjie Yu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu210014China
| | - Yongfeng Liu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjing, Jiangsu210014China
| | - You‐Liang Peng
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
- State Key Laboratory of Agricultural BiotechnologyChina Agricultural UniversityBeijing100193China
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijing100193China
- College of Plant ProtectionJilin Agricultural UniversityChangchun130118China
| |
Collapse
|
111
|
Li Y, Xia C, Wang M, Yin C, Chen X. Whole-genome sequencing of Puccinia striiformis f. sp. tritici mutant isolates identifies avirulence gene candidates. BMC Genomics 2020; 21:247. [PMID: 32197579 PMCID: PMC7085141 DOI: 10.1186/s12864-020-6677-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background The stripe rust pathogen, Puccinia striiformis f. sp. tritici (Pst), threats world wheat production. Resistance to Pst is often overcome by pathogen virulence changes, but the mechanisms of variation are not clearly understood. To determine the role of mutation in Pst virulence changes, in previous studies 30 mutant isolates were developed from a least virulent isolate using ethyl methanesulfonate (EMS) mutagenesis and phenotyped for virulence changes. The progenitor isolate was sequenced, assembled and annotated for establishing a high-quality reference genome. In the present study, the 30 mutant isolates were sequenced and compared to the wide-type isolate to determine the genomic variation and identify candidates for avirulence (Avr) genes. Results The sequence reads of the 30 mutant isolates were mapped to the wild-type reference genome to identify genomic changes. After selecting EMS preferred mutations, 264,630 and 118,913 single nucleotide polymorphism (SNP) sites and 89,078 and 72,513 Indels (Insertion/deletion) were detected among the 30 mutant isolates compared to the primary scaffolds and haplotigs of the wild-type isolate, respectively. Deleterious variants including SNPs and Indels occurred in 1866 genes. Genome wide association analysis identified 754 genes associated with avirulence phenotypes. A total of 62 genes were found significantly associated to 16 avirulence genes after selection through six criteria for putative effectors and degree of association, including 48 genes encoding secreted proteins (SPs) and 14 non-SP genes but with high levels of association (P ≤ 0.001) to avirulence phenotypes. Eight of the SP genes were identified as avirulence-associated effectors with high-confidence as they met five or six criteria used to determine effectors. Conclusions Genome sequence comparison of the mutant isolates with the progenitor isolate unraveled a large number of mutation sites along the genome and identified high-confidence effector genes as candidates for avirulence genes in Pst. Since the avirulence gene candidates were identified from associated SNPs and Indels caused by artificial mutagenesis, these avirulence gene candidates are valuable resources for elucidating the mechanisms of the pathogen pathogenicity, and will be studied to determine their functions in the interactions between the wheat host and the Pst pathogen.
Collapse
Affiliation(s)
- Yuxiang Li
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chongjing Xia
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA. .,USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA, 99164-6430, USA.
| |
Collapse
|
112
|
Zhang Z, Jia Y, Wang Y, Sun G. A Rapid Survey of Avirulence Genes in Field Isolates of Magnaporthe oryzae. PLANT DISEASE 2020; 104:717-723. [PMID: 31935345 DOI: 10.1094/pdis-08-19-1688-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnaporthe oryzae is the causal agent for the devastating disease rice blast. The avirulence (AVR) genes in M. oryzae are required to initiate robust disease resistance mediated by the corresponding resistance (R) genes in rice. Therefore, monitoring pathogen AVR genes is important to predict the stability of R gene-mediated blast resistance. In the present study, we analyzed the DNA sequence dynamics of five AVR genes, namely, AVR-Pita1, AVR-Pik, AVR-Pizt, AVR-Pia, and AVR-Pii, in field isolates of M. oryzae in order to understand the effectiveness of the R genes, Pi-ta, Pi-k, Pi-zt, Pia, and Pii in the Southern U.S. rice growing region. Genomic DNA of 258 blast isolates collected from commercial fields of the Southern UNITED STATES during 1975-2009 were subjected to PCR amplification with AVR gene-specific PCR markers. PCR products were obtained from 232 isolates. The absence of PCR products in the remaining 26 isolates suggests that these isolates do not contain the tested AVR genes. Amplified PCR products were subsequently gel purified and sequenced. Based on the presence or absence of the five AVR genes, 232 field isolates were classified into 10 haplotype groups. The results revealed that 174 isolates of M. oryzae carried AVR-Pita1, 225 isolates carried AVR-Pizt, 44 isolates carried AVR-Pik, 3 isolates carried AVR-Pia, and one isolate carried AVR-Pii. AVR-Pita1 was highly variable, and 40 AVR-Pita1 haplotypes were identified in avirulent isolates. AVR-Pik had four nucleotide sequence site changes resulting in amino acid substitutions, whereas three other AVR genes, AVR-Pizt, AVR-Pia, and AVR-Pii, were relatively stable. Two AVR genes, AVR-Pik and AVR-Pizt, were found to exist in relatively larger proportions of the tested field isolates, which suggested that their corresponding R genes Pi-k and Pi-zt can be deployed in preventing blast disease in the Southern UNITED STATES in addition to Pi-ta. This study demonstrates that continued AVR gene monitoring in the pathogen population is critical for ensuring the effectiveness of deployed blast R genes in commercial rice fields.
Collapse
Affiliation(s)
- Zhen Zhang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yulin Jia
- USDA-ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, U.S.A
| | - Yanli Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guochang Sun
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
113
|
Xiao G, Yang J, Zhu X, Wu J, Zhou B. Prevalence of Ineffective Haplotypes at the Rice Blast Resistance (R) Gene Loci in Chinese Elite Hybrid Rice Varieties Revealed by Sequence-Based Molecular Diagnosis. RICE (NEW YORK, N.Y.) 2020; 13:6. [PMID: 32002696 PMCID: PMC6990218 DOI: 10.1186/s12284-020-0367-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Multiple haplotypes at the same rice blast R-gene locus share extremely high sequence similarity, which makes the gene diagnostic method using molecular markers less effective in differentiation from one another. The composition and distribution pattern of deployed R genes/haplotypes in elite rice varieties has not been extensively analyzed. In this study, we employed PCR amplification and sequencing approach for the diagnosis of R-gene haplotypes in 54 Chinese elite rice varieties. A varied number of functional and nonfunctional haplotypes of 4 target major R-gene loci, i.e., Pi2/9, Pi5, Pik, and Pib, were deduced by referring to the reference sequences of known R genes. Functional haplotypes accounted for relatively low frequencies for the Pi2/9 (15%) and Pik (9%) loci but for relatively high frequencies for the Pi5 (50%) and Pib (54%) loci. Intriguingly, significant frequencies of 33%, 39%, 46% of non-functional haplotypes at the Pi2/9, Pik, and Pib loci, respectively, with traceable original donors were identified, suggesting that they were most likely unintentionally spread by using undesirable donors in various breeding programs. In the case of Pi5 locus, only a single haplotype, i.e., Pi5 was identified. The reactions of 54 rice varieties to the differential isolates were evaluated, which showed a good correlation to the frequency of cognate avirulence (Avr) genes or haplotypes in the differential isolates. Four R genes, i.e., Pi2, Piz-t, Pi50, and Pikm were found to contribute significantly to the resistance of the elite rice varieties. Other two genes, Pi9 and Pikh, which were not utilized in rice varieties, showed promising values in breeding durable resistance due to their high resistance frequencies to the contemporary rice blast population. The sequence-based molecular diagnosis provided a promising approach for the identification and verification of haplotypes in different R-gene loci and effective R genes valuable for breeding durable rice resistance to rice blast.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Jianyuan Yang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Xiaoyuan Zhu
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, Hunan China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
114
|
Kim KT, Ko J, Song H, Choi G, Kim H, Jeon J, Cheong K, Kang S, Lee YH. Evolution of the Genes Encoding Effector Candidates Within Multiple Pathotypes of Magnaporthe oryzae. Front Microbiol 2019; 10:2575. [PMID: 31781071 PMCID: PMC6851232 DOI: 10.3389/fmicb.2019.02575] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/24/2019] [Indexed: 01/08/2023] Open
Abstract
Magnaporthe oryzae infects rice, wheat, and many grass species in the Poaceae family by secreting protein effectors. Here, we analyzed the distribution, sequence variation, and genomic context of effector candidate (EFC) genes in 31 isolates that represent five pathotypes of M. oryzae, three isolates of M. grisea, a sister species of M. oryzae, and one strain each for eight species in the family Magnaporthaceae to investigate how the host range expansion of M. oryzae has likely affected the evolution of effectors. We used the EFC genes of M. oryzae strain 70-15, whose genome has served as a reference for many comparative genomics analyses, to identify their homologs in these strains. We also analyzed the previously characterized avirulence (AVR) genes and single-copy orthologous (SCO) genes in these strains, which showed that the EFC and AVR genes evolved faster than the SCO genes. The EFC and AVR repertoires among M. oryzae pathotypes varied widely probably because adaptation to individual hosts exerted different types of selection pressure. Repetitive DNA elements appeared to have caused the variation of some EFC genes. Lastly, we analyzed expression patterns of the AVR and EFC genes to test the hypothesis that such genes are preferentially expressed during host infection. This comprehensive dataset serves as a foundation for future studies on the genetic basis of the evolution and host specialization in M. oryzae.
Collapse
Affiliation(s)
- Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
| | - Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, State College, PA, United States
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea.,Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea.,Plant Immunity Research Center, Seoul National University, Seoul, South Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
115
|
Chen W, Li Y, Yan R, Xu L, Ren L, Liu F, Zeng L, Yang H, Chi P, Wang X, Chen K, Ma D, Fang X. Identification and Characterization of Plasmodiophora brassicae Primary Infection Effector Candidates that Suppress or Induce Cell Death in Host and Nonhost Plants. PHYTOPATHOLOGY 2019; 109:1689-1697. [PMID: 31188071 DOI: 10.1094/phyto-02-19-0039-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Clubroot caused by Plasmodiophora brassicaeis one of the most important diseases in cruciferous crops. The recognition of P. brassicae by host plants is thought to occur at the primary infection stage, but the underlying mechanism remains unclear. Secretory proteins as effector candidates play critical roles in the recognition of pathogens and the interactions between pathogens and hosts. In this study, 33 P. brassicae secretory proteins expressed during primary infection were identified through transcriptome, secretory protein prediction, and yeast signal sequence trap analyses. Furthermore, the proteins that could suppress or induce cell death were screened through an Agrobacterium-mediated plant virus transient expression system and a protoplast transient expression system. Two secretory proteins, PBCN_002550 and PBCN_005499, were found to be capable of inducing cell death associated with H2O2 accumulation and electrolyte leakage in Nicotiana benthamiana. Moreover, PBCN_002550 could also induce cell death in Chinese cabbage. In addition, 24 of the remaining 31 tested secretory proteins could suppress mouse Bcl-2-associated X protein-induced cell death, and 28 proteins could suppress PBCN_002550-induced cell death.
Collapse
Affiliation(s)
- Wang Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Yan Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Ruibin Yan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Li Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Li Ren
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Fan Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Lingyi Zeng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Huan Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Peng Chi
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Xiuzhen Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Kunrong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
| | - Xiaoping Fang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| |
Collapse
|
116
|
Vo KTX, Lee SK, Halane MK, Song MY, Hoang TV, Kim CY, Park SY, Jeon J, Kim ST, Sohn KH, Jeon JS. Pi5 and Pii Paired NLRs Are Functionally Exchangeable and Confer Similar Disease Resistance Specificity. Mol Cells 2019; 42:637-645. [PMID: 31564075 PMCID: PMC6776156 DOI: 10.14348/molcells.2019.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 08/06/2019] [Indexed: 01/06/2023] Open
Abstract
Effector-triggered immunity (ETI) is an effective layer of plant defense initiated upon recognition of avirulence (Avr) effectors from pathogens by cognate plant disease resistance (R) proteins. In rice, a large number of R genes have been characterized from various cultivars and have greatly contributed to breeding programs to improve resistance against the rice blast pathogen Magnaporthe oryzae. The extreme diversity of R gene repertoires is thought to be a result of co-evolutionary history between rice and its pathogens including M. oryzae. Here we show that Pii is an allele of Pi5 by DNA sequence characterization and complementation analysis. Pii-1 and Pii-2 cDNAs were cloned by reverse transcription polymerase chain reaction from the Pii -carrying cultivar Fujisaka5 . The complementation test in susceptible rice cultivar Dongjin demonstrated that the rice blast resistance mediated by Pii , similar to Pi5 , requires the presence of two nucleotide-binding leucine-rich repeat genes, Pii-1 and Pii-2 . Consistent with our hypothesis that Pi5 and Pii are functionally indistinguishable, the replacement of Pii-1 by Pi5-1 and Pii-2 by Pi5-2 , respectively, does not change the level of disease resistance to M. oryzae carrying AVR-Pii. Surprisingly, Exo70F3, required for Pii-mediated resistance, is dispensable for Pi5-mediated resistance. Based on our results, despite similarities observed between Pi5 and Pii, we hypothesize that Pi5 and Pii pairs require partially distinct mechanisms to function.
Collapse
Affiliation(s)
- Kieu Thi Xuan Vo
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Morgan K. Halane
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Min-Young Song
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Trung Viet Hoang
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| | - Sook-Young Park
- Department of Plant Medicine, Sunchon National University, Suncheon 57922,
Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541,
Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang 46241,
Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104,
Korea
| |
Collapse
|
117
|
De la Concepcion JC, Franceschetti M, MacLean D, Terauchi R, Kamoun S, Banfield MJ. Protein engineering expands the effector recognition profile of a rice NLR immune receptor. eLife 2019; 8:47713. [PMID: 31535976 PMCID: PMC6768660 DOI: 10.7554/elife.47713] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Plant nucleotide binding, leucine-rich repeat (NLR) receptors detect pathogen effectors and initiate an immune response. Since their discovery, NLRs have been the focus of protein engineering to improve disease resistance. However, this approach has proven challenging, in part due to their narrow response specificity. Previously, we revealed the structural basis of pathogen recognition by the integrated heavy metal associated (HMA) domain of the rice NLR Pikp (Maqbool et al., 2015). Here, we used structure-guided engineering to expand the response profile of Pikp to variants of the rice blast pathogen effector AVR-Pik. A mutation located within an effector-binding interface of the integrated Pikp–HMA domain increased the binding affinity for AVR-Pik variants in vitro and in vivo. This translates to an expanded cell-death response to AVR-Pik variants previously unrecognized by Pikp in planta. The structures of the engineered Pikp–HMA in complex with AVR-Pik variants revealed the mechanism of expanded recognition. These results provide a proof-of-concept that protein engineering can improve the utility of plant NLR receptors where direct interaction between effectors and NLRs is established, particularly where this interaction occurs via integrated domains.
Collapse
Affiliation(s)
| | | | - Dan MacLean
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan.,Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
118
|
Guo X, Zhong D, Xie W, He Y, Zheng Y, Lin Y, Chen Z, Han Y, Tian D, Liu W, Wang F, Wang Z, Chen S. Functional Identification of Novel Cell Death-inducing Effector Proteins from Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2019; 12:59. [PMID: 31388773 PMCID: PMC6684714 DOI: 10.1186/s12284-019-0312-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/08/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND Secreted effector proteins play critical roles in plant-fungal interactions. The Magnaporthe oryzae genome encodes a large number of secreted proteins. However, the function of majority of M. oryzae secreted proteins remain to be characterized. We previously identified 851 in planta-expressed M. oryzae genes encoding putative secreted proteins, and characterized five M. oryzae cell death-inducing proteins MoCDIP1 to MoCDIP5. In the present study, we expand our work on identification of novel MoCDIP proteins. RESULTS We performed transient expression assay of 98 more in planta-expressed M. oryzae putative secreted protein genes, and identified eight novel proteins, MoCDIP6 to MoCDIP13, that induced plant cell death. Yeast secretion assay and truncation expression analysis revealed that the signal peptides that led the secretion of proteins to the extracellular space, were required for cell death inducing activity of the novel MoCDIPs except for MoCDIP8. Exogenous treatment of rice seedlings with recombinant MoCDIP6 or MoCDIP7 resulted in enhanced resistance to blast fungus, indicating that the two MoCDIPs trigger cell death and elicit defense responses in rice. CONCLUSIONS The newly identified MoCDIP6 to MoCDIP13, together with previously identified MoCDIP1 to MoCDIP5, provide valuable targets for further dissection of the molecular mechanisms underlying the rice-blast fungus interaction.
Collapse
Affiliation(s)
- Xinrui Guo
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, 350108, China
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Debin Zhong
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Wei Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanhua He
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Yueqin Zheng
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Yan Lin
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Zaijie Chen
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Yijuan Han
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, 350108, China
| | - Dagang Tian
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng Wang
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China.
| | - Zonghua Wang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, 350108, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Songbiao Chen
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, 350108, China.
- Fujian Academy of Agricultural Sciences, Biotechnology Research Institute, Fuzhou, 350003, China.
| |
Collapse
|
119
|
Li W, Chern M, Yin J, Wang J, Chen X. Recent advances in broad-spectrum resistance to the rice blast disease. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:114-120. [PMID: 31163394 DOI: 10.1016/j.pbi.2019.03.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 05/20/2023]
Abstract
Blast is arguably the most devastating fungal disease of rice. Systematic studies of this disease have made significant progress and identified many genes. Broad-spectrum resistance is highly preferred in agricultural practice. Here, we focus our discussion on resistance (R) and defense-regulator (DR) genes that confer broad-spectrum resistance to Magnaporthe oryzae, in particular those potentially causing no significant yield penalties. Recent advances show that broad-spectrum resistance can be achieved without significant yield penalties, or even with yield benefits. Cross talks of defense signaling mediated by these genes are present that may allow the host to integrate different anti-fungal factors against M. oryzae infection. We also summarize possible mechanisms underlying broad-spectrum resistance to rice blast.
Collapse
Affiliation(s)
- Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (In preparation), State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China.
| |
Collapse
|
120
|
Li C, Wang D, Peng S, Chen Y, Su P, Chen J, Zheng L, Tan X, Liu J, Xiao Y, Kang H, Zhang D, Wang GL, Liu Y. Genome-wide association mapping of resistance against rice blast strains in South China and identification of a new Pik allele. RICE (NEW YORK, N.Y.) 2019; 12:47. [PMID: 31309315 PMCID: PMC6629727 DOI: 10.1186/s12284-019-0309-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/30/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Effective management of rice blast, caused by the fungus Magnaporthe oryzae, requires an understanding of the genetic architecture of the resistance to the disease in rice. Rice resistance varies with M. oryzae strains, and many quantitative trait loci (QTLs) affecting rice blast resistance have been mapped using different strains of M. oryzae from different areas. However, little is known about the genetic architecture of rice resistance against the M. oryzae population in Hunan Province, which is a main rice production area in South China. RESULTS In this study, we used three isolates from Hunan Province and the rice diversity panel 1 to perform a genome-wide association study (GWAS) of blast resistance in rice. A total of 56 QTLs were identified. One of the QTLs is localized with the resistance gene Pik locus which confers resistance to all three isolates. Genomic sequence analysis of the resistant cultivars led to the identification of a new Pik allele, which we named Pikx. Yeast two-hybrid and co-immunoprecipitation assays between AvrPiks and Pikx confirmed that Pikx is a new allele at the Pik locus. CONCLUSIONS Our GWAS has identified many new blast resistance QTLs. The identified new Pik allele Pikx will be useful for breeding cultivars with high resistance to blast in Hunan and other South China provinces. Further research on the relationship between AvrPiks and Pikx will provide new insights into the molecular mechanism of rice resistance to M. oryzae.
Collapse
Affiliation(s)
- Chenggang Li
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Dan Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Shasha Peng
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yue Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Pin Su
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianbin Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Limin Zheng
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jinling Liu
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yinghui Xiao
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Houxiang Kang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Guo-Liang Wang
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China and College of Agronomy, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- Department of Plant Pathology, Ohio State University, Columbus, OH, 43210, USA.
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
121
|
Varden FA, Saitoh H, Yoshino K, Franceschetti M, Kamoun S, Terauchi R, Banfield MJ. Cross-reactivity of a rice NLR immune receptor to distinct effectors from the rice blast pathogen Magnaporthe oryzae provides partial disease resistance. J Biol Chem 2019; 294:13006-13016. [PMID: 31296569 PMCID: PMC6721932 DOI: 10.1074/jbc.ra119.007730] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/04/2019] [Indexed: 12/19/2022] Open
Abstract
Unconventional integrated domains in plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLRs) type can directly bind translocated effector proteins from pathogens and thereby initiate an immune response. The rice (Oryza sativa) immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the effectors AVR–Pik and AVR–Pia, respectively, from the rice blast fungal pathogen Magnaporthe oryzae. These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains in NLRs maintain specificity of effector recognition, even of structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here, using plant cell death and pathogenicity assays and protein–protein interaction analyses, we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance toward the “mis-matched” effector AVR–Pia in planta and that the Pikp–HMA domain binds AVR–Pia in vitro. We observed that the HMA domain from another Pik-1 allele, Pikm, cannot bind AVR–Pia, and it does not trigger a plant response. The crystal structure of Pikp–HMA bound to AVR–Pia at 1.9 Å resolution revealed a binding interface different from those formed with AVR–Pik effectors, suggesting plasticity in integrated domain-effector interactions. The results of our work indicate that a single NLR immune receptor can bait multiple pathogen effectors via an integrated domain, insights that may enable engineering plant immune receptors with extended disease resistance profiles.
Collapse
Affiliation(s)
- Freya A Varden
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Hiromasa Saitoh
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Kae Yoshino
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate 024-0003, Japan; Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, United Kingdom.
| |
Collapse
|
122
|
Longya A, Chaipanya C, Franceschetti M, Maidment JHR, Banfield MJ, Jantasuriyarat C. Gene Duplication and Mutation in the Emergence of a Novel Aggressive Allele of the AVR-Pik Effector in the Rice Blast Fungus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:740-749. [PMID: 30601714 DOI: 10.1094/mpmi-09-18-0245-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Higher yield potential and greater yield stability are common targets for crop breeding programs, including those in rice. Despite these efforts, biotic and abiotic stresses continue to impact rice production. Rice blast disease, caused by Magnaporthe oryzae, is the most devastating disease affecting rice worldwide. In the field, resistant varieties are unstable and can become susceptible to disease within a few years of release due to the adaptive potential of the blast fungus, specifically in the effector (avirulence [AVR]) gene pool. Here, we analyzed genetic variation of the effector gene AVR-Pik in 58 rice blast isolates from Thailand and examined the interaction between AVR-Pik and the cognate rice resistance gene Pik. Our results reveal that Thai rice blast isolates are very diverse. We observe four AVR-Pik variants in the population, including three previously identified variants, AVR-PikA, AVR-PikD, and AVR-PikE, and one novel variant, which we named AVR-PikF. Interestingly, 28 of the isolates contained two copies of AVR-Pik, always in the combination of AVR-PikD and AVR-PikF. Blast isolates expressing only AVR-PikF show high virulence to rice cultivars encoding allelic Pik resistance genes, and the AVR-PikF protein does not interact with the integrated heavy metal-associated domain of the Pik resistance protein in vitro, suggesting a mechanism for immune evasion.
Collapse
Affiliation(s)
- Apinya Longya
- 1 Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, U.K.; and
| | - Chaivarakun Chaipanya
- 1 Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Marina Franceschetti
- 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, U.K.; and
| | - Josephine H R Maidment
- 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, U.K.; and
| | - Mark J Banfield
- 2 Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, U.K.; and
| | - Chatchawan Jantasuriyarat
- 1 Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- 3 Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU), Kasetsart University
| |
Collapse
|
123
|
Li J, Wang Q, Li C, Bi Y, Fu X, Wang R. Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae. BMC PLANT BIOLOGY 2019; 19:204. [PMID: 31096914 PMCID: PMC6524238 DOI: 10.1186/s12870-019-1817-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/02/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Rice blast disease is one of the most destructive fungal disease of rice worldwide. The avirulence (AVR) genes of Magnaporthe oryzae are recognized by the cognate resistance (R) genes of rice and trigger race-specific resistance. The variation in AVR is one of the major drivers of new races. Detecting the variation in the AVR gene in isolates from a population of Magnaporthe oryzae collected from rice production fields will aid in evaluating the effectiveness of R genes in rice production areas. The Pik gene contains 5 R alleles (Pik, Pikh, Pikp, Pikm and Piks) corresponding to the AVR alleles (AVR-Pik/kh/kp/km/ks) of M. oryzae. The Pik gene specifically recognizes and prevents infections by isolates of M. oryzae that contain AVR-Pik. The molecular variation in AVR-Pik alleles of M. oryzae and Pik alleles of rice remains unclear. RESULTS We studied the possible evolutionary pathways of AVR-Pik alleles by analyzing their DNA sequence variation and assaying their avirulence to the cognate Pik alleles of resistance genes under field conditions in China. The results of PCR products from genomic DNA showed that 278 of the 366 isolates of M. oryzae collected from Yunnan Province, China, carried AVR-Pik alleles. Among the isolates from six regions of Yunnan, 66.7-90.3% carried AVR-Pik alleles. Moreover, 10 AVR-Pik haplotypes encoding five novel AVR-Pik variants were identified among 201 isolates. The AVR-Pik alleles evolved to virulent from avirulent forms via stepwise base substitution. These findings demonstrate that AVR-Pik alleles are under positive selection and that mutations are responsible for defeating race-specific resistant Pik alleles in nature. CONCLUSIONS We demonstrated the polymorphism and distribution of AVR-Pik alleles in Yunnan Province, China. By pathogenicity assays used to detect the function of the different haplotypes of AVR-Pik, for the first time, we showed the avoidance and stepwise evolution of AVR-Pik alleles in rice production areas of Yunnan. The functional AVR-Pik possesses diversified sequence structures and is under positive selection in nature.
Collapse
Affiliation(s)
- Jinbin Li
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qun Wang
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| | - Yunqing Bi
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xue Fu
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Raoquan Wang
- Agricultural Environment and Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
124
|
Singh PK, Mahato AK, Jain P, Rathour R, Sharma V, Sharma TR. Comparative Genomics Reveals the High Copy Number Variation of a Retro Transposon in Different Magnaporthe Isolates. Front Microbiol 2019; 10:966. [PMID: 31134015 PMCID: PMC6512758 DOI: 10.3389/fmicb.2019.00966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
Magnaporthe oryzae is one of the fungal pathogens of rice which results in heavy yield losses worldwide. Understanding the genomic structure of M. oryzae is essential for appropriate deployment of the blast resistance in rice crop improvement programs. In this study we sequenced two M. oryzae isolates, RML-29 (avirulent) and RP-2421 (highly virulent) and performed comparative study along with three publically available genomes of 70-15, P131, and Y34. We identified several candidate effectors (>600) and isolate specific sequences from RML-29 and RP-2421, while a core set of 10013 single copy orthologs were found among the isolates. Pan-genome analysis showed extensive presence and absence variations (PAVs). We identified isolate-specific genes across 12 isolates using the pan-genome information. Repeat analysis was separately performed for each of the 15 isolates. This analysis revealed ∼25 times higher copy number of short interspersed nuclear elements (SINE) in virulent than avirulent isolate. We conclude that the extensive PAVs and occurrence of SINE throughout the genome could be one of the major mechanisms by which pathogenic variability is emerging in M. oryzae isolates. The knowledge gained in this comparative genome study can provide understandings about the fungal genome variations in different hosts and environmental conditions, and it will provide resources to effectively manage this important disease of rice.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Ajay Kumar Mahato
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
| | - Priyanka Jain
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Rajeev Rathour
- Department of Agricultural Biotechnology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya (CSK HPKV), Palampur, India
| | - Vinay Sharma
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Tilak Raj Sharma
- Indian Council of Agricultural Research (ICAR)-National Research Centre on Plant Biotechnology, New Delhi, India
- National Agri-Food Biotechnology Institute, Mohali, India
| |
Collapse
|
125
|
Wang C, Liu Y, Liu L, Wang Y, Yan J, Wang C, Li C, Yang J. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of Magnaporthe oryzae from the biotrophic to the necrotrophic phase. Saudi J Biol Sci 2019; 26:795-807. [PMID: 31049006 PMCID: PMC6486625 DOI: 10.1016/j.sjbs.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 01/01/2023] Open
Abstract
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.
Collapse
Key Words
- ATMT, agrobacterium tumefaciens-mediated transformation
- BAS, biotrophy-associated secreted
- BIC, biotrophic interfacial complex
- Bgh, Blumeria graminis
- DAB, diaminobenzidine
- EIHM, extra-invasive hyphal membrane
- Effector
- GFP, green fluorescence protein
- GST, glutathione-S-transferase
- Hemibiotrophic fungi
- IH, invasive hyphae
- LTH, Lijiangxintuanheigu
- M.oryzae, Magnaporthe oryzae
- Magnaporthe oryzae
- ORF, open reading frame
- OsMPK12, rice mitogen-activated protein kinase 12
- OsMPK6, rice mitogen-activated protein kinase 6
- PBS, phosphate buffer saline
- PCD, programmed cell death
- PDA, potato dextrose agar
- PR gene, pathogenicity related gene
- ROS, reactive oxygen species
- Rice
- YLG, Yue Liang Gu
- hpi, hours post inoculation
Collapse
Affiliation(s)
- Chunmei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Yanfang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China.,Quality Standard and Testing Technology Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Yunfeng Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Jinlu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 65000, China
| |
Collapse
|
126
|
Olukayode T, Quime B, Shen YC, Yanoria MJ, Zhang S, Yang J, Zhu X, Shen WC, von Tiedemann A, Zhou B. Dynamic Insertion of Pot3 in AvrPib Prevailing in a Field Rice Blast Population in the Philippines Led to the High Virulence Frequency Against the Resistance Gene Pib in Rice. PHYTOPATHOLOGY 2019; 109:870-877. [PMID: 30501464 DOI: 10.1094/phyto-06-18-0198-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The Magnaporthe oryzae avirulence gene AvrPib is required for the resistance mediated by its cognate resistance gene Pib, which has been intensively used in indica rice breeding programs in many Asian countries. However, the sequence diversity of AvrPib among geographically distinct M. oryzae populations was recently shown to be increasing. Here, we selected a field population consisting of 248 rice blast isolates collected from a disease hotspot in Philippine for the analysis of AvrPib haplotypes and their pathogenicity against Pib. We found that all of the isolates were virulent to Pib and each of them contained an insertion of Pot3 transposon in AvrPib. Moreover, Pot3 insertion was detected in different genomic positions, resulting in three different AvrPib haplotypes, designated avrPib-H1 to H3. We further conducted a genome-wide Pot2 fingerprinting analysis by repetitive element palindromic polymerase chain reaction (PCR) and identified seven different lineages out of 47 representative isolates. The isolates belonging to the same lineage often had the same AvrPib haplotype. In contrast, the isolates having the same AvrPib haplotypes did not always belong to the same lineages. Both mating types MAT1-1 and MAT1-2 were identified in the population in Bohol and the latter appeared dominant. On the host side, we found that 32 of 52 released rice varieties in the Philippines contained Pib diagnosed by PCR gene-specific primers and DNA sequencing of gene amplicons, suggesting that it was widely incorporated in different rice varieties. Our study highlights the genetic dynamics of rice blast population at both the AvrPib locus and the genome-wide levels, providing insight into the mechanisms of the mutations in AvrPib leading to the breakdown of Pib-mediated resistance in rice.
Collapse
Affiliation(s)
- Toluwase Olukayode
- 1 Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Faculty of Agricultural Sciences, Georg-August University, Grisebachstraße 6, D-37077 Göttingen, Germany
- 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Berlaine Quime
- 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Yin-Chi Shen
- 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- 3 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617 Taiwan
| | - Mary Jeannie Yanoria
- 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Suobing Zhang
- 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
- 4 Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; and
| | - Jianyuan Yang
- 5 Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- 5 Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wei-Chiang Shen
- 3 Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 10617 Taiwan
| | - Andreas von Tiedemann
- 1 Division of Plant Pathology and Crop Protection, Department of Crop Sciences, Faculty of Agricultural Sciences, Georg-August University, Grisebachstraße 6, D-37077 Göttingen, Germany
| | - Bo Zhou
- 2 International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
127
|
Tsushima A, Gan P, Kumakura N, Narusaka M, Takano Y, Narusaka Y, Shirasu K. Genomic Plasticity Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum. Genome Biol Evol 2019; 11:1487-1500. [PMID: 31028389 PMCID: PMC6535813 DOI: 10.1093/gbe/evz087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Phytopathogen genomes are under constant pressure to change, as pathogens are locked in an evolutionary arms race with their hosts, where pathogens evolve effector genes to manipulate their hosts, whereas the hosts evolve immune components to recognize the products of these genes. Colletotrichum higginsianum (Ch), a fungal pathogen with no known sexual morph, infects Brassicaceae plants including Arabidopsis thaliana. Previous studies revealed that Ch differs in its virulence toward various Arabidopsis thaliana ecotypes, indicating the existence of coevolutionary selective pressures. However, between-strain genomic variations in Ch have not been studied. Here, we sequenced and assembled the genome of a Ch strain, resulting in a highly contiguous genome assembly, which was compared with the chromosome-level genome assembly of another strain to identify genomic variations between strains. We found that the two closely related strains vary in terms of large-scale rearrangements, the existence of strain-specific regions, and effector candidate gene sets and that these variations are frequently associated with transposable elements (TEs). Ch has a compartmentalized genome consisting of gene-sparse, TE-dense regions with more effector candidate genes and gene-dense, TE-sparse regions harboring conserved genes. Additionally, analysis of the conservation patterns and syntenic regions of effector candidate genes indicated that the two strains vary in their effector candidate gene sets because of de novo evolution, horizontal gene transfer, or gene loss after divergence. Our results reveal mechanisms for generating genomic diversity in this asexual pathogen, which are important for understanding its adaption to hosts.
Collapse
Affiliation(s)
- Ayako Tsushima
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Mari Narusaka
- Research Institute for Biological Sciences Okayama, Kaga-gun, Japan
| | | | | | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
128
|
Nie HZ, Zhang L, Zhuang HQ, Shi WJ, Yang XF, Qiu DW, Zeng HM. The Secreted Protein MoHrip1 Is Necessary for the Virulence of Magnaporthe oryzae. Int J Mol Sci 2019; 20:E1643. [PMID: 30987045 PMCID: PMC6480625 DOI: 10.3390/ijms20071643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
Secreted effectors from Magnaporthe oryzae play critical roles in the interaction with rice to facilitate fungal infection and disease development. M. oryzae-secreted protein MoHrip1 can improve plant defense as an elicitor in vitro, however, its biological function in fungal infection is not clear. In this study, we found that the expression of mohrip1 was significantly induced in the stages of fungal penetration and colonization. Although dispensable for the growth and conidiation, MoHrip1 was necessary for the full virulence of M. oryzae. Deletion of mohrip1 remarkably compromised fungal virulence on rice seedlings and even on rice leaves with wounds. Rice sheath inoculation assay further demonstrated the defects of mohrip1-deleted mutants on penetration and proliferation in rice cells. Additionally, compared with WT and complementation strain, the inoculation of mohrip1-deleted mutants induced a higher expression of specific defense related genes and a higher production of specific defensive compounds in rice leaves. These data collectively indicated that MoHrip1 is necessary for fungal penetration and invasive expansion, and further full virulence of rice blast fungus.
Collapse
Affiliation(s)
- Hai-Zhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Lin Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hui-Qian Zhuang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wen-Jiong Shi
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiu-Fen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - De-Wen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Hong-Mei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
129
|
Hassing B, Winter D, Becker Y, Mesarich CH, Eaton CJ, Scott B. Analysis of Epichloë festucae small secreted proteins in the interaction with Lolium perenne. PLoS One 2019; 14:e0209463. [PMID: 30759164 PMCID: PMC6374014 DOI: 10.1371/journal.pone.0209463] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/25/2019] [Indexed: 12/27/2022] Open
Abstract
Epichloë festucae is an endophyte of the agriculturally important perennial ryegrass. This species systemically colonises the aerial tissues of this host where its growth is tightly regulated thereby maintaining a mutualistic symbiotic interaction. Recent studies have suggested that small secreted proteins, termed effectors, play a vital role in the suppression of host defence responses. To date only a few effectors with important roles in mutualistic interactions have been described. Here we make use of the fully assembled E. festucae genome and EffectorP to generate a suite of 141 effector candidates. These were analysed with respect to their genome location and expression profiles in planta and in several symbiosis-defective mutants. We found an association between effector candidates and a class of transposable elements known as MITEs, but no correlation with other dynamic features of the E. festucae genome, such as transposable element-rich regions. Three effector candidates and a small GPI-anchored protein were chosen for functional analysis based on their high expression in planta compared to in culture and their differential regulation in symbiosis defective E. festucae mutants. All three candidate effector proteins were shown to possess a functional signal peptide and two could be detected in the extracellular medium by western blotting. Localization of the effector candidates in planta suggests that they are not translocated into the plant cell, but rather, are localized in the apoplastic space or are attached to the cell wall. Deletion and overexpression of the effector candidates, as well as the putative GPI-anchored protein, did not affect the plant growth phenotype or restrict growth of E. festucae mutants in planta. These results indicate that these proteins are either not required for the interaction at the observed life stages or that there is redundancy between effectors expressed by E. festucae.
Collapse
Affiliation(s)
- Berit Hassing
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - David Winter
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Yvonne Becker
- Institute for Epidemiology and Pathogen Diagnostics, Julius Küehn-Institute, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Carl H. Mesarich
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Carla J. Eaton
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Barry Scott
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
130
|
Wan L, Koeck M, Williams SJ, Ashton AR, Lawrence GJ, Sakakibara H, Kojima M, Böttcher C, Ericsson DJ, Hardham AR, Jones DA, Ellis JG, Kobe B, Dodds PN. Structural and functional insights into the modulation of the activity of a flax cytokinin oxidase by flax rust effector AvrL567-A. MOLECULAR PLANT PATHOLOGY 2019; 20:211-222. [PMID: 30242946 PMCID: PMC6637871 DOI: 10.1111/mpp.12749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
During infection, plant pathogens secrete effector proteins to facilitate colonization. In comparison with our knowledge of bacterial effectors, the current understanding of how fungal effectors function is limited. In this study, we show that the effector AvrL567-A from the flax rust fungus Melampsora lini interacts with a flax cytosolic cytokinin oxidase, LuCKX1.1, using both yeast two-hybrid and in planta bimolecular fluorescence assays. Purified LuCKX1.1 protein shows catalytic activity against both N6-(Δ2-isopentenyl)-adenine (2iP) and trans-zeatin (tZ) substrates. Incubation of LuCKX1.1 with AvrL567-A results in increased catalytic activity against both substrates. The crystal structure of LuCKX1.1 and docking studies with AvrL567-A indicate that the AvrL567 binding site involves a flexible surface-exposed region that surrounds the cytokinin substrate access site, which may explain its effect in modulating LuCKX1.1 activity. Expression of AvrL567-A in transgenic flax plants gave rise to an epinastic leaf phenotype consistent with hormonal effects, although no difference in overall cytokinin levels was observed. We propose that, during infection, plant pathogens may differentially modify the levels of extracellular and intracellular cytokinins.
Collapse
Affiliation(s)
- Li Wan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina27599‐3280USA
| | - Markus Koeck
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Anthony R. Ashton
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Gregory J. Lawrence
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource ScienceYokohamaKanagawa230‐0045Japan
| | - Christine Böttcher
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodAdelaideSA5064Australia
| | - Daniel J. Ericsson
- Australian SynchrotronMacromolecular CrystallographyClaytonVictoria3168Australia
| | - Adrienne R. Hardham
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - David A. Jones
- Division of Plant Sciences, Research School of BiologyAustralian National UniversityCanberraACT2601Australia
| | - Jeffrey G. Ellis
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre and Institute for Molecular BioscienceUniversity of QueenslandBrisbaneQLD4072Australia
| | - Peter N. Dodds
- Commonwealth Scientific and Industrial Research Organisation Agriculture and FoodCanberraACT2601Australia
| |
Collapse
|
131
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
132
|
Differential Expression Proteins Contribute to Race-Specific Resistant Ability in Rice ( Oryza sativa L.). PLANTS 2019; 8:plants8020029. [PMID: 30678057 PMCID: PMC6410114 DOI: 10.3390/plants8020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/20/2022]
Abstract
Rice blast, caused by the fungus, Magnaporthe grisea (M. grisea), lead to the decrease of rice yields widely and destructively, threatening global food security. Although many resistant genes had been isolated and identified in various rice varieties, it is still not enough to clearly understand the mechanism of race-specific resistant ability in rice, especially on the protein level. In this research, proteomic methods were employed to analyze the differentially expressed proteins (DEPs) in susceptible rice variety CO39 and its two near isogenic lines (NILs), CN-4a and CN-4b, in response to the infection of two isolates with different pathogenicity, GUY11 and 81278ZB15. A total of 50 DEPs with more than 1.5-fold reproducible change were identified. At 24 and 48 hpi of GUY11, 32 and 16 proteins in CN-4b were up-regulated, among which 16 and five were paralleled with the expression of their corresponding RNAs. Moreover, 13 of 50 DEPs were reported to be induced by M. grisea in previous publications. Considering the phenotypes of the three tested rice varieties, we found that 21 and 23 up-regulated proteins were responsible for the rice resistant ability to the two different blast isolates, 81278ZB15 and GUY11, respectively. Two distinct branches corresponding to GUY11 and 81278ZB15 were observed in the expression and function of the module cluster of DEPs, illuminating that the DEPs could be responsible for race-specific resistant ability in rice. In other words, DEPs in rice are involved in different patterns and functional modules’ response to different pathogenic race infection, inducing race-specific resistant ability in rice.
Collapse
|
133
|
Lopez ALC, Yli-Matilla T, Cumagun CJR. Geographic Distribution of Avirulence Genes of the Rice Blast Fungus Magnaporthe oryzae in the Philippines. Microorganisms 2019; 7:E23. [PMID: 30669441 PMCID: PMC6352036 DOI: 10.3390/microorganisms7010023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 11/16/2022] Open
Abstract
A total of 131 contemporary and 33 reference isolates representing a number of multi-locus genotypes of Magnaporthe oryzae were subjected to a PCR test to detect the presence/absence of avirulence (Avr) genes. Results revealed that the more frequently occurring genes were Avr-Pik (81.50%), Avr-Pita (64.16%) and Avr-Pii (47.98%), whereas the less frequently occurring genes were Avr-Pizt (19.08%) and Avr-Pia (5.20%). It was also laid out that the presence of Avr genes in M. oryzae is strongly associated with agroecosystems where the complementary resistant (R) genes exist. No significant association, however, was noted on the functional Avr genes and the major geographic locations. Furthermore, it was identified that the upland varieties locally known as "Milagrosa" and "Waray" contained all the R genes complementary to the Avr genes tested.
Collapse
Affiliation(s)
- Ana Liza C Lopez
- Jose Rizal Memorial State University⁻Tampilisan Campus, Znac, 7101 Tampilisan, Zamboanga del Norte, Philippines.
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, 4031 Los Baños, Laguna, Philippines.
| | - Tapani Yli-Matilla
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FI-20520 Turku, Finland.
| | - Christian Joseph R Cumagun
- Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, 4031 Los Baños, Laguna, Philippines.
- Molecular Phytopathology and Mycotoxin Research, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
134
|
Saur IML, Bauer S, Lu X, Schulze-Lefert P. A cell death assay in barley and wheat protoplasts for identification and validation of matching pathogen AVR effector and plant NLR immune receptors. PLANT METHODS 2019; 15:118. [PMID: 31666804 PMCID: PMC6813131 DOI: 10.1186/s13007-019-0502-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/14/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Plant disease resistance to host-adapted pathogens is often mediated by host nucleotide-binding and leucine-rich repeat (NLR) receptors that detect matching pathogen avirulence effectors (AVR) inside plant cells. AVR-triggered NLR activation is typically associated with a rapid host cell death at sites of attempted infection and this response constitutes a widely used surrogate for NLR activation. However, it is challenging to assess this cell death in cereal hosts. RESULTS Here we quantify cell death upon NLR-mediated recognition of fungal pathogen AVRs in mesophyll leaf protoplasts of barley and wheat. We provide measurements for the recognition of the fungal AVRs AvrSr50 and AVR a1 by their respective cereal NLRs Sr50 and Mla1 upon overexpression of the AVR and NLR pairs in mesophyll protoplast of both, wheat and barley. CONCLUSIONS Our data demonstrate that the here described approach can be effectively used to detect and quantify death of wheat and barley cells induced by overexpression of NLR and AVR effectors or AVR effector candidate genes from diverse fungal pathogens within 24 h.
Collapse
Affiliation(s)
- Isabel M. L. Saur
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Saskia Bauer
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Xunli Lu
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Present Address: Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193 China
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
135
|
Meng Q, Gupta R, Min CW, Kwon SW, Wang Y, Je BI, Kim YJ, Jeon JS, Agrawal GK, Rakwal R, Kim ST. Proteomics of Rice- Magnaporthe oryzae Interaction: What Have We Learned So Far? FRONTIERS IN PLANT SCIENCE 2019; 10:1383. [PMID: 31737011 PMCID: PMC6828948 DOI: 10.3389/fpls.2019.01383] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/07/2019] [Indexed: 05/21/2023]
Abstract
Rice blast disease, caused by Magnaporthe oryzae, is one of the major constraints to rice production, which feeds half of the world's population. Proteomic technologies have been used as effective tools in plant-pathogen interactions to study the biological pathways involved in pathogen infection, plant response, and disease progression. Advancements in mass spectrometry (MS) and apoplastic and plasma membrane protein isolation methods facilitated the identification and quantification of subcellular proteomes during plant-pathogen interaction. Proteomic studies conducted during rice-M. oryzae interaction have led to the identification of several proteins eminently involved in pathogen perception, signal transduction, and the adjustment of metabolism to prevent plant disease. Some of these proteins include receptor-like kinases (RLKs), mitogen-activated protein kinases (MAPKs), and proteins related to reactive oxygen species (ROS) signaling and scavenging, hormone signaling, photosynthesis, secondary metabolism, protein degradation, and other defense responses. Moreover, post-translational modifications (PTMs), such as phosphoproteomics and ubiquitin proteomics, during rice-M. oryzae interaction are also summarized in this review. In essence, proteomic studies carried out to date delineated the molecular mechanisms underlying rice-M. oryzae interactions and provided candidate proteins for the breeding of rice blast resistant cultivars.
Collapse
Affiliation(s)
- Qingfeng Meng
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Ravi Gupta
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard, New Delhi, India
| | - Cheol Woo Min
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Soon Wook Kwon
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
| | - Yiming Wang
- Department of Plant Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Byoung Il Je
- Department of Horticultural Bioscience, Pusan National University, Miryang, South Korea
| | - Yu-Jin Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Birgunj, Nepal
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, South Korea
- *Correspondence: Sun Tae Kim,
| |
Collapse
|
136
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
137
|
Zheng H, Zhong Z, Shi M, Zhang L, Lin L, Hong Y, Fang T, Zhu Y, Guo J, Zhang L, Fang J, Lin H, Norvienyeku J, Chen X, Lu G, Hu H, Wang Z. Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC Genomics 2018; 19:927. [PMID: 30545292 PMCID: PMC6293661 DOI: 10.1186/s12864-018-5222-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND A number of Pyricularia species are known to infect different grass species. In the case of Pyricularia oryzae (syn. Magnaporthe oryzae), distinct populations are known to be adapted to a wide variety of grass hosts, including rice, wheat and many other grasses. The genome sizes of Pyricularia species are typical for filamentous ascomycete fungi [~ 40 Mbp for P. oryzae, and ~ 45 Mbp for P. grisea]. Genome plasticity, mediated in part by deletions promoted by recombination between repetitive elements [Genome Res 26:1091-1100, 2016, Nat Rev Microbiol 10:417-430,2012] and transposable elements [Annu Rev Phytopathol 55:483-503,2017] contributes to host adaptation. Therefore, comparisons of genome structure of individual species will provide insight into the evolution of host specificity. However, except for the P. oryzae subgroup, little is known about the gene content or genome organization of other Pyricularia species, such as those infecting Pennisetum grasses. RESULTS Here, we report the genome sequence of P. penniseti strain P1609 isolated from a Pennisetum grass (JUJUNCAO) using PacBio SMRT sequencing technology. Phylogenomic analysis of 28 Magnaporthales species and 5 non-Magnaporthales species indicated that P1609 belongs to a Pyricularia subclade, which is genetically distant from P. oryzae. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires had diverged between P1609 and the P. oryzae strain 70-15, including the known avirulence genes, other putative secreted proteins, as well as some other predicted Pathogen-Host Interaction (PHI) genes. Genomic sequence comparison also identified many genomic rearrangements relative to P. oryzae. CONCLUSION Our results suggested that the genomic sequence of the P. penniseti P1609 could be a useful resource for the genetic study of the Pennisetum-infecting Pyricularia species and provide new insight into evolution of pathogen genomes during host adaptation.
Collapse
Affiliation(s)
- Huakun Zheng
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Mingyue Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Limei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yonghe Hong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Tian Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yangyan Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jiayuan Guo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Limin Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jie Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hui Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaofeng Chen
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Guodong Lu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Hongli Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of life science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
138
|
Guo L, Cesari S, de Guillen K, Chalvon V, Mammri L, Ma M, Meusnier I, Bonnot F, Padilla A, Peng YL, Liu J, Kroj T. Specific recognition of two MAX effectors by integrated HMA domains in plant immune receptors involves distinct binding surfaces. Proc Natl Acad Sci U S A 2018; 115:11637-11642. [PMID: 30355769 PMCID: PMC6233088 DOI: 10.1073/pnas.1810705115] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The structurally conserved but sequence-unrelated MAX (Magnaporthe oryzae avirulence and ToxB-like) effectors AVR1-CO39 and AVR-PikD from the blast fungus M. oryzae are recognized by the rice nucleotide-binding domain and leucine-rich repeat proteins (NLRs) RGA5 and Pikp-1, respectively. This involves, in both cases, direct interaction of the effector with a heavy metal-associated (HMA) integrated domain (ID) in the NLR. Here, we solved the crystal structures of a C-terminal fragment of RGA5 carrying the HMA ID (RGA5_S), alone, and in complex with AVR1-CO39 and compared it to the structure of the Pikp1HMA/AVR-PikD complex. In both complexes, HMA ID/MAX effector interactions involve antiparallel alignment of β-sheets from each partner. However, effector-binding occurs at different surfaces in Pikp1HMA and RGA5HMA, indicating that these interactions evolved independently by convergence of these two MAX effectors to the same type of plant target proteins. Interestingly, the effector-binding surface in RGA5HMA overlaps with the surface that mediates RGA5HMA self-interaction. Mutations in the HMA-binding interface of AVR1-CO39 perturb RGA5HMA-binding, in vitro and in vivo, and affect the recognition of M. oryzae in a rice cultivar containing Pi-CO39 Our study provides detailed insight into the mechanisms of effector recognition by NLRs, which has substantial implications for future engineering of NLRs to expand their recognition specificities. In addition, we propose, as a hypothesis for the understanding of effector diversity, that in the structurally conserved MAX effectors the molecular mechanism of host target protein-binding is conserved rather than the host target proteins themselves.
Collapse
Affiliation(s)
- Liwei Guo
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Stella Cesari
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - Karine de Guillen
- CBS, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Véronique Chalvon
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - Léa Mammri
- CBS, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Mengqi Ma
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Isabelle Meusnier
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
| | - François Bonnot
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - André Padilla
- CBS, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Junfeng Liu
- State Key Laboratory of Agrobiotechnology, China Agricultural University, 100083 Beijing, People's Republic of China;
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, 100083 Beijing, People's Republic of China
| | - Thomas Kroj
- BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, F-34398 Montpellier, France;
| |
Collapse
|
139
|
Terauchi R. Dissecting the forces that shape crops: an interview with Ryohei Terauchi. BMC Biol 2018; 16:132. [PMID: 30382838 PMCID: PMC6211442 DOI: 10.1186/s12915-018-0598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 11/10/2022] Open
Abstract
Ryohei Terauchi is a Professor at Kyoto University and a Group Leader at the Iwate Biotechnology Research Center, Japan, studying the evolution of crops and their pathogens. In this interview, Ryohei describes his research interests, how the revolution in sequencing technology helped improve our understanding of orphan crops, and who are the scientists that inspire him.
Collapse
Affiliation(s)
- Ryohei Terauchi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan. .,Iwate Biotechnology Research Centre, Kyoto, Japan.
| |
Collapse
|
140
|
Wang A, Pang L, Wang N, Ai P, Yin D, Li S, Deng Q, Zhu J, Liang Y, Zhu J, Li P, Zheng A. The pathogenic mechanisms of Tilletia horrida as revealed by comparative and functional genomics. Sci Rep 2018; 8:15413. [PMID: 30337609 PMCID: PMC6194002 DOI: 10.1038/s41598-018-33752-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Tilletia horrida is a soil-borne, mononucleate basidiomycete fungus with a biotrophic lifestyle that causes rice kernel smut, a disease that is distributed throughout hybrid rice growing areas worldwide. Here we report on the high-quality genome sequence of T. horrida; it is composed of 23.2 Mb that encode 7,729 predicted genes and 6,973 genes supported by RNA-seq. The genome contains few repetitive elements that account for 8.45% of the total. Evolutionarily, T. horrida lies close to the Ustilago fungi, suggesting grass species as potential hosts, but co-linearity was not observed between T. horrida and the barley smut Ustilago hordei. Genes and functions relevant to pathogenicity were presumed. T. horrida possesses a smaller set of carbohydrate-active enzymes and secondary metabolites, which probably reflect the specific characteristics of its infection and biotrophic lifestyle. Genes that encode secreted proteins and enzymes of secondary metabolism, and genes that are represented in the pathogen-host interaction gene database genes, are highly expressed during early infection; this is consistent with their potential roles in pathogenicity. Furthermore, among the 131 candidate pathogen effectors identified according to their expression patterns and functionality, we validated two that trigger leaf cell death in Nicotiana benthamiana. In summary, we have revealed new molecular mechanisms involved in the evolution, biotrophy, and pathogenesis of T. horrida.
Collapse
Affiliation(s)
- Aijun Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Linxiu Pang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Na Wang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peng Ai
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Desuo Yin
- Food Crop Research Institute, Hubei Academy of Agricultural Science, Wuhan, Hubei, 611130, China
| | - Shuangcheng Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Qiming Deng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jun Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Yueyang Liang
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Jianqing Zhu
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Ping Li
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China
| | - Aiping Zheng
- Rice Research Institute of Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China.
- Key Laboratory of Southwest Crop Gene Resource and Genetic Improvement of Ministry of Education, Sichuan Agricultural University, Yaan, Sichuan, 611130, China.
| |
Collapse
|
141
|
Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor IA, Yang J, Liu J, Peng YL. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:133-146. [PMID: 29989241 DOI: 10.1111/tpj.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/20/2018] [Indexed: 05/09/2023]
Abstract
Fungal avirulence effectors, a key weapon utilized by pathogens to promote their infection, are recognized by immune receptors to boost host R gene-mediated resistance. Many avirulence effectors share sparse sequence homology to proteins with known functions, and their molecular and biochemical functions together with the evolutionary relationship among different members remain largely unknown. Here, the crystal structure of AvrPib, an avirulence effector from Magnaporthe oryzae, was determined and showed a high degree of similarity to the M. oryzae Avrs and ToxB (MAX) effectors. Compared with other MAX effectors, AvrPib has a distinct positive-charge patch formed by five positive-charged residues (K29, K30, R50, K52 and K70) on the surface. These five key residues were essential to avirulence function of AvrPib and affected its nuclear localization into host cells. Moreover, residues V39 and V58, which locate in the hydrophobic core of the structure, cause loss of function of AvrPib by single-point mutation in natural isolates. In comparison with the wild-type AvrPib, the V39A or V58A mutations resulted in a partial or entire loss of secondary structure elements. Taken together, our results suggest that differences in the surface charge distribution of avirulence proteins could be one of the major bases for the variation in effector-receptor specificity, and that destabilization of the hydrophobic core is one of the major mechanisms employed by AvrPib for the fungus to evade recognition by resistance factors in the host cell.
Collapse
Affiliation(s)
- Xin Zhang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanxiang Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xilan Cheng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
142
|
Langner T, Kamoun S, Belhaj K. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:479-512. [PMID: 29975607 DOI: 10.1146/annurev-phyto-080417-050158] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Genome editing by sequence-specific nucleases (SSNs) has revolutionized biology by enabling targeted modifications of genomes. Although routine plant genome editing emerged only a few years ago, we are already witnessing the first applications to improve disease resistance. In particular, CRISPR-Cas9 has democratized the use of genome editing in plants thanks to the ease and robustness of this method. Here, we review the recent developments in plant genome editing and its application to enhancing disease resistance against plant pathogens. In the future, bioedited disease resistant crops will become a standard tool in plant breeding.
Collapse
Affiliation(s)
- Thorsten Langner
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Khaoula Belhaj
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
143
|
De la Concepcion JC, Franceschetti M, Maqbool A, Saitoh H, Terauchi R, Kamoun S, Banfield MJ. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. NATURE PLANTS 2018; 4:576-585. [PMID: 29988155 DOI: 10.1038/s41477-018-0194-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 05/21/2023]
Abstract
Accelerated adaptive evolution is a hallmark of plant-pathogen interactions. Plant intracellular immune receptors (NLRs) often occur as allelic series with differential pathogen specificities. The determinants of this specificity remain largely unknown. Here, we unravelled the biophysical and structural basis of expanded specificity in the allelic rice NLR Pik, which responds to the effector AVR-Pik from the rice blast pathogen Magnaporthe oryzae. Rice plants expressing the Pikm allele resist infection by blast strains expressing any of three AVR-Pik effector variants, whereas those expressing Pikp only respond to one. Unlike Pikp, the integrated heavy metal-associated (HMA) domain of Pikm binds with high affinity to each of the three recognized effector variants, and variation at binding interfaces between effectors and Pikp-HMA or Pikm-HMA domains encodes specificity. By understanding how co-evolution has shaped the response profile of an allelic NLR, we highlight how natural selection drove the emergence of new receptor specificities. This work has implications for the engineering of NLRs with improved utility in agriculture.
Collapse
Affiliation(s)
| | - Marina Franceschetti
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Abbas Maqbool
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hiromasa Saitoh
- Laboratory of Plant Symbiotic and Parasitic Microbes, Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Center, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK.
| |
Collapse
|
144
|
Upson JL, Zess EK, Białas A, Wu CH, Kamoun S. The coming of age of EvoMPMI: evolutionary molecular plant-microbe interactions across multiple timescales. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:108-116. [PMID: 29604609 DOI: 10.1016/j.pbi.2018.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 05/11/2023]
Abstract
Plant-microbe interactions are great model systems to study co-evolutionary dynamics across multiple timescales. However, mechanistic research on plant-microbe interactions has often been conducted with little consideration of evolutionary concepts and methods. Conversely, evolutionary research has rarely integrated the range of mechanisms and models from the molecular plant-microbe interactions field. In recent years, the incipient field of evolutionary molecular plant-microbe interactions (EvoMPMI) has emerged to bridge this gap. Here, we report on some of the recent advances in EvoMPMI. In particular, we highlight new systems to study microbe interactions with early diverging land plants, and new findings from studies of adaptive evolution in pathogens and plants. By linking mechanistic and evolutionary research, EvoMPMI promises to expand our understanding of plant-microbe interactions.
Collapse
Affiliation(s)
- Jessica L Upson
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Erin K Zess
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | | | - Chih-Hang Wu
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK.
| |
Collapse
|
145
|
Li T, Wen J, Zhang Y, Correll J, Wang L, Pan Q. Reconstruction of an SSR-based Magnaporthe oryzae physical map to locate avirulence gene AvrPi12. BMC Microbiol 2018; 18:47. [PMID: 29855268 PMCID: PMC5984427 DOI: 10.1186/s12866-018-1192-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/21/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Pathogen avirulence (Avr) genes can evolve rapidly when challenged by the widespread deployment of host genes for resistance. They can be effectively isolated by positional cloning provided a robust and well-populated genetic map is available. RESULTS An updated, SSR-based physical map of the rice blast pathogen Magnaporthe oryzae (Mo) has been constructed based on 116 of the 120 SSRs used to assemble the last map, along with 18 newly developed ones. A comparison between the two versions of the map has revealed an altered marker content and order within most of the Mo chromosomes. The avirulence gene AvrPi12 was mapped in a population of 219 progeny derived from a cross between the two Mo isolates CHL42 and CHL357. A bulked segregant analysis indicated that the gene was located on chromosome 6, a conclusion borne out by an analysis of the pattern of segregation shown by individual isolates. Six additional PCR-based markers were developed to improve the map resolution in the key region. AvrPi12 was finally located within the sub-telomeric region of chromosome 6, distal to the SSR locus LSM6-5. CONCLUSIONS The improved SSR-based linkage map should be useful as a platform for gene mapping and isolation in Mo. It was used to establish the location of AvrPi12, thereby providing a starting point for its positional cloning.
Collapse
Affiliation(s)
- Tonghui Li
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Jianqiang Wen
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Yaling Zhang
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, 163319 China
| | - James Correll
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Ling Wang
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| | - Qinghua Pan
- State Key laboratory for Conservation and Utilization of Subtropic Agrobioresurces, Guangdong Provincial Key Laboratory for Crop Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
146
|
Plaumann PL, Schmidpeter J, Dahl M, Taher L, Koch C. A Dispensable Chromosome Is Required for Virulence in the Hemibiotrophic Plant Pathogen Colletotrichum higginsianum. Front Microbiol 2018; 9:1005. [PMID: 29867895 PMCID: PMC5968395 DOI: 10.3389/fmicb.2018.01005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/30/2018] [Indexed: 01/01/2023] Open
Abstract
The hemibiotrophic plant pathogen Colletotrichum higginsianum infects Brassicaceae and in combination with Arabidopsis thaliana, represents an important model system to investigate various ecologically important fungal pathogens and their infection strategies. After penetration of plant cells by appressoria, C. higginsianum establishes large biotrophic primary hyphae in the first infected cell. Shortly thereafter, a switch to necrotrophic growth occurs leading to the invasion of neighboring cells by secondary hyphae. In a forward genetic screen for virulence mutants by insertional mutagenesis, we identified mutants that penetrate the plant but show a defect in the passage from biotrophy to necrotrophy. Genome sequencing and pulsed-field gel electrophoresis revealed that two mutants were lacking chromosome 11, encoding potential pathogenicity genes. We established a chromosome loss assay to verify that strains lacking this small chromosome abort infection during biotrophy, while their ability to grow on artificial media was not affected. C. higginsianum harbors a second small chromosome, which can be lost without effects on virulence or growth on agar plates. Furthermore, we found that chromosome 11 is required to suppress Arabidopsis thaliana plant defense mechanisms dependent on tryptophan derived secondary metabolites.
Collapse
Affiliation(s)
- Peter-Louis Plaumann
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schmidpeter
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marlis Dahl
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Leila Taher
- Division of Bioinformatics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Koch
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
147
|
Korinsak S, Tangphatsornruang S, Pootakham W, Wanchana S, Plabpla A, Jantasuriyarat C, Patarapuwadol S, Vanavichit A, Toojinda T. Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics 2018; 111:661-668. [PMID: 29775784 DOI: 10.1016/j.ygeno.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/04/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023]
Abstract
Magnaporthe oryzae is a fungal pathogen causing blast disease in many plant species. In this study, seventy three isolates of M. oryzae collected from rice (Oryza sativa) in 1996-2014 were genotyped using a genotyping-by-sequencing approach to detect genetic variation. An association study was performed to identify single nucleotide polymorphisms (SNPs) associated with virulence genes using 831 selected SNP and infection phenotypes on local and improved rice varieties. Population structure analysis revealed eight subpopulations. The division into eight groups was not related to the degree of virulence. Association mapping showed five SNPs associated with fungal virulence on chromosome 1, 2, 3, 4 and 7. The SNP on chromosome 1 was associated with virulence against RD6-Pi7 and IRBL7-M which might be linked to the previously reported AvrPi7.
Collapse
Affiliation(s)
- Siripar Korinsak
- Plant Breeding Program, Faculty of Agriculture at Kamphaeng Saen, Kesetsart University, Nakhon Pathom 73140, Thailand
| | - Sithichoke Tangphatsornruang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Wirulda Pootakham
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand
| | - Anucha Plabpla
- Interdisciplinary Graduate Program in Genetic Engineering, Kasetsart University, Bangkok 10900, Thailand
| | | | - Sujin Patarapuwadol
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Apichart Vanavichit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, PathumThani 12120, Thailand.
| |
Collapse
|
148
|
Guo L, Zhang Y, Ma M, Liu Q, Zhang Y, Peng Y, Liu J. Crystallization of the rice immune receptor RGA5A_S with the rice blast fungus effector AVR1-CO39 prepared via mixture and tandem strategies. Acta Crystallogr F Struct Biol Commun 2018; 74:262-267. [PMID: 29633975 PMCID: PMC5894111 DOI: 10.1107/s2053230x18003618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
RGA5 is a component of the Pia resistance-protein pair (RGA4/RGA5) from Oryza sativa L. japonica. It acts as an immune receptor that directly recognizes the effector AVR1-CO39 from Magnaporthe oryzae via a C-terminal non-LRR domain (RGA5A_S). The interaction between RGA5A_S and AVR1-CO39 relieves the repression of RGA4, leading to effector-independent cell death. To determine the structure of the complex of RGA5A_S and AVR1-CO39 and to understand the details of this interaction, the complex was prepared by fusing the proteins together, by mixing them in vitro or by co-expressing them in one host cell. Samples purified via the first two strategies were crystallized under two different conditions. A mixture of AVR1-CO39 and RGA5A_S (complex I) crystallized in 1.1 M ammonium tartrate dibasic, 0.1 M sodium acetate-HCl pH 4.6, while crystals of the fusion complex RGA5A_S-TEV-AVR1-CO39 (complex II) were grown in 2 M NaCl. The crystal of complex I belonged to space group P3121, with unit-cell parameters a = b = 66.2, c = 108.8 Å, α = β = 90, γ = 120°. The crystals diffracted to a Bragg spacing of 2.4 Å, and one molecule each of RGA5A_S and AVR1-CO39 were present in the asymmetric unit of the initial model. The crystal of complex II belonged to space group I4, with unit-cell parameters a = b = 137.4, c = 66.2 Å, α = β = γ = 90°. The crystals diffracted to a Bragg spacing of 2.72 Å, and there were two molecules of RGA5A_S and two molecules of AVR1-CO39 in the asymmetric unit of the initial model. Further structural characterization of the interaction between RGA5A_S and AVR1-CO39 will lead to a better understanding of the mechanism underlying effector recognition by R proteins.
Collapse
Affiliation(s)
- Liwei Guo
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Yikun Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Mengqi Ma
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Qiang Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Yanan Zhang
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Youliang Peng
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| | - Junfeng Liu
- Key Laboratory of Pest Monitoring and Green Management, MOA and College of Plant Protection, China Agricultural University, No. 2 Yunamingyuanxilu, Beijing 100193, People’s Republic of China
| |
Collapse
|
149
|
Hartmann FE, Rodríguez de la Vega RC, Brandenburg JT, Carpentier F, Giraud T. Gene Presence-Absence Polymorphism in Castrating Anther-Smut Fungi: Recent Gene Gains and Phylogeographic Structure. Genome Biol Evol 2018; 10:1298-1314. [PMID: 29722826 PMCID: PMC5967549 DOI: 10.1093/gbe/evy089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2018] [Indexed: 12/14/2022] Open
Abstract
Gene presence-absence polymorphisms segregating within species are a significant source of genetic variation but have been little investigated to date in natural populations. In plant pathogens, the gain or loss of genes encoding proteins interacting directly with the host, such as secreted proteins, probably plays an important role in coevolution and local adaptation. We investigated gene presence-absence polymorphism in populations of two closely related species of castrating anther-smut fungi, Microbotryum lychnidis-dioicae (MvSl) and M. silenes-dioicae (MvSd), from across Europe, on the basis of Illumina genome sequencing data and high-quality genome references. We observed presence-absence polymorphism for 186 autosomal genes (2% of all genes) in MvSl, and only 51 autosomal genes in MvSd. Distinct genes displayed presence-absence polymorphism in the two species. Genes displaying presence-absence polymorphism were frequently located in subtelomeric and centromeric regions and close to repetitive elements, and comparison with outgroups indicated that most were present in a single species, being recently acquired through duplications in multiple-gene families. Gene presence-absence polymorphism in MvSl showed a phylogeographic structure corresponding to clusters detected based on SNPs. In addition, gene absence alleles were rare within species and skewed toward low-frequency variants. These findings are consistent with a deleterious or neutral effect for most gene presence-absence polymorphism. Some of the observed gene loss and gain events may however be adaptive, as suggested by the putative functions of the corresponding encoded proteins (e.g., secreted proteins) or their localization within previously identified selective sweeps. The adaptive roles in plant and anther-smut fungi interactions of candidate genes however need to be experimentally tested in future studies.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Jean-Tristan Brandenburg
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Fantin Carpentier
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Department Génétique et Ecologie Evolutives, Ecologie Systématique Evolution, Bâtiment 360, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris-Saclay, Orsay, France
| |
Collapse
|
150
|
Hartmann FE, Croll D. Distinct Trajectories of Massive Recent Gene Gains and Losses in Populations of a Microbial Eukaryotic Pathogen. Mol Biol Evol 2018; 34:2808-2822. [PMID: 28981698 PMCID: PMC5850472 DOI: 10.1093/molbev/msx208] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Differences in gene content are a significant source of variability within species and have an impact on phenotypic traits. However, little is known about the mechanisms responsible for the most recent gene gains and losses. We screened the genomes of 123 worldwide isolates of the major pathogen of wheat Zymoseptoria tritici for robust evidence of gene copy number variation. Based on orthology relationships in three closely related fungi, we identified 599 gene gains and 1,024 gene losses that have not yet reached fixation within the focal species. Our analyses of gene gains and losses segregating in populations showed that gene copy number variation arose preferentially in subtelomeres and in proximity to transposable elements. Recently lost genes were enriched in virulence factors and secondary metabolite gene clusters. In contrast, recently gained genes encoded mostly secreted protein lacking a conserved domain. We analyzed the frequency spectrum at loci segregating a gene presence–absence polymorphism in four worldwide populations. Recent gene losses showed a significant excess in low-frequency variants compared with genome-wide single nucleotide polymorphism, which is indicative of strong negative selection against gene losses. Recent gene gains were either under weak negative selection or neutral. We found evidence for strong divergent selection among populations at individual loci segregating a gene presence–absence polymorphism. Hence, gene gains and losses likely contributed to local adaptation. Our study shows that microbial eukaryotes harbor extensive copy number variation within populations and that functional differences among recently gained and lost genes led to distinct evolutionary trajectories.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|